1
|
Huang M, Zou M, Mao S, Xu W, Hong Y, Wang H, Gui F, Yang L, Lian F, Chen R. 3,5,6-Trichloro-2-pyridinol confirms ototoxicity in mouse cochlear organotypic cultures and induces cytotoxicity in HEI-OC1 cells. Toxicol Appl Pharmacol 2023; 475:116612. [PMID: 37463651 DOI: 10.1016/j.taap.2023.116612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 06/12/2023] [Accepted: 06/30/2023] [Indexed: 07/20/2023]
Abstract
The metabolite of organophosphate pesticide chlorpyrifos (CPF), 3,5,6-Trichloro-2-pyridinol (TCP), is persistent and mobile toxic substance in soil and water environments, exhibiting cytotoxic, genotoxic, and neurotoxic properties. However, little is known about its effects on the peripheral auditory system. Herein, we investigated the effects of TCP exposure on mouse postnatal day 3 (P3) cochlear culture and an auditory cell line HEI-OC1 to elucidate the underlying molecular mechanisms of ototoxicity. The damage of TCP to outer hair cells (OHC) and support cells (SC) was observed in a dose and time-dependent manner. OHC and SC were a significant loss from basal to apical turn of the cochlea under exposure over 800 μM TCP for 96 h. As TCP concentrations increased, cell viability was reduced whereas reactive oxygen species (ROS) generation, apoptotic cells, and the extent of DNA damage were increased, accordingly. TCP-induced phosphorylation of the p38 and JNK MAPK are the downstream effectors of ROS. The antioxidant agent, N-acetylcysteine (NAC), could reverse TCP-mediated intracellular ROS generation, inhibit the expressive level of cleaved-caspase 3 and block phosphorylation of p38/JNK. Overall, this is the first demonstration of TCP damaging to peripheral sensory HCs and SC in organotypic cultures from the postnatal cochlea. Data also showed that TCP exposure induced oxidase stress, cell apoptosis and DNA damage in the HEI-OC1 cells. These findings serve as an important reference for assessing the risk of TCP exposure.
Collapse
Affiliation(s)
- Mao Huang
- School of Public Health, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Mingshan Zou
- School of Public Health, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Shuangshuang Mao
- School of Public Health, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Wenqi Xu
- School of Public Health, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Yu Hong
- School of Public Health, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Haiyan Wang
- School of Public Health, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Fei Gui
- School of Public Health, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Lei Yang
- School of Public Health, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Fuzhi Lian
- School of Public Health, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China.
| | - Rong Chen
- School of Public Health, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China.
| |
Collapse
|
2
|
Cheng HL, Lee SC, Chang-Chien J, Su TR, Yang JJ, Su CC. Protective mechanism of ferulic acid against neomycin-induced ototoxicity in zebrafish. ENVIRONMENTAL TOXICOLOGY 2023; 38:604-614. [PMID: 36367326 DOI: 10.1002/tox.23707] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 10/27/2022] [Accepted: 10/28/2022] [Indexed: 06/16/2023]
Abstract
Ototoxicity refers to damage of sensory hair cells and functional hearing impairment following aminoglycosides exposure. Previously, we have determined that ferulic acid (FA) protected hair cells against serial concentrations of neomycin-induced ototoxic damage. The aim of the present study is to assess the mechanism and effects of FA on neomycin-induced hair cells loss and impact on mechanosensory-mediated behaviors alteration using transgenic zebrafish (pvalb3b: TagGFP). We first identified the optimal protective condition as pre/co-treatment method in early fish development. Pretreatment of the larvae with FA significantly protected against neomycin-induced hair cells loss through preventing neomycin passed through the cytoplasm of hair cells, and subsequently decreased reactive oxygen species production and TUNEL signals in 4 day post-fertilization (dpf) transgenic zebrafish larvae. Moreover, preservation of functional hair cells correlated directly with rescue of the altered swimming behavior, indicates FA pretreatment protects against neomycin ototoxic damage in 7-dpf transgenic zebrafish larvae. Together, our findings unravel the otoprotective role of FA as an effective agent against neomycin-induced ototoxic effects and offering the theoretical foundation for discovering novel candidates for hearing protection.
Collapse
Affiliation(s)
- Hsin-Lin Cheng
- Department of Biomedical Sciences, Chung Shan Medical University, Taichung, Taiwan
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Shan-Chih Lee
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan
- Department of Medical Imaging and Radiological Sciences, Chung Shan Medical University, Taichung, Taiwan
| | - Ju Chang-Chien
- Department of Biomedical Sciences, Chung Shan Medical University, Taichung, Taiwan
| | - Tzu-Rong Su
- Dean chamber, Antai Medical Care Corporation Antai Tian-Sheng Memorial Hospital, Pingtung, Taiwan
- Department of Beauty Science, Meiho University, Pingtung, Taiwan
| | - Jiann-Jou Yang
- Department of Biomedical Sciences, Chung Shan Medical University, Taichung, Taiwan
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Ching-Chyuan Su
- Dean chamber, Antai Medical Care Corporation Antai Tian-Sheng Memorial Hospital, Pingtung, Taiwan
- Department of Beauty Science, Meiho University, Pingtung, Taiwan
| |
Collapse
|
3
|
Zhou K, Tian KY, Liu XQ, Liu W, Zhang XY, Liu JY, Sun F. Characteristic and Otopathogenic Analysis of a Vibrio alginolyticus Strain Responsible for Chronic Otitis Externa in China. Front Microbiol 2022; 12:750642. [PMID: 34975783 PMCID: PMC8718755 DOI: 10.3389/fmicb.2021.750642] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Accepted: 11/15/2021] [Indexed: 01/20/2023] Open
Abstract
Vibrio alginolyticus, a Gram-negative rod bacterium found in marine environments, is known to cause opportunistic infections in humans, including ear infections, which can be difficult to diagnose. We investigated the microbiological and otopathogenic characteristics of a V. alginolyticus strain isolated from an ear exudate specimen obtained from a patient with chronic otitis externa to provide a basis for the future diagnosis of V. alginolyticus-associated infections. The identification of V. alginolyticus was accomplished using a combination of matrix-assisted laser desorption/ionization-time-of-flight mass spectrometry (MALDI-TOF MS), classical biochemical identification methods, and the use of Vibrio-selective media and advanced molecular identification methodologies. Antimicrobial susceptibility testing revealed that the strain was resistant to ampicillin and sensitive to β-lactam, aminoglycosides, fluoroquinolones, and sulfonamide antibiotics. The potential otopathogenic effects of V. alginolyticus were determined through the performance of cell viability, cell apoptosis, and cell death assays in tympanic membrane (TM) keratinocytes and HEI-OC1 cells treated with V. alginolyticus-conditioned medium using cell-counting kit (CCK)-8 assay, a wound-healing migration assay, Annexin V/propidium iodide (PI) flow cytometric analysis, and terminal deoxynucleotidyl transferase deoxyuridine triphosphate (dUTP) nick-end labeling (TUNEL staining). The results indicated that the identified V. alginolyticus strain exerts cytotoxic effects on keratinocytes and HEI-OC1 cells by inhibiting cell proliferation and migration and inducing apoptosis and cell death. To evaluate the ototoxicity of V. alginolyticus, the cell density and morphological integrity of hair cells (HCs) and spiral ganglion neurons (SGNs) were analyzed after exposing cochlear organotypic explants to the bacterial supernatant, which revealed the pre-dominant susceptibility and vulnerability of HCs and SGNs in the basal cochlear region to the ototoxic insults exerted by V. alginolyticus. Our investigation highlights the challenges associated with the identification and characteristic analysis of the Vibrio strain isolated in this case and ultimately aims to increase the understanding and awareness of clinicians and microbiologists for the improved diagnosis of V. alginolyticus-associated ear infections and the recognition of its potential otopathogenic and ototoxic effects.
Collapse
Affiliation(s)
- Ke Zhou
- Department of Laboratory Medicine, Institute of Clinical Laboratory Medicine of People's Liberation Army (PLA), Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Ke-Yong Tian
- Department of Otolaryngology-Head and Neck Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Xin-Qin Liu
- Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment and Shaanxi Key Laboratory of Free Radical Biology and Medicine, Department of Occupational and Environmental Health, School of Public Health, Fourth Military Medical University, Xi'an, China
| | - Wei Liu
- Department of Otolaryngology-Head and Neck Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Xin-Yu Zhang
- Department of Otolaryngology-Head and Neck Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Jia-Yun Liu
- Department of Laboratory Medicine, Institute of Clinical Laboratory Medicine of People's Liberation Army (PLA), Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Fei Sun
- Department of Otolaryngology-Head and Neck Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| |
Collapse
|
4
|
Ding D, Prolla T, Someya S, Manohar S, Salvi R. Roles of Bak and Sirt3 in Paraquat-Induced Cochlear Hair Cell Damage. Neurotox Res 2021; 39:1227-1237. [PMID: 33900547 DOI: 10.1007/s12640-021-00366-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 04/16/2021] [Accepted: 04/19/2021] [Indexed: 12/22/2022]
Abstract
Paraquat, a superoxide generator, can damage the cochlea causing an ototoxic hearing loss. The purpose of the study was to determine if deletion of Bak, a pro-apoptotic gene, would reduce paraquat ototoxicity or if deletion of Sirt3, which delays age-related hearing loss under caloric restriction, would increase paraquat ototoxicity. We tested these two hypotheses by treating postnatal day 3 cochlear cultures from Bak±, Bak-/-, Sirt3±, Sirt3-/-, and WT mice with paraquat and compared the results to a standard rat model of paraquat ototoxicity. Paraquat damaged nerve fibers and dose-dependently destroyed rat outer hair cells (OHCs) and inner hair cells (IHCs). Rat hair cell loss began in the base of the cochlea with a 10 μM dose and as the dose increased from 50 to 500 μM, the hair cell loss increased near the base of the cochlea and spread toward the apex of the cochlea. Rat OHC losses were consistently greater than IHC losses. Unexpectedly, in all mouse genotypes, paraquat-induced hair cell lesions were maximal near the apex of the cochlea and minimal near the base. This unusual damage gradient is opposite to that seen in paraquat-treated rats and in mice and rats treated with other ototoxic drugs. However, paraquat always induced greater OHC loss than IHC loss in all mouse strains. Contrary to our hypothesis, Bak deficient mice were more vulnerable to paraquat ototoxicity than WT mice (Bak-/- > Bak± > WT), suggesting that Bak plays a protective role against hair cell stress. Also, contrary to expectation, Sirt3-deficient mice did not differ significantly from WT mice, possibly due to the fact that Sirt3 was not experimentally upregulated in Sirt3-expressing mice prior to paraquat treatment. Our results show for the first time a gradient of ototoxic damage in mice that is greater in the apex than the base of the cochlea.
Collapse
MESH Headings
- Animals
- Animals, Newborn
- Cells, Cultured
- Cochlea/drug effects
- Cochlea/metabolism
- Cochlea/pathology
- Dose-Response Relationship, Drug
- Female
- Hair Cells, Auditory, Inner/drug effects
- Hair Cells, Auditory, Inner/metabolism
- Hair Cells, Auditory, Inner/pathology
- Hair Cells, Auditory, Outer/drug effects
- Hair Cells, Auditory, Outer/metabolism
- Hair Cells, Auditory, Outer/pathology
- Herbicides/toxicity
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Organ Culture Techniques
- Paraquat/toxicity
- Rats
- Rats, Sprague-Dawley
- Sirtuin 3/deficiency
- Sirtuin 3/genetics
- bcl-2 Homologous Antagonist-Killer Protein/deficiency
- bcl-2 Homologous Antagonist-Killer Protein/genetics
Collapse
Affiliation(s)
- Dalian Ding
- Center for Hearing and Deafness, State University of New York at Buffalo, 137 Cary Hall, Buffalo, NY, 14214, USA
| | - Tomas Prolla
- Department of Genetics and Medical Genetics, University of Wisconsin, 702 W Johnson St 1101, Madison, WI, 53715, USA
| | - Shinichi Someya
- Department of Aging and Geriatrics, University of Florida, Gainsville, FL, 32611, USA
| | - Senthilvelan Manohar
- Center for Hearing and Deafness, State University of New York at Buffalo, 137 Cary Hall, Buffalo, NY, 14214, USA
| | - Richard Salvi
- Center for Hearing and Deafness, State University of New York at Buffalo, 137 Cary Hall, Buffalo, NY, 14214, USA.
| |
Collapse
|
5
|
Liu X, Ding D, Chen GD, Li L, Jiang H, Salvi R. 2-Hydroxypropyl-β-cyclodextrin Ototoxicity in Adult Rats: Rapid Onset and Massive Destruction of Both Inner and Outer Hair Cells Above a Critical Dose. Neurotox Res 2020; 38:808-823. [PMID: 32607920 DOI: 10.1007/s12640-020-00252-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 06/24/2020] [Accepted: 06/25/2020] [Indexed: 02/08/2023]
Abstract
2-Hydroxypropyl-β-cyclodextrin (HPβCD), a cholesterol chelator, is being used to treat diseases associated with abnormal cholesterol metabolism such as Niemann-Pick C1 (NPC1). However, the high doses of HPβCD needed to slow disease progression may cause hearing loss. Previous studies in mice have suggested that HPβCD ototoxicity results from selective outer hair cell (OHC) damage. However, it is unclear if HPβCD causes the same type of damage or is more or less toxic to other species such as rats, which are widely used in toxicity research. To address these issues, rats were given a subcutaneous injection of HPβCD between 500 and 4000 mg/kg. Distortion product otoacoustic emissions (DPOAE), the cochlear summating potential (SP), and compound action potential (CAP) were used to assess cochlear function followed by quantitative analysis of OHC and inner hair cell (IHC) loss. The 3000- and 4000-mg/kg doses abolished DPOAE and greatly reduced SP and CAP amplitudes. These functional deficits were associated with nearly complete loss of OHC as well as ~ 80% IHC loss over the basal two thirds of the cochlea. The 2000-mg/kg dose abolished DPOAE and significantly reduced SP and CAP amplitudes at the high frequencies. These deficits were linked to OHC and IHC losses in the high-frequency region of the cochlea. Little or no damage occurred with 500 or 1000 mg/kg of HPβCD. The HPβCD-induced functional and structural deficits in rats occurred suddenly, involved damage to both IHC and OHC, and were more severe than those reported in mice.
Collapse
Affiliation(s)
- Xiaopeng Liu
- Center for Hearing and Deafness, 137 Cary Hall, University at Buffalo, Buffalo, NY, 14214, USA
| | - Dalian Ding
- Center for Hearing and Deafness, 137 Cary Hall, University at Buffalo, Buffalo, NY, 14214, USA
| | - Guang-Di Chen
- Center for Hearing and Deafness, 137 Cary Hall, University at Buffalo, Buffalo, NY, 14214, USA
| | - Li Li
- Center for Hearing and Deafness, 137 Cary Hall, University at Buffalo, Buffalo, NY, 14214, USA
| | - Haiyan Jiang
- Center for Hearing and Deafness, 137 Cary Hall, University at Buffalo, Buffalo, NY, 14214, USA
| | - Richard Salvi
- Center for Hearing and Deafness, 137 Cary Hall, University at Buffalo, Buffalo, NY, 14214, USA.
| |
Collapse
|
6
|
Ding D, Zhang J, Liu F, Li P, Qi W, Xing Y, Shi H, Jiang H, Sun H, Yin S, Salvi R. Antioxidative stress-induced damage in cochlear explants. J Otol 2019; 15:36-40. [PMID: 32110239 PMCID: PMC7033592 DOI: 10.1016/j.joto.2019.11.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 11/26/2019] [Accepted: 11/27/2019] [Indexed: 12/31/2022] Open
Abstract
The imbalance of reactive oxygen species and antioxidants is considered to be an important factor in the cellular injury of the inner ear. At present, great attention has been placed on oxidative stress. However, little is known about fighting oxidative stress. In the current study, we evaluated antioxidant-induced cochlear damage by applying several different additional antioxidants. To determine whether excessive antioxidants can cause damage to cochlear cells, we treated cochlear explants with 50 μM M40403, a superoxide dismutase mimetic, 50 μM coenzyme Q-10, a vitamin-like antioxidant, or 50 μM d-methionine, an essential amino acid and the important antioxidant glutathione for 48 h. Control cochlear explants without the antioxidant treatment maintained their normal structures after incubation in the standard serum-free medium for 48 h, indicating the maintenance of the inherent oxidative and antioxidant balance in these cochlear explants. In contrast, M40403 and coenzyme Q-10-treated cochlear explants displayed significant hair cell damage together with slight damage to the auditory nerve fibers. Moreover, d-methiodine-treated explants exhibited severe damage to the surface structure of hair cells and the complete loss of the spiral ganglion neurons and their peripheral fibers. These results indicate that excessive antioxidants are detrimental to cochlear cells, suggesting that inappropriate dosages of antioxidant treatments can interrupt the balance of the inherent oxidative and antioxidant capacity in the cell.
Collapse
Affiliation(s)
- Dalian Ding
- Center for Hearing and Deafness, State University of New York at Buffalo, United States.,The Third People's Hospital of Chengdu, Chengdu, China.,Huashan Hospital, Fudan University, Shanghai, China
| | | | - Fang Liu
- Beijing Hospital and National Center of Gerontology, Department of Otolaryngology, Beijing, China
| | - Peng Li
- The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Weidong Qi
- Huashan Hospital, Fudan University, Shanghai, China
| | - Yazhi Xing
- Shanghai Six People's Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Haibo Shi
- Shanghai Six People's Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Haiyan Jiang
- Center for Hearing and Deafness, State University of New York at Buffalo, United States
| | - Hong Sun
- Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Shankai Yin
- Shanghai Six People's Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Richard Salvi
- Center for Hearing and Deafness, State University of New York at Buffalo, United States
| |
Collapse
|
7
|
Cunha EO, Reis AD, Macedo MB, Machado MS, Dallegrave E. Ototoxicity of cypermethrin in Wistar rats. Braz J Otorhinolaryngol 2019; 86:587-592. [PMID: 31122882 PMCID: PMC9422497 DOI: 10.1016/j.bjorl.2019.02.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 02/18/2019] [Accepted: 02/28/2019] [Indexed: 11/18/2022] Open
Abstract
Introduction This study presents the effect of cypermethrin on the cochlear function in Wistar rats post-subchronic inhalation exposure. Worldwide several pesticides are described as causing health disorders. Cypermethrin is currently one of the most commonly used, however, little is known about its harmful effects, especially related to hearing. Human studies have associated pesticides with hearing disorders, but they present limited conclusions due to the multiple factors to which the population is exposed, such as noise. Objective Mimic human exposure to cypermethrin and to verify the effects on cochlear function. Methods It is a subchronic inhalation animal study (6 weeks, 4 hours/day), using 36 male Wistar aged 60 day. Rats were randomly assigned into three groups: Control (12 rats exposed to inhalation of water); Positive Control for auditory lesion (12 rats administrated with 24 mg/kg intraperitoneal cisplatin); Experimental (12 rats exposed to inhalation of cypermethrin – 0.25 mg/L). Animals were evaluated by distortion product otoacoustic emissions pre- and post-exposure. Results The frequencies of 8, 10 and 12 kHz in both ears (right p = 0.003; 0.004; 0.008 and left 0.003; 0.016; 0.005 respectively) and at frequencies 4 and 6 in the right ear (p = 0.007 and 0.015, respectively) in the animals exposed to cypermethrin resulted in reduction. Conclusion Subchronic inhalation exposure to cypermethrin provided ototoxicity in rats.
Collapse
Affiliation(s)
- Eduarda Oliveira Cunha
- Universidade Federal de Ciências da Saúde de Porto Alegre, Programa de Pós-graduação em Patologia, Porto Alegre , RS , Brazil
| | - Aléxia Dos Reis
- Universidade Federal de Ciências da Saúde de Porto Alegre, Programa de Pós-graduação em Patologia, Porto Alegre , RS , Brazil
| | - Mateus Belmonte Macedo
- Universidade Federal de Ciências da Saúde de Porto Alegre, Programa de Pós-graduação em Patologia, Porto Alegre , RS , Brazil
| | - Márcia Salgado Machado
- Universidade Federal de Ciências da Saúde de Porto Alegre, Departamento de Fonoaudiologia, Porto Alegre, RS, Brazil
| | - Eliane Dallegrave
- Universidade Federal de Ciências da Saúde de Porto Alegre, Departamento de Farmacologia, Programa de Pós-graduação em Patologia, Porto Alegre, RS, Brazil.
| |
Collapse
|
8
|
Abstract
A typical cochleogram was plotted to investigate hair cell densities as a percentage along the whole length of the basilar membrane (BM) of the rabbit, the length of the BM and the width of the organ of Corti. We generated surface preparations of cochlea from adult, healthy New Zealand White (NZW) rabbits. The numbers of inner hair cells (IHCs) and outer hair cells (OHCs) were counted from images acquired from a digital camera attached to an Olympus light microscope with a scale of 100 μm as a primary unit drawn continuously, and the numbers of IHCs and OHCs were converted to densities at 10% intervals along the length of the cochlea. Meanwhile, the length of the BM and the width of the organ of Corti were calculated. The average length of the cochlea was 14.504 ± 0.403 mm, while the total number of IHCs and the numbers of OHCs in the first, second, and third rows were 1556 ± 13, 1840 ± 47, 1842 ± 46, and 1840 ± 45, respectively, accounting for 21.98%, 26.00%, 26.02%, and 26.00% of the total number of cells, respectively. The densities of each row of OHCs reported in 10% intervals were greater than the densities of the IHCs corresponding to their anatomical locations within the cochlea. The densities of OHCs in each row were distributed uniformly along the BM, while the IHCs densities were not and showed a bimodal distribution with a maximum density at the apex and at 70–80% of the cochlear length from the apex but a lower density in the remaining cochlea. The width of the organ of Corti decreased successively from the apex to the base.
Collapse
|
9
|
Zhang J, Sun H, Salvi R, Ding D. Paraquat initially damages cochlear support cells leading to anoikis-like hair cell death. Hear Res 2018; 364:129-141. [PMID: 29563067 PMCID: PMC5984146 DOI: 10.1016/j.heares.2018.03.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Revised: 02/20/2018] [Accepted: 03/09/2018] [Indexed: 12/11/2022]
Abstract
Paraquat (PQ), one of the most widely used herbicides, is extremely dangerous because it generates the highly toxic superoxide radical. When paraquat was applied to cochlear organotypic cultures, it not only damaged the outer hair cells (OHCs) and inner hair cells (IHCs), but also caused dislocation of the hair cell rows. We hypothesized that the dislocation arose from damage to the support cells (SCs) that anchors hair cells within the epithelium. To test this hypothesis, rat postnatal cochlear cultures were treated with PQ. Shortly after PQ treatment, the rows of OHCs separated from one another and migrated radially away from IHCs suggesting loss of cell-cell adhesion that hold the hair cells in proper alignment. Hair cells dislocation was associated with extensive loss of SCs in the organ of Corti, loss of tympanic border cells (TBCs) beneath the basilar membrane, the early appearance of superoxide staining and caspase-8 labeling in SCs below the OHCs and disintegration of E-cadherin and β-catenin in the organ of Corti. Damage to the TBCs and SCs occurred prior to loss of OHC or IHC loss suggesting a form of detachment-induced apoptosis referred to as anoikis.
Collapse
Affiliation(s)
- Jianhui Zhang
- Department of Otorhinolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, China; Center for Hearing and Deafness, University at Buffalo, Buffalo, NY, 14214, USA
| | - Hong Sun
- Department of Otorhinolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, China; Center for Hearing and Deafness, University at Buffalo, Buffalo, NY, 14214, USA
| | - Richard Salvi
- Department of Otorhinolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, China; Center for Hearing and Deafness, University at Buffalo, Buffalo, NY, 14214, USA; Department of Audiology and Speech-Language Pathology, Asia University, Taichung, Taiwan, ROC
| | - Dalian Ding
- Department of Otorhinolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, China; Center for Hearing and Deafness, University at Buffalo, Buffalo, NY, 14214, USA.
| |
Collapse
|