1
|
Rahimi A, Sameei P, Mousavi S, Ghaderi K, Hassani A, Hassani S, Alipour S. Application of CRISPR/Cas9 System in the Treatment of Alzheimer's Disease and Neurodegenerative Diseases. Mol Neurobiol 2024; 61:9416-9431. [PMID: 38639864 DOI: 10.1007/s12035-024-04143-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 03/21/2024] [Indexed: 04/20/2024]
Abstract
Alzheimer's, Parkinson's, and Huntington's are some of the most common neurological disorders, which affect millions of people worldwide. Although there have been many treatments for these diseases, there are still no effective treatments to treat or completely stop these disorders. Perhaps the lack of proper treatment for these diseases can be related to various reasons, but the poor results related to recent clinical research also prompted doctors to look for new treatment approaches. In this regard, various researchers from all over the world have provided many new treatments, one of which is CRISPR/Cas9. Today, the CRISPR/Cas9 system is mostly used for genetic modifications in various species. In addition, by using the abilities available in the CRISPR/Cas9 system, researchers can either remove or modify DNA sequences, which in this way can establish a suitable and useful treatment method for the treatment of genetic diseases that have undergone mutations. We conducted a non-systematic review of articles and study results from various databases, including PubMed, Medline, Web of Science, and Scopus, in recent years. and have investigated new treatment methods in neurodegenerative diseases with a focus on Alzheimer's disease. Then, in the following sections, the treatment methods were classified into three groups: anti-tau, anti-amyloid, and anti-APOE regimens. Finally, we discussed various applications of the CRISPR/Cas-9 system in Alzheimer's disease. Today, using CRISPR/Cas-9 technology, scientists create Alzheimer's disease models that have a more realistic phenotype and reveal the processes of pathogenesis; following the screening of defective genes, they establish treatments for this disease.
Collapse
Affiliation(s)
- Araz Rahimi
- Student Research Committee, Urmia University of Medical Sciences, Urmia, Iran
| | - Parsa Sameei
- Student Research Committee, Urmia University of Medical Sciences, Urmia, Iran
| | - Sana Mousavi
- Student Research Committee, Urmia University of Medical Sciences, Urmia, Iran
| | - Kimia Ghaderi
- Student Research Committee, Urmia University of Medical Sciences, Urmia, Iran
| | - Amin Hassani
- Student Research Committee, Urmia University of Medical Sciences, Urmia, Iran
| | - Sepideh Hassani
- Department of Clinical Biochemistry, Faculty of Medicine, Urmia University Medical Sciences (UMSU), Urmia, Iran.
- Student Research Committee, Urmia University of Medical Sciences, Urmia, Iran.
| | - Shahriar Alipour
- Cellular and Molecular Research Center, Cellular and Molecular Medicine Institute, Urmia University of Medical Sciences, Urmia, Iran.
- Department of Clinical Biochemistry, Faculty of Medicine, Urmia University Medical Sciences (UMSU), Urmia, Iran.
- Department of Clinical Biochemistry and Applied Cell Sciences, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran.
- Student Research Committee, Urmia University of Medical Sciences, Urmia, Iran.
| |
Collapse
|
2
|
Hassan AK, El-Kalaawy AM, Abd El-Twab SM, Alblihed MA, Ahmed OM. Hesperetin and Capecitabine Abate 1,2 Dimethylhydrazine-Induced Colon Carcinogenesis in Wistar Rats via Suppressing Oxidative Stress and Enhancing Antioxidant, Anti-Inflammatory and Apoptotic Actions. Life (Basel) 2023; 13:life13040984. [PMID: 37109513 PMCID: PMC10146346 DOI: 10.3390/life13040984] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 04/07/2023] [Accepted: 04/08/2023] [Indexed: 04/29/2023] Open
Abstract
Colon cancer is a major cause of cancer-related death, with significantly increasing rates of incidence worldwide. The current study was designed to evaluate the anti-carcinogenic effects of hesperetin (HES) alone and in combination with capecitabine (CAP) on 1,2 dimethylhydrazine (DMH)-induced colon carcinogenesis in Wistar rats. The rats were given DMH at 20 mg/kg body weight (b.w.)/week for 12 weeks and were orally treated with HES (25 mg/kg b.w.) and/or CAP (200 mg/kg b.w.) every other day for 8 weeks. The DMH-administered rats exhibited colon-mucosal hyperplastic polyps, the formation of new glandular units and cancerous epithelial cells. These histological changes were associated with the significant upregulation of colon Ki67 expression and the elevation of the tumor marker, carcinoembryonic antigen (CEA), in the sera. The treatment of the DMH-administered rats with HES and/or CAP prevented these histological cancerous changes concomitantly with the decrease in colon-Ki67 expression and serum-CEA levels. The results also indicated that the treatments with HES and/or CAP showed a significant reduction in the serum levels of lipid peroxides, an elevation in the serum levels of reduced glutathione, and the enhancement of the activities of colon-tissue superoxide dismutase, glutathione reductase and glutathione-S-transferase. Additionally, the results showed an increase in the mRNA expressions of the anti-inflammatory cytokine, IL-4, as well as the proapoptotic protein, p53, in the colon tissues of the DMH-administered rats treated with HES and/or CAP. The TGF-β1 decreased significantly in the DMH-administered rats and this effect was counteracted by the treatments with HES and/or CAP. Based on these findings, it can be suggested that both HES and CAP, singly or in combination, have the potential to exert chemopreventive effects against DMH-induced colon carcinogenesis via the suppression of oxidative stress, the stimulation of the antioxidant defense system, the attenuation of inflammatory effects, the reduction in cell proliferation and the enhancement of apoptosis.
Collapse
Affiliation(s)
- Asmaa K Hassan
- Physiology Division, Zoology Department, Faculty of Science, Beni-Suef University, Beni-Suef 62521, Egypt
| | - Asmaa M El-Kalaawy
- Pharmacology Department, Faculty of Medicine, Beni-Suef University, Beni-Suef 62521, Egypt
| | - Sanaa M Abd El-Twab
- Physiology Division, Zoology Department, Faculty of Science, Beni-Suef University, Beni-Suef 62521, Egypt
| | - Mohamed A Alblihed
- Department of Microbiology, College of Medicine, Taif University, Taif 21944, Saudi Arabia
| | - Osama M Ahmed
- Physiology Division, Zoology Department, Faculty of Science, Beni-Suef University, Beni-Suef 62521, Egypt
| |
Collapse
|
3
|
Shree A, Islam J, Yadav V, Sultana S, Khan HA. Hesperetin alleviates DMH induced toxicity via suppressing oxidative stress and inflammation in the colon of Wistar rats. ENVIRONMENTAL TOXICOLOGY 2022; 37:2153-2166. [PMID: 35567572 DOI: 10.1002/tox.23558] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 04/01/2022] [Accepted: 04/27/2022] [Indexed: 06/15/2023]
Abstract
1,2-Dimethylhydrazine (DMH), a colon-specific environmental toxicant is one among the carcinogen responsible for the cause of colon cancer. The present study was designed to evaluate the protective effect of Hesperetin (HST) against colon toxicity induced by DMH in Wistar rats. HST, a flavonoid widely found in citrus fruits possesses several biological activities including anti-microbial, anti-oxidant properties among others. A single dose of DMH (40 mg/kg body weight) was administered subcutaneously on 1st day for induction of colon toxicity followed by oral treatment with HST at a dose of 20 mg/kg bodyweight for 14 consecutive days. DMH administration leads to excessive ROS generation, resulting in an imbalance in redox homeostasis and causing membrane lipid peroxidation, which is also partly due to the decrease in the level of tissue antioxidant machinery. Our result showed HST significantly ameliorates DMH-induced lipid peroxidation and also substantially increases the activity/level of various anti-oxidant proteins (GR, GPx, GST, GSH, and SOD). HST was also found to reduce the expression of inflammatory proteins (TNF-α, IL-6, i-NOS, COX-2, NF-kB-p65), goblet cell disintegration as well as mucin depletion (sulfo and sialomucin) in the colon that was found to be elevated upon administration of DMH. Our histological results further provide confirmation of the protective role of HST against DMH-induced pathological alterations. The results of the present study demonstrate supplementation of HST is beneficial in ameliorating DMH-induced toxicity by suppressing oxidative stress, inflammation, goblet cell disintegration as well mucin depletion in the colon of Wistar rats.
Collapse
Affiliation(s)
- Alpa Shree
- Department of Toxicology, Jamia Hamdard, New Delhi, India
| | - Johirul Islam
- Department of Toxicology, Jamia Hamdard, New Delhi, India
| | - Vikas Yadav
- Department of Oncology, PGIMS-Rohtak, Rohtak, India
| | - Sarwat Sultana
- Department of Toxicology, Jamia Hamdard, New Delhi, India
| | | |
Collapse
|
4
|
Islam J, Shree A, Khan HA, Sultana S. Chemopreventive potential of Diosmin against benzo[a]pyrene induced lung carcinogenesis in Swiss Albino mice. J Biochem Mol Toxicol 2022; 36:e23187. [PMID: 35920545 DOI: 10.1002/jbt.23187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 04/28/2022] [Accepted: 07/25/2022] [Indexed: 12/24/2022]
Abstract
Lung cancer, one of the most common cancer is a cause of concern associated with cancer-related mortality. Benzo[a]pyrene [B(a)P], a potent carcinogen as well as an environmental contaminant is reported to be found in cigarette smoke among various sources. The present study focuses on the chemopreventive potential of Diosmin against B[a]P-induced lung carcinogenesis and its possible mechanism in male Swiss Albino mice (SAM). SAM were treated orally with Diosmin (200 mg/kg b.w.) for 16 weeks and/or B[a]P (50 mg/kg b.w) for a period of 4 weeks. B[a]P treated cancerous mice showed increased peroxidation of membrane lipid as well as a decrease in the level/activity of antioxidant proteins. Cancerous mice also showed an increased level of carcinoembryonic antigen (CEA) and neuron-specific enolase (NSE). Diosmin treatment, however, leads to decreased peroxidation of lipids, increased antioxidant proteins as well decrease in the level of CEA and NSE. B[a]P-induced cancerous animals also exhibited increased expression of cyclic AMP response element-binding protein (CREB), COX2 as well as prostaglandin-E2 (PGE2) while Diosmin-treated mice were found to have an ameliorative effect. Histopathological results further confirm the protective effect of Diosmin in averting B[a]P-induced pathological alterations of lung tissue. Overall, our results suggest Diosmin exerts its chemopreventive potential possibly via targeting the CREB/cyclooxygenase-2 (COX-2)/PGE2 pathway thereby repressing inflammation.
Collapse
Affiliation(s)
- Johirul Islam
- Department of Toxicology, Jamia Hamdard, New Delhi, Delhi, India
| | - Alpa Shree
- Department of Toxicology, Jamia Hamdard, New Delhi, Delhi, India
| | - Haider Ali Khan
- Department of Toxicology, Jamia Hamdard, New Delhi, Delhi, India
| | - Sarwat Sultana
- Department of Toxicology, Jamia Hamdard, New Delhi, Delhi, India
| |
Collapse
|
5
|
Cheshomi H, Bahrami AR, Rafatpanah H, Matin MM. The effects of ellagic acid and other pomegranate ( Punica granatum L.) derivatives on human gastric cancer AGS cells. Hum Exp Toxicol 2022; 41:9603271211064534. [PMID: 35179410 DOI: 10.1177/09603271211064534] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Although surgery with or without (neo)adjuvant chemo/radiotherapy, as the standard treatments, can be suitable therapeutic strategies for gastric cancer, side effects and drug resistance are two main treatment obstacles. It has been discovered that pomegranate and its natural derivatives, especially ellagic acid (EA), offer significant anti-cancer effects while causing trivial side effects. In this study, we aimed to explore the anti-cancer effects of EA on a human gastric adenocarcinoma cell line (AGS) as well as in immunocompromised mice bearing human gastric tumors, for the first time. HPLC was used for determining EA in samples. MTT assay, apoptosis and scratch assay, gelatin zymography, and quantitative RT-PCR were used to determine the anti-cancer properties of different concentrations of pomegranate fruit juice, pomegranate peel extract, and EA. Furthermore, the effects of these compounds were investigated on immunosuppressed C57BL/6 mice carrying human gastric cancer tumors. EA could inhibit the proliferation and migration of gastric cancer cells. It also had significant effects on reducing both expression and activity of MMP-2 and MMP-9. Further, it was demonstrated that with alterations in the expression of genes involved in apoptosis and inflammation including P53, BAX, APAF1, BCL2, iNOS, NF-κB, IL-8, and TNF-α, EA treatment led to increased cancer cell death and reduced inflammation. Furthermore, its use in mice bearing gastric tumors resulted in a significant reduction in tumor volume without any obvious side effects. Ellagic acid exhibited anti-cancer effects on gastric adenocarcinoma, and can be considered as a safe anti-cancer agent for further preclinical studies on this cancer.
Collapse
Affiliation(s)
- Hamid Cheshomi
- Department of Biology, Faculty of Science, 48440Ferdowsi University of Mashhad, Mashhad, Iran
| | - Ahmad Reza Bahrami
- Department of Biology, Faculty of Science, 48440Ferdowsi University of Mashhad, Mashhad, Iran.,Industrial Biotechnology Research Group, Institute of Biotechnology, 48440Ferdowsi University of Mashhad, Mashhad, Iran
| | - Houshang Rafatpanah
- Immunology Research Center, Inflammation and Inflammatory Diseases Division, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Maryam M Matin
- Department of Biology, Faculty of Science, 48440Ferdowsi University of Mashhad, Mashhad, Iran.,Novel Diagnostics and Therapeutics Research Group, Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran
| |
Collapse
|
6
|
Mohammed HO, Ahmed Alaa El-Din E, Farag AI. Impact of e-cigarettes on colonic mucosa and the role of recovery: involvement of oxidative and inflammatory pathway. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:64561-64571. [PMID: 34312757 PMCID: PMC8313116 DOI: 10.1007/s11356-021-15575-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 07/18/2021] [Indexed: 04/16/2023]
Abstract
Electronic cigarettes (e-cigarettes) (EC) are often advertised as a safer alternative to conventional cigarettes. Its widespread use has led to increased interest in its adverse health effects, thanks to few restrictions and a lack of regulatory guidelines. The study aimed to evaluate the influence of exposure to e-cigarette aerosol inhalation in rat colon model and conduct a follow-up after cessation of exposure. The experiment included 30 male adult Albino rats. The animals were divided into three groups: group I (control), non-exposed animals; group II (exposed), was exposed to electronic cigarette liquid vapor for four consecutive weeks; and group III (recovery), was followed up for another 4 weeks after exposure to an e-cigarette as exposed group and for the same duration. In the exposed group, malondialdehyde (MDA) and total nitric oxide (NO) increased significantly in colonic tissue, while superoxide dismutase (SOD) decreased. On histological examination, colonic mucosa showed distortion and loss of its epithelial lining with heavy inflammatory cell infiltration. Also, there was a significant decrease in periodic acid-Schiff-positive goblet cells and area percent of proliferating cell nuclear antigen expression. Tumor necrosis factor-alpha (TNFα) expression significantly increased in colonic mucosa. After 4 weeks of EC cessation, the colonic mucosal histological structure showed recovery with downregulated TNFα immunoexpression and restored oxidant/antioxidant balance. In conclusion, the usage of electronic cigarettes resulted in marked pathological alterations in the colonic mucosa, which could be attributed to oxidative and inflammatory stresses. In contrast, the cessation of exposure led to recovery.
Collapse
Affiliation(s)
- Heba O. Mohammed
- Department of Human Anatomy & Embryology, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Eman Ahmed Alaa El-Din
- Department of Forensic Medicine and Clinical Toxicology, Faculty of Medicine, Zagazig University, Zagazig, 44519 Egypt
| | - Azza I. Farag
- Department of Human Anatomy & Embryology, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| |
Collapse
|
7
|
Jia Y, Li J, Liu P, Si M, Jin Y, Wang H, Ma D, Chu L. Based on Activation of p62-Keap1-Nrf2 Pathway, Hesperidin Protects Arsenic-Trioxide-Induced Cardiotoxicity in Mice. Front Pharmacol 2021; 12:758670. [PMID: 34721041 PMCID: PMC8548645 DOI: 10.3389/fphar.2021.758670] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Accepted: 09/21/2021] [Indexed: 12/30/2022] Open
Abstract
Background: Hesperidin (HES) is a flavonoid glycoside found in the tangerine peel and has antioxidant properties. Arsenic trioxide (ATO) is an anti-tumour drug; however, its serious cardiotoxicity limits its clinical application. In addition, the protection of HES against ATO-induced cardiotoxicity has not been explored. Objective: The study aims to investigate and identify the underlying effect and mechanism of HES on ATO-induced cardiotoxicity. Methods: Fifty mice were randomly assigned to five groups. Mice were orally given HES:100 or 300 mg/kg/day concurrently and given ATO intraperitoneal injections: 7.5 mg/kg/day for 1 week. Blood and heart tissues were collected for examination. Evaluated in serum was the levels of creatine kinase (CK), lactate dehydrogenase (LDH) and cardiac troponin I (cTnI). In addition, evaluated in heart tissues were the levels of reactive oxygen species (ROS), superoxide dismutase (SOD), malondialdehyde (MDA), glutathione (GSH), catalase (CAT), tumour necrosis factor-α (TNF-α), interleukin-6 (IL-6), B-cell lymphoma-2 (Bcl-2), Bcl-2-associated X protein (Bax), Caspase-3, cleaved-Caspase-3, p62, Kelch-like ECH-associated protein 1 (Keap1), and nuclear factor erythroid 2-related factor 2 (Nrf2). The heart tissues were also examined for histopathology and mitochondrial ultrastructure. Results: Compared with the ATO group, the HES treatment groups reduced the levels of CK, LDH, cTnI, ROS, MDA, TNF-α, IL-6, Bax, Caspase-3, cleaved-Caspase-3 and Keap1 and enhanced the levels of SOD, GSH, CAT, Bcl-2, p62 and Nrf2. Conclusions: The results demonstrate that HES protects against ATO-induced cardiotoxicity, through inhibiting oxidative stress, and subsequent inflammation and apoptosis. The underlying results are closely related to the regulation of the p62-Keap1-Nrf2 signalling pathway.
Collapse
Affiliation(s)
- Yuxin Jia
- School of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Jing Li
- School of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Panpan Liu
- School of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Mingdong Si
- School of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Yanyu Jin
- School of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Hongfang Wang
- School of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Donglai Ma
- School of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang, China.,Hebei Key Laboratory of Integrative Medicine on Liver-Kidney Patterns, Hebei University of Chinese Medicine, Shijiazhuang, China.,Hebei Higher Education Institute Applied Technology Research Center on TCM Formula Preparation, Shijiazhuang, China
| | - Li Chu
- School of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang, China.,Hebei Key Laboratory of Integrative Medicine on Liver-Kidney Patterns, Hebei University of Chinese Medicine, Shijiazhuang, China
| |
Collapse
|
8
|
Fang J, Wu Q, Ye F, Cai C, Xu L, Gu Y, Wang Q, Liu AL, Tan W, Du GH. Network-Based Identification and Experimental Validation of Drug Candidates Toward SARS-CoV-2 via Targeting Virus-Host Interactome. Front Genet 2021; 12:728960. [PMID: 34539756 PMCID: PMC8440948 DOI: 10.3389/fgene.2021.728960] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 08/06/2021] [Indexed: 12/24/2022] Open
Abstract
Despite that several therapeutic agents have exhibited promising prevention or treatment on Coronavirus disease-2019 (COVID-19), there is no specific drug discovered for this pandemic. Targeting virus-host interactome provides a more effective strategy for antivirus drug discovery compared with targeting virus proteins. In this study, we developed a network-based infrastructure to prioritize promising drug candidates from natural products and approved drugs via targeting host proteins of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). We firstly measured the network distances between drug targets and COVID-19 disease module utilizing the network proximity approach, and identified 229 approved drugs as well as 432 natural products had significant associations with SARS-CoV-2. After searching for previous literature evidence, we found that 60.7% (139/229) of approved drugs and 39.6% (171/432) of natural products were confirmed with antivirus or anti-inflammation. We further integrated our network-based predictions and validated anti-SARS-CoV-2 activities of some compounds. Four drug candidates, including hesperidin, isorhapontigenin, salmeterol, and gallocatechin-7-gallate, have exhibited activity on SARS-COV-2 virus-infected Vero cells. Finally, we showcased the mechanism of actions of isorhapontigenin and salmeterol via network analysis. Overall, this study offers forceful approaches for in silico identification of drug candidates on COVID-19, which may facilitate the discovery of antiviral drug therapies.
Collapse
Affiliation(s)
- Jiansong Fang
- Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Qihui Wu
- Clinical Research Center, Hainan Provincial Hospital of Traditional Chinese Medicine, Guangzhou University of Chinese Medicine, Haikou, China
| | - Fei Ye
- MHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Beijing, China
| | - Chuipu Cai
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Lvjie Xu
- Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yong Gu
- Clinical Research Center, Hainan Provincial Hospital of Traditional Chinese Medicine, Guangzhou University of Chinese Medicine, Haikou, China
| | - Qi Wang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Ai-lin Liu
- Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Wenjie Tan
- MHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Beijing, China
| | - Guan-hua Du
- Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
9
|
Taxifolin ameliorates Benzo[a]pyrene-induced lung injury possibly via stimulating the Nrf2 signalling pathway. Int Immunopharmacol 2021; 96:107566. [PMID: 33813368 DOI: 10.1016/j.intimp.2021.107566] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 03/03/2021] [Accepted: 03/03/2021] [Indexed: 02/06/2023]
Abstract
Benzo[a]pyrene, an environmental contaminant as well as a mutagen is widely found in cigarette smoke, automobile exhaust particles among other sources. The present study underlines the protective effect of Taxifolin on B[a]P induced lung injury in male Swiss Albino Mice by analyzing the activity/level of various pro and anti-oxidant parameters, Inflammatory markers, Phase II enzyme, as well as lung histology. Taxifolin was administered orally to mice at either dose of 20 or 40 mg/kg body weight for 14 days and then challenged with a single dose of B[a]P (125 mg/kg body weight by oral gavage) on the 14th day. Our results show treatment with B[a]P leads to increased activity/level of CYP450R, EH, pro-inflammatory proteins, as well as lipid peroxidation and reduce level/activity of anti-oxidant molecules while Taxifolin treatment shows ameliorative effect. Administration of B[a]P also leads to decrease in expression of ROS sensitive factor Nrf2 and its downstream target NQO1,HO-1,SOD while Taxifolin treated animals showed a very high level of expression of Nrf2,NQO1,HO-1,SOD. Since Nrf2 plays central role in providing resistance to oxidative stress and also suppresses inflammation by inhibiting NF-κB,we concluded Taxifolin suppresses oxidative stress and inflammation in B[a]P induced lung injury possibly via stimulating the Nrf2 signaling pathway.
Collapse
|
10
|
Afzal SM, Vafa A, Rashid S, Shree A, Islam J, Ali N, Sultana S. Amelioration of N,N'-dimethylhydrazine induced colon toxicity by epigallocatechin gallate in Wistar rats. Hum Exp Toxicol 2021; 40:1558-1571. [PMID: 33754881 DOI: 10.1177/09603271211002884] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Colon cancer is a life-threatening disease all over the world and is linked to constant oxidative stress and inflammation. Epigallocatechin gallate (EGCG), is a naturally occurring flavone possessing health benefiting pharmacological properties including antioxidant, anti-inflammatory and free radical scavenging properties. Our study investigates the role of EGCG on N,N'-dimethylhydrazine (DMH), a toxic environmental pollutant, induced colon toxicity. To investigate the effect of EGCG, Wistar rats were given EGCG for 7 days at the two doses of 10 and 20 mg/kg body weight and DMH was injected on the seventh day in all the group rats except the control. Our results indicate that DMH administration increased the oxidative stress (MDA) and depleted the glutathione and antioxidant enzyme activities (SOD, CAT, GR, GST and GPx) which was significantly ameliorated by EGCG treatment. Additionally DMH treatment upregulated inflammatory markers expression (NF-κB, COX-2 and IL-6) and enhanced mucosal damage in the colon. EGCG treatment significantly reduced inflammation and restored the normal histoarchitecture of the colon. We can conclude from the present study findings that EGCG protects the colon from DMH toxicity through its antioxidant and anti-inflammatory potential.
Collapse
Affiliation(s)
- S M Afzal
- Section of Molecular Carcinogenesis and Chemoprevention, Department of Medical Elementology and Toxicology, School of Chemical and Life Sciences, 28848Jamia Hamdard, New Delhi, India
| | - A Vafa
- Section of Molecular Carcinogenesis and Chemoprevention, Department of Medical Elementology and Toxicology, School of Chemical and Life Sciences, 28848Jamia Hamdard, New Delhi, India
| | - S Rashid
- Department of Pharmacology and Toxicology, College of Pharmacy, 204568Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - A Shree
- Section of Molecular Carcinogenesis and Chemoprevention, Department of Medical Elementology and Toxicology, School of Chemical and Life Sciences, 28848Jamia Hamdard, New Delhi, India
| | - J Islam
- Section of Molecular Carcinogenesis and Chemoprevention, Department of Medical Elementology and Toxicology, School of Chemical and Life Sciences, 28848Jamia Hamdard, New Delhi, India
| | - N Ali
- Section of Molecular Carcinogenesis and Chemoprevention, Department of Medical Elementology and Toxicology, School of Chemical and Life Sciences, 28848Jamia Hamdard, New Delhi, India.,Department of Pharmacology and Toxicology, College of Pharmacy, 37850King Saud University, Riyadh, Saudi Arabia
| | - S Sultana
- Section of Molecular Carcinogenesis and Chemoprevention, Department of Medical Elementology and Toxicology, School of Chemical and Life Sciences, 28848Jamia Hamdard, New Delhi, India
| |
Collapse
|