1
|
Ghosh S, Bhattacharya R, Pal S, Saha NC. Benzalkonium chloride induced acute toxicity and its multifaceted implications on growth, hematological metrics, biochemical profiles, and stress-responsive biomarkers in tilapia (Oreochromis mossambicus). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:52147-52170. [PMID: 39141265 DOI: 10.1007/s11356-024-34595-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 07/29/2024] [Indexed: 08/15/2024]
Abstract
This study aimed to investigate the toxic effects of benzalkonium chloride (BAC) on Oreochromis mossambicus, a freshwater fish species. Probit analysis was used to determine the lethal concentration (LC50) of BAC for different exposure periods (24, 48, 72, and 96 h). The viability of fish exposed to BAC was assessed using the general threshold survival models (GUTS) and confirmed with relevant datasets to evaluate model accuracy. Experimental groups of fish were exposed to BAC concentrations equivalent to 10% and 20% of the 96-h LC50 for 45 days. The study revealed significant alterations in various parameters during sublethal BAC exposure. These effects included decreased specific growth rate (SGR), red blood cell count (RBC), hemoglobin (Hb) concentration, hematocrit (Ht) value, plasma protein, and albumin levels, as well as acetylcholinesterase (AChE) activities in both gills and liver. Additionally, an increase in gastrosomatic index (GSI), feed conversion ratio (FCR), plasma glucose and creatinine concentrations, alanine aminotransferase (ALT), aspartate aminotransferase (AST) enzymatic activities, catalase (CAT), superoxide dismutase (SOD), and malondialdehyde (MDA) levels were observed in the exposed fish's gills and liver. Furthermore, the study found that glutathione S-transferase (GST) and glutathione peroxidase (GPx) levels initially increased and then decreased in both gills and liver after exposure to BAC. Correlation matrix analysis, multivariate multiple regression (MMR), canonical correspondence analysis (CCA), integrated biomarker response (IBR), and biomarker response index (BRI) were utilized to assess the impact of BAC on fish, highlighting significant effects on multiple biomarkers in O. mossambicus following surfactant exposure. Thus, the study provides valuable insights into the toxic effects of BAC on this fish species, emphasizing the importance of monitoring such pollutants in aquatic environments.
Collapse
Affiliation(s)
- Shruti Ghosh
- Fishery and Ecotoxicology Research Laboratory, Department of Zoology, The University of Burdwan, Purba Burdwan, 713104, West Bengal, Burdwan, India
| | - Ritwick Bhattacharya
- Fishery and Ecotoxicology Research Laboratory, Department of Zoology, The University of Burdwan, Purba Burdwan, 713104, West Bengal, Burdwan, India
| | - Sarmila Pal
- Department of Zoology, Hooghly Mohsin College, Hooghly, Chinsurah, West Bengal, India
| | - Nimai Chandra Saha
- Undergraduate and Postgraduate Department of Zoology, Bidhannagar College (Govt.), Salt Lake, Kolkata, 700064, West Bengal, India.
| |
Collapse
|
2
|
He Y, Dong N, Wang X, Lv RJ, Yu Q, Yue HM. Obstructive sleep apnea affects cognition: dual effects of intermittent hypoxia on neurons. Sleep Breath 2024; 28:1051-1065. [PMID: 38308748 DOI: 10.1007/s11325-024-03001-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 01/10/2024] [Accepted: 01/12/2024] [Indexed: 02/05/2024]
Abstract
Obstructive sleep apnea (OSA) is a common respiratory disorder. Multiple organs, especially the central nervous system (CNS), are damaged, and dysfunctional when intermittent hypoxia (IH) occurs during sleep for a long time. The quality of life of individuals with OSA is significantly impacted by cognitive decline, which also escalates the financial strain on their families. Consequently, the development of novel therapies becomes imperative. IH induces oxidative stress, endoplasmic reticulum stress, iron deposition, and neuroinflammation in neurons. Synaptic dysfunction, reactive gliosis, apoptosis, neuroinflammation, and inhibition of neurogenesis can lead to learning and long-term memory impairment. In addition to nerve injury, the role of IH in neuroprotection was also explored. While causing neuron damage, IH activates the neuronal self-repairing mechanism by regulating antioxidant capacity and preventing toxic protein deposition. By stimulating the proliferation and differentiation of neural stem cells (NSCs), IH has the potential to enhance the ratio of neonatal neurons and counteract the decline in neuron numbers. This review emphasizes the perspectives and opportunities for the neuroprotective effects of IH and informs novel insights and therapeutic strategies in OSA.
Collapse
Affiliation(s)
- Yao He
- The First Clinical Medical College of Lanzhou University, Lanzhou, China
| | - Na Dong
- The First Clinical Medical College of Lanzhou University, Lanzhou, China
| | - Xiao Wang
- The First Clinical Medical College of Lanzhou University, Lanzhou, China
| | - Ren-Jun Lv
- The First Clinical Medical College of Lanzhou University, Lanzhou, China
| | - Qin Yu
- Department of Respiratory and Critical Care Medicine, The First Hospital of Lanzhou University, Lanzhou, China
| | - Hong-Mei Yue
- Department of Respiratory and Critical Care Medicine, The First Hospital of Lanzhou University, Lanzhou, China.
| |
Collapse
|
3
|
Liu Q, Hu J, Lin Y, Wu X, Feng Y, Ye J, Zhang K, Zheng S. Effects of exogenous steroid hormones on growth, body color, and gonadal development in the Opsariichthys bidens. FISH PHYSIOLOGY AND BIOCHEMISTRY 2024; 50:449-461. [PMID: 38079050 DOI: 10.1007/s10695-023-01275-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 11/24/2023] [Indexed: 04/17/2024]
Abstract
To investigate the effects of exogenous steroid hormones on growth, body color, and gonadal development in the Opsariichthys bidens (O. bidens), synthetic methyltestosterone (MT) and 17β-estradiol (E2) were used for 28 days' treatment of 4-month-old O. bidens before the breeding season. Our results suggested that MT had a significant growth-promoting effect (P < 0.05), whereas E2 played an inhibitory role. On the body surface, the females in the MT group showed gray stripes, and the fish in other groups showed no obvious stripes. The males with MT treatment displayed brighter blue-green stripes compared to the CK and E2 groups. The histological analysis showed that the MT significantly promoted testes development in males, blocked oocyte development, and caused massive apoptosis in females, whereas the E2 group promoted ovarian development and inhibited testes development. Based on qRT-PCR analysis, in females, the expression of igf-1, dmrt1, and cyp19a1a genes revealed that E2 treatment resulted in down-regulation of igf-1 expression and up-regulation of cyp19a1a expression. In males, igf-1 and dmrt1 were significantly up-regulated after MT treatment, and E2 treatment led to down-regulation of igf-1. Therefore, this study demonstrates that MT and E2 play an important role in reversing the morphological sex characteristics of females and males.
Collapse
Affiliation(s)
- Qingyuan Liu
- College of Life Sciences, Zhejiang Normal University, Room 203, 10 teaching buildings, 688 Yingbin Avenue, Jinhua, 321004, China
| | - Jinchun Hu
- Quzhou Aquatic Technology Promotion Station, Quzhou, China
| | - Yurui Lin
- College of Life Sciences, Zhejiang Normal University, Room 203, 10 teaching buildings, 688 Yingbin Avenue, Jinhua, 321004, China
| | - Xinrui Wu
- College of Life Sciences, Zhejiang Normal University, Room 203, 10 teaching buildings, 688 Yingbin Avenue, Jinhua, 321004, China
| | - Yujun Feng
- College of Life Sciences, Zhejiang Normal University, Room 203, 10 teaching buildings, 688 Yingbin Avenue, Jinhua, 321004, China
| | - Jiazheng Ye
- College of Life Sciences, Zhejiang Normal University, Room 203, 10 teaching buildings, 688 Yingbin Avenue, Jinhua, 321004, China
| | - Kai Zhang
- College of Life Sciences, Zhejiang Normal University, Room 203, 10 teaching buildings, 688 Yingbin Avenue, Jinhua, 321004, China
| | - Shanjian Zheng
- College of Life Sciences, Zhejiang Normal University, Room 203, 10 teaching buildings, 688 Yingbin Avenue, Jinhua, 321004, China.
| |
Collapse
|
4
|
He Y, Hou J, Qiu Y, Ouyang K, Li D, Li L. Microcystin-LR immersion caused sequential endocrine disruption and growth inhibition in zebrafish (Danio rerio) from fertilization to sexual differentiation completion. Toxicology 2023:153569. [PMID: 37295766 DOI: 10.1016/j.tox.2023.153569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 06/03/2023] [Accepted: 06/06/2023] [Indexed: 06/12/2023]
Abstract
Microcystin-LR (MC-LR) is a highly toxic congener and is also one of the most commonly found. Recent studies have demonstrated that MC-LR can disrupt growth and endocrine in fish, but how it works at the stage of the sex differentiation period had not been determined to date. In this study, zebrafish (Danio rerio) embryos were exposed to MC-LR (0 and 10μg/L), and sampled at 14, 28, and 42 days post fertilization (dpf), respectively. The results demonstrated that MC-LR caused the growth inhibition of zebrafish at 42 dpf. The expression levels of genes related to the growth hormone/insulin-like growth factor (GH/IGF) and hypothalamic-pituitary-thyroid (HPT) axes, as well as the levels of hormone 3,5,3'- Triiodothyronine (T3) and thyroxine (T4), were significantly decreased at all time points. A Significant decrease in the ratio of testosterone and estradiol (T/E2) were detected at 28 and 42 dpf in MC-LR group along with changes in genes related to the hypothalamic-pituitary-gonadal (HPG) axis. The result of sex ratio showed that the percentage of females was up to 61.84%, indicating a estrogenic effect induced by MC-LR. The significant changes on hormone levels and gene transcripts occurred mainly in the stage of sex differentiation. The correlation analysis further suggested that key cross-talks among three endocrine axes may be the growth hormone releasing hormone (GHRH), Transthyretin (TTR) and gonadotropin releasing hormone (GnRH) signaling molecules. Overall, our findings provide a new insight for understanding the mechanisms by which MC-LR affects fish growth and reproduction during gonadal development.
Collapse
Affiliation(s)
- Ya He
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, P.R. China
| | - Jie Hou
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, P.R. China
| | - Yuming Qiu
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, P.R. China
| | - Kang Ouyang
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, P.R. China
| | - Dapeng Li
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, P.R. China; Engineering Research Center of Green development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan 430070, P.R. China; Hubei Provincial Engineering Laboratory for Pond Aquaculture, Wuhan 430070, P.R. China; Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan 430070, P.R. China
| | - Li Li
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, P.R. China; Engineering Research Center of Green development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan 430070, P.R. China; Hubei Provincial Engineering Laboratory for Pond Aquaculture, Wuhan 430070, P.R. China; Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan 430070, P.R. China.
| |
Collapse
|
5
|
Wei S, Zhang J, Chen W, Shen A, Zhou D, Zheng J, Thiam H, Ding Z, Limbu SM, Kong Y. Adverse effects of chronic ammonia stress on juvenile oriental river prawn (Macrobrachium nipponense) and alteration of glucose and ammonia metabolism. ENVIRONMENTAL TOXICOLOGY 2023; 38:545-554. [PMID: 36288433 DOI: 10.1002/tox.23698] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 09/22/2022] [Accepted: 10/13/2022] [Indexed: 06/16/2023]
Abstract
Ammonia is one of the common stress factors in aquaculture. However, the effect of chronic ammonia exposure in juvenile oriental river prawn (Macrobrachium nipponense) is currently unexplored. This study explored the effects of chronic ammonia on juvenile healthy oriental river prawns. Fifty prawns (0.123 ± 0.003 g) were exposed to 0, 5, and 15 mg/L total ammonia nitrogen (TAN) in triplicates for 28 days. The effects of chronic ammonia challenge were evaluated on growth, antioxidant capacity, hepatopancreas and gill morphology, and glucose and ammonia metabolism. The results showed that, the chronic ammonia exposure reduced significantly survival rate and weight gain of prawns. The prawns exposed to 15 mg/L ammonia had induced oxidative stress. However, the prawn exposed to 15 mg/L ammonia had significantly lower aspartate aminotransferase, alanine aminotransferase, alkaline phosphatase, and acid phosphatase activities in the serum. Furthermore, exposure of prawns to 15 mg/L ammonia increased the activities of hexokinase, pyruvate kinase, pyruvate and lactic acid content, and glutamine synthase activity. However, the prawns exposed to 15 mg/L ammonia, reduced succinic dehydrogenase, 6-phosphogluconic dehydrogenase, phosphoenolpyruvate carboxykinase, glutamate synthase, and glutamate dehydrogenase activities but increased ammonia content in serum. The exposure of ammonia deformed lumen, damaged basement membrane and decreased secretory cells in the hepatopancreas, disordered gill epithelial and pillar cells, and caused gill filament base vacuolation. Our study indicates that chronic ammonia stress impairs growth performance, tissue morphology, induces oxidative stress, and alters glucose and ammonia metabolism in juvenile oriental river prawns.
Collapse
Affiliation(s)
- Shanshan Wei
- National-Local Joint Engineering Laboratory of Aquatic Animal Genetic Breeding and Nutrition, Zhejiang Provincial Key Laboratory of Aquatic Resources Conservation and Development, College of Life Science, Huzhou University, Huzhou, Zhejiang, China
| | - Jin Zhang
- National-Local Joint Engineering Laboratory of Aquatic Animal Genetic Breeding and Nutrition, Zhejiang Provincial Key Laboratory of Aquatic Resources Conservation and Development, College of Life Science, Huzhou University, Huzhou, Zhejiang, China
| | - Wanxin Chen
- National-Local Joint Engineering Laboratory of Aquatic Animal Genetic Breeding and Nutrition, Zhejiang Provincial Key Laboratory of Aquatic Resources Conservation and Development, College of Life Science, Huzhou University, Huzhou, Zhejiang, China
| | - Anfu Shen
- National-Local Joint Engineering Laboratory of Aquatic Animal Genetic Breeding and Nutrition, Zhejiang Provincial Key Laboratory of Aquatic Resources Conservation and Development, College of Life Science, Huzhou University, Huzhou, Zhejiang, China
| | - Dongsheng Zhou
- National-Local Joint Engineering Laboratory of Aquatic Animal Genetic Breeding and Nutrition, Zhejiang Provincial Key Laboratory of Aquatic Resources Conservation and Development, College of Life Science, Huzhou University, Huzhou, Zhejiang, China
| | - Jinxian Zheng
- National-Local Joint Engineering Laboratory of Aquatic Animal Genetic Breeding and Nutrition, Zhejiang Provincial Key Laboratory of Aquatic Resources Conservation and Development, College of Life Science, Huzhou University, Huzhou, Zhejiang, China
| | - Habib Thiam
- National-Local Joint Engineering Laboratory of Aquatic Animal Genetic Breeding and Nutrition, Zhejiang Provincial Key Laboratory of Aquatic Resources Conservation and Development, College of Life Science, Huzhou University, Huzhou, Zhejiang, China
| | - Zhili Ding
- National-Local Joint Engineering Laboratory of Aquatic Animal Genetic Breeding and Nutrition, Zhejiang Provincial Key Laboratory of Aquatic Resources Conservation and Development, College of Life Science, Huzhou University, Huzhou, Zhejiang, China
| | - Samwel Mchele Limbu
- Department of Aquaculture Technology, School of Aquatic Sciences and Fisheries Technology, University of Dar es Salaam, Dar es Salaam, Tanzania
| | - Youqin Kong
- National-Local Joint Engineering Laboratory of Aquatic Animal Genetic Breeding and Nutrition, Zhejiang Provincial Key Laboratory of Aquatic Resources Conservation and Development, College of Life Science, Huzhou University, Huzhou, Zhejiang, China
| |
Collapse
|
6
|
Pu Y, Guo J, Yang H, Zhong L, Tian H, Deng H, Duan X, Liu S, Chen D. Environmentally relevant concentrations of mercury inhibit the growth of juvenile silver carp (Hypophthalmichthys molitrix): Oxidative stress and GH/IGF axis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 236:113484. [PMID: 35421826 DOI: 10.1016/j.ecoenv.2022.113484] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 03/21/2022] [Accepted: 03/30/2022] [Indexed: 06/14/2023]
Abstract
Mercury (Hg) is a global environmental contaminant, and excessive mercury levels in water can adversely affect the growth of fish. Silver carp (Hypophthalmichthys molitrix) is one of the important freshwater aquaculture fish in China, and its natural resources have been critically declining. However, the effects of Hg2+ exposure on the growth hormone/insulin-like growth factor (GH/IGF) axis and its toxic mechanism are still unclear. In this study, we systematically evaluated the bioaccumulation, histomorphology, antioxidant status, hormone levels, and GH/IGF axis toxicity of juvenile silver carp after exposure to environmental-related concentrations of Hg2+ (0, 0.05, 0.5, 5, and 50 µg/L) for 28 days. Results showed that the Hg2+ bioaccumulation in the liver increased with a rise in Hg2+ concentration and time of exposure. The body length (BL), body weight (BW), weight growth rate (WGR) and specific growth rate (SGR) all decreased after Hg2+ exposure. The serum levels of growth hormones (GH and IGF) and thyroid hormones (T3 and T4) were significantly decreased, and the expressions of GH/IGF axis-related genes were significantly downregulated after 7, 14, and 28 days of Hg2+ exposure. Correlations between the growth parameters and growth hormones or expression of genes in GH/IGF axis further suggested that environmentally relevant concentrations of Hg2+ could have adverse effects on growth. In addition, with increasing Hg2+ exposure, superoxide activities of dismutase (SOD), catalase (CAT), and glutathione S-transferase (GST)and levels of reduced glutathione (GSH) and malondialdehyde (MDA) were significantly increased, whereas the activity of glutathione peroxidase (GPx) significantly decreased and oxidative stress-related gene significantly changed. Liver lesions were mainly characterized by inflammatory cell infiltration, hepatocyte necrosis and fat vacuolation after exposure to Hg2+. Taken together, the results indicate that Hg2+ exposure leads to growth inhibition and oxidative stress in juvenile silver.
Collapse
Affiliation(s)
- Yan Pu
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), School of Life Sciences, Southwest University, Chongqing 400715, China; Fishery Resources and Environmental Science Experimental Station of The Upper-Middle Reaches of Yangtze River, Ministry of Agriculture and Rural Affairs, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Science, Wuhan 430223, China
| | - Jie Guo
- Fishery Resources and Environmental Science Experimental Station of The Upper-Middle Reaches of Yangtze River, Ministry of Agriculture and Rural Affairs, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Science, Wuhan 430223, China; Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China
| | - Hao Yang
- Fishery Resources and Environmental Science Experimental Station of The Upper-Middle Reaches of Yangtze River, Ministry of Agriculture and Rural Affairs, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Science, Wuhan 430223, China; Fisheries and Aquaculture Biotechnology Laboratory, College of Fisheries, Southwest University, Chongqing 400715, China
| | - Liqiao Zhong
- Fishery Resources and Environmental Science Experimental Station of The Upper-Middle Reaches of Yangtze River, Ministry of Agriculture and Rural Affairs, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Science, Wuhan 430223, China
| | - Huiwu Tian
- Fishery Resources and Environmental Science Experimental Station of The Upper-Middle Reaches of Yangtze River, Ministry of Agriculture and Rural Affairs, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Science, Wuhan 430223, China
| | - Huatang Deng
- Fishery Resources and Environmental Science Experimental Station of The Upper-Middle Reaches of Yangtze River, Ministry of Agriculture and Rural Affairs, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Science, Wuhan 430223, China
| | - Xinbin Duan
- Fishery Resources and Environmental Science Experimental Station of The Upper-Middle Reaches of Yangtze River, Ministry of Agriculture and Rural Affairs, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Science, Wuhan 430223, China
| | - Shaoping Liu
- Fishery Resources and Environmental Science Experimental Station of The Upper-Middle Reaches of Yangtze River, Ministry of Agriculture and Rural Affairs, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Science, Wuhan 430223, China
| | - Daqing Chen
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), School of Life Sciences, Southwest University, Chongqing 400715, China; Fishery Resources and Environmental Science Experimental Station of The Upper-Middle Reaches of Yangtze River, Ministry of Agriculture and Rural Affairs, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Science, Wuhan 430223, China.
| |
Collapse
|
7
|
Bhattacharya R, Daoud I, Chatterjee A, Chatterjee S, Saha NC. An integrated in silico and in vivo approach to determine the effects of three commonly used surfactants sodium dodecyl sulphate, cetylpyridinium chloride and sodium laureth sulphate on growth rate and hematology in Cyprinus carpio L. Toxicol Mech Methods 2021; 32:132-144. [PMID: 34445924 DOI: 10.1080/15376516.2021.1973633] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The purpose of this work is to evaluate the homology modeling, in silico prediction, and characterization of somatotropin and erythropoietin from Cyprinus carpio as well as molecular docking and simulation experiments between the modeled proteins and surfactants sodium dodecyl sulfate (SDS), sodium laureth sulfate (SLES) and cetylpyridinium chloride (CPC). Using the best fit template structure, homology modeling of somatotropin and erythropoietin of Cyprinus carpio respectively was conducted. The model structures were improved further with 3Drefine, and the final 3D structures were verified with PROCHEK, ERRATA and ProQ. The physiochemical, as well as the stereochemical parameters of the modeled proteins, were evaluated using ExPASy's ProtParam. Molecular docking calculations, protein-ligand interactions, and protein flexibility analysis were carried out to determine the binding pattern of each ligand to the targeted proteins and their effect on the overall proteins' conformation. Our in silico analysis showed that hydrophobic interactions with the active site amino acid residues of the modeled proteins (somatotropin and erythropoietin) were more prevalent than hydrogen bonds and salt bridges that affect the flexibility and stability of the somatotropin and erythropoietin as revealed from our protein flexibility analysis. The in vivo analysis showed that sublethal concentrations of SDS, SLES, and CPC negatively affected the growth and hematological parameters of Cyprinus carpio. Hence, it may be inferred from the study that the alterations in the flexibility of somatotropin and erythropoietin of Cyprinus carpio upon addition of SDS, CPC and SLES might be attributable to the reduction in growth and hematological parameters.
Collapse
Affiliation(s)
- Ritwick Bhattacharya
- Fishery and Ecotoxicology Research Laboratory (Vice-Chancellor's Research Group), Department of Zoology, The University of Burdwan, Burdwan, India
| | - Ismail Daoud
- Laboratory of Natural and Bioactive Substances, University of Abou-Bakr Belkaid, Tlemcen, Algeria.,Department of Matter Sciences, University of Mohamed Khider Biskra, Biskra, Algeria
| | - Arnab Chatterjee
- Fishery and Ecotoxicology Research Laboratory (Vice-Chancellor's Research Group), Department of Zoology, The University of Burdwan, Burdwan, India
| | - Soumendranath Chatterjee
- Parasitology & Microbiology Research Laboratory, Department of Zoology, The University of Burdwan, Burdwan, India
| | - Nimai Chandra Saha
- Fishery and Ecotoxicology Research Laboratory (Vice-Chancellor's Research Group), Department of Zoology, The University of Burdwan, Burdwan, India
| |
Collapse
|