1
|
Ding Y, Xie D, Xu C, Hu W, Kong B, Jia S, Cao L. Fisetin disrupts mitochondrial homeostasis via superoxide dismutase 2 acetylation in pancreatic adenocarcinoma. Phytother Res 2024; 38:4628-4649. [PMID: 39091056 DOI: 10.1002/ptr.8296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 01/06/2024] [Accepted: 02/11/2024] [Indexed: 08/04/2024]
Abstract
Pancreatic adenocarcinoma (PDAC) is one of the most lethal malignant tumors with an urgent need for precision medicine strategies. The present study seeks to assess the antitumor effects of fisetin, and characterize its impact on PDAC. Multi-omic approaches include proteomic, transcriptomic, and metabolomic analyses. Further validation includes the assessment of mitochondria-derived reactive oxygen species (mtROS), mitochondrial membrane potential, as well as ATP generation. Molecular docking, immunoprecipitation, and proximity ligation assay were used to detect the interactions among fiseitn, superoxide dismutase 2 (SOD2), and sirtuin 2 (SIRT2). We showed that fisetin disrupted mitochondrial homeostasis and induced SOD2 acetylation in PDAC. Further, we produced site mutants to determine that fisetin-induced mtROS were dependent on SOD2 acetylation. Fisetin inhibited SIRT2 expression, thus blocking SOD2 deacetylation. SIRT2 overexpression could impede fisetin-induced SOD2 acetylation. Additionally, untargeted metabolomic analysis revealed an acceleration of folate metabolism with fisetin. Collectively, our findings suggest that fisetin disrupts mitochondrial homeostasis, eliciting an important cancer-suppressive role; thus, fisetin may serve as a promising therapeutic for PDAC.
Collapse
Affiliation(s)
- Yimin Ding
- Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang Engineering Research Center of Cognitive Healthcare, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Dafei Xie
- Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Chengjie Xu
- Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang Engineering Research Center of Cognitive Healthcare, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Wenyi Hu
- Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Binyue Kong
- Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Shengnan Jia
- Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang Engineering Research Center of Cognitive Healthcare, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Liping Cao
- Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang Engineering Research Center of Cognitive Healthcare, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
2
|
Hense JD, Isola JVV, Garcia DN, Magalhães LS, Masternak MM, Stout MB, Schneider A. The role of cellular senescence in ovarian aging. NPJ AGING 2024; 10:35. [PMID: 39033161 PMCID: PMC11271274 DOI: 10.1038/s41514-024-00157-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 05/29/2024] [Indexed: 07/23/2024]
Abstract
This review explores the relationship between ovarian aging and senescent cell accumulation, as well as the efficacy of senolytics to improve reproductive longevity. Reproductive longevity is determined by the age-associated decline in ovarian reserve, resulting in reduced fertility and eventually menopause. Cellular senescence is a state of permanent cell cycle arrest and resistance to apoptosis. Senescent cells accumulate in several tissues with advancing age, thereby promoting chronic inflammation and age-related diseases. Ovaries also appear to accumulate senescent cells with age, which might contribute to aging of the reproductive system and whole organism through SASP production. Importantly, senolytic drugs can eliminate senescent cells and may present a potential intervention to mitigate ovarian aging. Herein, we review the current literature related to the efficacy of senolytic drugs for extending the reproductive window in mice.
Collapse
Affiliation(s)
- Jéssica D Hense
- Aging & Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
- Nutrition College, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - José V V Isola
- Aging & Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Driele N Garcia
- Nutrition College, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | | | - Michal M Masternak
- Burnett School of Biomedical Sciences, University of Central Florida, Orlando, FL, USA
| | - Michael B Stout
- Aging & Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
- Oklahoma City Veterans Affairs Medical Center, Oklahoma City, OK, USA
| | - Augusto Schneider
- Nutrition College, Universidade Federal de Pelotas, Pelotas, RS, Brazil.
| |
Collapse
|
3
|
Wendlocha D, Kubina R, Krzykawski K, Mielczarek-Palacz A. Selected Flavonols Targeting Cell Death Pathways in Cancer Therapy: The Latest Achievements in Research on Apoptosis, Autophagy, Necroptosis, Pyroptosis, Ferroptosis, and Cuproptosis. Nutrients 2024; 16:1201. [PMID: 38674891 PMCID: PMC11053927 DOI: 10.3390/nu16081201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/13/2024] [Accepted: 04/16/2024] [Indexed: 04/28/2024] Open
Abstract
The complex and multi-stage processes of carcinogenesis are accompanied by a number of phenomena related to the potential involvement of various chemopreventive factors, which include, among others, compounds of natural origin such as flavonols. The use of flavonols is not only promising but also a recognized strategy for cancer treatment. The chemopreventive impact of flavonols on cancer arises from their ability to act as antioxidants, impede proliferation, promote cell death, inhibit angiogenesis, and regulate the immune system through involvement in diverse forms of cellular death. So far, the molecular mechanisms underlying the regulation of apoptosis, autophagy, necroptosis, pyroptosis, ferroptosis, and cuproptosis occurring with the participation of flavonols have remained incompletely elucidated, and the results of the studies carried out so far are ambiguous. For this reason, one of the therapeutic goals is to initiate the death of altered cells through the use of quercetin, kaempferol, myricetin, isorhamnetin, galangin, fisetin, and morin. This article offers an extensive overview of recent research on these compounds, focusing particularly on their role in combating cancer and elucidating the molecular mechanisms governing apoptosis, autophagy, necroptosis, pyroptosis, ferroptosis, and cuproptosis. Assessment of the mechanisms underlying the anticancer effects of compounds in therapy targeting various types of cell death pathways may prove useful in developing new therapeutic regimens and counteracting resistance to previously used treatments.
Collapse
Affiliation(s)
- Dominika Wendlocha
- Department of Immunology and Serology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, 41-200 Sosnowiec, Poland;
| | - Robert Kubina
- Silesia LabMed: Centre for Research and Implementation, Medical University of Silesia in Katowice, 41-752 Katowice, Poland; (R.K.); (K.K.)
- Department of Pathology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, 41-200 Sosnowiec, Poland
| | - Kamil Krzykawski
- Silesia LabMed: Centre for Research and Implementation, Medical University of Silesia in Katowice, 41-752 Katowice, Poland; (R.K.); (K.K.)
| | - Aleksandra Mielczarek-Palacz
- Department of Immunology and Serology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, 41-200 Sosnowiec, Poland;
| |
Collapse
|
4
|
Bai J, Wang H, Li C, Liu L, Wang J, Sun C, Zhang Q. A novel mitochondria-targeting compound exerts therapeutic effects against melanoma by inducing mitochondria-mediated apoptosis and autophagy in vitro and in vivo. ENVIRONMENTAL TOXICOLOGY 2023; 38:2608-2620. [PMID: 37466182 DOI: 10.1002/tox.23896] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 06/17/2023] [Accepted: 07/01/2023] [Indexed: 07/20/2023]
Abstract
Melanoma is the most invasive skin cancer, with a high mortality rate. However, existing therapeutic drugs have side effects, low reactivity, and lead to drug resistance. As the power source in cells, mitochondria play an important role in the survival of cancer cells and are an important target for tumor therapy. This study aimed to develop a new anti-melanoma compound that targets mitochondria, evaluate its effect on the proliferation and metastasis of melanoma cells, and explore its mechanism of action. The novel mitochondria-targeting compound, SCZ0148, was synthesized by modifying the structure of cyanine. Then, A375 and B16 cells were incubated with different concentrations of SCZ0148, and different doses of SCZ0148 were administered to A375 and B16 xenograft zebrafish. The results showed that SCZ0148 targeted mitochondria, had dose- and time-dependent effects on the proliferation of melanoma cell lines, and had no obvious side effects on normal cells. In addition, SCZ0148 induced melanoma cell apoptosis through the reactive oxygen species-mediated mitochondrial pathway of apoptosis and promoted autophagy. SCZ0148 significantly inhibited the migration of melanoma cells via a matrix metalloprotein 9-mediated pathway. Similarly, SCZ0148 inhibited melanoma cell proliferation in a concentration-dependent manner in vivo. In summary, SCZ0148 may be a novel anti-melanoma compound that targets mitochondria.
Collapse
Affiliation(s)
- Jun Bai
- Environmental Health Effects and Risk Assessment Key Laboratory of Luzhou, School of Public Health, Southwest Medical University, Luzhou, China
| | - Hailan Wang
- Environmental Health Effects and Risk Assessment Key Laboratory of Luzhou, School of Public Health, Southwest Medical University, Luzhou, China
- Center for Global Health, The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Suzhou Institute of Public Health, Gusu School, Nanjing Medical University, Nanjing, China
| | - Chenwen Li
- Environmental Health Effects and Risk Assessment Key Laboratory of Luzhou, School of Public Health, Southwest Medical University, Luzhou, China
| | - Li Liu
- Department of Dermatology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Jianv Wang
- Department of Dermatology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Changzhen Sun
- Drug Research Center of Integrated Traditional Chinese and Western Medicine, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
| | - Qingbi Zhang
- Environmental Health Effects and Risk Assessment Key Laboratory of Luzhou, School of Public Health, Southwest Medical University, Luzhou, China
| |
Collapse
|
5
|
Verma A, Rai N, Gupta P, Singh S, Tiwari H, Chauhan SB, Kailashiya V, Gautam V. Exploration of in vitro cytotoxic and in ovo antiangiogenic activity of ethyl acetate extract of Penicillium oxalicum. ENVIRONMENTAL TOXICOLOGY 2023; 38:2509-2523. [PMID: 37461856 DOI: 10.1002/tox.23889] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 05/27/2023] [Accepted: 06/29/2023] [Indexed: 09/19/2023]
Abstract
Fungal endophytes have established new paradigms in the area of biomedicine due to their ability to produce metabolites of pharmacological importance. The present study reports the in vitro cytotoxic and in ovo antiangiogenic activity of the ethyl acetate (EA) extract of Penicillium oxalicum and their chemical profiling through Gas Chromatography-Mass Spectrometry analysis. Treatment of the EA extract of P. oxalicum to the selected human breast cancer cell lines (MDA-MB-231 and MCF-7) leads to the reduced glucose uptake and increased nitric oxide production suggesting the cytotoxic activity of EA extract of P. oxalicum. Our results further show that treatment of EA extract of P. oxalicum attenuates the colony number, cell migration ability and alters nuclear morphology in both the human breast cancer cell lines. Furthermore, the treatment of EA extract of P. oxalicum mediates apoptosis by increasing the expression of BAX, P21, FADD, and CASPASE-8 genes, with increased Caspase-3 activity. Additionally, in ovo chorioallantoic membrane (CAM) assay showed that the treatment of EA extract of P. oxalicum leads to antiangiogenic activity with perturbed formation of blood vessels. Overall, our findings suggest that the EA extract of P. oxalicum show in vitro cytotoxic and antiproliferative activity against human breast cancer cell lines, and in ovo antiangiogenic activity in CAM model.
Collapse
Affiliation(s)
- Ashish Verma
- Centre of Experimental Medicine and Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Nilesh Rai
- Centre of Experimental Medicine and Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Priyamvada Gupta
- Centre of Experimental Medicine and Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Swati Singh
- Centre of Experimental Medicine and Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Harshita Tiwari
- Centre of Experimental Medicine and Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
- Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Shashi Bhushan Chauhan
- Department of Medicine, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Vikas Kailashiya
- Department of Pathology, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Vibhav Gautam
- Centre of Experimental Medicine and Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| |
Collapse
|
6
|
Croley CR, Pumarol J, Delgadillo BE, Cook AC, Day F, Kaceli T, Ward CC, Husain I, Husain A, Banerjee S, Bishayee A. Signaling pathways driving ocular malignancies and their targeting by bioactive phytochemicals. Pharmacol Ther 2023:108479. [PMID: 37330112 DOI: 10.1016/j.pharmthera.2023.108479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 06/05/2023] [Accepted: 06/12/2023] [Indexed: 06/19/2023]
Abstract
Ocular cancers represent a rare pathology. The American Cancer Society estimates that 3,360 cases of ocular cancer occur annually in the United States. The major types of cancers of the eye include ocular melanoma (also known as uveal melanoma), ocular lymphoma, retinoblastoma, and squamous cell carcinoma. While uveal melanoma is one of the primary intraocular cancers with the highest occurrence in adults, retinoblastoma remains the most common primary intraocular cancer in children, and squamous cell carcinoma presents as the most common conjunctival cancer. The pathophysiology of these diseases involves specific cell signaling pathways. Oncogene mutations, tumor suppressor mutations, chromosome deletions/translocations and altered proteins are all described as causal events in developing ocular cancer. Without proper identification and treatment of these cancers, vision loss, cancer spread, and even death can occur. The current treatments for these cancers involve enucleation, radiation, excision, laser treatment, cryotherapy, immunotherapy, and chemotherapy. These treatments present a significant burden to the patient that includes a possible loss of vision and a myriad of side effects. Therefore, alternatives to traditional therapy are urgently needed. Intercepting the signaling pathways for these cancers with the use of naturally occurring phytochemicals could be a way to relieve both cancer burden and perhaps even prevent cancer occurrence. This research aims to present a comprehensive review of the signaling pathways involved in various ocular cancers, discuss current therapeutic options, and examine the potential of bioactive phytocompounds in the prevention and targeted treatment of ocular neoplasms. The current limitations, challenges, pitfalls, and future research directions are also discussed.
Collapse
Affiliation(s)
- Courtney R Croley
- Healthcare Corporation of America, Department of Ophthalmology, Morsani College of Medicine, University of South Florida, Hudson, FL 34667, USA
| | - Joshua Pumarol
- Ross University School of Medicine, Miramar, FL 33027, USA
| | - Blake E Delgadillo
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, FL 34211, USA
| | - Andrew C Cook
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, FL 34211, USA
| | - Faith Day
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, FL 34211, USA
| | - Tea Kaceli
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, FL 34211, USA
| | - Caroline C Ward
- Morsani College of Medicine, University of South Florida, Tampa, FL 33602, USA
| | - Imran Husain
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Erie, PA 16509, USA
| | - Ali Husain
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Erie, PA 16509, USA
| | - Sabyasachi Banerjee
- Department of Pharmaceutical Chemistry, Gupta College of Technological Sciences, Asansol 713 301, India
| | - Anupam Bishayee
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, FL 34211, USA.
| |
Collapse
|
7
|
Musa M, Zeppieri M, Atuanya GN, Enaholo ES, Topah EK, Ojo OM, Salati C. Nutritional Factors: Benefits in Glaucoma and Ophthalmologic Pathologies. Life (Basel) 2023; 13:1120. [PMID: 37240765 PMCID: PMC10222847 DOI: 10.3390/life13051120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 04/17/2023] [Accepted: 04/26/2023] [Indexed: 05/19/2023] Open
Abstract
Glaucoma is a chronic optic neuropathy that can lead to irreversible functional and morphological damage if left untreated. The gold standard therapeutic approaches in managing patients with glaucoma and limiting progression include local drops, laser, and/or surgery, which are all geared at reducing intraocular pressure (IOP). Nutrients, antioxidants, vitamins, organic compounds, and micronutrients have been gaining increasing interest in the past decade as integrative IOP-independent strategies to delay or halt glaucomatous retinal ganglion cell degeneration. In our minireview, we examine the various nutrients and compounds proposed in the current literature for the management of ophthalmology diseases, especially for glaucoma. With respect to each substance considered, this minireview reports the molecular and biological characteristics, neuroprotective activities, antioxidant properties, beneficial mechanisms, and clinical studies published in the past decade in the field of general medicine. This study highlights the potential benefits of these substances in glaucoma and other ophthalmologic pathologies. Nutritional supplementation can thus be useful as integrative IOP-independent strategies in the management of glaucoma and in other ophthalmologic pathologies. Large multicenter clinical trials based on functional and morphologic data collected over long follow-up periods in patients with IOP-independent treatments can pave the way for alternative and/or coadjutant therapeutic options in the management of glaucoma and other ocular pathologies.
Collapse
Affiliation(s)
- Mutali Musa
- Department of Optometry, University of Benin, Benin City 300238, Edo State, Nigeria
| | - Marco Zeppieri
- Department of Ophthalmology, University Hospital of Udine, 33100 Udine, Italy
| | | | | | - Efioshiomoshi Kings Topah
- Department of Optometry, Faculty of Allied Health Sciences, College of Health Sciences Bayero University, Kano 700006, Kano State, Nigeria
| | - Oluwasola Michael Ojo
- School of Optometry and Vision Sciences, College of Health Sciences, University of Ilorin, Ilorin 240003, Kwara State, Nigeria
| | - Carlo Salati
- Department of Ophthalmology, University Hospital of Udine, 33100 Udine, Italy
| |
Collapse
|
8
|
Sarvarian P, Samadi P, Gholipour E, khodadadi M, Pourakbari R, Akbarzadelale P, Shamsasenjan K. Fisetin-loaded grape-derived nanoparticles improve anticancer efficacy in MOLT-4 cells. Biochem Biophys Res Commun 2023; 658:69-79. [PMID: 37027907 DOI: 10.1016/j.bbrc.2023.03.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/03/2023] [Accepted: 03/15/2023] [Indexed: 03/17/2023]
Abstract
PURPOSE Fisetin (FIS) is a natural flavonoid with anti-proliferative and anti-apoptotic effects on different human cancer cell lines and can be considered a therapeutic agent for ALL treatment. However, FIS has little aqueous solubility and bioavailability, limiting its therapeutic applications. Thus, novel drug delivery systems are needed to improve solubility and bioavailability of FIS. Plant-derived nanoparticles (PDNPs) could be considered a great delivery system for FIS to the target tissues. In this study, we investigated the anti-proliferative and anti-apoptotic effect of free FIS and FIS-loaded Grape-derived Nanoparticles (GDN) FIS-GDN in MOLT-4 cells. MATERIALS/METHODS In this study, MOLT-4 cells were treated with increasing concentration of FIS and FIS-GDN and viability of cells were assessed by MTT assay. Additionally, cellular apoptosis rate and related genes expression were evaluated using flow cytometry and Real Time-PCR methods, respectively. RESULTS FIS and FIS-GDN decreased cells viability and increased cells apoptosis dose-dependently, but not time dependently. Treatment of MOLT-4 cells with increasing concentrations of FIS and FIS-GDN considerably increased the expression of caspase 3, 8 and 9 and Bax level, and also decreased the expression of Bcl-2. Results indicated an increased apoptosis after increased concentration of FIS and FIS-GDN at 24, 48 and 72 h. CONCLUSIONS Our data proposed that FIS and FIS-GDN can induce apoptosis and have antitumor properties in MOLT-4 cells. Furthermore, compared to FIS, FIS-GDN induced more apoptosis in these cells by increasing the solubility and efficiency of FIS. Additionally, GDNs increased FIS effectiveness in proliferation inhibition and apoptosis induction.
Collapse
|
9
|
Rahmani AH, Almatroudi A, Allemailem KS, Khan AA, Almatroodi SA. The Potential Role of Fisetin, a Flavonoid in Cancer Prevention and Treatment. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27249009. [PMID: 36558146 PMCID: PMC9782831 DOI: 10.3390/molecules27249009] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 12/11/2022] [Accepted: 12/14/2022] [Indexed: 12/24/2022]
Abstract
Cancer is a main culprit and the second-leading cause of death worldwide. The current mode of treatment strategies including surgery with chemotherapy and radiation therapy may be effective, but cancer is still considered a major cause of death. Plant-derived products or their purified bioactive compounds have confirmed health-promoting effects as well as cancer-preventive effects. Among these products, flavonoids belong to polyphenols, chiefly found in fruits, vegetables and in various seeds/flowers. It has been considered to be an effective antioxidant, anti-inflammatory and to play a vital role in diseases management. Besides these activities, flavonoids have been revealed to possess anticancer potential through the modulation of various cell signaling molecules. In this regard, fisetin, a naturally occurring flavonoid, has a confirmed role in disease management through antioxidant, neuro-protective, anti-diabetic, hepato-protective and reno-protective potential. As well, its cancer-preventive effects have been confirmed via modulating various cell signaling pathways including inflammation, apoptosis, angiogenesis, growth factor, transcription factor and other cell signaling pathways. This review presents an overview of the anti-cancer potential of fisetin in different types of cancer through the modulation of cell signaling pathways based on in vivo and in vitro studies. A synergistic effect with anticancer drugs and strategies to improve the bioavailability are described. More clinical trials need to be performed to explore the anti-cancer potential and mechanism-of-action of fisetin and its optimum therapeutic dose.
Collapse
Affiliation(s)
- Arshad Husain Rahmani
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51542, Saudi Arabia
- Correspondence:
| | - Ahmad Almatroudi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51542, Saudi Arabia
| | - Khaled S. Allemailem
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51542, Saudi Arabia
| | - Amjad Ali Khan
- Department of Basic Health Sciences, College of Applied Medical Sciences, Qassim University, Buraydah 51542, Saudi Arabia
| | - Saleh A. Almatroodi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51542, Saudi Arabia
| |
Collapse
|
10
|
Hosseini SS, Ebrahimi SO, Haji Ghasem Kashani M, Reiisi S. Study of quercetin and fisetin synergistic effect on breast cancer and potentially involved signaling pathways. Cell Biol Int 2022; 47:98-109. [DOI: 10.1002/cbin.11942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 08/05/2022] [Accepted: 09/08/2022] [Indexed: 11/12/2022]
Affiliation(s)
- Seyede Saba Hosseini
- Department of Cellular and Molecular Biology, School of Biology and Institute of Biological Sciences Damghan University Damghan Iran
| | - Seyed Omar Ebrahimi
- Department of Genetics, Faculty of Basic Sciences Shahrekord University Shahrekord Iran
| | - Maryam Haji Ghasem Kashani
- Department of Cellular and Molecular Biology, School of Biology and Institute of Biological Sciences Damghan University Damghan Iran
| | - Somayeh Reiisi
- Department of Genetics, Faculty of Basic Sciences Shahrekord University Shahrekord Iran
| |
Collapse
|
11
|
Kubina R, Krzykawski K, Kabała-Dzik A, Wojtyczka RD, Chodurek E, Dziedzic A. Fisetin, a Potent Anticancer Flavonol Exhibiting Cytotoxic Activity against Neoplastic Malignant Cells and Cancerous Conditions: A Scoping, Comprehensive Review. Nutrients 2022; 14:2604. [PMID: 35807785 PMCID: PMC9268460 DOI: 10.3390/nu14132604] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 06/21/2022] [Accepted: 06/22/2022] [Indexed: 12/10/2022] Open
Abstract
Diet plays a crucial role in homeostasis maintenance. Plants and spices containing flavonoids have been widely used in traditional medicine for thousands of years. Flavonols present in our diet may prevent cancer initiation, promotion and progression by modulating important enzymes and receptors in signal transduction pathways related to proliferation, differentiation, apoptosis, inflammation, angiogenesis, metastasis and reversal of multidrug resistance. The anticancer activity of fisetin has been widely documented in numerous in vitro and in vivo studies. This review summarizes the worldwide, evidence-based research on the activity of fisetin toward various types of cancerous conditions, while describing the chemopreventive and therapeutic effects, molecular targets and mechanisms that contribute to the observed anticancer activity of fisetin. In addition, this review synthesized the results from preclinical studies on the use of fisetin as an anticancer agent. Based on the available literature, it might be suggested that fisetin has a bioactive potential to become a complementary drug in the prevention and treatment of cancerous conditions. However, more in-depth research is required to validate current data, so that this compound or its derivatives can enter the clinical trial phase.
Collapse
Affiliation(s)
- Robert Kubina
- Department of Pathology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, 30 Ostrogórska Str., 41-200 Sosnowiec, Poland;
- Silesia LabMed: Centre for Research and Implementation, Medical University of Silesia in Katowice, 18 Medyków Str., 40-752 Katowice, Poland;
| | - Kamil Krzykawski
- Silesia LabMed: Centre for Research and Implementation, Medical University of Silesia in Katowice, 18 Medyków Str., 40-752 Katowice, Poland;
| | - Agata Kabała-Dzik
- Department of Pathology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, 30 Ostrogórska Str., 41-200 Sosnowiec, Poland;
| | - Robert D. Wojtyczka
- Department of Microbiology and Virology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, 4 Jagiellońska Str., 41-200 Sosnowiec, Poland;
| | - Ewa Chodurek
- Department of Biopharmacy, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, 8 Jedności Str., 41-208 Sosnowiec, Poland;
| | - Arkadiusz Dziedzic
- Department of Conservative Dentistry with Endodontics, Medical University of Silesia, 17 Akademicki Sq., 41-902 Bytom, Poland;
| |
Collapse
|
12
|
DU BX, LIN P, LIN J. EGCG and ECG induce apoptosis and decrease autophagy via the AMPK/mTOR and PI3K/AKT/mTOR pathway in human melanoma cells. Chin J Nat Med 2022; 20:290-300. [DOI: 10.1016/s1875-5364(22)60166-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Indexed: 12/11/2022]
|
13
|
OUP accepted manuscript. J Pharm Pharmacol 2022; 74:660-680. [DOI: 10.1093/jpp/rgac009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 02/02/2022] [Indexed: 11/12/2022]
|
14
|
Zhang S, Wang K, Zhu X, Cherepanoff S, Conway RM, Madigan MC, Zhu L, Murray M, Zhou F. The unfolded protein response and the biology of uveal melanoma. Biochimie 2022; 197:9-18. [DOI: 10.1016/j.biochi.2022.01.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 01/17/2022] [Accepted: 01/25/2022] [Indexed: 11/02/2022]
|
15
|
The Role of Senescent Cells in Acquired Drug Resistance and Secondary Cancer in BRAFi-Treated Melanoma. Cancers (Basel) 2021; 13:cancers13092241. [PMID: 34066966 PMCID: PMC8125319 DOI: 10.3390/cancers13092241] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 04/30/2021] [Accepted: 05/02/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Advances in melanoma treatment include v-Raf murine sarcoma viral oncogene homolog B (BRAF) inhibitors that target the predominant oncogenic mutation found in malignant melanoma. Despite initial success of the BRAF inhibitor (BRAFi) therapies, resistance and secondary cancer often occur. Mechanisms of resistance and secondary cancer rely on upregulation of pro-survival pathways that circumvent senescence. The repeated identification of a cellular senescent phenotype throughout melanoma progression demonstrates the contribution of senescent cells in resistance and secondary cancer development. Incorporating senotherapeutics in melanoma treatment may offer a novel approach for potentially improving clinical outcome. Abstract BRAF is the most common gene mutated in malignant melanoma, and predominately it is a missense mutation of codon 600 in the kinase domain. This oncogenic BRAF missense mutation results in constitutive activation of the mitogen-activate protein kinase (MAPK) pro-survival pathway. Several BRAF inhibitors (BRAFi) have been developed to specifically inhibit BRAFV600 mutations that improve melanoma survival, but resistance and secondary cancer often occur. Causal mechanisms of BRAFi-induced secondary cancer and resistance have been identified through upregulation of MAPK and alternate pro-survival pathways. In addition, overriding of cellular senescence is observed throughout the progression of disease from benign nevi to malignant melanoma. In this review, we discuss melanoma BRAF mutations, the genetic mechanism of BRAFi resistance, and the evidence supporting the role of senescent cells in melanoma disease progression, drug resistance and secondary cancer. We further highlight the potential benefit of targeting senescent cells with senotherapeutics as adjuvant therapy in combating melanoma.
Collapse
|
16
|
Chen YT, Hsieh MJ, Chen PN, Weng CJ, Yang SF, Lin CW. Erianin Induces Apoptosis and Autophagy in Oral Squamous Cell Carcinoma Cells. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2020; 48:183-200. [PMID: 31903779 DOI: 10.1142/s0192415x2050010x] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Oral squamous cell carcinoma (OSCC) is a leading cause of cancer-related deaths worldwide. It has a very poor prognosis with over a 5-year survival rate of only 50%. Thus, it is important to identify effective therapeutic interventions against oral cancer. Apoptosis and autophagy have reported genetically regulated in physiology and diseases, which close relationship. Many natural compound study objects anticancer effect have been studied between apoptosis and autophagy relationship. The present study was designed to evaluate the effect of erianin on human oral cancer cell proliferation. Results of the study revealed that treatment with erianin significantly reduced the viability of different OSCC cell lines. Erianin exerted its cytotoxic effect by inducing cell cycle arrest and caspase-dependent apoptotic pathways. Both intrinsic and extrinsic pathways were found to be involved in erianin-mediated cell death. In addition, treatment with erianin also increased autophagy in OSCC cells. With further analysis, it was found that erianin induced both apoptosis and autophagy by regulating MAPK signaling pathways. Taken together, our study indicates that erianin plays an important role in reducing oral cancer cell viability, and thus, can be considered as a potential anticancer agent.
Collapse
Affiliation(s)
- Yi-Tzu Chen
- School of Dentistry, Chung Shan Medical University, Taichung, Taiwan.,Institute of Oral Sciences, Chung Shan Medical University, Taichung, Taiwan.,Department of Dentistry, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Ming-Ju Hsieh
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan.,Oral Cancer Research Center, Changhua Christian Hospital, Changhua, Taiwan.,Department of Holistic Wellness, MingDao University, Changhua, Taiwan.,Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
| | - Pei-Ni Chen
- Institute of Biochemistry, Microbiology and Immunology, Chung Shan Medical University, Taichung, Taiwan
| | - Chia-Jui Weng
- Department of Living Services Industry, Tainan University of Technology, Tainan City, Taiwan
| | - Shun-Fa Yang
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan.,Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Chiao-Wen Lin
- Institute of Oral Sciences, Chung Shan Medical University, Taichung, Taiwan.,Department of Dentistry, Chung Shan Medical University Hospital, Taichung, Taiwan
| |
Collapse
|
17
|
Sundarraj K, Raghunath A, Panneerselvam L, Perumal E. Fisetin, a phytopolyphenol, targets apoptotic and necroptotic cell death in HepG2 cells. Biofactors 2020; 46:118-135. [PMID: 31634424 DOI: 10.1002/biof.1577] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2019] [Accepted: 09/23/2019] [Indexed: 01/27/2023]
Abstract
Fisetin (3,7,3',4'-tetrahydroxyflavone), a bioactive dietary flavonoid, intrigued scientists for its anticancer potential against various cancer types. We investigated the fisetin-induced inhibition of growth and survival of human hepatocellular carcinoma. Fisetin decreased cell viability and proliferation of HepG2 cells as revealed from MTT and clonogenicity assays. Cell cycle arrest in the G2/M phase was observed. Annexin V/propidium iodide (PI) staining followed by flow cytometry revealed that fisetin induced both apoptosis and necroptosis in HepG2 cells. Apoptotic cells were significantly increased on fisetin treatment as observed in morphological evaluations and 4',6-diamidino-2-phenylindole and Acridine orange staining. Flow cytometry, fluorescence imaging, and 2', 7'-dichlorofluorescein diacetate analyses showed an increase in reactive oxygen species (ROS) generation on fisetin treatment. Pretreatment with N-acetyl cysteine inhibited ROS production and also rescued mitochondrial membrane potential in HepG2 cells. The underlying mechanisms of apoptosis and necroptosis were determined by analysis of their respective signaling molecules using qRT-PCR and Western blotting. Fisetin showed a marked increase in the expression of TNFα and IKκB with a decrease in NF-κB, pNF-κB and pIKκB expression. Fisetin reduced the expression of Bcl2, and elevated levels of Bax, caspase-3, and PARP and thus induced apoptosis in HepG2 cells. zVAD suppressed the fisetin-induced expression of caspase-8, RIPK1, RIPK3, and MLKL as opposed to fisetin treatment. Nec-1 + fisetin could not completely block necroptosis, which warrants further investigation. Taken together, our findings demonstrate that the fisetin exhibited anti-proliferative effects on HepG2 cells through apoptosis and necroptosis via multiple signaling pathways. Fiestin has potential as a therapeutic agent against hepatocellular carcinoma.
Collapse
Affiliation(s)
- Kiruthika Sundarraj
- Molecular Toxicology Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore, Tamilnadu, India
| | - Azhwar Raghunath
- Molecular Toxicology Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore, Tamilnadu, India
| | - Lakshmikanthan Panneerselvam
- Molecular Toxicology Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore, Tamilnadu, India
| | - Ekambaram Perumal
- Molecular Toxicology Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore, Tamilnadu, India
| |
Collapse
|
18
|
Zhou H, Liu J, Chen Z. Coronarin D suppresses proliferation, invasion and migration of glioma cells via activating JNK signaling pathway. Pathol Res Pract 2019; 216:152789. [PMID: 31870592 DOI: 10.1016/j.prp.2019.152789] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Revised: 11/25/2019] [Accepted: 12/12/2019] [Indexed: 01/03/2023]
Abstract
Coronarin D (CD) is one of the primary components of the Hedychium coronarium rhizomes and possesses strong anticancer effects via preventing cell growth in many cancer cells. The study was aimed to explore the molecular mechanisms underlying effects of CD on proliferation, invasion and migration of gliomas cells. Gliomas cell lines U251 was employed for detecting cells viability and proliferation by Cell Counting Kit-8 assay and colony formation assay. In addition, scratch wound healing and transwell assays were performed for the analysis of U251 cells invasion and migration respectively. Furthermore, the expression of p-Akt/Akt, p-p38/p38, p-ERK/ERK, p-JNK/JNK, p-STAT3/STAT3, cyclinE, cyclinD1, CTGF, MMP-2 and MMP-9 were measured by Western blotting. CD could suppress proliferation, invasion and migration of glioma cells and induced reduction of cyclinE, cyclinD1, CTGF, MMP-2 and MMP-9 expression via activating JNK signaling pathway. CD treatment suppressed expression of p-AKT, p38, and ERK and elevated expression of p-JNK in concentration- and time-dependent manners. Moreover, CD significantly induced reduction of phosphorylated STAT3 expression. Exposure of cells to the JNK-specific inhibitor SP600125 reduced the cytotoxicity effects of CD, combination of CD and SP600125 corrected overexpression of phosphorylated JNK and reduction of phosphorylated STAT3. Pretreatment of SP600125 also improves gliomas cells viability and invasion. The results revealed that CD may remarkably suppress gliomas cell growth through JNK and STAT3 signaling. In present study, these findings revealed that CD induces suppression of cell viability in gliomas cells and possesses therapeutic effect on gliomas.
Collapse
Affiliation(s)
- Hongjun Zhou
- Department of Neurosurgery, The Third Affiliated Hospital of Chongqing Medical University (Gener Hospital), PR China
| | - Jiang Liu
- Department of Neurosurgery, The Third Affiliated Hospital of Chongqing Medical University (Gener Hospital), PR China
| | - Zhongjun Chen
- Department of Neurosurgery, The Affiliated Huai'an Hospital of Xuzhou Medical University and The Second People's Hospital of Huai'an, PR China.
| |
Collapse
|
19
|
Unraveling the molecular mechanisms and the potential chemopreventive/therapeutic properties of natural compounds in melanoma. Semin Cancer Biol 2019; 59:266-282. [PMID: 31233829 DOI: 10.1016/j.semcancer.2019.06.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 06/19/2019] [Accepted: 06/21/2019] [Indexed: 12/12/2022]
Abstract
Melanoma is the most fatal form of skin cancer. Current therapeutic approaches include surgical resection, chemotherapy, targeted therapy and immunotherapy. However, these treatment strategies are associated with development of drug resistance and severe side effects. In recent years, natural compounds have also been extensively studied for their anti-melanoma effects, including tumor growth inhibition, apoptosis induction, angiogenesis and metastasis suppression and cancer stem cell elimination. Moreover, a considerable number of studies reported the synergistic activity of phytochemicals and standard anti-melanoma agents, as well as the enhanced effectiveness of their synthetic derivatives and novel formulations. However, clinical data confirming these promising effects in patients are still scanty. This review emphasizes the anti-tumor mechanisms and potential application of the most studied natural products for melanoma prevention and treatment.
Collapse
|
20
|
Tsai YH, Lin JJ, Ma YS, Peng SF, Huang AC, Huang YP, Fan MJ, Lien JC, Chung JG. Fisetin Inhibits Cell Proliferation through the Induction of G 0/G 1 Phase Arrest and Caspase-3-Mediated Apoptosis in Mouse Leukemia Cells. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2019; 47:841-863. [PMID: 31096772 DOI: 10.1142/s0192415x19500447] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Fisetin, a naturally occurring flavonoid, is found in common fruits and vegetables and has been shown to induce cytotoxic effects in many human cancer cell lines. No information has shown that fisetin induced cell cycle arrest and apoptosis in mouse leukemia WEHI-3 cells. We found that fisetin decreased total viable cells through G0/G1 phase arrest and induced sub-G1 phase (apoptosis). We have confirmed fisetin induced cell apoptosis by the formation of DNA fragmentation and induction of apoptotic cell death. Results indicated that fisetin induced intracellular Ca 2+ increase but decreased the ROS production and the levels of ΔΨ m in WEHI-3 cells. Fisetin increased the activities of caspase-3, -8 and -9. Cells were pre-treated with inhibitors of caspase-3, -8 and -9 and then treated with fisetin and results showed increased viable cell number when compared to fisetin treated only. Fisetin reduced expressions of cdc25a but increased p-p53, Chk1, p21 and p27 that may lead to G0/G1 phase arrest. Fisetin inhibited anti-apoptotic protein Bcl-2 and Bcl-xL and increased pro-apoptotic protein Bax and Bak. Furthermore, fisetin increased the protein expression of cytochrome c and AIF. Fisetin decreased cell number through G0/G1 phase arrest via the inhibition of cdc25c and induction of apoptosis through caspase-dependent and mitochondria-dependent pathways. Therefore, fisetin may be useful as a potential therapeutic agent for leukemia.
Collapse
Affiliation(s)
- Yu-Hsiang Tsai
- * Department of Biological Science and Technology, China Medical University, Taichung 40402, Taiwan
| | - Jen-Jyh Lin
- † Department of Respiratory Therapy, China Medical University, Taichung 40402, Taiwan.,¶ Division of Cardiology, China Medical University Hospital, Taichung 40402, Taiwan
| | - Yi-Shih Ma
- ∥ School of Chinese Medicine for Post-Baccalaureate, I-Shou University, Kaohsiung 84001, Taiwan.,** Department of Chinese Medicine, E-Da Hospital, Kaohsiung 82445, Taiwan
| | - Shu-Fen Peng
- * Department of Biological Science and Technology, China Medical University, Taichung 40402, Taiwan
| | - An-Cheng Huang
- †† Department of Nursing, St. Mary's Junior College of Medicine, Nursing and Management, Yilan 26644, Taiwan
| | - Yi-Ping Huang
- ‡ Department of Physiology, College of Medicine, China Medical University, Taichung 40402, Taiwan
| | - Ming-Jen Fan
- ‡‡ Department of Biotechnology, Asia University, Taichung 41354, Taiwan
| | - Jin-Cherng Lien
- § School of Pharmacy, China Medical University, Taichung 40402, Taiwan
| | - Jing-Gung Chung
- * Department of Biological Science and Technology, China Medical University, Taichung 40402, Taiwan.,‡‡ Department of Biotechnology, Asia University, Taichung 41354, Taiwan
| |
Collapse
|
21
|
Kashyap D, Garg VK, Tuli HS, Yerer MB, Sak K, Sharma AK, Kumar M, Aggarwal V, Sandhu SS. Fisetin and Quercetin: Promising Flavonoids with Chemopreventive Potential. Biomolecules 2019; 9:E174. [PMID: 31064104 PMCID: PMC6572624 DOI: 10.3390/biom9050174] [Citation(s) in RCA: 152] [Impact Index Per Article: 30.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 04/30/2019] [Accepted: 04/30/2019] [Indexed: 12/17/2022] Open
Abstract
Despite advancements in healthcare facilities for diagnosis and treatment, cancer remains the leading cause of death worldwide. As prevention is always better than cure, efficient strategies are needed in order to deal with the menace of cancer. The use of phytochemicals as adjuvant chemotherapeutic agents in heterogeneous human carcinomas like breast, colon, lung, ovary, and prostate cancers has shown an upward trend during the last decade or so. Flavonoids are well-known products of plant derivatives that are reportedly documented to be therapeutically active phytochemicals against many diseases encompassing malignancies, inflammatory disorders (cardiovascular disease, neurodegenerative disorder), and oxidative stress. The current review focuses on two key flavonols, fisetin and quercetin, known for their potential pharmacological relevance. Also, efforts have been made to bring together most of the concrete studies pertaining to the bioactive potential of fisetin and quercetin, especially in the modulation of a range of cancer signaling pathways. Further emphasis has also been made to highlight the molecular action of quercetin and fisetin so that one could explore cancer initiation pathways and progression, which could be helpful in designing effective treatment strategies.
Collapse
Affiliation(s)
- Dharambir Kashyap
- Department of Histopathology, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh 160012, Punjab, India.
| | - Vivek Kumar Garg
- Department of Biochemistry, Government Medical College and Hospital (GMCH), Chandigarh 160031, Punjab, India.
| | - Hardeep Singh Tuli
- Department of Biotechnology, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala 133 207, Haryana, India.
| | - Mukerrem Betul Yerer
- Department of Pharmacology, Faculty of Pharmacy, Erciyes University, Kayseri 38039, Turkey.
| | | | - Anil Kumar Sharma
- Department of Biotechnology, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala 133 207, Haryana, India.
| | - Manoj Kumar
- Department of Chemistry, Maharishi Markandeshwar University, Sadopur 134007, Haryana, India.
| | - Vaishali Aggarwal
- Department of Histopathology, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh 160012, Punjab, India.
| | | |
Collapse
|
22
|
Lin HW, Hsieh MJ, Yeh CB, Hsueh KC, Hsieh YH, Yang SF. Coronarin D induces apoptotic cell death through the JNK pathway in human hepatocellular carcinoma. ENVIRONMENTAL TOXICOLOGY 2018; 33:946-954. [PMID: 29968959 DOI: 10.1002/tox.22579] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 05/11/2018] [Accepted: 05/13/2018] [Indexed: 06/08/2023]
Abstract
Coronarin D, a diterpene derived from the rhizomes of Hedychium coronarium, has been used to treat inflammatory diseases. Coronarin D can exert strong anticancer effects through cell growth prevention and cell cycle arrest in many cancer cells. In this study, we investigated the molecular mechanism through which coronarin D suppresses cell proliferation and triggers cell death in human hepatocellular carcinoma (HCC) cells. Treatment of Huh7 and Sk-hep-1 cells with coronarin D resulted in a significantly increased loss of mitochondrial membrane potential, leading to the cleavage and activation of caspase-9, caspase-8, and caspase-3 and changes in Bax, Bcl-2, and Bcl-xL protein levels. Coronarin D significantly induced autophagy by increasing the expression of Beclin-1 and LC3-II and reducing the expression of p62. Moreover, Huh7 and Sk-hep-1 cells exposed to coronarin D had decreased expression of phosphorylated AKT, p38, and ERK and increased expression of phosphorylated JNK. Exposure of cells to the JNK-specific inhibitor SP600125 attenuated the apoptotic effects of coronarin D. Taken together, this is the first study to report that coronarin D may effectively inhibit cell growth through apoptosis. We have provided evidence indicating that coronarin D induces cell death through the upregulation of JNK mitogen-activated protein kinases in human HCC cells.
Collapse
Affiliation(s)
- Hui-Wen Lin
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Family Medicine, Taichung Hospital, Ministry of Health and Welfare, Taichung, Taiwan
| | - Ming-Ju Hsieh
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Cancer Research Center, Changhua Christian Hospital, Changhua, Taiwan
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
| | - Chao-Bin Yeh
- Department of Emergency Medicine, School of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Emergency Medicine, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Kuan-Chun Hsueh
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Division of General Surgery, Department of Surgery, Tungs' Taichung MetroHarbour Hospital, Taichung, Taiwan
| | - Yi-Hsien Hsieh
- Institute of Biochemistry, Microbiology and Immunology, Chung Shan Medical University, Taichung, Taiwan
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Shun-Fa Yang
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan
| |
Collapse
|