1
|
Bhuia MS, Chowdhury R, Afroz M, Akbor MS, Al Hasan MS, Ferdous J, Hasan R, de Alencar MVOB, Mubarak MS, Islam MT. Therapeutic Efficacy Studies on the Monoterpenoid Hinokitiol in the Treatment of Different Types of Cancer. Chem Biodivers 2025:e202401904. [PMID: 39776341 DOI: 10.1002/cbdv.202401904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 12/10/2024] [Accepted: 12/15/2024] [Indexed: 01/11/2025]
Abstract
Hinokitiol (HK), a monoterpenoid that naturally occurs in plants belonging to the Cupressaceae family, possesses important biological activities, including an anticancer effect. This review summarizes its anticancer potential and draws possible molecular interventions. In addition, it evaluates the biopharmaceutical, toxicological properties, and clinical application of HK to establish its viability for future advancement as a dependable anticancer medication. The assessment is based on the most recent information available from various databases. Findings demonstrate that HK possesses substantial therapeutic advantages against diverse types of cancer (colon, cervical, breast, bone, endometrial, liver, prostate, oral, and skin) through various molecular mechanisms. HK induces oxidative stress, cytotoxicity, apoptosis, cell-cycle arrest at the G and S phases, and autophagy through modulation of phosphatidylinositol 3-kinase (PI3K)/Akt/mammalian target of rapamycin (mTOR), p38/ERK/MAPK, nuclear factor kappa B, and c-Jun N-terminal kinase signaling pathways. Furthermore, this compound exhibits good oral bioavailability with excellent plasma clearance. Clinical uses of HK demonstrate therapeutic advantages without any significant negative effects. A thorough study of the pertinent data suggests that HK may serve as a viable candidate for developing novel cancer therapies. Consequently, more extensive studies are necessary to evaluate its cancer treatment efficacy, safety, and possible long-term hazards.
Collapse
Affiliation(s)
- Md Shimul Bhuia
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, Dhaka, Bangladesh
- Phytochemistry and Biodiversity Research Laboratory, BioLuster Research Center Ltd, Gopalganj, Dhaka, Bangladesh
| | - Raihan Chowdhury
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, Dhaka, Bangladesh
- Phytochemistry and Biodiversity Research Laboratory, BioLuster Research Center Ltd, Gopalganj, Dhaka, Bangladesh
| | - Meher Afroz
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, Dhaka, Bangladesh
| | - Md Showkot Akbor
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, Dhaka, Bangladesh
| | - Md Sakib Al Hasan
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, Dhaka, Bangladesh
- Phytochemistry and Biodiversity Research Laboratory, BioLuster Research Center Ltd, Gopalganj, Dhaka, Bangladesh
| | - Jannatul Ferdous
- Department of Biotechnology and Genetic Engineering, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, Dhaka, Bangladesh
| | - Rubel Hasan
- Phytochemistry and Biodiversity Research Laboratory, BioLuster Research Center Ltd, Gopalganj, Dhaka, Bangladesh
| | | | | | - Muhammad Torequl Islam
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, Dhaka, Bangladesh
- Phytochemistry and Biodiversity Research Laboratory, BioLuster Research Center Ltd, Gopalganj, Dhaka, Bangladesh
- Pharmacy Discipline, Khulna University, Khulna, Dhaka, Bangladesh
| |
Collapse
|
2
|
Bin X, Cheng JY, Deng ZY, Li B, Xu XHY, Liu OS, Tang Z. circMTO1/miR-30c-5p/SOCS3 axis alleviates oral submucous fibrosis through inhibiting fibroblast-myofibroblast transition. J Oral Pathol Med 2024; 53:468-479. [PMID: 38802299 DOI: 10.1111/jop.13559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 05/05/2024] [Accepted: 05/08/2024] [Indexed: 05/29/2024]
Abstract
BACKGROUND circRNAs have been shown to participate in diverse diseases; however, their role in oral submucous fibrosis (OSF), a potentially malignant disorder, remains obscure. Our preliminary experiments detected the expression of circRNA mitochondrial translation optimization 1 homologue (circMTO1) in OSF tissues (n = 20) and normal mucosa tissues (n = 20) collected from Hunan Xiangya Stomatological Hospital, and a significant decrease of circMTO1 expression was showed in OSF tissues. Therefore, we further explored circMTO1 expression in OSF. METHODS Target molecule expression was detected using RT-qPCR and western blotting. The migration and invasion of buccal mucosal fibroblasts (BMFs) were assessed using wound healing and Transwell assays. The interaction between miR-30c-5p, circMTO1, and SOCS3 was evaluated using dual luciferase, RNA immunoprecipitation (RIP), and RNA pull-down assays. The colocalisation of circMTO1 and miR-30c-5p was observed using fluorescence in situ hybridisation (FISH). RESULTS circMTO1 and SOCS3 expression decreased, whereas miR-30c-5p expression increased in patients with OSF and arecoline-stimulated BMFs. Overexpression of circMTO1 effectively restrained the fibroblast-myofibroblast transition (FMT), as evidenced by the increase in expression of Coll I, α-SMA, Vimentin, and the weakened migration and invasion functions in BMFs. Mechanistic studies have shown that circMTO1 suppresses FMT by enhancing SOCS3 expression by sponging miR-30c-5p and subsequently inactivating the FAK/PI3K/AKT pathway. FMT induced by SOCS3 silencing was reversed by the FAK inhibitor TAE226 or the PI3K inhibitor LY294002. CONCLUSION circMTO1/miR-30c-5p/SOCS3 axis regulates FMT in arecoline-treated BMFs via the FAK/PI3K/AKT pathway. Expanding the sample size and in vivo validation could further elucidate their potential as therapeutic targets for OSF.
Collapse
Affiliation(s)
- Xin Bin
- Department of Oral and Maxillofacial Surgery, Xiangya Stomatological Hospital of Central South University, Central South University, Changsha, China
| | - Jing-Yi Cheng
- Xiangya School of Stomatology, Central South University, Changsha, China
| | - Zhi-Yuan Deng
- Department of Oral and Maxillofacial Surgery, Xiangya Stomatological Hospital of Central South University, Central South University, Changsha, China
- Hunan Key Laboratory of Oral Health Research & Hunan 3D Printing Engineering Research Center of Oral Care & Hunan Clinical Research Center of Oral Major Diseases and Oral Health & Xiangya Stomatological Hospital & Xiangya School of Stomatology, Central South University, Changsha, China
| | - Bo Li
- Xiangya School of Stomatology, Central South University, Changsha, China
| | - Xing-Huan-Yu Xu
- Xiangya School of Stomatology, Central South University, Changsha, China
| | - Ou-Sheng Liu
- Hunan Key Laboratory of Oral Health Research & Hunan 3D Printing Engineering Research Center of Oral Care & Hunan Clinical Research Center of Oral Major Diseases and Oral Health & Xiangya Stomatological Hospital & Xiangya School of Stomatology, Central South University, Changsha, China
- Department of Orthodontics, Xiangya Stomatological Hospital of Central South University, Central South University, Changsha, China
| | - Zhangui Tang
- Department of Oral and Maxillofacial Surgery, Xiangya Stomatological Hospital of Central South University, Central South University, Changsha, China
- Hunan Key Laboratory of Oral Health Research & Hunan 3D Printing Engineering Research Center of Oral Care & Hunan Clinical Research Center of Oral Major Diseases and Oral Health & Xiangya Stomatological Hospital & Xiangya School of Stomatology, Central South University, Changsha, China
| |
Collapse
|
3
|
Zhao M, Qiao C, Yang S, Tang Y, Sun W, Sun S, Guo Q, Du F, Zhang N, Ning T, Wu J, Xu J, Li P. Hinokitiol protects gastric injury from ethanol exposure via its iron sequestration capacity. Eur J Pharmacol 2024; 966:176340. [PMID: 38244759 DOI: 10.1016/j.ejphar.2024.176340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 01/17/2024] [Accepted: 01/17/2024] [Indexed: 01/22/2024]
Abstract
Hinokitiol is a natural bioactive tropolone derivative isolated from Chamaecyparis obtusa and Thuja plicata, which exhibits promising potential in terms of antioxidant and anti-inflammatory properties and possesses potent iron-binding capacity. In this study, we aimed to investigate the potential role of hinokitiol in protecting against ethanol-induced gastric injury and elucidate the underlying mechanism. Our results demonstrated that hinokitiol effectively attenuated hemorrhagic gastric lesions, epithelial cell loss, and inflammatory response in mice with ethanol-induced gastric injury. Intriguingly, we found that ethanol exposure affects iron levels both in vivo and in vitro. Moreover, the disturbed iron homeostasis was involved in the development of ethanol-induced injury. Iron depletion was found to enhance defense against ethanol-induced damage, while iron repletion showed the opposite effect. To further explore the role of iron sequestration in the protective effects of hinokitiol, we synthesized methylhinokitiol, a compound that shields the iron binding capacity of hinokitiol with a methyl group. Interestingly, this compound significantly diminishes the protective effect against ethanol-induced injury. These findings collectively demonstrated that hinokitiol could potentially be used to prevent or improve gastric injury induced by ethanol through regulating cellular iron homeostasis.
Collapse
Affiliation(s)
- Mengran Zhao
- State Key Laboratory of Digestive Health, Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, Beijing, 100050, China
| | - Chen Qiao
- State Key Laboratory of Digestive Health, Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, Beijing, 100050, China
| | - Shuyue Yang
- State Key Laboratory of Digestive Health, Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, Beijing, 100050, China
| | - Yefeng Tang
- School of Pharmaceutical Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Tsinghua University, Beijing, 100084, China
| | - Wenjing Sun
- State Key Laboratory of Digestive Health, Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, Beijing, 100050, China
| | - Shanshan Sun
- National Institute of Food and Drug Control (NIFDC), Beijing, 100050, China
| | - Qingdong Guo
- State Key Laboratory of Digestive Health, Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, Beijing, 100050, China
| | - Feng Du
- State Key Laboratory of Digestive Health, Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, Beijing, 100050, China
| | - Nan Zhang
- State Key Laboratory of Digestive Health, Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, Beijing, 100050, China
| | - TingTing Ning
- State Key Laboratory of Digestive Health, Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, Beijing, 100050, China
| | - Jing Wu
- State Key Laboratory of Digestive Health, Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, Beijing, 100050, China
| | - Junxuan Xu
- State Key Laboratory of Digestive Health, Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, Beijing, 100050, China.
| | - Peng Li
- State Key Laboratory of Digestive Health, Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, Beijing, 100050, China.
| |
Collapse
|
4
|
Lee YH, Hsieh PL, Chao SC, Liao YW, Liu CM, Yu CC. α-Mangostin Inhibits the Activation of Myofibroblasts via Downregulation of Linc-ROR-Mediated TGFB1/Smad Signaling. Nutrients 2023; 15:nu15061321. [PMID: 36986051 PMCID: PMC10051815 DOI: 10.3390/nu15061321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 03/01/2023] [Accepted: 03/03/2023] [Indexed: 03/11/2023] Open
Abstract
Oral submucous fibrosis (OSF) is a premalignant disorder and persistent activation of myofibroblasts is implicated in this pathological progression. Increasing attention has been addressed towards non-coding RNA-regulated myofibroblasts activities and the effects of phytochemicals on non-coding RNA modulation are of great importance. In the present study, we examined the anti-fibrosis property of α-mangostin, a xanthone isolated from the pericarp of mangosteen. We found that α-mangostin exhibited inhibitory potency in myofibroblast activities and expression of fibrosis markers at the concentrations that caused neglectable damage to normal cells. Apart from the downregulation of TGF-β1/Smad2 signaling, we found that α-mangostin attenuated the expression of long non-coding RNA LincROR as well. Our results demonstrated that the effects of α-mangostin on myofibroblast activation were reverted when LincROR was overexpressed. Additionally, we showed the expression of LincROR in OSF specimens was elevated and silencing of LincROR successfully attenuated myofibroblast characteristics and TGF-β1/Smad2 activation. Taken together, these findings indicated that the anti-fibrosis effects of α-mangostin merit consideration and may be due to the attenuation of LincROR.
Collapse
Affiliation(s)
- Yu-Hsien Lee
- School of Dentistry, Chung Shan Medical University, Taichung 40201, Taiwan
- Department of Dentistry, Chung Shan Medical University Hospital, Taichung 40201, Taiwan
| | - Pei-Ling Hsieh
- Department of Anatomy, School of Medicine, China Medical University, Taichung 404333, Taiwan
| | - Shih-Chi Chao
- Institute of Oral Sciences, Chung Shan Medical University, Taichung 40201, Taiwan
- Department of Medical Research and Education, Lo-Hsu Medical Foundation, Lotung Poh-Ai Hospital, Yilan 265, Taiwan
| | - Yi-Wen Liao
- Institute of Oral Sciences, Chung Shan Medical University, Taichung 40201, Taiwan
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung 40201, Taiwan
| | - Chia-Ming Liu
- School of Dentistry, Chung Shan Medical University, Taichung 40201, Taiwan
- Department of Dentistry, Chung Shan Medical University Hospital, Taichung 40201, Taiwan
- Correspondence: (C.-M.L.); (C.-C.Y.)
| | - Cheng-Chia Yu
- School of Dentistry, Chung Shan Medical University, Taichung 40201, Taiwan
- Department of Dentistry, Chung Shan Medical University Hospital, Taichung 40201, Taiwan
- Institute of Oral Sciences, Chung Shan Medical University, Taichung 40201, Taiwan
- Correspondence: (C.-M.L.); (C.-C.Y.)
| |
Collapse
|
5
|
One-pot synthesis of cyclic-aminotropiminium carboxylate derivatives with DNA binding and anticancer properties. Commun Chem 2022; 5:179. [PMID: 36697960 PMCID: PMC9814901 DOI: 10.1038/s42004-022-00798-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 12/15/2022] [Indexed: 12/28/2022] Open
Abstract
Tropolone, a nonbenzenoid aromatic molecule, is a constituent of troponoid natural products possessing a wide range of bioactivities, including anticancer. This report describes the one-pot synthesis and mechanistic studies of fifteen fluorescent Caryl-Nalkyl-substituted cyclic-aminotroponiminium carboxylate (cATC) derivatives by unusual cycloaddition and rearrangement reactions. Herein, the biochemical studies of four cATC derivatives reveal a non-intercalative binding affinity with DNA duplex. In vitro/in vivo studies show strong anti-tumor activity in three cATC derivatives. These derivatives enter the cells and localize to the nucleus and cytoplasm, which are easily traceable due to their inherent fluorescence properties. These three cATC derivatives reduce the proliferation and migration of HeLa cells more than the non-cancer cell line. They induce p38-p53-mediated apoptosis and inhibit EMT. In xenograft-based mouse models, these cATC derivatives reduce tumor size. Overall, this study reports the synthesis of DNA binding fluorescent Caryl-Nalkyl-cyclic-aminotroponiminium derivatives which show anti-tumor activity with the minimum side effect.
Collapse
|
6
|
Targeting UHRF1-SAP30-MXD4 axis for leukemia initiating cell eradication in myeloid leukemia. Cell Res 2022; 32:1105-1123. [PMID: 36302855 PMCID: PMC9715639 DOI: 10.1038/s41422-022-00735-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 09/28/2022] [Indexed: 01/31/2023] Open
Abstract
Aberrant self-renewal of leukemia initiation cells (LICs) drives aggressive acute myeloid leukemia (AML). Here, we report that UHRF1, an epigenetic regulator that recruits DNMT1 to methylate DNA, is highly expressed in AML and predicts poor prognosis. UHRF1 is required for myeloid leukemogenesis by maintaining self-renewal of LICs. Mechanistically, UHRF1 directly interacts with Sin3A-associated protein 30 (SAP30) through two critical amino acids, G572 and F573 in its SRA domain, to repress gene expression. Depletion of UHRF1 or SAP30 derepresses an important target gene, MXD4, which encodes a MYC antagonist, and leads to suppression of leukemogenesis. Further knockdown of MXD4 can rescue the leukemogenesis by activating the MYC pathway. Lastly, we identified a UHRF1 inhibitor, UF146, and demonstrated its significant therapeutic efficacy in the myeloid leukemia PDX model. Taken together, our study reveals the mechanisms for altered epigenetic programs in AML and provides a promising targeted therapeutic strategy against AML.
Collapse
|
7
|
Meng Z, Yang T, Liu D. Type-2 epithelial-mesenchymal transition in oral mucosal nonneoplastic diseases. Front Immunol 2022; 13:1020768. [PMID: 36389753 PMCID: PMC9659919 DOI: 10.3389/fimmu.2022.1020768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 10/13/2022] [Indexed: 12/04/2022] Open
Abstract
The oral mucosa is a membranous structure comprising epithelial and connective tissue that covers the oral cavity. The oral mucosa is the first immune barrier to protect the body against pathogens for systemic protection. It is frequently exposed to mechanical abrasion, chemical erosion, and pathogenic invasion, resulting in oral mucosal lesions, particularly inflammatory diseases. Epithelial-mesenchymal transition (EMT) is a crucial biological process in the pathogenesis of oral mucosal disorders, which are classified into three types (types 1, 2, and 3) based on their physiological consequences. Among these, type-2 EMT is crucial in wound repair, organ fibrosis, and tissue regeneration. It causes infectious and dis-infectious immunological diseases, such as oral lichen planus (OLP), oral leukoplakia, oral submucosal fibrosis, and other precancerous lesions. However, the mechanism and cognition between type-2 EMT and oral mucosal inflammatory disorders remain unknown. This review first provides a comprehensive evaluation of type-2 EMT in chronically inflammatory oral mucosal disorders. The aim is to lay a foundation for future research and suggest potential treatments.
Collapse
Affiliation(s)
- Zhaosong Meng
- Department of Oral and Maxillofacial Surgery, Tianjin Medical University Stomatology Hospital, Tianjin, Tianjin, China
| | - Tianle Yang
- School of Stomatology, Tianjin Medical University, Tianjin, China
| | - Dayong Liu
- Department of Endodontics & Laboratory for Dental Stem Cells and Endocrine Immunology, Tianjin Medical University School of Stomatology, Tianjin, China
- *Correspondence: Dayong Liu,
| |
Collapse
|
8
|
Panda A, Mishra P, Mohanty A, Sundaragiri KS, Singh A, Jha K. Is Epithelial-Mesenchymal Transition a New Roadway in the Pathogenesis of Oral Submucous Fibrosis: A Comprehensive Review. Cureus 2022; 14:e29636. [PMID: 36321045 PMCID: PMC9606484 DOI: 10.7759/cureus.29636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/26/2022] [Indexed: 11/17/2022] Open
Abstract
Epithelial-mesenchymal transition (EMT) collectively refers to a series of episodes that reshape polarized, intact epithelial cells into discrete motile cells that can conquer the extracellular matrix (ECM). It performs a pivotal role in embryonic development, wound healing, and tissue repair. Surprisingly, the exact mechanism can also lead to the onset of malignancy and organ fibrosis contributing to scar formation and loss of function. transforming growth factor signaling, WNT signaling, Notch signaling, Hedgehog signaling, and receptor tyrosine kinase signaling, as well as non-transcriptional changes in response to extracellular cues, such as growth factors and cytokines, hypoxia, and contact with the surrounding ECM, are responsible for the initiation of EMT. Although the pathogenesis of oral submucous fibrosis (OSMF) is multifactorial, compelling evidence suggests that it results from collagen deregulation. EMT is one of the spotlight events in the pathogenesis of OSMF, with myofibroblasts and keratinocytes being the victim cells. EMT is an essential step in both physiological and pathological events. The importance of EMT in the malignant development of OSMF and the inflammatory reaction preceding fibrosis implies a new upcoming area of research. This review aims to focus on the EMT events that function as a double-edged sword between wound healing and fibrosis and further discuss the mechanisms along with the molecular pathways that direct changes in gene expression essential for the same in the oral cavity. As OSMF involves a risk of malignant transformation, understanding the cellular and molecular events will open more avenues for therapeutic breakthroughs targeting EMT.
Collapse
|
9
|
Shi Q, Wei S, Li ZC, Xu J, Li Y, Guo C, Wu X, Shi C, Di G. Collagen-binding fibroblast growth factor ameliorates liver fibrosis in murine bile duct ligation injury. J Biomater Appl 2022; 37:918-929. [PMID: 35969638 DOI: 10.1177/08853282221121861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Cholestatic liver injury, characterized by liver fibrosis, has increasingly become a global health problem, with no effective treatment available. Hepatic stellate cells (HSCs) differentiate into myofibroblasts, leading to excessive deposition of the extracellular matrix (ECM), which is a feature of liver fibrosis. Basic fibroblast growth factor (bFGF) has proven antifibrotic effects in chronic liver disease; however, the lack of an effective delivery system to the injury site reduces its therapeutic efficacy. The aim of this study was to assess the therapeutic effect of collagen-binding bFGF (CBD-bFGF) for the treatment of liver fibrosis in a murine bile duct ligation (BDL) model. We found that CBD-bFGF treatment significantly alleviated liver injury in the early phase of BDL injury, and was associated with decreased necroptotic cell death and inflammatory response. Moreover, CBD-bFGF had enhanced therapeutic effects for liver fibrosis on day 7 after surgery compared to those obtained with native bFGF treatment. In vitro, CBD-bFGF treatment notably inhibited TGF-β1-induced LX-2 cell activation, migration, and contraction compared with native bFGF. In conclusion, CBD-bFGF may be a promising treatment for hepatic fibrosis.
Collapse
Affiliation(s)
- Qiangqiang Shi
- School of Basic Medicine, Medical College, 12593Qingdao University, Qingdao, China
| | - Susu Wei
- School of Basic Medicine, Medical College, 12593Qingdao University, Qingdao, China
| | - Zhi Chao Li
- Department of Gynaecology and Obstetrics, Qingdao Municipal Hospital, 12593Qingdao University, Qingdao, China
| | - Jing Xu
- School of Basic Medicine, Medical College, 12593Qingdao University, Qingdao, China
| | - Yaxin Li
- School of Basic Medicine, Medical College, 12593Qingdao University, Qingdao, China
| | - Chuanlong Guo
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, China
| | - Xianggen Wu
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, China
| | - Chunying Shi
- School of Basic Medicine, Medical College, 12593Qingdao University, Qingdao, China
| | - Guohu Di
- School of Basic Medicine, Medical College, 12593Qingdao University, Qingdao, China
| |
Collapse
|
10
|
Chelpuri Y, Pabbathi S, Alla GR, Yadala RK, Kamishetti M, Banothu AK, Boinepally R, Bharani KK, Khurana A. Tropolone derivative hinokitiol ameliorates cerulein-induced acute pancreatitis in mice. Int Immunopharmacol 2022; 109:108915. [PMID: 35679663 DOI: 10.1016/j.intimp.2022.108915] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 05/25/2022] [Accepted: 05/29/2022] [Indexed: 11/17/2022]
Abstract
Hinokitiol is a natural bio-active tropolone derivative with promising antioxidant and anti-inflammatory properties. This study was conducted to evaluate the ameliorative effects of hinokitiol against acute pancreatitis induced by cerulein. Mice were pre-treated with hinokitiol intraperitoneally for 7 days (50 and 100 mg/kg), and on the final day of study, cerulein (6 × 50 μg/kg) was injected every hour for six times. Six hours after the last dose of cerulein, blood was collected from the mice through retro-orbital plexus for biochemical analysis. After blood collection, mice were euthanized and the pancreas was harvested for studying effects on oxidative stress, pro-inflammatory cytokines, immunohistochemistry and histopathology of tissue sections. Hinokitiol treatment significantly reduced edema of the pancreas and reduced the plasma levels of lipase and amylase in mice with cerulein-induced acute pancreatitis. It also attenuated the oxidative and nitrosative stress related damage as evident from the reduced malondialdehyde (MDA) and nitrite levels, which were significantly increased in the mice with acute pancreatitis. Furthermore, hinokitiol administration significantly reduced the pancreatitis-evoked decrease in the activity of catalase, glutathione (GSH) and superoxide dismutase (SOD) in the pancreatic tissue. Pre-treatment with hinokitiol significantly reduced the elevated levels of pro-inflammatory cytokines like interleukin-6 (IL-6), interleukin-1β (IL-1β), tumor necrosis factor-alpha (TNF-α) as well as increased the levels of anti-inflammatory cytokine interleukin-10 (IL-10) in the pancreatic tissue of mice with acute pancreatitis. The immunohistochemical expression of nuclear factor kappa light chain enhancer of activated B cells (NF-κB), cyclooxygenase (COX-2) and TNF-α were significantly decreased by hinokitiol in mice with cerulein-induced acute pancreatitis. In conclusion, the results of the present study demonstrate that hinokitiol has significant potential to prevent cerulein-induced acute pancreatitis.
Collapse
Affiliation(s)
- Yamini Chelpuri
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Science (CVSc), Rajendranagar, Hyderabad 500030, PVNRTVU, Telangana, India
| | - Shivakumar Pabbathi
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Science (CVSc), Rajendranagar, Hyderabad 500030, PVNRTVU, Telangana, India
| | - Gopala Reddy Alla
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Science (CVSc), Rajendranagar, Hyderabad 500030, PVNRTVU, Telangana, India
| | - Ravi Kumar Yadala
- Department of Veterinary Pathology, College of Veterinary Science (CVSc), Rajendranagar, Hyderabad 500030, PVNRTVU, Telangana, India
| | - Mounika Kamishetti
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Science (CVSc), Rajendranagar, Hyderabad 500030, PVNRTVU, Telangana, India
| | - Anil Kumar Banothu
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Science (CVSc), Rajendranagar, Hyderabad 500030, PVNRTVU, Telangana, India.
| | - Ramya Boinepally
- Department of Veterinary Pathology, Veterinary Clinical Complex, College of Veterinary Science (CVSc), Warangal 506166, PVNRTVU, Telangana, India
| | - Kala Kumar Bharani
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Science (CVSc), Warangal 506166, PVNRTVU, Telangana, India
| | - Amit Khurana
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Science (CVSc), Rajendranagar, Hyderabad 500030, PVNRTVU, Telangana, India; Department of Veterinary Pharmacology and Toxicology, College of Veterinary Science (CVSc), Warangal 506166, PVNRTVU, Telangana, India; Centre for Biomedical Engineering (CBME), Indian Institute of Technology (IIT) Delhi, Hauz Khas, New Delhi 110016, India.
| |
Collapse
|
11
|
Tey SL, Li CY, Lin LW, Chang LC, Chen YL, Chang FR, Yang SN, Tsai CC. Arecae pericarpium extract induces porcine lower-esophageal-sphincter contraction via muscarinic receptors. BMC Complement Med Ther 2021; 21:275. [PMID: 34736444 PMCID: PMC8567577 DOI: 10.1186/s12906-021-03442-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Accepted: 08/04/2021] [Indexed: 01/15/2023] Open
Abstract
Background Gastroesophageal reflux disease (GERD) is associated with lower esophageal sphincter (LES) incompetence. In some patients, GERD is refractory to acid reduction therapy which is the main treatment for GERD. So far, medications that can increase LES tone are few. Arecae pericarpium (A. pericarpium) is a medication in Traditional Chinese Medicine known to promote intestinal motility. Methods We investigated the effect of A. pericarpium extracts on porcine LES motility. In addition, we used tetrodotoxin (TTX) and atropine to study the underlying mechanism of A. pericarpium extracts-induced contractions of LES. Results The results of this study showed that A. pericarpium extracts and their main active ingredient, arecoline, can induce the contractions of porcine LES sling and clasp muscles in a dose-response manner. TTX did not have an inhibitory effect on the contractions induced by A. pericarpium extracts and arecoline in LES. However, atropine significantly inhibited A. pericarpium extracts- and arecoline-induced contractions of LES. Conclusion A. pericarpium extracts can induce the contractions of porcine LES in a dose dependent manner, possibly through muscarinic receptors, and hence, may be worth developing as an alternative therapy for GERD.
Collapse
Affiliation(s)
- Shu-Leei Tey
- Department of Pediatrics, E-Da Hospital, No.1, Yi-Da Road, Yan-Chao District, Kaohsiung City, 82445, Taiwan, R.O.C.,School of Medicine, I-Shou University, No. 8, Yi-Da Road, Yan-Chao District, Kaohsiung City, 82445, Taiwan, R.O.C
| | - Chi-Ying Li
- Graduate Institute of Natural Products, College of Pharmacy, Kaohsiung Medical University, No.100, Shih-Chuan 1st Road, Sanmin District, Kaohsiung City, 80708, Taiwan, R.O.C
| | - Li-Wei Lin
- School of Chinese Medicine for Post Baccalaureate, I-Shou University, No.8, Yi-Da Road, Yan-Chao District, Kaohsiung City, 82445, Taiwan, R.O.C
| | - Li-Ching Chang
- School of Medicine, I-Shou University, No. 8, Yi-Da Road, Yan-Chao District, Kaohsiung City, 82445, Taiwan, R.O.C
| | - Yea-Ling Chen
- Department of Pediatrics, E-Da Hospital, No.1, Yi-Da Road, Yan-Chao District, Kaohsiung City, 82445, Taiwan, R.O.C.,School of Medicine, I-Shou University, No. 8, Yi-Da Road, Yan-Chao District, Kaohsiung City, 82445, Taiwan, R.O.C
| | - Fang-Rong Chang
- Graduate Institute of Natural Products, College of Pharmacy, Kaohsiung Medical University, No.100, Shih-Chuan 1st Road, Sanmin District, Kaohsiung City, 80708, Taiwan, R.O.C
| | - San-Nan Yang
- Department of Pediatrics, E-Da Hospital, No.1, Yi-Da Road, Yan-Chao District, Kaohsiung City, 82445, Taiwan, R.O.C.,School of Medicine, I-Shou University, No. 8, Yi-Da Road, Yan-Chao District, Kaohsiung City, 82445, Taiwan, R.O.C
| | - Ching-Chung Tsai
- Department of Pediatrics, E-Da Hospital, No.1, Yi-Da Road, Yan-Chao District, Kaohsiung City, 82445, Taiwan, R.O.C.. .,School of Medicine, I-Shou University, No. 8, Yi-Da Road, Yan-Chao District, Kaohsiung City, 82445, Taiwan, R.O.C..
| |
Collapse
|
12
|
Adipose-Derived Stem Cell-Derived Extracellular Vesicles Inhibit the Fibrosis of Fibrotic Buccal Mucosal Fibroblasts via the MicroRNA-375/FOXF1 Axis. Stem Cells Int 2021; 2021:9964159. [PMID: 34257670 PMCID: PMC8245228 DOI: 10.1155/2021/9964159] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 05/25/2021] [Accepted: 06/07/2021] [Indexed: 01/05/2023] Open
Abstract
Oral submucous fibrosis (OSF) is a precancerous lesion. Adipose-derived stem cell- (ADSC-) derived extracellular vesicles (EVs) (ADSC-EVs) regulate multiple oral diseases. Hence, this study explored the mechanism of ADSC-EVs in OSF. ADSCs were transduced with microRNA- (miR-) 375 mimic. ADSC-EVs and miR-375-overexpressed ADSC-EVs (EVs-miR-375) were extracted and identified. miR-375 expression in EVs and fibrotic buccal mucosal fibroblasts (fBMFs) was detected. EV uptake by fBMFs was observed. The targeted relationship between miR-375 and forkhead box protein F1 (FOXF1) was predicted and verified. After EVs-miR-375 treatment or FOXF1 overexpression, fBMF cell proliferation, migration, invasion, and apoptosis were evaluated, and levels of apoptosis-related proteins (cleaved-caspase-3, Bax, and Bcl-2) and fibrosis markers (α-SMA, collagen I, and collagen III) were detected. Functional rescue experiments were further performed to verify the role of the miR-375/FOXF1 axis in OSF. miR-375 was notably upregulated in EVs-miR-375 and EVs-miR-375-treated fBMFs (all P < 0.001). ADSC-EVs carried miR-375 into fBMFs. fBMFs can internalize ADSC-EVs. EVs-miR-375 treatment markedly inhibited fBMF cell proliferation, migration, invasion, and fibrosis and promoted apoptosis (all P < 0.01). Moreover, miR-375 targeted FOXF1 in fBMFs. FOXF1 overexpression promoted fBMF cell biological behaviors and fibrosis, which were reversed after EVs-miR-375 treatment (P < 0.01 or P < 0.001). We highlighted that ADSC-EVs inhibited fBMF fibrosis and then suppressed OSF progression via the miR-375/FOXF1 axis.
Collapse
|
13
|
Su JY, Yu CC, Peng CY, Liao YW, Hsieh PL, Yang LC, Yu CH, Chou MY. Silencing periostin inhibits myofibroblast transdifferentiation of fibrotic buccal mucosal fibroblasts. J Formos Med Assoc 2021; 120:2010-2015. [PMID: 33965260 DOI: 10.1016/j.jfma.2021.04.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 04/04/2021] [Accepted: 04/08/2021] [Indexed: 01/29/2023] Open
Abstract
BACKGROUND/PURPOSE Oral submucous fibrosis (OSF) a well-recognized oral premalignant disorder. Several studies have demonstrated that periostin, a matricellular protein, is involved in the development and pathogenesis of fibrosis diseases. Nevertheless, the contribution of periostin in OSF remains to be uncovered. The purpose of the study was to illustrate the functional role of periostin involved in OSF pathogenesis. METHODS RNA-sequencing was employed to screen for differentially expressed genes in normal and OSF tissues. Validation of the upregulation of periostin in OSF specimens and fibrotic buccal mucosal fibroblasts (fBMFs) was conducted by qRT-PCR. The correlation of the gene expression of periostin and various fibrosis markers was analyzed. In addition, the functional role of periostin in myofibroblast features was tested using collagen gel contraction and transwell migration assays. RESULTS We observed overexpression of periostin in OSF specimens using RNA-sequencing and confirmed its upregulation in OSF tissues and patient-derived fBMFs. Besides, there was a positive relationship between the expression of periostin and several fibrosis-associated markers, including ACTA2 (α-smooth muscle actin; α-SMA), COL1A1 (type 1 collagen α1 chain), TGFB1 (TGF-β1), and FN1 (fibronectin). Furthermore, we examined the effect of silencing periostin on the maintenance of myofibroblast characteristics and showed that knockdown of periostin suppressed the expression of α-SMA. Also, inhibition of periostin markedly downregulated the myofibroblast activities (collagen gel contraction and migration capacities). CONCLUSION Our results indicate the aberrant expression of periostin in OSF tissues and myofibroblasts. Moreover, the expression of periostin is positively associated with fibrosis markers, and repression of periostin may be a promising direction to alleviate the progression of OSF.
Collapse
Affiliation(s)
- Jyun-Yang Su
- Department of Oral and Maxillofacial Surgery, Changhua Christian Hospital, Changhua, Taiwan; School of Dentistry, Chung Shan Medical University, Taichung, Taiwan
| | - Cheng-Chia Yu
- School of Dentistry, Chung Shan Medical University, Taichung, Taiwan; Institute of Oral Sciences, Chung Shan Medical University, Taichung, Taiwan; Department of Dentistry, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Chih-Yu Peng
- School of Dentistry, Chung Shan Medical University, Taichung, Taiwan; Department of Dentistry, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Yi-Wen Liao
- Institute of Oral Sciences, Chung Shan Medical University, Taichung, Taiwan; Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Pei-Ling Hsieh
- Department of Anatomy, School of Medicine, China Medical University, Taichung, Taiwan
| | - Li-Chiu Yang
- School of Dentistry, Chung Shan Medical University, Taichung, Taiwan; Department of Dentistry, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Chuan-Hang Yu
- School of Dentistry, Chung Shan Medical University, Taichung, Taiwan; Institute of Oral Sciences, Chung Shan Medical University, Taichung, Taiwan; Department of Dentistry, Chung Shan Medical University Hospital, Taichung, Taiwan.
| | - Ming-Yung Chou
- School of Dentistry, Chung Shan Medical University, Taichung, Taiwan; Institute of Oral Sciences, Chung Shan Medical University, Taichung, Taiwan; Department of Dentistry, Chung Shan Medical University Hospital, Taichung, Taiwan.
| |
Collapse
|
14
|
Targeting lncRNA H19/miR-29b/COL1A1 Axis Impedes Myofibroblast Activities of Precancerous Oral Submucous Fibrosis. Int J Mol Sci 2021; 22:ijms22042216. [PMID: 33672311 PMCID: PMC7926971 DOI: 10.3390/ijms22042216] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 02/19/2021] [Accepted: 02/20/2021] [Indexed: 12/14/2022] Open
Abstract
Oral submucous fibrosis (OSF) is known as a potentially malignant disorder, which may result from chemical irritation due to areca nuts (such as arecoline). Emerging evidence suggests that fibrogenesis and carcinogenesis are regulated by the interaction of long noncoding RNAs (lncRNAs) and microRNAs. Among these regulators, profibrotic lncRNA H19 has been found to be overexpressed in several fibrosis diseases. Here, we examined the expression of H19 in OSF specimens and its functional role in fibrotic buccal mucosal fibroblasts (fBMFs). Our results indicate that the aberrantly overexpressed H19 contributed to higher myofibroblast activities, such as collagen gel contractility and migration ability. We also demonstrated that H19 interacted with miR-29b, which suppressed the direct binding of miR-29b to the 3′-untranslated region of type I collagen (COL1A1). We showed that ectopic expression of miR-29b ameliorated various myofibroblast phenotypes and the expression of α-smooth muscle actin (α-SMA), COL1A1, and fibronectin (FN1) in fBMFs. In OSF tissues, we found that the expression of miR-29b was downregulated and there was a negative correlation between miR-29b and these fibrosis markers. Lastly, we demonstrate that arecoline stimulated the upregulation of H19 through the transforming growth factor (TGF)-β pathway. Altogether, this study suggests that increased TGF-β secretion following areca nut chewing may induce the upregulation of H19, which serves as a natural sponge for miR-29b and impedes its antifibrotic effects.
Collapse
|
15
|
Lee YH, Yu CC, Hsieh PL, Liao YW, Yu CH, Su TR. Inhibition of lncRNA HOTTIP ameliorated myofibroblast activities and inflammatory cytokines in oral submucous fibrosis. J Formos Med Assoc 2021; 120:1188-1193. [PMID: 33504462 DOI: 10.1016/j.jfma.2020.11.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 11/11/2020] [Accepted: 11/15/2020] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND/PURPOSE Long non-coding RNA HOXA transcript at the distal tip (HOTTIP) has been reported to contribute to multiple carcinomas, but whether it involves in the progression of precancerous conditions remains to be determined. Oral submucous fibrosis (OSF) has been known as an oral potentially malignant disorder and attributed to the persistent activation of the myofibroblast. METHODS The relative expression of HOTTIP in OSF tissues has been employed by RNA-sequencing and RT-PCR analysis. HOTTIP associated myofibroblasts activities and markers in fibrotic buccal mucosal fibroblast (fBMFs) through loss of function approaches have been evaluated. RESULTS In the present study, we found that the expression of HOTTIP was overexpressed in the OSF tissues and positively correlated with several fibrosis markers. To investigate its significance of myofibroblast activation, we first verified the expression level of HOTTIP in the patient-derived fibrotic buccal mucosal fibroblast (fBMFs) was upregulated and conducted the shRNA-mediated knockdown experiment to inhibit its expression followed by numerous examinations. We demonstrated that suppression of HOTTIP downregulated the expression of myofibroblast marker, α-SMA, and type I collagen along with the diminished myofibroblast activities (collagen gel contraction and migration capacities). Furthermore, we showed that silencing HOTTIP lessened the production of various pro-inflammatory cytokines (IL-6 and TNF-α). CONCLUSION Collectively, our results suggest that HOTTIP plays a crucial role in the persistent activation of myofibroblasts as well as the chronic inflammation and collagen deposition.
Collapse
Affiliation(s)
- Yu-Hsien Lee
- School of Dentistry, Chung Shan Medical University, Taichung, Taiwan; Department of Dentistry, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Cheng-Chia Yu
- School of Dentistry, Chung Shan Medical University, Taichung, Taiwan; Department of Dentistry, Chung Shan Medical University Hospital, Taichung, Taiwan; Institute of Oral Sciences, Chung Shan Medical University, Taichung, Taiwan
| | - Pei-Ling Hsieh
- Department of Anatomy, School of Medicine, China Medical University, Taichung, Taiwan
| | - Yi-Wen Liao
- Institute of Oral Sciences, Chung Shan Medical University, Taichung, Taiwan; Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Chuan-Hang Yu
- School of Dentistry, Chung Shan Medical University, Taichung, Taiwan; Department of Dentistry, Chung Shan Medical University Hospital, Taichung, Taiwan.
| | - Tzu-Rong Su
- Department of Dentistry, Antai Medical Care Cooperation Antai Tian-Sheng Memorial Hospital, Pingtung, Taiwan; Department of Beauty Science, Meiho University, Pingtung, Taiwan.
| |
Collapse
|
16
|
Shetty SS, Sharma M, Fonseca FP, Jayaram P, Tanwar AS, Kabekkodu SP, Kapaettu S, Radhakrishnan R. Signaling pathways promoting epithelial mesenchymal transition in oral submucous fibrosis and oral squamous cell carcinoma. JAPANESE DENTAL SCIENCE REVIEW 2020; 56:97-108. [PMID: 32874377 PMCID: PMC7452314 DOI: 10.1016/j.jdsr.2020.07.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 07/02/2020] [Accepted: 07/28/2020] [Indexed: 02/07/2023] Open
Abstract
Epithelial-mesenchymal transition (EMT) is a critical process that occurs during the embryonic development, wound healing, organ fibrosis and the onset of malignancy. Emerging evidence suggests that the EMT is involved in the invasion and metastasis of cancers. The inflammatory reaction antecedent to fibrosis in the onset of oral submucous fibrosis (OSF) and the role of EMT in its malignant transformation indicates a hitherto unexplored involvement of EMT. This review focuses on the role of EMT markers which are regulators of the EMT mediated complex network of molecular mechanisms involved in the pathogenesis of OSF and OSCC. Further the gene enrichment analysis and pathway analysis supports the association of the upregulated and downregulated genes in various EMT regulating pathways.
Collapse
Affiliation(s)
- Smitha Sammith Shetty
- Department of Oral Pathology, Faculty of Dentistry, Melaka Manipal Medical College, Manipal Academy of Higher Education, Manipal 576104, India
| | - Mohit Sharma
- Department of Oral Pathology, Sudha Rustagi College of Dental Sciences and Research, Faridabad 121004, India
| | - Felipe Paiva Fonseca
- Department of Oral Surgery and Pathology, School of Dentistry, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Pradyumna Jayaram
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, 576104, India
| | - Ankit Singh Tanwar
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, 576104, India
| | - Shama Prasada Kabekkodu
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, 576104, India
| | - Satyamoorthy Kapaettu
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, 576104, India
| | - Raghu Radhakrishnan
- Department of Oral Pathology, Manipal College of Dental Sciences, Manipal, Manipal Academy of Higher Education, Manipal 576104, India
- Corresponding author.
| |
Collapse
|
17
|
Positive Feedback Loop of SNAIL-IL-6 Mediates Myofibroblastic Differentiation Activity in Precancerous Oral Submucous Fibrosis. Cancers (Basel) 2020; 12:cancers12061611. [PMID: 32570756 PMCID: PMC7352888 DOI: 10.3390/cancers12061611] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Revised: 06/11/2020] [Accepted: 06/11/2020] [Indexed: 12/17/2022] Open
Abstract
Oral submucosal fibrosis (OSF) is a premalignant disorder of the oral cavity, and areca nut chewing is known to be a major etiological factor that could induce epithelial to mesenchymal transition (EMT) and activate buccal mucosal fibroblasts (BMFs). However, this detailed mechanism is not fully understood. In this study, we showed that the upregulation of Snail in OSF samples and fibrotic BMFs (fBMFs) may result from constant irritation by arecoline, a major alkaloid of the areca nut. The elevation of Snail triggered myofibroblast transdifferentiation and was crucial to the persistent activation of fBMFs. Meanwhile, Snail increased the expression of numerous fibrosis factors (e.g., α-SMA and collagen I) as well as IL-6. Results from bioinformatics software and a luciferase-based reporter assay revealed that IL-6 was a direct target of Snail. Moreover, IL-6 in BMFs was found to further increase the expression of Snail and mediate Snail-induced myofibroblast activation. These findings suggested that there was a positive loop between Snail and IL-6 to regulate the areca nut-associated myofibroblast transdifferentiation, which implied that the blockage of Snail may serve as a favorable therapeutic strategy for OSF treatment.
Collapse
|
18
|
Wu YJ, Hsu WJ, Wu LH, Liou HP, Pangilinan CR, Tyan YC, Lee CH. Hinokitiol reduces tumor metastasis by inhibiting heparanase via extracellular signal-regulated kinase and protein kinase B pathway. Int J Med Sci 2020; 17:403-413. [PMID: 32132875 PMCID: PMC7053356 DOI: 10.7150/ijms.41177] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 01/08/2020] [Indexed: 12/14/2022] Open
Abstract
Heparanase cleaves the extracellular matrix by degrading heparan sulfate that ultimately leads to cell invasion and metastasis; a condition that causes high mortality among cancer patients. Many of the anticancer drugs available today are natural products of plant origin, such as hinokitiol. In the previous report, it was revealed that hinokitiol plays an essential role in anti-inflammatory and anti-oxidation processes and promote apoptosis or autophagy resulting to the inhibition of tumor growth and differentiation. Therefore, this study explored the effects of hinokitiol on the cancer-promoting pathway in mouse melanoma (B16F10) and breast (4T1) cancer cells, with emphasis on heparanase expression. We detected whether hinokitiol can elicit anti-metastatic effects on cancer cells via wound healing and Transwell assays. Besides, mice experiment was conducted to observe the impact of hinokitiol in vivo. Our results show that hinokitiol can inhibit the expression of heparanase by reducing the phosphorylation of protein kinase B (Akt) and extracellular regulated protein kinase (ERK). Furthermore, in vitro cell migration assay showed that heparanase downregulation by hinokitiol led to a decrease in metastatic activity which is consistent with the findings in the in vivo experiment.
Collapse
Affiliation(s)
- Yueh-Jung Wu
- Department of Surgery, Kaohsiung Armed Forces General Hospital, Kaohsiung, Taiwan
| | - Wei-Jie Hsu
- Department of Biological Sciences, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Li-Hsien Wu
- Department of Biological Sciences, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Huei-Pu Liou
- Department of Surgery, Kaohsiung Armed Forces General Hospital, Kaohsiung, Taiwan
| | | | - Yu-Chang Tyan
- Department of Medical Imaging and Radiological Sciences, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Che-Hsin Lee
- Department of Biological Sciences, National Sun Yat-sen University, Kaohsiung, Taiwan.,Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan.,Department of Medical Laboratory Science and Biotechnology, Kaohsiung Medical University, Kaohsiung, Taiwan.,Doctoral Degree Program in Marine Biotechnology, National Sun Yat-sen University, Kaohsiung, Taiwan
| |
Collapse
|
19
|
Lin CY, Hsieh PL, Liao YW, Peng CY, Yu CC, Lu MY. Arctigenin Reduces Myofibroblast Activities in Oral Submucous Fibrosis by LINC00974 Inhibition. Int J Mol Sci 2019; 20:ijms20061328. [PMID: 30884781 PMCID: PMC6470833 DOI: 10.3390/ijms20061328] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 03/13/2019] [Indexed: 12/18/2022] Open
Abstract
Oral submucous fibrosis (OSF) is an oral precancerous condition associated with the habit of areca nut chewing and the TGF-β pathway. Currently, there is no curative treatment to completely heal OSF, and it is imperative to alleviate patients’ symptoms and prevent it from undergoing malignant transformation. Arctigenin, a lignan extracted from Arctium lappa, has been reported to have a variety of pharmacological activities, including anti-fibrosis. In the present study, we examined the effect of arctigenin on the cell proliferation of buccal mucosal fibroblasts (BMFs) and fibrotic BMFs (fBMFs), followed by assessment of myofibroblast activities. We found that arctigenin was able to abolish the arecoline-induced collagen gel contractility, migration, invasion, and wound healing capacities of BMFs and downregulate the myofibroblast characteristics of fBMFs in a dose-dependent manner. Most importantly, the production of TGF-β in fBMFs was reduced after exposure to arctigenin, along with the suppression of p-Smad2, α-smooth muscle actin, and type I collagen A1. In addition, arctigenin was shown to diminish the expression of LINC00974, which has been proven to activate TGF-β/Smad signaling for oral fibrogenesis. Taken together, we demonstrated that arctigenin may act as a suitable adjunct therapy for OSF.
Collapse
Affiliation(s)
- Ching-Yeh Lin
- Division of Hematology/Oncology, Department of Internal Medicine, Changhua Christian Hospital, Changhua 50006, Taiwan.
| | - Pei-Ling Hsieh
- Department of Anatomy, School of Medicine, China Medical University, Taichung 40402, Taiwan.
| | - Yi-Wen Liao
- School of Dentistry, Chung Shan Medical University, Taichung 40201, Taiwan.
| | - Chih-Yu Peng
- School of Dentistry, Chung Shan Medical University, Taichung 40201, Taiwan.
- Institute of Oral Sciences, Chung Shan Medical University, Taichung 40201, Taiwan.
- Department of Dentistry, Chung Shan Medical University Hospital, Taichung 40201, Taiwan.
| | - Cheng-Chia Yu
- School of Dentistry, Chung Shan Medical University, Taichung 40201, Taiwan.
- Institute of Oral Sciences, Chung Shan Medical University, Taichung 40201, Taiwan.
- Department of Dentistry, Chung Shan Medical University Hospital, Taichung 40201, Taiwan.
| | - Ming-Yi Lu
- School of Dentistry, Chung Shan Medical University, Taichung 40201, Taiwan.
- Department of Dentistry, Chung Shan Medical University Hospital, Taichung 40201, Taiwan.
| |
Collapse
|
20
|
Wei KC, Chen RF, Chen YF, Lin CH. Hinokitiol suppresses growth of B16 melanoma by activating ERK/MKP3/proteosome pathway to downregulate survivin expression. Toxicol Appl Pharmacol 2019; 366:35-45. [PMID: 30684529 DOI: 10.1016/j.taap.2019.01.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 01/15/2019] [Accepted: 01/21/2019] [Indexed: 01/17/2023]
Abstract
Metastasis is the major cause of treatment failure in patients with cancer. Hinokitiol, a metal chelator derived from natural plants, has anti-inflammatory and antioxidant activities as well as anticancer effects. We investigated the potential anticancer effects of hinokitiol in metastatic melanoma cell line B16-F10. Exposure of the melanoma B16-F10 cells to hinokitiol significantly inhibited colony formation and cell viability in a time and concentration-dependent manner. The hinokitiol-treated cells exhibited apoptotic features in morphological assay. Results from Western blot and immunoprecipitation showed that hinokitiol treatment decreased survivin protein levels and increased suvivin ubiquitination. Pretreatment with proteosome inhibitors effectively prevented hinokitiol-induced decrease in survivin expression, implying that ubiquitin/proteosome pathway involved in hinokitiol-reduced survivin expression. Hinokitiol rapidly induced ERK phosphorylation followed by a sustained dephosphorylation, which accompanied with an increase in expression of tumor suppressor MKP-3 (mitogen-activated protein kinase phosphatase-3). Inhibition of hinokitiol-induced ERK activation by MEK inhibitor U0126 completely blocked expression of MKP-3. More importantly, inhibition of MKP-3 activity by NSC 95397 significantly inhibited hinokitiol-induced ERK dephosphorylation, ubiquitination and downregulation of survivin. These results suggested that hinokitiol inhibited growth of B16-F10 melanoma through downregulation of survivin by activating ERK/MKP-3/proteosome pathway. Hinokitiol-inhibition of survivin may be a novel and potential approach for melanoma therapy. Hinokitiol can be useful for developing therapeutic agent for melanoma.
Collapse
Affiliation(s)
- Kai-Che Wei
- Department of Dermatology, Kaohsiung Veterans General Hospital, Kaoshiung 802, Taiwan; Faculty of Yuhing Junior College of Health Care and Management, Kaohsiung 802, Taiwan
| | - Rui-Fang Chen
- Master and PhD Programs in Pharmacology and Toxicology, School of Medicine, Tzu Chi University, Hualien 970, Taiwan
| | - Yu-Fu Chen
- Master and PhD Programs in Pharmacology and Toxicology, School of Medicine, Tzu Chi University, Hualien 970, Taiwan
| | - Chia-Ho Lin
- Master and PhD Programs in Pharmacology and Toxicology, School of Medicine, Tzu Chi University, Hualien 970, Taiwan; Department of Pharmacology, School of Medicine, Tzu Chi University, Hualien 970, Taiwan.
| |
Collapse
|
21
|
Fang CY, Hsia SM, Hsieh PL, Liao YW, Peng CY, Wu CZ, Lin KC, Tsai LL, Yu CC. Slug mediates myofibroblastic differentiation to promote fibrogenesis in buccal mucosa. J Cell Physiol 2018; 234:6721-6730. [PMID: 30230545 DOI: 10.1002/jcp.27418] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2018] [Accepted: 08/21/2018] [Indexed: 12/25/2022]
Abstract
Epithelial-mesenchymal transition (EMT) has been implicated in fibrogenesis and carcinogenesis; however, the exact role of EMT-inducer Slug in the progression of precancerous oral submucous fibrosis (OSF) has not been investigated. In the current study, we showed that the expression of Slug was upregulated in OSF tissues and associated with various myofibroblast markers. After silence of Slug in fibrotic buccal mucosal fibroblasts (fBMFs), the elevated myofibroblast activities and fibrosis markers were all downregulated. Our data revealed that arecoline, an areca nut alkaloid, increased the expression of Slug in normal BMFs, and inhibition of Slug successfully prevented the arecoline-induced myofibroblast activation. Additionally, overexpression of Slug in BMFs stimulated the activities of myofibroblasts, indicating that upregulation of Slug by arecoline contributes to the myofibroblast transdifferentiation. Most importantly, Slug was able to bind to the E-box of type I collagen, leading to increased expression of type I collagen. Altogether, this study demonstrated the abnormal elevation of Slug in OSF and its significance in arecoline-induced fibrogenesis. Moreover, downregulation of Slug could be a potential target for OSF remedy via suppression of myofibroblast activities and type I collagen.
Collapse
Affiliation(s)
- Chih-Yuan Fang
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan.,Division of Oral and Maxillofacial Surgery, Department of Dentistry, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Shih-Min Hsia
- School of Nutrition and Health Sciences, College of Nutrition, Taipei Medical University, Taipei, Taiwan.,Graduate Institute of Metabolism and Obesity Sciences, College of Nutrition, Taipei Medical University, Taipei, Taiwan
| | - Pei-Ling Hsieh
- Department of Anatomy, School of Medicine, China Medical University, Taichung, Taiwan
| | - Yi-Wen Liao
- School of Dentistry, Chung Shan Medical University, Taichung, Taiwan
| | - Chih-Yu Peng
- School of Dentistry, Chung Shan Medical University, Taichung, Taiwan.,Department of Dentistry, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Ching-Zong Wu
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan.,Department of Dentistry, Taipei Medical University Hospital, Taipei, Taiwan.,Department of Dentistry, Lotung PohAi Hospital, Yilan, Taiwan
| | - Kuan-Chou Lin
- Division of Oral and Maxillofacial Surgery, Department of Dentistry, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Lo-Lin Tsai
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan.,Division of Oral and Maxillofacial Surgery, Department of Dentistry, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Cheng-Chia Yu
- School of Dentistry, Chung Shan Medical University, Taichung, Taiwan.,Department of Dentistry, Chung Shan Medical University Hospital, Taichung, Taiwan.,Institute of Oral Sciences, Chung Shan Medical University, Taichung, Taiwan
| |
Collapse
|
22
|
Su TR, Liao YW, Hsieh PL, Tsai LL, Fang CY, Lin T, Lee YH, Harn HJ, Yu CC. Butylidenephthalide abrogates the myofibroblasts activation and mesenchymal transdifferentiation in oral submucous fibrosis. ENVIRONMENTAL TOXICOLOGY 2018; 33:686-694. [PMID: 29665273 DOI: 10.1002/tox.22557] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Revised: 03/15/2018] [Accepted: 03/25/2018] [Indexed: 06/08/2023]
Abstract
Oral submucous fibrosis (OSF) is a premalignant disorder in the oral cavity, and areca nut chewing habit has been implicated in the persistent activation of myofibroblasts and the subsequent fibrosis. Therefore, it is critical to ameliorate the excessive activities of myofibroblasts prior to the malignant transformation of OSF. In the current study, we evaluated the cytotoxicity of butylidenephthalide (BP), a major phthalide ingredient of Angelica sinensis, in fibrotic buccal mucosal fibroblasts (fBMFs) as well as various myofibroblast hallmarks, including the phenotypical characteristics and fibrosis-related markers. Our results demonstrated that myofibroblast activities, including collagen gel contraction, migration, invasion and wound healing abilities were inhibited in response to BP. The expression levels of myofibroblast marker, α-smooth muscle actin (α-SMA), fibronectin and type 1 collagen A1 were decreased after exposure of BP. Moreover, we found that the EMT-related markers, Twist, Snail and ZEB1 were all downregulated after BP treatment. Most importantly, our findings demonstrated that BP impeded the binding of Snail to the E-box region in the α-SMA promoter, which may lead to inhibition of the arecoline-induced myofibroblast activities. Collectively, our data indicated that BP reduced numerous myofibroblast features in fBMFs and hindered the binding of Snail to α-SMA, thereby may function as an effective and natural antifibrosis compound.
Collapse
Affiliation(s)
- Tzu-Rong Su
- Antai Medical Care Cooperation Antai Tian-Sheng Memorial Hospital, Pingtung, Taiwan
- Department of beauty science, Meiho University, Pingtung, Taiwan
| | - Yi-Wen Liao
- School of Dentistry, Chung Shan Medical University, Taichung, Taiwan
| | - Pei-Ling Hsieh
- Institute of Oral Sciences, Chung Shan Medical University, Taichung, Taiwan
| | - Lo-Lin Tsai
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan
- Division of Oral and Maxillofacial Surgery, Department of Dentistry, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Chih-Yuan Fang
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan
- Division of Oral and Maxillofacial Surgery, Department of Dentistry, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Taichen Lin
- School of Dentistry, Chung Shan Medical University, Taichung, Taiwan
- Department of Dentistry, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Yu-Hsien Lee
- School of Dentistry, Chung Shan Medical University, Taichung, Taiwan
- Department of Dentistry, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Horng-Jyh Harn
- Bioinnovation Center, Buddhist Tzu Chi Foundation, Department of Pathology, Hualien Tzu Chi hospital, Tzu Chi University, Hualien, Taiwan
| | - Cheng-Chia Yu
- School of Dentistry, Chung Shan Medical University, Taichung, Taiwan
- Institute of Oral Sciences, Chung Shan Medical University, Taichung, Taiwan
- Department of Dentistry, Chung Shan Medical University Hospital, Taichung, Taiwan
| |
Collapse
|