1
|
Shyam M, Sabina EP. Harnessing the power of Arctium lappa root: a review of its pharmacological properties and therapeutic applications. NATURAL PRODUCTS AND BIOPROSPECTING 2024; 14:49. [PMID: 39162715 PMCID: PMC11335715 DOI: 10.1007/s13659-024-00466-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 07/23/2024] [Indexed: 08/21/2024]
Abstract
Arctium lappa, widely recognized as burdock, is a perennial plant that is employed in the realm of traditional Chinese medicine for a wide range of medicinal applications. The herb is rich in bioactive metabolites with therapeutic potential, encompassing polyphenolic antioxidants in its leaves, and flavonoids and fructo-oligosaccharides in its underground parts. Nutraceuticals originating from botanical sources such as Arctium lappa provide supplementary health advantages alongside their nutritional content and have demonstrated effectiveness in the prevention and management of specific ailments. The utilization of Arctium lappa root extract has exhibited encouraging outcomes in addressing hepatotoxicity induced by cadmium, lead, chromium, and acetaminophen, ameliorating liver damage and oxidative stress. Additionally, the root extract displays properties such as antidiabetic, hypolipidemic, aphrodisiac, anti-rheumatic, anti-Alzheimer, and various other pharmacological actions.
Collapse
Affiliation(s)
- Mukul Shyam
- Department of Biotechnology, School of Biosciences and Technology, VIT University, SBST, VIT, Vellore, 632014, Tamil Nadu, India
| | - Evan Prince Sabina
- Department of Biotechnology, School of Biosciences and Technology, VIT University, SBST, VIT, Vellore, 632014, Tamil Nadu, India.
| |
Collapse
|
2
|
Wang R, Mao Y, Yu C, Rong Z, Wang R, Wang Y, Lv L, Gao Y, Wang Z, Zhang H. Research Progress of Natural Products with the Activity of Anti-nonalcoholic Steatohepatitis. Mini Rev Med Chem 2024; 24:1894-1929. [PMID: 38752645 DOI: 10.2174/0113895575306598240503054317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 03/19/2024] [Accepted: 03/29/2024] [Indexed: 10/16/2024]
Abstract
Nonalcoholic steatohepatitis (NASH), a multi-target disease, is becoming a global epidemic. Although several anti-NASH drug candidates are being evaluated in late-stage clinical trials, none have been approved by the FDA to date. Given the global prevalence of the disease, the lack of effective drugs, and the very limited therapeutic efficacy of most of the existing synthetic drugs focusing on a single target, there is an urgent need to continue to develop new therapeutic agents. In contrast, many natural products, including pure compounds and crude extracts, possess hepatoprotective activities. Usually, these natural components are characterized by multi-targeting and low side effects. Therefore, natural products are important resources for the development of new anti- NASH drugs. In this paper, we focus on reviewing the anti-NASH potential, structure, and some of the side effects of natural products based on structural classification. We hope this mini-review will help researchers design and develop new anti-NASH drugs, especially based on the structure of natural products.
Collapse
Affiliation(s)
- Rui Wang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China
| | - Yuheng Mao
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China
| | - Chunping Yu
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China
| | - Zhenji Rong
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China
| | - Ruyue Wang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China
| | - Yixin Wang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China
| | - Linjin Lv
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China
| | - Yang Gao
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China
| | - Zhigang Wang
- Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Harbin 150040, China
| | - Hailong Zhang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China
| |
Collapse
|
3
|
Ma K, Sheng W, Song X, Song J, Li Y, Huang W, Liu Y. Chlorogenic Acid from Burdock Roots Ameliorates Oleic Acid-Induced Steatosis in HepG2 Cells through AMPK/ACC/CPT-1 Pathway. Molecules 2023; 28:7257. [PMID: 37959676 PMCID: PMC10647434 DOI: 10.3390/molecules28217257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 08/30/2023] [Accepted: 10/13/2023] [Indexed: 11/15/2023] Open
Abstract
Hepatic steatosis can cause liver dysfunction and cell injury, on which natural functional factors are expected to be an effective approach for long-term intervention. However, the cellular molecular mechanisms are unclear. Chlorogenic acid is a phenolic compound, which can regulate lipid metabolism and is abundant in burdock root. The aim of this study was to investigate the potential molecular mechanism of the effect of chlorogenic acid from burdock root (ACQA) on steatosis in HepG2 cells. In this study, we found that ACQA reduced the number of lipid droplets and lipid levels in oleic acid-treated HepG2 cells. Molecular mechanistic results showed that ACQA enhanced CPT-1 expression by activating AMPK-related signaling pathways, and the concentrations of Ca2+ and cAMP were increased with the intervention of ACQA. In addition, ACQA enhanced the β-oxidation of fatty acids, reduced alanine transaminase and aspartate transaminase, and inhibited apoptosis in oleic acid-treated HepG2 cells. Our studies elucidate a novel mechanism that ACQA enhances the β-oxidation of fatty acids through the AMPK/ACC/CPT-1 pathway to protect against steatosis in HepG2 cells, which provides insight into its molecular mechanism as well as intervention strategies for chlorogenic acid against fatty liver diseases.
Collapse
Affiliation(s)
- Kaiyang Ma
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (K.M.); (X.S.)
- Institute of Agro-product Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (J.S.)
| | - Weixi Sheng
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (K.M.); (X.S.)
| | - Xinxin Song
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (K.M.); (X.S.)
| | - Jiangfeng Song
- Institute of Agro-product Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (J.S.)
| | - Ying Li
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (K.M.); (X.S.)
- Institute of Agro-product Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (J.S.)
| | - Wuyang Huang
- Institute of Agro-product Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (J.S.)
| | - Yuanfa Liu
- Future Food (Bai Ma) Research Institute, Nanjing 211225, China
| |
Collapse
|
4
|
Mazzio E, Barnes A, Badisa R, Fierros-Romero G, Williams H, Council S, Soliman K. Functional immune boosters; the herb or its dead microbiome? Antigenic TLR4 agonist MAMPs found in 65 medicinal roots and algae's. J Funct Foods 2023; 107:105687. [PMID: 37654434 PMCID: PMC10469438 DOI: 10.1016/j.jff.2023.105687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/02/2023] Open
Abstract
Background Humans have been consuming medicinal plants (as herbs/ spices) to combat illness for centuries while ascribing beneficial effects predominantly to the plant/phytochemical constituents, without recognizing the power of obligatory resident microorganism' communities (MOCs) (live/dead bacteria, fungus, yeast, molds etc.) which remain after industrial microbial reduction methods. Very little is known about the taxonomic identity of residual antigenic microbial associated molecular patterns (MAMPs) debris in our botanical over the counter (OTC) products, which if present would be recognized as foreign (non-self) antigenic matter by host pattern recognition receptors (PRRs) provoking a host immune response; this the basis of vaccine adjuvants. As of today, only few research groups have removed the herbal MAMP biomass from herbs, all suggesting that immune activation may not be from the plant but rather its microbial biomass; a hypothesis we corroborate. Purpose The purpose of this work was to conduct a high through put screening (HTPS) of over 2500 natural plants, OTC botanical supplements and phytochemicals to elucidate those with pro-inflammatory; toll like receptor 4 (TLR4) activating properties in macrophages. Study Design The HTPS was conducted on RAW 264.7 cells vs. lipopolysaccharide (LPS) E. coli 0111:B4, testing iNOS / nitric oxide production ( NO 2 - ) as a perimeter endpoint. The data show not a single drug/chemical/ phytochemical and approximately 98 % of botanicals to be immune idle (not effective) with only 65 pro-inflammatory (hits) in a potency range of LPS. Method validation studies eliminated the possibility of false artifact or contamination, and results were cross verified through multiple vendors/ manufacturers/lot numbers by botanical species. Lead botanicals were evaluated for plant concentration of LPS, 1,3:1,6-β-glucan, 1,3:1,4-β-D-glucan and α-glucans; where the former paralleled strength in vitro. LPS was then removed from plants using high-capacity endotoxin poly lysine columns, where bioactivity of LPS null "plant" extracts were lost. The stability of E.Coli 0111:B4 in an acid stomach mimetic model was confirmed. Last, we conducted a reverse culture on aerobic plate counts (APCs) from select hits, with subsequent isolation of gram-negative bacteria (MacConkey agar). Cultures were 1) heat destroyed (retested/ confirming bioactivity) and 2) subject to taxonomical identification by genetic sequencing 18S, ITS1, 5.8 s, ITS2 28S, and 16S. Conclusion The data show significant gram negative MAMP biomass dominance in A) roots (e.g. echinacea, yucca, burdock, stinging nettle, sarsaparilla, hydrangea, poke, madder, calamus, rhaponticum, pleurisy, aconite etc.) and B) oceanic plants / algae's (e.g. bladderwrack, chlorella, spirulina, kelp, and "OTC Seamoss-blends" (irish moss, bladderwrack, burdock root etc), as well as other random herbs (eg. corn silk, cleavers, watercress, cardamom seed, tribulus, duckweed, puffball, hordeum and pollen). The results show a dominance of gram negative microbes (e.g. Klebsilla aerogenes, Pantoae agglomerans, Cronobacter sakazakii), fungus (Glomeracaea, Ascomycota, Irpex lacteus, Aureobasidium pullulans, Fibroporia albicans, Chlorociboria clavula, Aspergillus_sp JUC-2), with black walnut hull, echinacea and burdock root also containing gram positive microbial strains (Fontibacillus, Paenibacillus, Enterococcus gallinarum, Bromate-reducing bacterium B6 and various strains of Clostridium). Conclusion This work brings attention to the existence of a functional immune bioactive herbal microbiome, independent from the plant. There is need to further this avenue of research, which should be carried out with consideration as to both positive or negative consequences arising from daily consumption of botanicals highly laden with bioactive MAMPS.
Collapse
Affiliation(s)
- E. Mazzio
- Florida Agricultural and Mechanical University, College of Pharmacy and Pharmaceutical Sciences, Tallahassee, FL 32307, United States
| | - A. Barnes
- Florida Agricultural and Mechanical University, College of Pharmacy and Pharmaceutical Sciences, Tallahassee, FL 32307, United States
| | - R. Badisa
- Florida Agricultural and Mechanical University, College of Pharmacy and Pharmaceutical Sciences, Tallahassee, FL 32307, United States
| | - G. Fierros-Romero
- Florida Agricultural and Mechanical University, School of Environment, Tallahassee, FL 32307, United States
| | - H. Williams
- Florida Agricultural and Mechanical University, School of Environment, Tallahassee, FL 32307, United States
| | - S. Council
- John Gnabre Science Research Institute, Baltimore, MD 21224, United States
| | - K.F.A. Soliman
- Florida Agricultural and Mechanical University, College of Pharmacy and Pharmaceutical Sciences, Tallahassee, FL 32307, United States
| |
Collapse
|
5
|
Gao D, Chen H, Li H, Yang X, Guo X, Zhang Y, Ma J, Yang J, Ma S. Extraction, structural characterization, and antioxidant activity of polysaccharides derived from Arctium lappa L. Front Nutr 2023; 10:1149137. [PMID: 37025610 PMCID: PMC10070700 DOI: 10.3389/fnut.2023.1149137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Accepted: 02/21/2023] [Indexed: 04/08/2023] Open
Abstract
Introduction Arctium lappa L. root has high nutritional and medicinal values and has been identified as a healthy food raw material by the Ministry of Health of the People's Republic of China. Methods In the present study, an aqueous two-phase system (ATPS) of polyethylene glycol (PEG)-(NH4)2SO4 was used to extract Arctium lappa L. polysaccharides (ALPs) from the Arctium lappa L. roots, the optimal extraction conditions of crude ALPs were optimized by using the single-factor experiment and response surface methodology. The structure and composition of ALPs were determined by fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), and high-performance liquid chromatography (HPLC). At the same time, the antioxidant activity of ALPs was investigated by in vitro antioxidant experiment. Results The optimized extraction parameters for extraction ALPs were as follows: the PEG relative molecular weight of 6,000, a quality fraction of PEG 25%, a quality fraction of (NH4)2SO4 18%, and an extraction temperature of 80°C. Under these conditions, the extraction rate of ALPs could reach 28.83%. FTIR, SEM and HPLC results showed that ALPs were typical acidic heteropolysaccharides and had uneven particle size distribution, an irregular shape, and a rough surface. The ALPs were chiefly composed of glucose, rhamnose, arabinose, and galactose with a molar ratio of 70.19:10.95:11.16:6.90. In addition, the ALPs had intense antioxidant activity in vitro with IC50 values in the ·OH radical (1.732 mg/ml), DPPH radical (0.29 mg/ml), and superoxide anion (0.15 mg/ml) scavenging abilities. Discussion The results showed that ATPS was an efficient method to extract polysaccharides and could be used for the extraction of other polysaccharides. These results indicated that ALPs had great prospects as a functional food and could be exploited in multiple fields.
Collapse
Affiliation(s)
- Dandan Gao
- China-Malaysia National Joint Laboratory, Biomedical Research Center, Northwest Minzu University, Lanzhou, China
- College of Life Sciences and Engineering, Northwest Minzu University, Lanzhou, China
| | - Hong Chen
- Sino-German Joint Research Institute, Nanchang University, Nanchang, China
| | - Haixing Li
- Sino-German Joint Research Institute, Nanchang University, Nanchang, China
| | - Xuhua Yang
- China-Malaysia National Joint Laboratory, Biomedical Research Center, Northwest Minzu University, Lanzhou, China
- College of Life Sciences and Engineering, Northwest Minzu University, Lanzhou, China
| | - Xingchen Guo
- China-Malaysia National Joint Laboratory, Biomedical Research Center, Northwest Minzu University, Lanzhou, China
- College of Life Sciences and Engineering, Northwest Minzu University, Lanzhou, China
| | - Yuxuan Zhang
- China-Malaysia National Joint Laboratory, Biomedical Research Center, Northwest Minzu University, Lanzhou, China
- College of Life Sciences and Engineering, Northwest Minzu University, Lanzhou, China
| | - Jinpu Ma
- China-Malaysia National Joint Laboratory, Biomedical Research Center, Northwest Minzu University, Lanzhou, China
- College of Life Sciences and Engineering, Northwest Minzu University, Lanzhou, China
| | - Jutian Yang
- College of Life Sciences and Engineering, Northwest Minzu University, Lanzhou, China
- Taizishan Ecosystem Observatory of Carbon Neutralization, Northwest Minzu University, Lanzhou, China
| | - Shuwen Ma
- College of Life Sciences and Engineering, Northwest Minzu University, Lanzhou, China
- Taizishan Ecosystem Observatory of Carbon Neutralization, Northwest Minzu University, Lanzhou, China
| |
Collapse
|
6
|
Yosri N, Alsharif SM, Xiao J, Musharraf SG, Zhao C, Saeed A, Gao R, Said NS, Di Minno A, Daglia M, Guo Z, Khalifa SAM, El-Seedi HR. Arctium lappa (Burdock): Insights from ethnopharmacology potential, chemical constituents, clinical studies, pharmacological utility and nanomedicine. Biomed Pharmacother 2023; 158:114104. [PMID: 36516694 DOI: 10.1016/j.biopha.2022.114104] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/27/2022] [Accepted: 12/05/2022] [Indexed: 12/14/2022] Open
Abstract
Arctium lappa L. is a medicinal edible homologous plant, commonly known as burdock or bardana, which belongs to the Asteraceae family. It is widely distributed throughout Northern Asia, Europe, and North America and has been utilized for hundreds of years. The roots, fruits, seeds, and leaves of A. lappa have been extensively used in traditional Chinese Medicine (TCM). A. lappa has attracted a great deal of attention due to its possession of highly recognized bioactive metabolites with significant therapeutic potential. Numerous pharmacological effects have been demonstrated in vitro and in vivo by A. lappa and its bioactive metabolites, including antimicrobial, anti-obesity, antioxidant, anticancer, anti-inflammatory, anti-diabetic, anti-allergic, antiviral, gastroprotective, hepatoprotective, and neuroprotective activities. Additionally, A. lappa has demonstrated considerable clinical efficacies and valuable applications in nanomedicine. Collectively, this review covers the properties of A. lappa and its bioactive metabolites, ethnopharmacology aspects, pharmacological effects, clinical trials, and applications in the field of nanomedicine. Hence, a significant attention should be paid to clinical trials and industrial applications of this plant with particular emphasis, on drug discovery and nanotechnology.
Collapse
Affiliation(s)
- Nermeen Yosri
- Chemistry Department of Medicinal and Aromatic Plants, Research Institute of Medicinal and Aromatic Plants (RIMAP), Beni-Suef University, Beni-Suef 62514, Egypt
| | - Sultan M Alsharif
- Biology Department, Faculty of Science, Taibah University, Al Madinah 887, Saudi Arabia
| | - Jianbo Xiao
- Department of Analytical Chemistry and Food Science, Faculty of Food Science and Technology, University of Vigo, Vigo, Spain
| | - Syed G Musharraf
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Chao Zhao
- College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Aamer Saeed
- Chemistry Department, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Ruichang Gao
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Noha S Said
- Department of Chemistry, Faculty of Science, Menoufia University, Shebin El-Kom 32512, Egypt
| | - Alessandro Di Minno
- Department of Pharmacy, University of Napoli Federico II, Via D. Montesano 49, 80131 Naples, Italy; CEINGE-Biotecnologie Avanzate, Naples 80131, Italy
| | - Maria Daglia
- Department of Pharmacy, University of Napoli Federico II, Via D. Montesano 49, 80131 Naples, Italy; International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang 212013, China
| | - Zhiming Guo
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Shaden A M Khalifa
- Department of Molecular Biosciences, Stockholm University, The Wenner-GrenInstitute, SE-106 91 Stockholm, Sweden
| | - Hesham R El-Seedi
- Department of Chemistry, Faculty of Science, Menoufia University, Shebin El-Kom 32512, Egypt; International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang 212013, China; Pharmacognosy Group, Department of Pharmaceutical Biosciences, Uppsala University, Biomedical Centre, Box 591, SE 751 24 Uppsala, Sweden; International Joint Research Laboratory of Intelligent Agriculture and Agri-products Processing (Jiangsu Education Department), Zhenjiang 212013, China.
| |
Collapse
|
7
|
Ma K, Sheng W, Gao R, Feng J, Huang W, Cui L, Liu J, Li Y. Ethanolic extract of root from Arctium lappa L ameliorates obesity and hepatic steatosis in rats by regulating the AMPK/ACC/CPT-1 pathway. J Food Biochem 2022; 46:e14455. [PMID: 36183168 DOI: 10.1111/jfbc.14455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 09/13/2022] [Accepted: 09/16/2022] [Indexed: 01/14/2023]
Abstract
Burdock (Arctium lappa L) root is eaten as a vegetable in many countries and used as an ethnomedicine because of its various pharmacological effects. The objective of this study was to investigate the underlying mechanisms of ethanolic extract of root from Arctium lappa L root (ALE) to lose weight and regulate lipid metabolism. The results showed that ALE can regulate lipid metabolism level and inhibit the weight gain of rats induced by the high-sugar and high-fat diet. The contents of triglyceride and cholesterol in the liver of obese rats significantly reduced, and hepatic steatosis was ameliorated. In addition, this study identified that ALE enhanced hepatic fatty acid β-oxidation and ameliorated hepatic steatosis by activating AMPK/ACC/CPT-1 pathway. These results indicated that ALE has a potential preventive and therapeutic effect on metabolic-associated fatty liver disease and obesity. PRACTICAL APPLICATIONS: Obesity is already a global health problem. Obesity causes accumulation of triglycerides, which leads to hepatic steatosis. Long-term steatosis causes liver damage and metabolic fatty liver disease. Plant-derived functional foods or herbal medicines have better effects on weight loss and liver protection, which are more conducive to long-term use with less toxic side effects. As a medicinal and edible plant material, Arctium lappa L root has the effect in losing weight. Our study showed that ethanolic extract of Arctium lappa L root effectively regulates lipid metabolism and inhibits hepatic steatosis. Arctium lappa L root may be used as a therapeutic drug and functional food raw material for obesity and fatty liver disease.
Collapse
Affiliation(s)
- Kaiyang Ma
- Institute of Agro-Product Processing, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Weixi Sheng
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Rong Gao
- School of Public Health, Nanjing Medical University, Nanjing, China
| | - Jin Feng
- Institute of Agro-Product Processing, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Wuyang Huang
- Institute of Agro-Product Processing, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Li Cui
- Institute of Agro-Product Processing, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Jun Liu
- College of Food Science and Engineering, Yangzhou University, Yangzhou, People's Republic of China
| | - Ying Li
- Institute of Agro-Product Processing, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| |
Collapse
|
8
|
Higarza SG, Arboleya S, Arias JL, Gueimonde M, Arias N. The gut–microbiota–brain changes across the liver disease spectrum. Front Cell Neurosci 2022; 16:994404. [PMID: 36159394 PMCID: PMC9490445 DOI: 10.3389/fncel.2022.994404] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 08/15/2022] [Indexed: 12/02/2022] Open
Abstract
Gut microbiota dysbiosis plays a significant role in the progression of liver disease, and no effective drugs are available for the full spectrum. In this study, we aimed to explore the dynamic changes of gut microbiota along the liver disease spectrum, together with the changes in cognition and brain metabolism. Sprague–Dawley rats were divided into four groups reflecting different stages of liver disease: control diet (NC); high-fat, high-cholesterol diet (HFHC), emulating non-alcoholic steatohepatitis; control diet + thioacetamide (NC + TAA), simulating acute liver failure; and high-fat, high-cholesterol diet + thioacetamide (HFHC + TAA) to assess the effect of the superimposed damages. The diet was administered for 14 weeks and the thioacetamide was administrated (100 mg/kg day) intraperitoneally over 3 days. Our results showed changes in plasma biochemistry and liver damage across the spectrum. Differences in gut microbiota at the compositional level were found among the experimental groups. Members of the Enterobacteriaceae family were most abundant in HFHC and HFHC + TAA groups, and Akkermansiaceae in the NC + TAA group, albeit lactobacilli genus being dominant in the NC group. Moreover, harm to the liver affected the diversity and bacterial community structure, with a loss of rare species. Indeed, the superimposed damage group (HFHC + TAA) suffered a loss of both rare and abundant species. Behavioral evaluation has shown that HFHC, NC + TAA, and HFHC + TAA displayed a worsened execution when discriminating the new object. Also, NC + TAA and HFHC + TAA were not capable of recognizing the changes in place of the object. Furthermore, working memory was affected in HFHC and HFHC + TAA groups, whereas the NC + TAA group displayed a significant delay in the acquisition. Brain oxidative metabolism changes were observed in the prefrontal, retrosplenial, and perirhinal cortices, as well as the amygdala and mammillary bodies. Besides, groups administered with thioacetamide presented an increased oxidative metabolic activity in the adrenal glands. These results highlight the importance of cross-comparison along the liver spectrum to understand the different gut–microbiota–brain changes. Furthermore, our data point out specific gut microbiota targets to design more effective treatments, though the liver–gut–brain axis focused on specific stages of liver disease.
Collapse
Affiliation(s)
- Sara G. Higarza
- Laboratory of Neuroscience, Department of Psychology, University of Oviedo, Oviedo, Asturias, Spain
- Institute of Neurosciences of the Principality of Asturias (INEUROPA), Oviedo, Asturias, Spain
| | - Silvia Arboleya
- Department of Microbiology and Biochemistry of Dairy Products, Institute of Dairy Products of the Principality of Asturias (IPLA-CSIC), Villaviciosa, Asturias, Spain
- Health Research Institute of the Principality of Asturias (ISPA), Oviedo, Asturias, Spain
| | - Jorge L. Arias
- Laboratory of Neuroscience, Department of Psychology, University of Oviedo, Oviedo, Asturias, Spain
- Institute of Neurosciences of the Principality of Asturias (INEUROPA), Oviedo, Asturias, Spain
- Health Research Institute of the Principality of Asturias (ISPA), Oviedo, Asturias, Spain
| | - Miguel Gueimonde
- Department of Microbiology and Biochemistry of Dairy Products, Institute of Dairy Products of the Principality of Asturias (IPLA-CSIC), Villaviciosa, Asturias, Spain
- Health Research Institute of the Principality of Asturias (ISPA), Oviedo, Asturias, Spain
| | - Natalia Arias
- Institute of Neurosciences of the Principality of Asturias (INEUROPA), Oviedo, Asturias, Spain
- Health Research Institute of the Principality of Asturias (ISPA), Oviedo, Asturias, Spain
- Department of Psychology, Faculty of Life and Natural Sciences, BRABE Group, Nebrija University, Madrid, Spain
- *Correspondence: Natalia Arias,
| |
Collapse
|
9
|
Effect of in vitro gastro-intestinal digestion on the phenolic composition and antioxidant capacity of Burdock roots at different harvest time. Food Chem 2021; 358:129897. [PMID: 33915426 DOI: 10.1016/j.foodchem.2021.129897] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 03/04/2021] [Accepted: 03/28/2021] [Indexed: 12/18/2022]
Abstract
The current study aimed to evaluate how the harvest time affects the phenolic composition in Burdock root flours (BRF) and how these phenolics are influenced by the gastro-intestinal digestive environment. Burdock roots were harvested in 2020 in Jiangsu Province in June (B1), July (B2) and August (B3). The main phenolic, 5-O-caffeoylquinic acid (5-CQA) decreased after in vitro digestion from 1.14 to 0.22 mg/g (B1 < B2 < B3). Total phenolic content of BRF was 61% lower after in vitro digestion whereas 5-CQA bioaccessibility remained at about 60%. Twelve other phenolic compounds were tentatively identified after in vitro digestion. An average reduction in antioxidant capacity of 27% and 10% was observed for DPPH and ABTS, respectively. In conclusion, data demonstrated that phenolic composition, bioaccessibility and antioxidant capacity of Burdock roots harvested at different times were subject to the influence of in vitro gastrointestinal digestion.
Collapse
|
10
|
Wu X, Zhang N, Kan J, Tang S, Sun R, Wang Z, Chen M, Liu J, Jin C. Polyphenols from Arctium lappa L ameliorate doxorubicin-induced heart failure and improve gut microbiota composition in mice. J Food Biochem 2021; 46:e13731. [PMID: 33864278 DOI: 10.1111/jfbc.13731] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 02/11/2021] [Accepted: 03/29/2021] [Indexed: 11/29/2022]
Abstract
In this study, the ameliorative effect of purified polyphenols from Arctium lappa L (ALPP) on doxorubicin (DOX)-induce heart failure was investigated. Results indicated that ALPP pretreatment significantly reduced the activities of casein kinase and lactate dehydrogenase, lowered the levels of inflammatory indexes (TNF-α and NO), and alleviated antioxidant stress in DOX-induce mice, thus leading to a reduced heart failure syndrome. In addition, according to 16s high-throughput sequencing, the increased abundance of Lactobacillaceae, Muribaculaceae, and Ruminococcaceae and the decreased abundance of Proteobacteria, Enterobacteriaee, and Escherichia_Shigella were observed in ALPP treatment group. ALPP could significantly enhance the abundance of bacteria producing short chain fatty acids (SCFAs) and then promote the increase of SCFAs. Consequently, ALPP might be a therapeutic alternative in the treatment of DOX-induced heart failure. PRACTICAL APPLICATIONS: The effect of Arctium lappa L (ALPP) on doxorubicin (DOX)-induced heart failure was investigated. It provided experimental basis for further studies on the biological activity of polyphenols from ALPP. The results demonstrated that ALPP could significantly ameliorate DOX-induced heart failure and improve the gut microbiota composition. The obtained results could provide the potential application of ALPP as an alternative therapy for heart failure in the functional food industry.
Collapse
Affiliation(s)
- Xiaonan Wu
- College of Food Science and Engineering, Yangzhou University, Yangzhou, PR China
| | - Nianfeng Zhang
- College of Food Science and Engineering, Yangzhou University, Yangzhou, PR China
| | - Juan Kan
- College of Food Science and Engineering, Yangzhou University, Yangzhou, PR China
| | - Sixue Tang
- College of Food Science and Engineering, Yangzhou University, Yangzhou, PR China
| | - Rui Sun
- College of Food Science and Engineering, Yangzhou University, Yangzhou, PR China
| | - Zhihao Wang
- College of Food Science and Engineering, Yangzhou University, Yangzhou, PR China
| | - Mengfei Chen
- College of Food Science and Engineering, Yangzhou University, Yangzhou, PR China
| | - Jun Liu
- College of Food Science and Engineering, Yangzhou University, Yangzhou, PR China
| | - Changhai Jin
- College of Food Science and Engineering, Yangzhou University, Yangzhou, PR China
| |
Collapse
|
11
|
Shikov AN, Narkevich IA, Flisyuk EV, Luzhanin VG, Pozharitskaya ON. Medicinal plants from the 14 th edition of the Russian Pharmacopoeia, recent updates. JOURNAL OF ETHNOPHARMACOLOGY 2021; 268:113685. [PMID: 33309919 DOI: 10.1016/j.jep.2020.113685] [Citation(s) in RCA: 100] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 11/29/2020] [Accepted: 12/08/2020] [Indexed: 05/19/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Herbal medicine in Russia has a long history starting with handwritten herbalist manuscripts from the Middle Ages to the officinal Pharmacopoeia of the 21st century. The "herbophilious" Russian population has accumulated a lot of knowledge about the beneficial effects of local medicinal plants. Yet, for a long time, Russian traditional and officinal herbal medicine was not well known to the international audience. In our previous comprehensive review, we discussed the pharmacological effects of specific plants included in the 11th edition of the Pharmacopoeia of the USSR, which was also for a while used in Russia. The 14th edition of the Russian Federation's State Pharmacopoeia was implemented in 2018. AIM OF THE REVIEW The aims of the present review are: (i) to trace the evolution of medicinal plant handling from handwritten herbalist manuscripts to Pharmacopoeias; (ii) to describe the modern situation with regulatory documents for herbal medicinal products and their updated classification; (iii) to summarize and discuss the pharmacology, safety, and clinical data for new plants, which are included in the new edition of the Pharmacopoeia. METHODS New medicinal plants included in the 14th edition of the Russian Federation's State Pharmacopoeia were selected. We carefully searched the scientific literature for data related to traditional use, pharmacological, clinical application, and safety. The information was collected from local libraries in Saint-Petersburg, the online databases E-library.ru, Scopus, Web of Science, and the search engine Google scholar. RESULTS Investigating the evolution of all medicinal plants referred to in the Russian Pharmacopoeias led us to the identification of ten medicinal plants that were present in all editions of civilian Russian Pharmacopoeias starting from 1778. In the 14th edition of the modern Russian Pharmacopoeia, medicinal plants are described in 107 monographs. Altogether, 25 new monographs were included in the 14th edition, and one monograph was excluded in comparison to the 11th edition. Some of the included plants are not endemic to Russia and do not have a history of traditional use, or on the other hand, are widely used in Western medicine. For 15 plants, we described the specificity of their application in Russian traditional medicine along with the claimed dosages and indications in officinal medicine. The pharmacology, safety, and clinical data are summarized and assessed for nine plants, underlining their therapeutic potential and significance for global phytopharmacotherapy. CONCLUSIONS In this review, we highlight the therapeutical potential of new plants included in the modern edition of the Russian Pharmacopoeia. We hope that these plants will play an imperative role in drug development and will have a priority for future detailed research.
Collapse
Affiliation(s)
- Alexander N Shikov
- Saint-Petersburg State Chemical Pharmaceutical University, Prof. Popov, 14, 197376, Saint-Petersburg, Russia.
| | - Igor A Narkevich
- Saint-Petersburg State Chemical Pharmaceutical University, Prof. Popov, 14, 197376, Saint-Petersburg, Russia
| | - Elena V Flisyuk
- Saint-Petersburg State Chemical Pharmaceutical University, Prof. Popov, 14, 197376, Saint-Petersburg, Russia
| | - Vladimir G Luzhanin
- Saint-Petersburg State Chemical Pharmaceutical University, Prof. Popov, 14, 197376, Saint-Petersburg, Russia
| | - Olga N Pozharitskaya
- Murmansk Marine Biological Institute of the Russian Academy of Sciences (MMBI RAS), Vladimirskaya, 17, 183010, Murmansk, Russia
| |
Collapse
|
12
|
Arctigenin attenuates CCl4-induced hepatotoxicity through suppressing matrix metalloproteinase-2 and oxidative stress. EGYPTIAN LIVER JOURNAL 2021. [DOI: 10.1186/s43066-020-00072-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Abstract
Background
In spite of the huge advances in recent medicine, there is no effective drug that completely protects the liver from toxic materials. This study was conducted to investigate the hepatoprotective effect of arctigenin from burdock (Arctium lappa) against carbon tetrachloride (CCl4)-induced liver injury.
Results
Arctigenin pre-administration reduced hepatotoxicity markers significantly as compared to CCl4 group. In addition, both silymarin and arctigenin declined matrix metalloproteinase-2 (MMP-2) in the serum (1177 ± 176), (978 ± 135) significantly as compared to CCl4 group (1734 ± 294). The hepatic antioxidant parameters (total glutathione, superoxide dismutase, and glutathione reductase) were significantly decreased after CCl4 injection, an effect that has been prevented by pre-administration of both silymarin and arctigenin. Histological examinations illustrated that arctigenin reduced CCl4 damage, where it decreased inflammation, congestion, and ballooning.
Conclusions
Arctigenin exerted a hepatoprotective effect against CCl4-induced liver damage in terms of suppressing MMP-2 and oxidative stress comparative to that of silymarin.
Collapse
|