1
|
Miyajima C, Nagasaka M, Aoki H, Toriuchi K, Yamanaka S, Hashiguchi S, Morishita D, Aoyama M, Hayashi H, Inoue Y. The Hippo Signaling Pathway Manipulates Cellular Senescence. Cells 2024; 14:13. [PMID: 39791714 PMCID: PMC11719916 DOI: 10.3390/cells14010013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 12/21/2024] [Accepted: 12/24/2024] [Indexed: 01/12/2025] Open
Abstract
The Hippo pathway, a kinase cascade, coordinates with many intracellular signals and mediates the regulation of the activities of various downstream transcription factors and their coactivators to maintain homeostasis. Therefore, the aberrant activation of the Hippo pathway and its associated molecules imposes significant stress on tissues and cells, leading to cancer, immune disorders, and a number of diseases. Cellular senescence, the mechanism by which cells counteract stress, prevents cells from unnecessary damage and leads to sustained cell cycle arrest. It acts as a powerful defense mechanism against normal organ development and aging-related diseases. On the other hand, the accumulation of senescent cells without their proper removal contributes to the development or worsening of cancer and age-related diseases. A correlation was recently reported between the Hippo pathway and cellular senescence, which preserves tissue homeostasis. This review is the first to describe the close relationship between aging and the Hippo pathway, and provides insights into the mechanisms of aging and the development of age-related diseases. In addition, it describes advanced findings that may lead to the development of tissue regeneration therapies and drugs targeting rejuvenation.
Collapse
Affiliation(s)
- Chiharu Miyajima
- Department of Cell Signaling, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya 467-8603, Japan; (M.N.); (S.Y.); (S.H.); (D.M.); (H.H.)
| | - Mai Nagasaka
- Department of Cell Signaling, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya 467-8603, Japan; (M.N.); (S.Y.); (S.H.); (D.M.); (H.H.)
- Department of Experimental Chemotherapy, Cancer Chemotherapy Center of JFCR, Tokyo 135-8550, Japan
| | - Hiromasa Aoki
- Department of Pathobiology, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya 467-8603, Japan; (H.A.); (K.T.); (M.A.)
| | - Kohki Toriuchi
- Department of Pathobiology, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya 467-8603, Japan; (H.A.); (K.T.); (M.A.)
| | - Shogo Yamanaka
- Department of Cell Signaling, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya 467-8603, Japan; (M.N.); (S.Y.); (S.H.); (D.M.); (H.H.)
| | - Sakura Hashiguchi
- Department of Cell Signaling, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya 467-8603, Japan; (M.N.); (S.Y.); (S.H.); (D.M.); (H.H.)
| | - Daisuke Morishita
- Department of Cell Signaling, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya 467-8603, Japan; (M.N.); (S.Y.); (S.H.); (D.M.); (H.H.)
| | - Mineyoshi Aoyama
- Department of Pathobiology, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya 467-8603, Japan; (H.A.); (K.T.); (M.A.)
| | - Hidetoshi Hayashi
- Department of Cell Signaling, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya 467-8603, Japan; (M.N.); (S.Y.); (S.H.); (D.M.); (H.H.)
| | - Yasumichi Inoue
- Department of Cell Signaling, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya 467-8603, Japan; (M.N.); (S.Y.); (S.H.); (D.M.); (H.H.)
| |
Collapse
|
2
|
Lin Y, Li H, Zheng S, Han R, Wu K, Tang S, Zhong X, Chen J. Elucidating tobacco smoke-induced craniofacial deformities: Biomarker and MAPK signaling dysregulation unraveled by cross-species multi-omics analysis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 288:117343. [PMID: 39549573 DOI: 10.1016/j.ecoenv.2024.117343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 10/27/2024] [Accepted: 11/10/2024] [Indexed: 11/18/2024]
Abstract
Tobacco smoke (TS), particularly secondhand and thirdhand smoke, poses a pervasive and intractable environmental hazard that promotes teratogenesis and the progression of craniofacial malformations, although the underlying mechanisms remain elusive. Using zebrafish larvae as a model, our research demonstrated a correlation between the increasing concentration of cigarette smoke extract (CSE) and the severity of craniofacial malformations, supported by Alcian blue staining and histological assessments. Through a combined mRNA-miRNA analysis and quantitative real-time PCR, we identified miR-96-5p, miR-152, miR-125b-2-3p, and miR-181a-3-3p as pivotal biomarkers in craniofacial cartilage development. Functional analyses revealed their association with the MAPK signaling pathway, oxidative stress (OS), and cell development, highlighting MAPK as a crucial mediator. Single-cell transcriptomics further disclosed aberrant MAPK activation in mesenchymal cells. Subsequent investigations in human embryonic palatal mesenchymal (HEPM) cells confirmed similar patterns of growth inhibition, apoptosis, and OS, and emphasized the cross-species consistency of these biomarkers and the over-activation of the MAPK signaling pathway. A comprehensive tri-omics analysis of HEPM cells identified pivotal genes, proteins, and metabolites within the MAPK pathway. This groundbreaking cross-species multi-omics study unveils novel biomarkers and MAPK pathway perturbations linked to TS-induced craniofacial developmental toxicity, promoting innovative clinical prediction, diagnosis, and interventional strategies to tackle TS-induced craniofacial malformations.
Collapse
Affiliation(s)
- Yuxin Lin
- Department of Burns and Plastic Surgery, The Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong 515041, PR China.
| | - Hao Li
- Department of Burns and Plastic Surgery, The Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong 515041, PR China.
| | - Shukai Zheng
- Shantou university medical college, Shantou, Guangdong 515041, PR China.
| | - Rui Han
- Department of Burns and Plastic Surgery, The Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong 515041, PR China.
| | - Kusheng Wu
- Shantou university medical college, Shantou, Guangdong 515041, PR China.
| | - Shijie Tang
- Department of Burns and Plastic Surgery, The Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong 515041, PR China.
| | - Xiaoping Zhong
- Department of Burns and Plastic Surgery, The Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong 515041, PR China.
| | - Jiasheng Chen
- Department of Burns and Plastic Surgery, The Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong 515041, PR China.
| |
Collapse
|
3
|
Yadav M, Kandhari K, Mathan SV, Ali M, Singh RP. Fisetin induces G2/M phase arrest and caspase-mediated cleavage of p21 Cip1 and p27 Kip1 leading to apoptosis and tumor growth inhibition in HNSCC. Mol Carcinog 2024; 63:1697-1711. [PMID: 38801393 DOI: 10.1002/mc.23754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 04/27/2024] [Accepted: 05/15/2024] [Indexed: 05/29/2024]
Abstract
The anticancer potential and associated mechanisms of flavonoid fisetin are yet to be fully investigated on human head and neck squamous cell carcinoma (HNSCC). In the present study, fisetin (25-75 µM for 24-48 h) dose-dependently inhibited growth and induced death in HNSCC Cal33 and UM-SCC-22B cells, without showing any death in normal cells. Fisetin (25-50 µM) induced G2/M phase arrest via decrease in Cdc25C, CDK1, cyclin B1 expression, and an increase in p53(S15). A concentration-dependent increase in fisetin-induced DNA damage and apoptosis in HNSCC cells was authenticated by comet assay, gamma-H2A.X(S139) phosphorylation, and marked cleavage of PARP protein. Interestingly, fisetin-induced cell death occurred independently of p53 and reactive oxygen species production. The activation of JNK and inhibition of PI3K/Akt, ERK1/2, EGFR, and STAT-3 signaling were identified. Further, fisetin-induced apoptosis was mediated, in part, via p21Cip1 and p27Kip1 cleavage by caspase, which was reversed by z-VAD-FMK, a pan-caspase inhibitor. Subsequently, fisetin was also found to induce autophagy; nevertheless, autophagy attenuation exaggerated apoptosis. Oral fisetin (50 mg/kg body weight) treatment to establish Cal33 xenograft in mice for 19 days showed 73% inhibition in tumor volume (p < 0.01) along with a decrease in Ki67-positive cells and an increase in cleaved caspase-3 level in tumors. Consistent with the effect of 50 µM fisetin in vitro, the protein levels of p21Cip1 and P27Kip1 were also decreased by fisetin in tumors. Together, these findings showed strong anticancer efficacy of fisetin against HNSCC with downregulation of EGFR-Akt/ERK1/2-STAT-3 pathway and activation of JNK/c-Jun, caspases and caspase-mediated cleavage of p21Cip1 and p27Kip1.
Collapse
Affiliation(s)
- Monika Yadav
- Cancer Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Kushal Kandhari
- Cancer Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Sivapar V Mathan
- Cancer Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Mansoor Ali
- Cancer Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Rana P Singh
- Cancer Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
- Special Centre for Systems Medicine, Jawaharlal Nehru University, New Delhi, India
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado, Anschutz Medical Campus, Aurora, Colorado, USA
| |
Collapse
|
4
|
Liu S, Liu C, Wang Y, Chen J, He Y, Hu K, Li T, Yang J, Peng J, Hao L. The role of programmed cell death in osteosarcoma: From pathogenesis to therapy. Cancer Med 2024; 13:e7303. [PMID: 38800967 PMCID: PMC11129166 DOI: 10.1002/cam4.7303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 04/01/2024] [Accepted: 05/07/2024] [Indexed: 05/29/2024] Open
Abstract
Osteosarcoma (OS) is a prevalent bone solid malignancy that primarily affects adolescents, particularly boys aged 14-19. This aggressive form of cancer often leads to deadly lung cancer due to its high migration ability. Experimental evidence suggests that programmed cell death (PCD) plays a crucial role in the development of osteosarcoma. Various forms of PCD, including apoptosis, ferroptosis, autophagy, necroptosis, and pyroptosis, contribute significantly to the progression of osteosarcoma. Additionally, different signaling pathways such as STAT3/c-Myc signal pathway, JNK signl pathway, PI3k/AKT/mTOR signal pathway, WNT/β-catenin signal pathway, and RhoA signal pathway can influence the development of osteosarcoma by regulating PCD in osteosarcoma cell. Therefore, targeting PCD and the associated signaling pathways could offer a promising therapeutic approach for treating osteosarcoma.
Collapse
Affiliation(s)
- Suqing Liu
- Department of Orthopedics, The Second Affiliated Hospital, Jiangxi Medical CollegeNanchang UniversityNanchangChina
- Queen Marry CollegeNanchang UniversityNanchangChina
| | - Chengtao Liu
- Shandong Wendeng Osteopathic HospitalWeihaiChina
| | - Yian Wang
- Queen Marry CollegeNanchang UniversityNanchangChina
| | - Jiewen Chen
- Queen Marry CollegeNanchang UniversityNanchangChina
| | - Yujin He
- Queen Marry CollegeNanchang UniversityNanchangChina
| | - Kaibo Hu
- The Second Clinical Medical College, Jiangxi Medical CollegeNanchang UniversityNanchangChina
| | - Ting Li
- The Second Clinical Medical College, Jiangxi Medical CollegeNanchang UniversityNanchangChina
| | - Junmei Yang
- The Second Clinical Medical College, Jiangxi Medical CollegeNanchang UniversityNanchangChina
| | - Jie Peng
- Department of Orthopedics, The Second Affiliated Hospital, Jiangxi Medical CollegeNanchang UniversityNanchangChina
- The Second Clinical Medical College, Jiangxi Medical CollegeNanchang UniversityNanchangChina
- Department of Sports Medicine, Huashan HospitalFudan UniversityShanghaiChina
| | - Liang Hao
- Department of Orthopedics, The Second Affiliated Hospital, Jiangxi Medical CollegeNanchang UniversityNanchangChina
| |
Collapse
|
5
|
Adedokun KA, Imodoye SO, Yahaya ZS, Oyeyemi IT, Bello IO, Adeyemo‐Imodoye MT, Sanusi MA, Kamorudeen RT. Nanodelivery of Polyphenols as Nutraceuticals in Anticancer Interventions. POLYPHENOLS 2023:188-224. [DOI: 10.1002/9781394188864.ch10] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
6
|
Kubina R, Krzykawski K, Dziedzic A, Kabała-Dzik A. Kaempferol and Fisetin-Related Signaling Pathways Induce Apoptosis in Head and Neck Cancer Cells. Cells 2023; 12:1568. [PMID: 37371038 DOI: 10.3390/cells12121568] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 06/05/2023] [Accepted: 06/05/2023] [Indexed: 06/29/2023] Open
Abstract
Despite the relative effectiveness of standard cancer treatment strategies, head and neck cancer (HNC) is still considered one of the leading causes of mortality and morbidity. While selected bioactive compounds of plant origin reveal a pro-apoptotic effect, kaempferol and fisetin flavonols have been reported as potential anti-cancer agents against malignant neoplasms. To date, their exact role in signaling pathways of head and neck cancer cells is largely unknown. Based on the various methods of cytotoxicity testing, we elucidated that kaempferol and fisetin inhibit proliferation, reduce the capacity of cell migration, and induce apoptosis in SCC-9, SCC-25, and A-253 HNC cells in a dose-dependent manner in vitro (p < 0.05, fisetin IC50 values of 38.85 µM, 62.34 µM, and 49.21 µM, and 45.03 µM, 49.90 µM, and 47.49 µM for kaempferol-SCC-9, SCC-25, and A-253, respectively). The obtained results showed that exposure to kaempferol and fisetin reduces Bcl-2 protein expression, simultaneously leading to the arrest in the G2/M and S phases of the cell cycle. Kaempferol and fisetin inhibit cell proliferation by interfering with the cell cycle, which is strongly associated with the induction of G2/M arrest, and induce apoptosis by activating caspase-3 and releasing cytochrome c in human HNC cells. In addition, investigating flavonols, by inhibiting anti-apoptotic proteins from the Bcl-2 family and damaging the mitochondrial transmembrane potential, increased the level of cytochrome c. While flavonols selectively induce apoptosis of head and neck cancer cells, they may support oncological therapy as promising agents. The discovery of new derivatives may be a breakthrough in the search for effective chemotherapeutic agents with less toxicity and thus fewer side effects.
Collapse
Affiliation(s)
- Robert Kubina
- Department of Pathology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, 30 Ostrogórska Str., 41-200 Sosnowiec, Poland
- Silesia LabMed, Centre for Research and Implementation, Medical University of Silesia in Katowice, 18 Medyków Str., 40-752 Katowice, Poland
| | - Kamil Krzykawski
- Silesia LabMed, Centre for Research and Implementation, Medical University of Silesia in Katowice, 18 Medyków Str., 40-752 Katowice, Poland
| | - Arkadiusz Dziedzic
- Department of Conservative Dentistry with Endodontics, Medical University of Silesia, 40-055 Katowice, Poland
| | - Agata Kabała-Dzik
- Department of Pathology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, 30 Ostrogórska Str., 41-200 Sosnowiec, Poland
| |
Collapse
|
7
|
Kim TW. Fisetin, an Anti-Inflammatory Agent, Overcomes Radioresistance by Activating the PERK-ATF4-CHOP Axis in Liver Cancer. Int J Mol Sci 2023; 24:ijms24109076. [PMID: 37240422 DOI: 10.3390/ijms24109076] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/16/2023] [Accepted: 05/20/2023] [Indexed: 05/28/2023] Open
Abstract
Fisetin, a well-known plant flavonol from the natural flavonoid group, is found in traditional medicines, plants, vegetables, and fruits. Fisetin also has anti-oxidant, anti-inflammatory, and anti-tumor effects. This study investigated the anti-inflammatory effects of fisetin in LPS-induced Raw264.7 cells and found that fisetin reduced the LPS-induced production of pro-inflammation markers, such as TNF-α, IL-1β, and IL-6, demonstrating the anti-inflammatory effects of fisetin. Furthermore, this study investigated the anti-cancer effects of fisetin and found that fisetin induced apoptotic cell death and ER stress through intracellular calcium (Ca2+) release, the PERK-ATF4-CHOP signaling pathway, and induction of GRP78 exosomes. However, the suppression of PERK and CHOP inhibited the fisetin-induced cell death and ER stress. Interestingly, fisetin induced apoptotic cell death and ER stress and inhibited the epithelial-mesenchymal transition phenomenon under radiation in radiation-resistant liver cancer cells. These findings indicate that the fisetin-induced ER stress can overcome radioresistance and induce cell death in liver cancer cells following radiation. Therefore, the anti-inflammatory agent fisetin, in combination with radiation, may be a powerful immunotherapy strategy to overcome resistance in an inflammatory tumor microenvironment.
Collapse
Affiliation(s)
- Tae Woo Kim
- Department of Biopharmaceutical Engineering, Dongguk University-WISE, 123 Dongdae-ro, Gyeongju 38066, Gyeongbuk, Republic of Korea
| |
Collapse
|
8
|
Rahmani AH, Almatroudi A, Allemailem KS, Khan AA, Almatroodi SA. The Potential Role of Fisetin, a Flavonoid in Cancer Prevention and Treatment. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27249009. [PMID: 36558146 PMCID: PMC9782831 DOI: 10.3390/molecules27249009] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 12/11/2022] [Accepted: 12/14/2022] [Indexed: 12/24/2022]
Abstract
Cancer is a main culprit and the second-leading cause of death worldwide. The current mode of treatment strategies including surgery with chemotherapy and radiation therapy may be effective, but cancer is still considered a major cause of death. Plant-derived products or their purified bioactive compounds have confirmed health-promoting effects as well as cancer-preventive effects. Among these products, flavonoids belong to polyphenols, chiefly found in fruits, vegetables and in various seeds/flowers. It has been considered to be an effective antioxidant, anti-inflammatory and to play a vital role in diseases management. Besides these activities, flavonoids have been revealed to possess anticancer potential through the modulation of various cell signaling molecules. In this regard, fisetin, a naturally occurring flavonoid, has a confirmed role in disease management through antioxidant, neuro-protective, anti-diabetic, hepato-protective and reno-protective potential. As well, its cancer-preventive effects have been confirmed via modulating various cell signaling pathways including inflammation, apoptosis, angiogenesis, growth factor, transcription factor and other cell signaling pathways. This review presents an overview of the anti-cancer potential of fisetin in different types of cancer through the modulation of cell signaling pathways based on in vivo and in vitro studies. A synergistic effect with anticancer drugs and strategies to improve the bioavailability are described. More clinical trials need to be performed to explore the anti-cancer potential and mechanism-of-action of fisetin and its optimum therapeutic dose.
Collapse
Affiliation(s)
- Arshad Husain Rahmani
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51542, Saudi Arabia
- Correspondence:
| | - Ahmad Almatroudi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51542, Saudi Arabia
| | - Khaled S. Allemailem
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51542, Saudi Arabia
| | - Amjad Ali Khan
- Department of Basic Health Sciences, College of Applied Medical Sciences, Qassim University, Buraydah 51542, Saudi Arabia
| | - Saleh A. Almatroodi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51542, Saudi Arabia
| |
Collapse
|
9
|
Yue J, Chen ZS, Xu XX, Li S. Functions and therapeutic potentials of exosomes in osteosarcoma. ACTA MATERIA MEDICA 2022; 1:552-562. [PMID: 36710945 PMCID: PMC9879305 DOI: 10.15212/amm-2022-0024] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Osteosarcoma is a primary malignant tumor of the skeleton with the morbidity of 2.5 in 1 million. The regularly on-set is in the epiphysis of the extremities with a high possibility of early metastasis, rapid progression, and poor prognosis. The survival rate of patients with metastatic or recurrent osteosarcoma remains low, and novel diagnostic and therapeutic methods are urgently needed. Exosomes are extracellular vesicles 30-150 nm in diameter secreted by various cells that are widely present in various body fluids. Exosomes are abundant in biologically active components such as proteins, nucleic acids, and lipids. Exosomes participate in numerous physiological and pathological processes via intercellular substance exchange and signaling. This review presents the novel findings of exosomes in osteosarcoma in diagnosis, prognosis, and therapeutic aspects.
Collapse
Affiliation(s)
- Jiaji Yue
- Department of Bone and Joint Surgery, Shenzhen Second People’s Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong, 518000, PR China
| | - Zhe-Sheng Chen
- College of Pharmacy and Health Sciences, St. John’s University, Queens, NY,United States
| | - Xiang-Xi Xu
- Department of Radiation Oncology, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Shenglong Li
- Department of Bone and Soft Tissue Tumor Surgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, Liaoning, 110042, PR China
| |
Collapse
|
10
|
Granel H, Bossard C, Collignon AM, Wauquier F, Lesieur J, Rochefort GY, Jallot E, Lao J, Wittrant Y. Osteogenic Effect of Fisetin Doping in Bioactive Glass/Poly(caprolactone) Hybrid Scaffolds. ACS OMEGA 2022; 7:22279-22290. [PMID: 35811886 PMCID: PMC9260777 DOI: 10.1021/acsomega.2c01109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 06/07/2022] [Indexed: 06/15/2023]
Abstract
Treating large bone defects or fragile patients may require enhancing the bone regeneration rate to overcome a weak contribution from the body. This work investigates the osteogenic potential of nutrient fisetin, a flavonoid found in fruits and vegetables, as a doping agent inside the structure of a SiO2-CaO bioactive glass-poly(caprolactone) (BG-PCL) hybrid scaffold. Embedded in the full mass of the BG-PCL hybrid during one-pot synthesis, we demonstrate fisetin to be delivered sustainably; the release follows a first-order kinetics with active fisetin concentration being delivered for more than 1 month (36 days). The biological effect of BG-PCL-fisetin-doped scaffolds (BG-PCL-Fis) has been highlighted by in vitro and in vivo studies. A positive impact is demonstrated on the adhesion and the differentiation of rat primary osteoblasts, without an adverse cytotoxic effect. Implantation in critical-size mouse calvaria defects shows bone remodeling characteristics and remarkable enhancement of bone regeneration for fisetin-doped scaffolds, with the regenerated bone volume being twofold that of nondoped scaffolds and fourfold that of a commercial trabecular bovine bone substitute. Such highly bioactive materials could stand as competitive alternative strategies involving biomaterials loaded with growth factors, the use of the latter being the subject of growing concerns.
Collapse
Affiliation(s)
- Henri Granel
- INRAE,
Human Nutrition Unit (UNH), ECREIN Team, TSA 50400, 28 Place Henri Dunant, Clermont-Ferrand, Auvergne-Rhone-Alpes 63001, France
| | - Cédric Bossard
- Université
Clermont Auvergne, Laboratoire De Physique De Clermont Ferrand, 4 Avenue Blaise Pascal, Clermont-Ferrand, Auvergne-Rhône-Alpes 63001, France
| | - Anne-Margaux Collignon
- Descartes
University of Paris Faculty of Dental Surgery, Laboratoires Pathologies,
Imagerie et Biothérapies Orofaciales,1 Rue Maurice Arnoux, Montrouge, Île-De-France 92120, France
| | - Fabien Wauquier
- INRAE,
Human Nutrition Unit (UNH), ECREIN Team, TSA 50400, 28 Place Henri Dunant, Clermont-Ferrand, Auvergne-Rhone-Alpes 63001, France
| | - Julie Lesieur
- Descartes
University of Paris Faculty of Dental Surgery, Laboratoires Pathologies,
Imagerie et Biothérapies Orofaciales,1 Rue Maurice Arnoux, Montrouge, Île-De-France 92120, France
| | - Gael Y. Rochefort
- Descartes
University of Paris Faculty of Dental Surgery, Laboratoires Pathologies,
Imagerie et Biothérapies Orofaciales,1 Rue Maurice Arnoux, Montrouge, Île-De-France 92120, France
| | - Edouard Jallot
- Université
Clermont Auvergne, Laboratoire De Physique De Clermont Ferrand, 4 Avenue Blaise Pascal, Clermont-Ferrand, Auvergne-Rhône-Alpes 63001, France
| | - Jonathan Lao
- Université
Clermont Auvergne, Laboratoire De Physique De Clermont Ferrand, 4 Avenue Blaise Pascal, Clermont-Ferrand, Auvergne-Rhône-Alpes 63001, France
| | - Yohann Wittrant
- INRAE,
Human Nutrition Unit (UNH), ECREIN Team, TSA 50400, 28 Place Henri Dunant, Clermont-Ferrand, Auvergne-Rhone-Alpes 63001, France
| |
Collapse
|
11
|
Prem PN, Sivakumar B, Boovarahan SR, Kurian GA. Recent advances in potential of Fisetin in the management of myocardial ischemia-reperfusion injury-A systematic review. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 101:154123. [PMID: 35533608 DOI: 10.1016/j.phymed.2022.154123] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 03/26/2022] [Accepted: 04/17/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND The primary therapeutic strategy in managing ischemic heart diseases is to restore the perfusion of the myocardial ischemic area by surgical methods that often result in an unavoidable injury called ischemia-reperfusion injury (IR). Fisetin is an effective flavonoid with antioxidant and anti-inflammatory properties, proven to be cardioprotective against IR injury in both in-vitro and invivo models, apart from its promising health benefits against cancer, diabetes, and neurodegenerative ailments. PURPOSE The potential of fisetin in attenuating myocardial IR is inconclusive as the effectiveness of fisetin needs more understanding in terms of its possible target sites and underlying different mechanisms. Considering the surge in recent scientific interests in fisetin as a pharmacological agent, this review not only updates the existing preclinical and clinical studies with fisetin and its underlying mechanisms but also summarizes its possible targets during IR protection. METHODS We performed a literature survey using search engines Pubmed, PMC, Science direct, Google, and research gate published across the years 2006-2021. The relevant studies were extracted from the databases with the combinations of the following keywords and summarized: myocardial ischemia-reperfusion injury, natural products, flavonoid, fisetin, PI3K, JAK-STAT, Nrf2, PKC, JNK, autophagy. RESULTS Fisetin is reported to be effective in attenuating IR injury by delaying the clotting time, preserving the mitochondrial function, reducing oxidative stress, and inhibiting GSK 3β. But it failed to protect diseased cardiomyocytes challenged to IR. As discussed in the current review, fisetin not only acts as a conventional antioxidant and anti-inflammatory agent to exert its biological effect but may also exert modulatory action on the cellular metabolism and adaptation via direct action on various signalling pathways that comprise PI3K, JAK-STAT, Nrf2, PKC, JNK, and autophagy. Moreover, the dosage of fisetin and co-morbidities like diabetes and obesity are found to be detrimental factors for cardioprotection. CONCLUSION For further evaluation and smooth clinical translation of the fisetin molecule in IR treatment, researchers should pay close attention to the potential of fisetin to possibly alter the key cardioprotective pathways and dosage, as the efficacy of fisetin is tissue and cell type-specific and varies with different doses.
Collapse
Affiliation(s)
- Priyanka N Prem
- Vascular Biology lab, School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur, India
| | - Bhavana Sivakumar
- Vascular Biology lab, School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur, India
| | - Sri Rahavi Boovarahan
- Vascular Biology lab, School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur, India
| | - Gino A Kurian
- Vascular Biology lab, School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur, India; School of Chemical and Biotechnology, SASTRA Deemed University, Tirumalaisamudram, Thanjavur, 613401, Tamil Nadu, India.
| |
Collapse
|
12
|
Structural and Functional Properties of Activator Protein-1 in Cancer and Inflammation. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:9797929. [PMID: 35664945 PMCID: PMC9162854 DOI: 10.1155/2022/9797929] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 04/25/2022] [Accepted: 05/14/2022] [Indexed: 11/23/2022]
Abstract
The transcriptional machinery is composed of numerous factors that help to regulate gene expression in cells. The function and the fundamental role of transcription factors in different human diseases and cancer have been extensively researched. Activator protein-1 (AP-1) is an inducible transcription factor that consists of a diverse group of members including Jun, Fos, Maf, and ATF. AP-1 involves a number of processes such as proliferation, migration, and survival in cells. Dysfunctional AP-1 activity is seen in several diseases, especially cancer and inflammatory disorders. The AP-1 proteins are controlled by mitogen-activated protein kinases (MAPKs) and the NF-κB pathway. AP-1 inhibitors can be actively pursued as drug discovery targets in cancer therapy when used as a treatment to halt tumor progression. The consumption of phytochemicals in the diet is related to decreasing the incidence of cancer and proves to exhibit anticancer properties. Natural product targets AP-1 are effective cancer prevention and treatment options for various cancer types. Targeting AP-1 with natural products is an effective cancer treatment option for different cancer types. This review summarizes AP-1 subunit proteins, their structures, AP-1-related signaling, and its modulation by natural bioactive compounds.
Collapse
|
13
|
Fisetin-induced cell death in human ovarian cancer cell lines via zbp1-mediated necroptosis. J Ovarian Res 2022; 15:57. [PMID: 35538559 PMCID: PMC9092675 DOI: 10.1186/s13048-022-00984-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Accepted: 04/18/2022] [Indexed: 12/31/2022] Open
Abstract
Background Among reproductive cancers, ovarian cancer leads to the highest female mortality rate. Fisetin, a natural flavonoid, exerts pharmacological effects, inhibiting cancer growth with various origins. Although multiple mechanisms are involved in regulating cell death, it is still unclear whether and how fisetin exhibits anticancer effects on ovarian cancer. The present study aimed to evaluate cell apoptotic and necroptotic processes occurring in ovarian carcinoma (OC) cell lines induced by fisetin. Methods Cell growth was evaluated by MTT assay in OC cell lines treated with or without fisetin. Annexin V/propidium iodide staining followed by flow cytometry was used to characterize fisetin-induced cell death. The apoptotic process was suppressed by z-VAD intervention, and cell necroptosis was assessed by introducing ZBP1-knockdown OC cell lines coupled with fisetin intervention. The expression of necroptosis-related mediators and the migration capability of the respective cells were evaluated by Western blotting and in vitro cell invasion assay. Result Fisetin successfully reduced cell growth in both OC cell lines in a dose-dependent manner. Both apoptosis and necroptosis were induced by fisetin. Suppression of the cell apoptotic process failed to enhance the proliferation of fisetin-treated cells. The induced cell death and robust expression of the necroptotic markers RIP3 and MLKL were alleviated by knocking down the expression of the ZBP1 protein in both OC cell lines. Conclusion The present study provided in vitro evidence supporting the involvement of both apoptosis and necroptosis in fisetin-induced OC cell death, while ZBP1 regulates the necroptotic process via the RIP3/MLKL pathway.
Collapse
|
14
|
Afroze N, Pramodh S, Shafarin J, Bajbouj K, Hamad M, Sundaram MK, Haque S, Hussain A. Fisetin Deters Cell Proliferation, Induces Apoptosis, Alleviates Oxidative Stress and Inflammation in Human Cancer Cells, HeLa. Int J Mol Sci 2022; 23:ijms23031707. [PMID: 35163629 PMCID: PMC8835995 DOI: 10.3390/ijms23031707] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 01/27/2022] [Accepted: 01/28/2022] [Indexed: 12/11/2022] Open
Abstract
Background: Fisetin, a flavonol profusely found in vegetables and fruits, exhibited a myriad of properties in preclinical studies to impede cancer growth. Purpose: This study was proposed to delineate molecular mechanisms through analysing the modulated expression of various molecular targets in HeLa cells involved in proliferation, apoptosis and inflammation. Methods: MTT assay, flow cytometry, nuclear morphology, DNA fragmentation and Annexin–Pi were performed to evaluate the anti-cancer potential of fisetin. Furthermore, qPCR and proteome profiler were performed to analyse the expression of variety of gene related to cell death, cell proliferation, oxidative stress and inflammation and cancer pathways. Results: Fisetin demonstrated apoptotic inducing ability in HeLa cells, which was quite evident through nuclear morphology, DNA ladder pattern, decreased TMRE fluorescent intensity, cell cycle arrest at G2/M and increased early and late apoptosis. Furthermore, fisetin treatment modulated pro-apoptotic genes such as APAF1, Bad, Bax, Bid and BIK at both transcript and protein levels and anti-apoptotic gene Bcl-2, BIRC8, MCL-1, XIAP/BIRC4, Livin/BIRC7, clap-2/BIRC3, etc. at protein levels to mitigate cell proliferation and induce apoptosis. Interestingly, the aforementioned alterations consequently led to an elevated level of Caspase-3, Caspase-8 and Caspase-9, which was found to be consistent with the transcript and protein level expression. Moreover, fisetin downregulated the expression of AKT and MAPK pathways to avert proliferation and enhance apoptosis of cancer cells. Fisetin treatment also improves oxidative stress and alleviates inflammation by regulating JAK-STAT/NF-kB pathways. Conclusion: Together, these studies established that fisetin deters human cervical cancer cell proliferation, enhances apoptosis and ameliorates inflammation through regulating various signalling pathways that may be used as a therapeutic regime for better cancer management.
Collapse
Affiliation(s)
- Nazia Afroze
- School of Life Sciences, Manipal Academy of Higher Education-Dubai Campus, Dubai P.O. Box 345050, United Arab Emirates; (N.A.); (M.K.S.)
| | - Sreepoorna Pramodh
- Department of Life and Environmental Sciences, College of Natural and Health Science, Zayed University, Dubai P.O. Box 19282, United Arab Emirates;
| | - Jasmin Shafarin
- College of Medicine, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates; (J.S.); (K.B.); (M.H.)
| | - Khuloud Bajbouj
- College of Medicine, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates; (J.S.); (K.B.); (M.H.)
| | - Mawieh Hamad
- College of Medicine, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates; (J.S.); (K.B.); (M.H.)
| | - Madhumitha Kedhari Sundaram
- School of Life Sciences, Manipal Academy of Higher Education-Dubai Campus, Dubai P.O. Box 345050, United Arab Emirates; (N.A.); (M.K.S.)
| | - Shafiul Haque
- Research and Scientific Studies Unit, College of Nursing and Allied Health Sciences, Jazan University, Jazan P.O. Box 114, Saudi Arabia;
- Faculty of Medicine, Görükle Campus, Bursa Uludağ University, Nilüfer 16059, Turkey
| | - Arif Hussain
- School of Life Sciences, Manipal Academy of Higher Education-Dubai Campus, Dubai P.O. Box 345050, United Arab Emirates; (N.A.); (M.K.S.)
- Correspondence:
| |
Collapse
|
15
|
Shibu MA, Lin YJ, Chiang CY, Lu CY, Goswami D, Sundhar N, Agarwal S, Islam MN, Lin PY, Lin SZ, Ho TJ, Tsai WT, Kuo WW, Huang CY. Novel anti-aging herbal formulation Jing Si displays pleiotropic effects against aging associated disorders. Pharmacotherapy 2022; 146:112427. [DOI: 10.1016/j.biopha.2021.112427] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 11/02/2021] [Accepted: 11/12/2021] [Indexed: 01/07/2023]
|
16
|
Yan G, Tao Z, Xing X, Zhou Z, Wang X, Li X, Li F. Down-Regulated microRNA-192-5p Protects Against Hypoxic-Ischemic Brain Damage via Regulation of YAP1-Mediated Hippo Signaling Pathway. Neurochem Res 2022; 47:1243-1254. [PMID: 35084661 DOI: 10.1007/s11064-021-03518-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 12/20/2021] [Accepted: 12/27/2021] [Indexed: 11/26/2022]
Abstract
Hypoxic-ischemic brain damage (HIBD) is a familiar neurological disorder. Emerging reports manifest that microRNAs (miRs) are related to the progression of HIBD. The goal of this study is to explore the mechanism of miR-192-5p in HIBD via regulation of Yes-associated protein 1 (YAP1)-mediated Hippo signaling pathway. The miR-192-5p, YAP1, and Hippo pathway-related factors Phospho (p)-Triaminoguanidinium azide (TAZ) in hippocampal tissues and neurons were detected. The regulatory relationship between miR-192-5p and YAP1 was verified. Neonatal hypoxic ischemia and oxygen-glucose deprivation (OGD) were used to simulate HIBD in vivo and in vitro. The neurobehavioral impairment, neuronal damage and vascular endothelial growth factor (VEGF) expression of neonatal rats in each group were detected. The viability, apoptosis and VEGF expression of hippocampal neurons in each group were also examined. MiR-192-5p expression was elevated while YAP1 expression was reduced in hippocampal tissues of HIBD rats in vivo and OGD neurons in vitro. MiR-192-5p had a targeting relation with YAP1. Suppressed miR-192-5p or overexpressed YAP1 in HIBD rats alleviated neurobehavioral impairment and neuronal damage, and decreased the expression levels of p-TAZ and VEGF expression in vivo. Reduced miR-192-5p or augmented YAP1 decelerated the neuron apoptosis, decreased the p-TAZ level and VEGF level and promoted cell viability of OGD hippocampal neurons in vitro. The study highlights that inhibited miR-192-5p protects against HIBD via regulation of YAP1 and Hippo signaling pathway, which is beneficial for HIBD treatment.
Collapse
Affiliation(s)
- Gangli Yan
- Department of Neurology, Puren Hospital Affiliated to Wuhan University of Science and Technology, 1 Benxi Street, Qingshan District, Wuhan, 430081, Hubei, China
| | - Zhiwei Tao
- Department of Neurology, Wuhan Asia General Hospital, Wuhan, 430090, Hubei, China
| | - Xiaobing Xing
- Department of Neurology, Puren Hospital Affiliated to Wuhan University of Science and Technology, 1 Benxi Street, Qingshan District, Wuhan, 430081, Hubei, China
| | - Ziying Zhou
- Department of Neurology, Puren Hospital Affiliated to Wuhan University of Science and Technology, 1 Benxi Street, Qingshan District, Wuhan, 430081, Hubei, China
| | - Xinghua Wang
- Department of Neurology, Puren Hospital Affiliated to Wuhan University of Science and Technology, 1 Benxi Street, Qingshan District, Wuhan, 430081, Hubei, China
| | - Xing Li
- Department of Neurology, Puren Hospital Affiliated to Wuhan University of Science and Technology, 1 Benxi Street, Qingshan District, Wuhan, 430081, Hubei, China
| | - Fengguang Li
- Department of Neurology, Puren Hospital Affiliated to Wuhan University of Science and Technology, 1 Benxi Street, Qingshan District, Wuhan, 430081, Hubei, China.
| |
Collapse
|
17
|
The Performance of HepG2 and HepaRG Systems through the Glass of Acetaminophen-Induced Toxicity. Life (Basel) 2021; 11:life11080856. [PMID: 34440600 PMCID: PMC8400973 DOI: 10.3390/life11080856] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 08/07/2021] [Accepted: 08/18/2021] [Indexed: 12/30/2022] Open
Abstract
Investigation of drug-induced liver injuries requires appropriate in vivo and in vitro toxicological model systems. In our study, an attempt was made to compare the hepatocarcinoma HepG2 and the stem cell-derived HepaRG cell lines both in two- and three-dimensional culture conditions to find the most suitable model. Comparison of the liver-specific characteristics of these models was performed via the extent and mechanism of acetaminophen (APAP)-induced hepatotoxicity. Investigating the detailed mechanism of APAP-induced hepatotoxicity, different specific cell death inhibitors were used: the pan-caspase inhibitor zVAD-fmk and dabrafenib significantly protected both cell lines from APAP-induced cell death. However, the known specific inhibitors of necroptosis (necrostatin-1 and MDIVI) were only effective in differentiated HepaRG, which suggest a differential execution of activated pathways in the two models. By applying 3D culture methods, CYP2E1 mRNA levels could be elevated, but we failed to achieve a significant increase in hepatocyte function; hence, the 3D cultivation especially in APAP toxicity studies is not necessarily worth the complicated maintenance. Based on our findings, the hepatocyte functions of HepaRG may stand between the properties of HepG2 cells and primary hepatocytes (PHHs). However, it should be noted that in contrast to PHHs having many limitations, HepaRG cells are relatively immortal, having a stable phenotype and CYP450 expression.
Collapse
|
18
|
Cancer chemopreventive role of fisetin: Regulation of cell signaling pathways in different cancers. Pharmacol Res 2021; 172:105784. [PMID: 34302980 DOI: 10.1016/j.phrs.2021.105784] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 07/04/2021] [Accepted: 07/20/2021] [Indexed: 12/12/2022]
Abstract
It is becoming progressively more understandable that pharmaceutical targeting of drug-resistant cancers is challenging because of intra- and inter-tumor heterogeneity. Interestingly, naturally derived bioactive compounds have unique ability to modulate wide-ranging deregulated oncogenic cell signaling pathways. In this review, we have focused on the available evidence related to regulation of PI3K/AKT/mTOR, Wnt/β-catenin, NF-κB and TRAIL/TRAIL-R by fisetin in different cancers. Fisetin has also been shown to inhibit the metastatic spread of cancer cells in tumor-bearing mice. We have also summarized how fisetin regulated autophagy in different cancers. In addition, this review also covers fisetin-mediated regulation of VEGF/VEGFR, EGFR, necroptosis and Hippo pathway. Fisetin has entered into clinical trials particularly in context of COVID19-associated inflammations. Furthermore, fisetin mediated effects are also being tested in clinical trials with reference to osteoarthritis and senescence. These developments will surely pave the way for full-fledge and well-designed clinical trials of fisetin in different cancers. However, we still have to comprehensively analyze and fully unlock pharmacological potential of fisetin against different oncogenic signaling cascades and non-coding RNAs. Fisetin has remarkable potential as chemopreventive agent and future studies must converge on the identification of additional regulatory roles of fisetin for inhibition and prevention of cancers.
Collapse
|
19
|
Hossain R, Islam MT, Mubarak MS, Jain D, Khan R, Saikat AS. Natural-Derived Molecules as a Potential Adjuvant in Chemotherapy: Normal Cell Protectors and Cancer Cell Sensitizers. Anticancer Agents Med Chem 2021; 22:836-850. [PMID: 34165416 DOI: 10.2174/1871520621666210623104227] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 04/18/2021] [Accepted: 04/18/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Cancer is a global threat to humans and a leading cause of death worldwide. Cancer treatment includes, among other things, the use of chemotherapeutic agents, compounds that are vital for treating and preventing cancer. However, chemotherapeutic agents produce oxidative stress along with other side effects that would affect the human body. OBJECTIVE To reduce the oxidative stress of chemotherapeutic agents in cancer and normal cells by naturally derived compounds with anti-cancer properties, and protect normal cells from the oxidation process. Therefore, the need to develop more potent chemotherapeutics with fewer side effects has become increasingly important. METHOD Recent literature dealing with the antioxidant and anticancer activities of the naturally naturally-derived compounds: morin, myricetin, malvidin, naringin, eriodictyol, isovitexin, daidzein, naringenin, chrysin, and fisetin has been surveyed and examined in this review. For this, data were gathered from different search engines, including Google Scholar, ScienceDirect, PubMed, Scopus, Web of Science, Scopus, and Scifinder, among others. Additionally, several patient offices such as WIPO, CIPO, and USPTO were consulted to obtain published articles related to these compounds. RESULT Numerous plants contain flavonoids and polyphenolic compounds such as morin, myricetin, malvidin, naringin, eriodictyol, isovitexin, daidzein, naringenin, chrysin, and fisetin, which exhibit antioxidant, anti-inflammatory, and anti-carcinogenic actions via several mechanisms. These compounds show sensitizers of cancer cells and protectors of healthy cells. Moreover, these compounds can reduce oxidative stress, which is accelerated by chemotherapeutics and exhibit a potent anticancer effect on cancer cells. CONCLUSIONS Based on these findings, more research is recommended to explore and evaluate such flavonoids and polyphenolic compounds.
Collapse
Affiliation(s)
- Rajib Hossain
- Department of Pharmacy, Life Science Faculty, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj-8100, Bangladesh
| | - Muhammad Torequl Islam
- Department of Pharmacy, Life Science Faculty, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj-8100, Bangladesh
| | | | - Divya Jain
- Department of Bioscience and Biotechnology, Banasthali Vidyapith, Rajasthan-304022, India
| | - Rasel Khan
- Pharmacy Discipline, Life Science School, Khulna University, Khulna-9280, Bangladesh
| | - Abu Saim Saikat
- Department of Biochemistry and Molecular Biology, Life Science Faculty, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh
| |
Collapse
|
20
|
Lorthongpanich C, Charoenwongpaiboon T, Supakun P, Klaewkla M, Kheolamai P, Issaragrisil S. Fisetin Inhibits Osteogenic Differentiation of Mesenchymal Stem Cells via the Inhibition of YAP. Antioxidants (Basel) 2021; 10:antiox10060879. [PMID: 34070903 PMCID: PMC8226865 DOI: 10.3390/antiox10060879] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 05/27/2021] [Accepted: 05/27/2021] [Indexed: 12/12/2022] Open
Abstract
Mesenchymal stem cells (MSCs) are self-renewal and capable of differentiating to various functional cell types, including osteocytes, adipocytes, myoblasts, and chondrocytes. They are, therefore, regarded as a potential source for stem cell therapy. Fisetin is a bioactive flavonoid known as an active antioxidant molecule that has been reported to inhibit cell growth in various cell types. Fisetin was shown to play a role in regulating osteogenic differentiation in animal-derived MSCs; however, its molecular mechanism is not well understood. We, therefore, studied the effect of fisetin on the biological properties of human MSCs derived from chorion tissue and its role in human osteogenesis using MSCs and osteoblast-like cells (SaOs-2) as a model. We found that fisetin inhibited proliferation, migration, and osteogenic differentiation of MSCs as well as human SaOs-2 cells. Fisetin could reduce Yes-associated protein (YAP) activity, which results in downregulation of osteogenic genes and upregulation of fibroblast genes. Further analysis using molecular docking and molecular dynamics simulations suggests that fisetin occupied the hydrophobic TEAD pocket preventing YAP from associating with TEA domain (TEAD). This finding supports the potential application of flavonoids like fisetin as a protein–protein interaction disruptor and also suggesting an implication of fisetin in regulating human osteogenesis.
Collapse
Affiliation(s)
- Chanchao Lorthongpanich
- Siriraj Center of Excellence for Stem Cell Research, Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand; (P.S.); (S.I.)
- Correspondence:
| | | | - Prapasri Supakun
- Siriraj Center of Excellence for Stem Cell Research, Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand; (P.S.); (S.I.)
| | - Methus Klaewkla
- Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand;
| | - Pakpoom Kheolamai
- Division of Cell Biology, Faculty of Medicine, Thammasat University, Pathum Thani 10120, Thailand;
| | - Surapol Issaragrisil
- Siriraj Center of Excellence for Stem Cell Research, Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand; (P.S.); (S.I.)
| |
Collapse
|
21
|
Wu F, Jiang X, Wang Q, Lu Q, He F, Li J, Li X, Jin M, Xu J. The impact of miR-9 in osteosarcoma: A study based on meta-analysis, TCGA data, and bioinformatics analysis. Medicine (Baltimore) 2020; 99:e21902. [PMID: 32871922 PMCID: PMC7458186 DOI: 10.1097/md.0000000000021902] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The function of miR-9 in osteosarcoma is not well-investigated and controversial. Therefore, we conducted meta-analysis to explore the role of miR-9 in osteosarcoma, and collected relevant TCGA data to further testify the result. In addition, bioinformatics analysis was conducted to investigate the mechanism and related pathways of miR-9-3p in osteosarcoma.Literature search was operated on databases up to February 19, 2020, including PubMed, Web of Science, Science Direct, Cochrane Central Register of Controlled Trials, and Wiley Online Library, China National Knowledge Infrastructure, China Biology Medicine disc, Chongqing VIP, and Wan Fang Data. The relation of miR-9 expression with survival outcome was estimated by hazard ratio (HRs) and 95% CIs. Meta-analysis was conducted on the Stata 12.0 (Stata Corporation, TX). To further assess the function of miR-9 in osteosarcoma, relevant data from the TCGA database was collected. Three databases, miRDB, miRPathDB 2.0, and Targetscan 7.2, were used for prediction of target genes. Genes present in these 3 databases were considered as predicted target genes of miR-9-3p. Venny 2.1 were used for intersection analysis. Subsequently, GO, KEGG, and PPI network analysis were conducted based on the overlapping target genes of miR-9-3p to explore the possible molecular mechanism in osteosarcoma.Meta-analysis shown that overexpression of miR-9 was associated with worse overall survival (OS) (HR = 4.180, 95% CI: 2.880-6.066, P < .001, I = 23.5%). Based on TCGA data, osteosarcoma patients with overexpression of miR-9-3p (HR = 1.603, 95% CI: 1.028-2.499, P = .037) and miR-9-5p (HR = 1.698, 95% CI: 1.133-2.545, P = .01) also suffered poor OS. In bioinformatics analysis, 2 significant and important pathways were enriched: Wnt signaling pathway from gene ontology analysis (gene ontology:0016055, P-adjust = .008); hippo signaling pathway from Kyoto Encyclopedia of Genes and Genomes analysis (P-adjust = .007). Moreover, network analysis relevant protein-protein interaction was visualized, revealing 117 nodes and 161 edges.High miR-9 expression was associated with poor prognosis. Based on bioinformatics analysis, this study enhanced the understanding of the mechanism and related pathways of miR-9 in osteosarcoma.
Collapse
Affiliation(s)
- Fengfeng Wu
- Department of Orthopedics and Rehabilitation
| | - Xuesheng Jiang
- Department of Orthopedics, Huzhou Central Hospital, Affiliated Central Hospital Huzhou University, Zhejiang University Huzhou Hospital
| | - Qun Wang
- Department of Internal Medicine, Huzhou Wuxing Hospital of Integrated Traditional Chinese and Western Medicine
| | - Qian Lu
- Department of Orthopedics, Huzhou Central Hospital, Affiliated Central Hospital Huzhou University, Zhejiang University Huzhou Hospital
| | - Fengxiang He
- Department of Rehabilitation, Huzhou Central Hospital, Affiliated Central Hospital Huzhou University, Zhejiang University Huzhou Hospital
| | - Jianyou Li
- Department of Orthopedics, Huzhou Central Hospital, Affiliated Central Hospital Huzhou University, Zhejiang University Huzhou Hospital
| | - Xiongfeng Li
- Department of Orthopedics, Huzhou Central Hospital, Affiliated Central Hospital Huzhou University, Zhejiang University Huzhou Hospital
| | - Mingchao Jin
- Department of Orthopedics, Huzhou Central Hospital, Affiliated Central Hospital Huzhou University, Zhejiang University Huzhou Hospital
| | - Juntao Xu
- Department of Orthopedics, Huzhou Traditional Chinese Medicine Hospital Affiliated to Zhejiang University of Traditional Chinese Medicine, Huzhou, Zhejiang, China
| |
Collapse
|
22
|
Vališ K, Novák P. Targeting ERK-Hippo Interplay in Cancer Therapy. Int J Mol Sci 2020; 21:ijms21093236. [PMID: 32375238 PMCID: PMC7247570 DOI: 10.3390/ijms21093236] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 04/26/2020] [Accepted: 04/27/2020] [Indexed: 02/06/2023] Open
Abstract
Extracellular signal-regulated kinase (ERK) is a part of the mitogen-activated protein kinase (MAPK) signaling pathway which allows the transduction of various cellular signals to final effectors and regulation of elementary cellular processes. Deregulation of the MAPK signaling occurs under many pathological conditions including neurodegenerative disorders, metabolic syndromes and cancers. Targeted inhibition of individual kinases of the MAPK signaling pathway using synthetic compounds represents a promising way to effective anti-cancer therapy. Cross-talk of the MAPK signaling pathway with other proteins and signaling pathways have a crucial impact on clinical outcomes of targeted therapies and plays important role during development of drug resistance in cancers. We discuss cross-talk of the MAPK/ERK signaling pathway with other signaling pathways, in particular interplay with the Hippo/MST pathway. We demonstrate the mechanism of cell death induction shared between MAPK/ERK and Hippo/MST signaling pathways and discuss the potential of combination targeting of these pathways in the development of more effective anti-cancer therapies.
Collapse
Affiliation(s)
- Karel Vališ
- Correspondence: (K.V.); (P.N.); Tel.: +420-325873610 (P.N.)
| | - Petr Novák
- Correspondence: (K.V.); (P.N.); Tel.: +420-325873610 (P.N.)
| |
Collapse
|
23
|
Li Y, Jia S, Dai W. Fisetin Modulates Human Oral Squamous Cell Carcinoma Proliferation by Blocking PAK4 Signaling Pathways. DRUG DESIGN DEVELOPMENT AND THERAPY 2020; 14:773-782. [PMID: 32158195 PMCID: PMC7049269 DOI: 10.2147/dddt.s229270] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 01/21/2020] [Indexed: 01/20/2023]
Abstract
Objective Human oral squamous cell carcinoma (OSCC) is a major cause of mortality and morbidity worldwide. There is an urgent need to identify bioactive molecules and potential target genes that could inhibit carcinogenesis for OSCC therapy. Fisetin (3,7,3′,4′-tetrahydroxyflavone), a naturally occurring flavonoid, has been previously shown to have anti-proliferative activities in OSCC; however, its molecular mechanism is unknown. Methods Colony formation, cell viability, Boyden chamber, wound healing, and tumor xenograft assays were used to detect the impact of fisetin on OSCC cells in vitro and in vivo. Western blot analysis was used to examine the corresponding protein expression. Results Fisetin treatment significantly inhibited proliferation and promoted apoptosis by repressing PAK4 expression. Moreover, fisetin treatment attenuated cell migration by blocking PAK4 signaling pathways. In addition, the tumor xenograft showed anti-tumor growth effects of fisetin exposure in vivo. Conclusion Fisetin may represent a potential therapeutic strategy for human OSCC by targeting PAK4 signaling pathways.
Collapse
Affiliation(s)
- Yanshu Li
- Key Laboratory of Cell Biology, Ministry of Public Health, China Medical University, Shenyang, Liaoning, People's Republic of China.,Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang, Liaoning, People's Republic of China.,Department of Cell Biology, China Medical University, Shenyang, Liaoning, People's Republic of China
| | - Shiheng Jia
- Department of Cell Biology, China Medical University, Shenyang, Liaoning, People's Republic of China.,Department of Clinical Medicine, China Medical University, Shenyang, Liaoning, People's Republic of China
| | - Wei Dai
- Department of Oromaxillofacial-Head and Neck Surgery, School of Stomatology, China Medical University, Shenyang, Liaoning, People's Republic of China.,Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, Liaoning, People's Republic of China
| |
Collapse
|
24
|
The Interaction of Flavonols with Membrane Components: Potential Effect on Antioxidant Activity. J Membr Biol 2020; 253:57-71. [DOI: 10.1007/s00232-019-00105-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Accepted: 12/14/2019] [Indexed: 11/25/2022]
|