1
|
Oyibo A, Adebayo AC, Taiwo OA, Osoniyi O. Ameliorative role of Tetrapleura tetraptera (Schum. & Thonn.) taub in cadmium chloride-induced oxidative stress in Drosophila melanogaster using in vivo and computational approaches. J Trace Elem Med Biol 2024; 87:127571. [PMID: 39637735 DOI: 10.1016/j.jtemb.2024.127571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 11/03/2024] [Accepted: 11/20/2024] [Indexed: 12/07/2024]
Abstract
BACKGROUND Cadmium (Cd) is a naturally occurring transition metal associated with oxidative stress in living organisms. Whereas Tetrapleura tetraptera (Tt), an ethnomedicinal plant is said to possess high antioxidant activity and used to treat various human diseases locally. Therefore, the study aimed to investigate the biological activity of the ethanolic pod extract of T. tetraptera in cadmium chloride-induced toxicity in Drosophila melanogaster. METHODS Six groups of adults (1-3 days old) D. melanogaster as shown: Control, Tt 2.5 mg/10 g diet, Tt 5 mg/10 g diet, CdCl2, CdCl2+ Tt 2.5 mg/10 diet and CdCl2+Tt 5 mg/10 g diet were exposed via diet for 7 days consisting of 50 flies per vial and 5 replicate per group. Thereafter, we evaluated markers for free radical generation, antioxidant, non-antioxidant activities, and emergence rates of the flies. The active compounds of Tt extract were molecularly docked against glutathione-S-transferase II. RESULTS The results indicated that CdCl2 significantly induced oxidative stress by increasing the levels of lipid peroxidation (LPO), hydrogen peroxide (H2O2), nitric oxide (NO) and decreasing the activity of GST without an effect on total thiol (T-SH) and non-protein thiols (NP-SHs) levels. However, co-treatment with T. tetraptera (2.5 mg/10 g diet) significantly decreased levels of LPO, H2O2, but increased GST activity. Also, co-treatment with T. tetraptera (5 mg/10 g diet) increased NPSH and T-SH levels by 18.6 % and 35.8 %. Furthermore, Co-treatment (5 mg/10 g diet) increased the rate of offspring emergence. CONCLUSION T. tetraptera ameliorated cadmium chloride-induced oxidative stress in Drosophila melanogaster and increased offspring hatching rate. T. tetraptera may therefore serve as a good regimen for the treatment of oxidative stress-related diseases induced by cadmium.
Collapse
Affiliation(s)
- Aghogho Oyibo
- Department of Biochemistry, Chrisland University, Abeokuta, Nigeria; Drosophila Research and Training Centre (DRTC), Ibadan, Nigeria; Focal area Human Metabolomic, Biochemistry Department, North-West University, Potchefstroom, South Africa.
| | | | - Odunayo A Taiwo
- Department of Biochemistry, Chrisland University, Abeokuta, Nigeria
| | - Omolaja Osoniyi
- Department of Biochemistry, Chrisland University, Abeokuta, Nigeria; Department of Biochemistry and Molecular Biology, Obafemi Awolowo University, Ile-ife, Nigeria
| |
Collapse
|
2
|
Ouyang L, Li Q, Yang S, Yan L, Li J, Wan X, Cheng H, Li L, Liu P, Xie J, Du G, Zhou F, Feng C, Fan G. Interplay and long-lasting effects of maternal low-level Pb, Hg, and Cd exposures on offspring cognition. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 287:117315. [PMID: 39536555 DOI: 10.1016/j.ecoenv.2024.117315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 10/28/2024] [Accepted: 11/06/2024] [Indexed: 11/16/2024]
Abstract
Lead (Pb), mercury (Hg), and cadmium (Cd) are prevalent and persistent environmental contaminants, causing detrimental effects on millions of individuals worldwide. Our previous research demonstrated that early-life exposure to low-level Pb, Hg, and Cd mixtures may lead to cognitive impairments. However, the association and interaction among low levels of Pb, Hg, or Cd exposure remains unclear. In this study, a two-level full factorial design (5.481, 0.036, and 2.132 mg/L for Pb, Hg, and Cd respectively) was conducted to assess the interplay among maternal Pb, Hg, and Cd exposure on offspring cognition. Following exposure during pregnancy and lactation, a competitive absorption among Pb, Hg, and Cd was observed. Maternal exposure to each metal alone resulted in higher blood and brain concentrations of Pb, Hg, and Cd in offspring compared to co-exposure at equivalent levels. However, behavioral experiments conducted in the Morris water maze and novel object recognition test revealed maternal Pb, Hg, and Cd exposure synergistically impaired offspring's spatial cognition and recognition memory. Importantly, this dysfunction persisted into middle age even without exposure after adulthood. Moreover, the open field test and elevated plus maze indicated maternal low-level Pb, Hg, and Cd co-exposure triggered risk-taking behavior in weaning offspring, with a significant main effect for Pb exposure. No long-lasting effect on risk-taking behavior was detected in middle-aged offspring. Further investigation into molecular mechanisms showed that the dysregulation of corticosterone reaction and immune response might be the potential mechanism underlying Pb, Hg, and Cd co-exposure-induced cognitive impairments. Our study highlights the synergistic and long-lasting effects of multiple heavy metal exposures,underscoring the urgency to prevent exposure to metal mixtures among children and women of childbearing age.
Collapse
Affiliation(s)
- Lu Ouyang
- School of Public Health, Nanchang University, Nanchang 330006, PR China; Jiangxi Provincial Key Laboratory of Disease Prevention and Public Health, Nanchang University, Nanchang 330006, PR China
| | - Qi Li
- School of Public Health, Nanchang University, Nanchang 330006, PR China; Jiangxi Provincial Key Laboratory of Disease Prevention and Public Health, Nanchang University, Nanchang 330006, PR China
| | - Shuo Yang
- School of Public Health, Nanchang University, Nanchang 330006, PR China; Jiangxi Provincial Key Laboratory of Disease Prevention and Public Health, Nanchang University, Nanchang 330006, PR China
| | - Lingyu Yan
- School of Public Health, Nanchang University, Nanchang 330006, PR China; Jiangxi Provincial Key Laboratory of Disease Prevention and Public Health, Nanchang University, Nanchang 330006, PR China
| | - Jiajun Li
- School of Public Health, Nanchang University, Nanchang 330006, PR China; Jiangxi Provincial Key Laboratory of Disease Prevention and Public Health, Nanchang University, Nanchang 330006, PR China
| | - Xin Wan
- School of Public Health, Nanchang University, Nanchang 330006, PR China; Jiangxi Provincial Key Laboratory of Disease Prevention and Public Health, Nanchang University, Nanchang 330006, PR China
| | - Hui Cheng
- School of Public Health, Nanchang University, Nanchang 330006, PR China; Jiangxi Provincial Key Laboratory of Disease Prevention and Public Health, Nanchang University, Nanchang 330006, PR China
| | - Lingling Li
- School of Public Health, Nanchang University, Nanchang 330006, PR China; Jiangxi Provincial Key Laboratory of Disease Prevention and Public Health, Nanchang University, Nanchang 330006, PR China
| | - Peishan Liu
- School of Public Health, Nanchang University, Nanchang 330006, PR China; Jiangxi Provincial Key Laboratory of Disease Prevention and Public Health, Nanchang University, Nanchang 330006, PR China
| | - Jie Xie
- School of Public Health, Nanchang University, Nanchang 330006, PR China; Jiangxi Provincial Key Laboratory of Disease Prevention and Public Health, Nanchang University, Nanchang 330006, PR China
| | - Guihua Du
- School of Public Health, Nanchang University, Nanchang 330006, PR China; Jiangxi Provincial Key Laboratory of Disease Prevention and Public Health, Nanchang University, Nanchang 330006, PR China
| | - Fankun Zhou
- School of Public Health, Nanchang University, Nanchang 330006, PR China; Jiangxi Provincial Key Laboratory of Disease Prevention and Public Health, Nanchang University, Nanchang 330006, PR China
| | - Chang Feng
- School of Public Health, Nanchang University, Nanchang 330006, PR China; Jiangxi Provincial Key Laboratory of Disease Prevention and Public Health, Nanchang University, Nanchang 330006, PR China
| | - Guangqin Fan
- School of Public Health, Nanchang University, Nanchang 330006, PR China; Jiangxi Provincial Key Laboratory of Disease Prevention and Public Health, Nanchang University, Nanchang 330006, PR China.
| |
Collapse
|
3
|
Li G, Sun C, Zhu L, Zeng Y, Li J, Mei Y. High cadmium exposure impairs adult hippocampal neurogenesis via disruption of store-operated calcium entry. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 286:117162. [PMID: 39383818 DOI: 10.1016/j.ecoenv.2024.117162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 09/30/2024] [Accepted: 10/05/2024] [Indexed: 10/11/2024]
Abstract
Cadmium (Cd) is a neurotoxicant that gradually accumulates in the human body with age. High Cd burden is correlated with adult hippocampal neurogenesis (AHN) and memory deficits in mammals. However, little knowledge is known about the mechanism by which Cd exposure impairs neurogenesis and cognition. Here, we investigated the roles of store-operated calcium entry (SOCE)-mediated calcium dyshomeostasis in Cd-induced AHN and memory deficits as well as therapeutic potential for the prevention of Cd-induced neurotoxicity. To achieve this goal, 8 weeks-old C57BL/6 J mice were subjected to different concentrations of cadmium chloride (0, 5, 10, 20 ppm) in drinking water for 8 weeks, we then examined the AHN, calcium homeostasis, SOCE channel and memory in Cd-exposed mice by using immunohistochemistry, calcium imaging, Y-maze and fear conditioning test. Our results indicated that chronic Cd exposure markedly increased Cd levels in serum and cerebrospinal fluid by almost 10-fold, and inhibited the proliferation and differentiation of hippocampal adult neural stem cells in a dose-dependent manner. Additionally, Cd exposure impaired the maturation of hippocampal neural stem cells without inducing gliosis. Transcriptome analysis revealed that Cd exposure inhibited the proliferation of neuroblastoma via alteration of calcium signaling pathway, and attenuated SOCE channels played a pivotal role in mediating Cd-induced cytoplasmic calcium overload and depletion of endoplasmic reticulum calcium stores. Activation of SOCE by hyperforin, a natural derivative from medicinal plant, restored intracellular calcium homeostasis and improved AHN and memory in Cd-exposed mice. Together, this study provided novel insights into the mechanism that Cd exposure impaired AHN and memory by prompting neuronal SOCE-mediated calcium dyshomeostasis, and offered a new therapeutic approach for prevention of Cd-induced neurotoxicity.
Collapse
Affiliation(s)
- Guoqing Li
- Hubei Clinical Research Center for Alzheimer's Disease, Brain Science and Advanced Technology Institute, School of Medicine, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Caiyun Sun
- Hubei Clinical Research Center for Alzheimer's Disease, Brain Science and Advanced Technology Institute, School of Medicine, Wuhan University of Science and Technology, Wuhan 430065, China; Department of Neurology, The First Affiliated Hospital of Shenzhen University, Shenzhen 518000, China
| | - Le Zhu
- Hubei Clinical Research Center for Alzheimer's Disease, Brain Science and Advanced Technology Institute, School of Medicine, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Yan Zeng
- Hubei Clinical Research Center for Alzheimer's Disease, Brain Science and Advanced Technology Institute, School of Medicine, Wuhan University of Science and Technology, Wuhan 430065, China.
| | - Jinquan Li
- Hubei Clinical Research Center for Alzheimer's Disease, Brain Science and Advanced Technology Institute, School of Medicine, Wuhan University of Science and Technology, Wuhan 430065, China.
| | - Yufei Mei
- Hubei Clinical Research Center for Alzheimer's Disease, Brain Science and Advanced Technology Institute, School of Medicine, Wuhan University of Science and Technology, Wuhan 430065, China.
| |
Collapse
|
4
|
Liu Y, Chen C, Hao Z, Shen J, Tang S, Dai C. Ellagic Acid Reduces Cadmium Exposure-Induced Apoptosis in HT22 Cells via Inhibiting Oxidative Stress and Mitochondrial Dysfunction and Activating Nrf2/HO-1 Pathway. Antioxidants (Basel) 2024; 13:1296. [PMID: 39594438 PMCID: PMC11590970 DOI: 10.3390/antiox13111296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 10/22/2024] [Accepted: 10/23/2024] [Indexed: 11/28/2024] Open
Abstract
Exposure to cadmium sulfate (CdSO4) can lead to neurotoxicity. Nevertheless, the precise molecular mechanisms underlying this phenomenon remain unclear, and effective treatment strategies are scarce. This study explored the protective effects of ellagic acid (EA), a natural polyphenolic compound, against CdSO4 exposure-induced neurotoxicity in HT22 cells and the underlying molecular mechanisms. Our findings demonstrated that exposure of HT22 cells to CdSO4 resulted in apoptosis, which was effectively reversed by EA in a dose-dependent manner. EA supplementation also decreased reactive oxygen species (ROS) and mitochondrial ROS production, reduced malondialdehyde (MDA) levels, and restored the activities of superoxide dismutase (SOD) and catalase (CAT). Additionally, EA supplementation at 5-20 μM significantly counteracted Cd-induced the loss of mitochondrial membrane potential and the decrease of ATP and reduced the ratio of Bax/Bcl-2 and cleaved-caspase-3 protein expression. Furthermore, EA supplementation resulted in the upregulation of Nrf2 and HO-1 protein and mRNAs while simultaneously downregulating the phosphorylation of JNK and p38 proteins. The pharmacological inhibition of c-Jun N-terminal kinase (JNK) partially attenuated the activation of the Nrf2/HO-1 pathway induced by CdSO4 and exacerbated its cytotoxic effects. In conclusion, our findings suggest that ethyl acetate (EA) supplementation offers protective effects against CdSO4-induced apoptosis in HT22 cells by inhibiting oxidative stress and activating the Nrf2 signaling pathway. Furthermore, the activation of the JNK pathway appears to play a protective role in CdSO4-induced apoptosis in HT22 cells.
Collapse
Affiliation(s)
- Yue Liu
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; (Y.L.); (C.C.); (Z.H.); (J.S.)
- Technology Innovation Center for Food Safety Surveillance and Detection (Hainan), Sanya Institute of China Agricultural University, Sanya 572025, China
- Key Biology Laboratory of Chinese Veterinary Medicine, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Chunhong Chen
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; (Y.L.); (C.C.); (Z.H.); (J.S.)
| | - Zhihui Hao
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; (Y.L.); (C.C.); (Z.H.); (J.S.)
- Technology Innovation Center for Food Safety Surveillance and Detection (Hainan), Sanya Institute of China Agricultural University, Sanya 572025, China
- Key Biology Laboratory of Chinese Veterinary Medicine, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Jianzhong Shen
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; (Y.L.); (C.C.); (Z.H.); (J.S.)
- Technology Innovation Center for Food Safety Surveillance and Detection (Hainan), Sanya Institute of China Agricultural University, Sanya 572025, China
- Key Biology Laboratory of Chinese Veterinary Medicine, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Shusheng Tang
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; (Y.L.); (C.C.); (Z.H.); (J.S.)
- Technology Innovation Center for Food Safety Surveillance and Detection (Hainan), Sanya Institute of China Agricultural University, Sanya 572025, China
- Key Biology Laboratory of Chinese Veterinary Medicine, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Chongshan Dai
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; (Y.L.); (C.C.); (Z.H.); (J.S.)
- Technology Innovation Center for Food Safety Surveillance and Detection (Hainan), Sanya Institute of China Agricultural University, Sanya 572025, China
- Key Biology Laboratory of Chinese Veterinary Medicine, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| |
Collapse
|
5
|
Ma Q, Yang Z, Yang C, Lin M, Gong M, Deng P, He M, Lu Y, Zhang K, Pi H, Qu M, Yu Z, Zhou Z, Chen C. A single-cell transcriptomic landscape of cadmium-hindered brain development in mice. Commun Biol 2024; 7:997. [PMID: 39147853 PMCID: PMC11327346 DOI: 10.1038/s42003-024-06685-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Accepted: 08/06/2024] [Indexed: 08/17/2024] Open
Abstract
The effects of neurotoxicant cadmium (Cd) exposure on brain development have not been well elucidated. To investigate this, we have herein subjected pregnant mice to low-dose Cd throughout gestation. Using single-cell RNA sequencing (scRNA-seq), we explored the cellular responses in the embryonic brain to Cd exposure, and identified 18 distinct cell subpopulations that exhibited varied responses to Cd. Typically, Cd exposure impeded the development and maturation of cells in the brain, especially progenitor cells such as neural progenitor cells (NPCs) and oligodendrocyte progenitor cells (OPCs). It also caused significant cell subpopulation shifts in almost all the types of cells in the brain. Additionally, Cd exposure reduced the dendritic sophistication of cortical neurons in the offspring. Importantly, these changes led to aberrant Ca2+ activity in the cortex and neural behavior changes in mature offspring. These data contribute to our understanding of the effects and mechanisms of Cd exposure on brain development and highlight the importance of controlling environmental neurotoxicant exposure at the population level.
Collapse
Affiliation(s)
- Qinlong Ma
- Department of Occupational Health (Key Laboratory of Electromagnetic Radiation Protection, Ministry of Education), Army Medical University (Third Military Medical University), Chongqing, China
| | - Zhiqi Yang
- Brain Research Center, Army Medical University (Third Military Medical University), Chongqing, China
| | - Chuanyan Yang
- Brain Research Center, Army Medical University (Third Military Medical University), Chongqing, China
| | - Min Lin
- Department of Occupational Health (Key Laboratory of Electromagnetic Radiation Protection, Ministry of Education), Army Medical University (Third Military Medical University), Chongqing, China
| | - Mingyue Gong
- Brain Research Center, Army Medical University (Third Military Medical University), Chongqing, China
| | - Ping Deng
- Department of Occupational Health (Key Laboratory of Electromagnetic Radiation Protection, Ministry of Education), Army Medical University (Third Military Medical University), Chongqing, China
| | - Mindi He
- Department of Occupational Health (Key Laboratory of Electromagnetic Radiation Protection, Ministry of Education), Army Medical University (Third Military Medical University), Chongqing, China
| | - Yonghui Lu
- Department of Occupational Health (Key Laboratory of Electromagnetic Radiation Protection, Ministry of Education), Army Medical University (Third Military Medical University), Chongqing, China
| | - Kuan Zhang
- Brain Research Center, Army Medical University (Third Military Medical University), Chongqing, China
| | - Huifeng Pi
- Department of Occupational Health (Key Laboratory of Electromagnetic Radiation Protection, Ministry of Education), Army Medical University (Third Military Medical University), Chongqing, China
| | - Mingyue Qu
- The PLA Rocket Force Characteristic Medical Center, Beijing, China
| | - Zhengping Yu
- Department of Occupational Health (Key Laboratory of Electromagnetic Radiation Protection, Ministry of Education), Army Medical University (Third Military Medical University), Chongqing, China
| | - Zhou Zhou
- Center for Neurointelligence, School of Medicine, Chongqing University, Chongqing, China.
| | - Chunhai Chen
- Department of Occupational Health (Key Laboratory of Electromagnetic Radiation Protection, Ministry of Education), Army Medical University (Third Military Medical University), Chongqing, China.
| |
Collapse
|
6
|
Bai L, Wen Z, Zhu Y, Jama HA, Sawmadal JD, Chen J. Association of blood cadmium, lead, and mercury with anxiety: a cross-sectional study from NHANES 2007-2012. Front Public Health 2024; 12:1402715. [PMID: 39188794 PMCID: PMC11345141 DOI: 10.3389/fpubh.2024.1402715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 07/22/2024] [Indexed: 08/28/2024] Open
Abstract
Objectives The purpose of this paper is to explore the relationship between blood levels of cadmium, lead, and mercury and anxiety in American adults. Methods Blood metals and self-reported anxiety days were extracted from laboratory data and questionnaire data, respectively, using NHANES data from 2007-2012. Weighted logistic regression was used to assess the relationship between cadmium, lead and mercury with anxiety. Restricted cubic spline was used to visualize the non-linear relationship between metal concentrations and anxiety. Weighted quantile sum (WQS) regression was used to investigate the effect of combined exposure to the three metals on anxiety. Results The prevalence of anxiety in adults was 26.0%. After adjusting for potential confounding variables, cadmium levels in the highest quartile (Q4) were associated with a higher risk of anxiety compared to the lowest quartile (Q1) (OR = 1.279, 95% CI: 1.113-1.471, p < 0.01). Restricted cubic spline analysis indicated a positive association between blood cadmium levels and anxiety. Furthermore, co-exposure to multiple heavy metals was positively associated with anxiety risk (WQS positive: OR = 1.068, 95% CI: 1.016-1.160, p < 0.05), with cadmium contributing the most to the overall mixture effect. Compared to the Light RPA, the Vigorous/Moderate RPA group had a relatively low risk of anxiety after cadmium exposure. Conclusion High levels of blood cadmium are positively associated with the development of anxiety disorders, which needs to be further verified in future studies.
Collapse
Affiliation(s)
- Long Bai
- School of Public Health, Xuzhou Medical University, Xuzhou, China
| | - Zongliang Wen
- School of Public Health, Xuzhou Medical University, Xuzhou, China
- School of Management, Xuzhou Medical University, Xuzhou, China
- Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Yan Zhu
- School of Medical Information and Engineering, Xuzhou Medical University, Xuzhou, China
| | | | | | - Jialin Chen
- School of Management, Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
7
|
Middleton LYM, Walker E, Cockell S, Dou J, Nguyen VK, Schrank M, Patel CJ, Ware EB, Colacino JA, Park SK, Bakulski KM. Exposome-wide association study of cognition among older adults in the National Health and Nutrition Examination Survey. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.07.19.24310725. [PMID: 39072041 PMCID: PMC11275687 DOI: 10.1101/2024.07.19.24310725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Cognitive impairment among older adults is a growing public health challenge and environmental chemicals may be modifiable risk factors. A wide array of chemicals has not yet been tested for association with cognition in an environment-wide association framework. In the US National Health and Nutrition Examination Survey (NHANES) 1999-2000 and 2011-2014 cross-sectional cycles, cognition was assessed using the Digit Symbol Substitution Test (DSST, scores 0-117) among participants aged 60 years and older. Concentrations of environmental chemicals measured in blood or urine were log2 transformed and standardized. Chemicals with at least 50% of measures above the lower limit of detection were included (nchemicals=147, nclasses=14). We tested for associations between chemical concentrations and cognition using parallel survey-weighted multivariable linear regression models adjusted for age, sex, race/ethnicity, education, smoking status, fish consumption, cycle year, urinary creatinine, and cotinine. Participants with at least one chemical measurement (n=4,982) were mean age 69.8 years, 55.0% female, 78.2% non-Hispanic White, and 77.0% at least high school educated. The mean DSST score was 50.4 (standard deviation (SD)=17.4). In adjusted analyses, 5 of 147 exposures were associated with DSST at p-value<0.01. Notably, a SD increase in log2-scaled cotinine concentration was associated with 2.71 points lower DSST score (95% CI -3.69, -1.73). A SD increase in log2-scaled urinary tungsten concentration was associated with 1.34 points lower DSST score (95% CI -2.11, -0.56). Exposure to environmental chemicals, particularly heavy metals and tobacco smoke, may be modifiable factors for cognition among older adults.
Collapse
Affiliation(s)
- Lauren Y M Middleton
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA
- Medical School, University of Michigan, Ann Arbor, MI, USA
- Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Erika Walker
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Scarlet Cockell
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - John Dou
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Vy K Nguyen
- Medical School, University of Michigan, Ann Arbor, MI, USA
- Harvard Medical School, Harvard University, Boston, MA, USA
| | - Mitchell Schrank
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Chirag J Patel
- Medical School, University of Michigan, Ann Arbor, MI, USA
- Harvard Medical School, Harvard University, Boston, MA, USA
| | - Erin B Ware
- Institute for Social Research, University of Michigan, Ann Arbor, MI, USA
| | - Justin A Colacino
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA
- Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, MI, USA
- College of Literature, Sciences, and the Arts, University of Michigan, Ann Arbor, MI, USA
| | - Sung Kyun Park
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA
- Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Kelly M Bakulski
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
8
|
Matsushita MT, Xia Z. Cadmium inhibits calcium activity in hippocampal CA1 neurons of freely moving mice. Toxicol Sci 2024; 200:199-212. [PMID: 38579196 PMCID: PMC11199909 DOI: 10.1093/toxsci/kfae048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2024] Open
Abstract
Cadmium (Cd) is a ubiquitous toxic heavy metal and a potential neurotoxicant due to its wide use in industrial manufacturing processes and commercial products, including fertilizers. The general population is exposed to Cd through food and smoking due to high transfer rates of Cd from contaminated soil. Cd has been shown to mimic calcium ions (Ca2+) and interfere with intracellular Ca2+ levels and Ca2+ signaling in in vitro studies. However, nothing is known about Cd's effects on Ca2+ activity in neurons in live animals. This study aimed to determine if Cd disrupts Ca2+ transients of neurons in CA1 region of the hippocampus during an associative learning paradigm. We utilized in vivo Ca2+ imaging in awake, freely moving C57BL/6 mice to measure Ca2+ activity in CA1 excitatory neurons expressing genetically encoded Ca2+ sensor GCaMP6 during an associative learning paradigm. We found that a smaller proportion of neurons are activated in Cd-treated groups compared with control during fear conditioning, suggesting that Cd may contribute to learning and memory deficit by reducing the activity of neurons. We observed these effects at Cd exposure levels that result in blood Cd levels comparable with the general U.S. population levels. This provides a possible molecular mechanism for Cd interference of learning and memory at exposure levels relevant to U.S. adults. To our knowledge, our study is the first to describe Cd effects on brain Ca2+ activity in vivo in freely behaving mice. This study provides evidence for impairment of neuronal calcium activity in hippocampal CA1 excitatory neurons in freely moving mice following cadmium exposure.
Collapse
Affiliation(s)
- Megumi T Matsushita
- Toxicology Program, Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington 98105, USA
| | - Zhengui Xia
- Toxicology Program, Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington 98105, USA
| |
Collapse
|
9
|
Wang D, Wu Y, Zhou X, Liang C, Ma Y, Yuan Q, Wu Z, Hao X, Zhu X, Li X, Shi J, Chen J, Fan H. Cadmium exposure induced neuronal ferroptosis and cognitive deficits via the mtROS-ferritinophagy pathway. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 349:123958. [PMID: 38621452 DOI: 10.1016/j.envpol.2024.123958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 03/24/2024] [Accepted: 04/09/2024] [Indexed: 04/17/2024]
Abstract
Exposure to environmental cadmium (Cd) is known to cause neuronal death and cognitive decline in humans. Ferroptosis, a novel iron-dependent type of regulated cell death, is involved in various neurological disorders. In the present study, Cd exposure triggered ferroptosis in the mouse hippocampus and in the HT22 murine hippocampal neuronal cell line, as indicated by significant increases in ferroptotic marker expression, intracellular iron levels, and lipid peroxidation. Interestingly, ferroptosis of hippocampal neurons in response to Cd exposure relied on the induction of autophagy since the suppression of autophagy by 3-methyladenine (3-MA) and chloroquine (CQ) substantially ameliorated Cd-induced ferroptosis. Furthermore, nuclear receptor coactivator 4 (NCOA4)-mediated degradation of ferritin was required for the Cd-induced ferroptosis of hippocampal neurons, demonstrating that NCOA4 knockdown decreased intracellular iron levels and lipid peroxidation and increased cell survival, following Cd exposure. Moreover, Cd-induced mitochondrial reactive oxygen species (mtROS) generation was essential for the ferritinophagy-mediated ferroptosis of hippocampal neurons. Importantly, pretreatment with the ferroptosis inhibitor ferrostatin-1 (Fer-1) effectively attenuated Cd-induced hippocampal neuronal death and cognitive impairment in mice. Taken together, these findings indicate that ferroptosis is a novel mechanism underlying Cd-induced neurotoxicity and cognitive impairment and that the mtROS-ferritinophagy axis modulates Cd-induced neuronal ferroptosis.
Collapse
Affiliation(s)
- Dongmei Wang
- College of Basic Medicine and Forensic Medicine, Henan University of Science and Technology, Luoyang, China
| | - Yiran Wu
- College of Basic Medicine and Forensic Medicine, Henan University of Science and Technology, Luoyang, China
| | - Xiang Zhou
- College of Basic Medicine and Forensic Medicine, Henan University of Science and Technology, Luoyang, China
| | - Chen Liang
- College of Basic Medicine and Forensic Medicine, Henan University of Science and Technology, Luoyang, China
| | - Yilu Ma
- College of Basic Medicine and Forensic Medicine, Henan University of Science and Technology, Luoyang, China
| | - Quan Yuan
- Henan Province Rongkang Hospital, Luoyang, China
| | - Ziyue Wu
- College of Basic Medicine and Forensic Medicine, Henan University of Science and Technology, Luoyang, China
| | - Xueqin Hao
- College of Basic Medicine and Forensic Medicine, Henan University of Science and Technology, Luoyang, China
| | - Xiaoying Zhu
- College of Basic Medicine and Forensic Medicine, Henan University of Science and Technology, Luoyang, China
| | - Xinyu Li
- Office of Research & Innovation, The First Affiliated Hospital, College of Clinical Medicine, Henan University of Science and Technology, Luoyang, China
| | - Jian Shi
- Office of Research & Innovation, The First Affiliated Hospital, College of Clinical Medicine, Henan University of Science and Technology, Luoyang, China
| | - Junliang Chen
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang, China
| | - Hua Fan
- Office of Research & Innovation, The First Affiliated Hospital, College of Clinical Medicine, Henan University of Science and Technology, Luoyang, China.
| |
Collapse
|
10
|
Chen K, Tan M, Li Y, Song S, Meng X. Association of blood metals with anxiety among adults: A nationally representative cross-sectional study. J Affect Disord 2024; 351:948-955. [PMID: 38346648 DOI: 10.1016/j.jad.2024.02.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 01/30/2024] [Accepted: 02/07/2024] [Indexed: 02/17/2024]
Abstract
BACKGROUND Previous evidence demonstrated the inconsistent associations between metals and anxiety. The purpose of this study was to evaluate the individual and joint effects of blood lead (Pb), cadmium (Cd), mercury (Hg), selenium (Se) and manganese (Mn) on anxiety in the general population. METHODS Data of 4000 participants (aged≥20 years) in the study were retrieved from the National Health and Nutrition Examination Survey (NHANES) 2011-2012. Multiple logistic regression, restricted cubic splines (RCS) logistic analysis, and weighted quantile sum (WQS) regression were fitted to explore the possible effects of single and mixed metal exposures on anxiety. Moreover, this association was assessed by smoking group. RESULTS In the study, 24.60 % of participants were in an anxiety state. In logistic regression, blood Pb, Cd, Hg, Se and Mn were not significantly associated with anxiety in all participants. After stratified by smoking group, blood Cd was positively associated with anxiety in the current smoking group [P = 0.029, OR (95 %): 1.708(1.063, 3.040)], whereas not in other groups. In RCS regression, we observed a linear dose-response effect of blood Cd on anxiety stratified by smoking group. In WQS analysis, mixed metal exposures were positively associated with anxiety [P = 0.033, OR (95 %): 1.437(1.031, 2.003)], with Cd (33.69 %) contributing the largest weight to the index. CONCLUSIONS Our study showed that excessive exposure to Cd is a significant risk factor for anxiety, and the co-exposures to Pb, Cd, Hg, Se and Mn were positively related with the risk of anxiety in current smokers.
Collapse
Affiliation(s)
- Kaiju Chen
- Department of Occupational Health and Occupational Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou 510515, PR China
| | - Meitao Tan
- Department of Occupational Health and Occupational Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou 510515, PR China
| | - Ying Li
- Department of Occupational Health and Occupational Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou 510515, PR China
| | - Shanshan Song
- Department of Occupational Health and Occupational Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou 510515, PR China
| | - Xiaojing Meng
- Department of Occupational Health and Occupational Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou 510515, PR China.
| |
Collapse
|
11
|
Geng H, An Q, Song J, He D, Han H, Wang L. Cadmium-induced global DNA hypermethylation promoting mitochondrial dynamics dysregulation in hippocampal neurons. ENVIRONMENTAL TOXICOLOGY 2024; 39:2043-2051. [PMID: 38095104 DOI: 10.1002/tox.24083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/06/2023] [Accepted: 12/01/2023] [Indexed: 03/09/2024]
Abstract
Environmental cadmium exposure during pregnancy or adolescence can cause neurodevelopmental toxicity, lead to neurological impairment, and reduce cognitive abilities, such as learning and memory. However, the mechanisms by which cadmium causes neurodevelopmental toxicity and cognitive impairment are still not fully elucidated. This study used hippocampal neurons cultured in vitro to observe the impact of cadmium exposure on mitochondrial dynamics and apoptosis. Exposure to 5 μM cadmium causes degradation of hippocampal neuron cell bodies and axons, morphological destruction, low cell viability, and apoptosis increase. Cadmium exposure upregulates the expression of mitochondrial fission proteins Drp1 and Fis1, reduces the expression of mitochondrial fusion-related proteins MFN1, MFN2, and OPA1, as well as reduces the expression of PGC-1a. Mitochondrial morphology detection demonstrated that cadmium exposure changes the morphological structure of mitochondria in hippocampal neurons, increasing the number of punctate and granular mitochondria, reducing the number of tubular and reticular mitochondria, decreasing mitochondrial mass, dissipating mitochondrial membrane potential (ΔΨm), and reducing adenosine triphosphate (ATP) production. Cadmium exposure increases the global methylation level of the genome and upregulates the expression of DNMT1 and DNMT3α in hippocampal neurons. 5-Aza-CdR reduces cadmium-induced genome methylation levels in hippocampal neurons, increases the number of tubular and reticular mitochondria, and promotes cell viability. In conclusion, cadmium regulates the expression of mitochondrial dynamics-related proteins by increasing hippocampal neuron genome methylation, changing mitochondrial morphology and function, and exerting neurotoxic effects.
Collapse
Affiliation(s)
- Huixia Geng
- Institute of Chronic Disease Risks Assessment, School of Nursing and Health Sciences, Henan University, Kaifeng, Henan Province, People's Republic of China
| | - Qihang An
- Institute of Chronic Disease Risks Assessment, School of Nursing and Health Sciences, Henan University, Kaifeng, Henan Province, People's Republic of China
| | - Jie Song
- Institute of Chronic Disease Risks Assessment, School of Nursing and Health Sciences, Henan University, Kaifeng, Henan Province, People's Republic of China
| | - Dongling He
- Institute of Chronic Disease Risks Assessment, School of Nursing and Health Sciences, Henan University, Kaifeng, Henan Province, People's Republic of China
| | - Huimin Han
- Institute of Chronic Disease Risks Assessment, School of Nursing and Health Sciences, Henan University, Kaifeng, Henan Province, People's Republic of China
| | - Lai Wang
- Institute of Chronic Disease Risks Assessment, School of Nursing and Health Sciences, Henan University, Kaifeng, Henan Province, People's Republic of China
- School of Life Science, Henan University, Kaifeng, Henan Province, People's Republic of China
| |
Collapse
|
12
|
Hu C, Yang S, Zhang T, Ge Y, Chen Z, Zhang J, Pu Y, Liang G. Organoids and organoids-on-a-chip as the new testing strategies for environmental toxicology-applications & advantages. ENVIRONMENT INTERNATIONAL 2024; 184:108415. [PMID: 38309193 DOI: 10.1016/j.envint.2024.108415] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 12/13/2023] [Accepted: 01/01/2024] [Indexed: 02/05/2024]
Abstract
An increasing number of harmful environmental factors are causing serious impacts on human health, and there is an urgent need to accurately identify the toxic effects and mechanisms of these harmful environmental factors. However, traditional toxicity test methods (e.g., animal models and cell lines) often fail to provide accurate results. Fortunately, organoids differentiated from stem cells can more accurately, sensitively and specifically reflect the effects of harmful environmental factors on the human body. They are also suitable for specific studies and are frequently used in environmental toxicology nowadays. As a combination of organoids and organ-on-a-chip technology, organoids-on-a-chip has great potential in environmental toxicology. It is more controllable to the physicochemical microenvironment and is not easy to be contaminated. It has higher homogeneity in the size and shape of organoids. In addition, it can achieve vascularization and exchange the nutrients and metabolic wastes in time. Multi-organoids-chip can also simulate the interactions of different organs. These advantages can facilitate better function and maturity of organoids, which can also make up for the shortcomings of common organoids to a certain extent. This review firstly discussed the limitations of traditional toxicology testing platforms, leading to the introduction of new platforms: organoids and organoids-on-a-chip. Next, the applications of different organoids and organoids-on-a-chip in environmental toxicology were summarized and prospected. Since the advantages of the new platforms have not been sufficiently considered in previous literature, we particularly emphasized them. Finally, this review also summarized the opportunities and challenges faced by organoids and organoids-on-a-chip, with the expectation that readers will gain a deeper understanding of their value in the field of environmental toxicology.
Collapse
Affiliation(s)
- Chengyu Hu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu 210009, China; Institute of Biomaterials and Medical Devices, Southeast University, Suzhou, Jiangsu 215163, China
| | - Sheng Yang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu 210009, China; Institute of Biomaterials and Medical Devices, Southeast University, Suzhou, Jiangsu 215163, China
| | - Tianyi Zhang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu 210009, China; Institute of Biomaterials and Medical Devices, Southeast University, Suzhou, Jiangsu 215163, China
| | - Yiling Ge
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu 210009, China; Institute of Biomaterials and Medical Devices, Southeast University, Suzhou, Jiangsu 215163, China
| | - Zaozao Chen
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu 210096, China; Institute of Biomaterials and Medical Devices, Southeast University, Suzhou, Jiangsu 215163, China
| | - Juan Zhang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu 210009, China
| | - Yuepu Pu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu 210009, China
| | - Geyu Liang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu 210009, China.
| |
Collapse
|
13
|
Xu Y, Hong H, Lin X, Tong T, Zhang J, He H, Yang L, Mao G, Hao R, Deng P, Yu Z, Pi H, Cheng Y, Zhou Z. Chronic cadmium exposure induces Parkinson-like syndrome by eliciting sphingolipid disturbance and neuroinflammation in the midbrain of C57BL/6J mice. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 337:122606. [PMID: 37742865 DOI: 10.1016/j.envpol.2023.122606] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 09/18/2023] [Accepted: 09/21/2023] [Indexed: 09/26/2023]
Abstract
Cadmium (Cd) is known as a widespread environmental neurotoxic pollutant. Cd exposure is recently recognized as an etiological factor of Parkinson's disease (PD) in humans. However, the mechanism underlying Cd neurotoxicity in relation to Parkinsonism pathogenesis is unclear. In our present study, C57BL/6 J mice were exposed to 100 mg/L CdCl2 in drinking water for 8 weeks. It was found Cd exposure caused motor deficits, decreased DA neurons and induced neuropathological changes in the midbrain. Non-targeted lipidomic analysis uncovered that Cd exposure altered lipid profile, increased the content of proinflammatory sphingolipid ceramides (Cer), sphingomyelin (SM) and ganglioside (GM3) in the midbrain. In consistency with increased proinflammatory lipids, the mRNA levels of genes encoding sphingolipids biosynthesis in the midbrain were dysregulated by Cd exposure. Neuroinflammation in the midbrain was evinced by the up-regulation of proinflammatory cytokines at mRNA and protein levels. Blood Cd contents and lipid metabolites in Parkinsonism patients by ICP-MS and LC-MS/MS analyses demonstrated that elevated blood Cd concentration and proinflammatory lipid metabolites were positively associated with the score of Unified Parkinson's Disease Rating Scale (UPDRS). 3 ceramide metabolites in the blood showed good specificity as the candidate biomarkers to predict and monitor Parkinsonism and Cd neurotoxicity (AUC>0.7, p < 0.01). In summary, our present study uncovered that perturbed sphingomyelin lipid metabolism is related to the Parkinsonism pathogenesis and Cd neurotoxicity, partially compensated for the deficiency in particular metabolic biomarkers for Parkinsonism in relation to Cd exposure, and emphasized the necessity of reducing Cd exposure at population level.
Collapse
Affiliation(s)
- Yudong Xu
- Department of Environmental Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Huihui Hong
- Center for Neurointelligence, School of Medicine, Chongqing University, Chongqing, China
| | - Xiqin Lin
- Department of Environmental Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Tong Tong
- Department of Environmental Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Jingjing Zhang
- Department of Environmental Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Haotian He
- Department of Environmental Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Lingling Yang
- Department of Occupational Health, Third Military Medical University, Chongqing, China
| | - Gaofeng Mao
- Neurology Department, General Hospital of Center Theater Command, Wuhan, China
| | - Rongrong Hao
- Department of Occupational Health, Third Military Medical University, Chongqing, China
| | - Ping Deng
- Department of Occupational Health, Third Military Medical University, Chongqing, China
| | - Zhengping Yu
- Department of Occupational Health, Third Military Medical University, Chongqing, China
| | - Huifeng Pi
- Department of Occupational Health, Third Military Medical University, Chongqing, China
| | - Yong Cheng
- Neurology Department, General Hospital of Center Theater Command, Wuhan, China
| | - Zhou Zhou
- Department of Environmental Medicine, Zhejiang University School of Medicine, Hangzhou, China; Center for Neurointelligence, School of Medicine, Chongqing University, Chongqing, China.
| |
Collapse
|
14
|
Xia Y, Zhang Y, Zhang J, Du Y, Wang Y, Xu A, Li S. Cadmium exposure induces necroptosis of porcine spleen via ROS-mediated activation of STAT1/RIPK3 signaling pathway. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2023; 64:382-392. [PMID: 37452679 DOI: 10.1002/em.22565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 07/06/2023] [Accepted: 07/12/2023] [Indexed: 07/18/2023]
Abstract
Cadmium (Cd), a heavy metal, is used in a wide range of applications, such as plastics, electroplating process, electronics, and so forth. Due to its bioaccumulation ability, Cd can contaminate soil, water, air and food. To determine the effect of Cd exposure on the necroptosis in pig spleen and its mechanistic investigation, we constructed a model in pigs by feeding them food containing 20 mg/kg Cd. In this study, we analyzed the effects of Cd exposure on pig spleen through HE staining, Quantitative real-time PCR (qRT-PCR), Western blot (WB), and principal component analysis (PCA). Results show that Cd exposure can destroy the structure and function of pig spleen, which is closely related to necroptosis. Further results show that Cd exposure can induce necroptosis through ROS-mediated activation of Signal transducer and activator of transcription 1/Receptor-Interacting Serine/Threonine-Protein Kinase 3 (STAT1/RIPK3) signaling pathway in pig spleen. Additionally, Cd exposure also can affect the stability of mitochondrial-associated endoplasmic reticulum membrane (MAMs) structure, which also contributes to the process of necroptosis. Our study provides insights into the physiological toxicity caused by Cd exposure.
Collapse
Affiliation(s)
- Yu Xia
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, People's Republic of China
| | - Yiming Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, People's Republic of China
| | - Jintao Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, People's Republic of China
| | - Yongzhen Du
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, People's Republic of China
| | - Yixuan Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, People's Republic of China
| | - Anqi Xu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, People's Republic of China
| | - Shu Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, People's Republic of China
| |
Collapse
|
15
|
Yang X, Xi L, Guo Z, Liu L, Ping Z. The relationship between cadmium and cognition in the elderly: a systematic review. Ann Hum Biol 2023; 50:15-25. [PMID: 36645404 DOI: 10.1080/03014460.2023.2168755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Context: The relationship between cadmium (Cd) and the cognition of the elderly is indistinct.Objective: To summarise the studies on the relationship between the cognition of the elderly and Cd.Methods: Literatures were searched in PubMed, Web of Science, China National Knowledge Infrastructure (CNKI), and Wan fang database on April 25, 2022. The entries in the STROBE statement were used to evaluate the literature quality; all the quantitative studies that met the requirements were systematically summarised.Results: Blood Cd was negatively correlated with the cognitive ability of the elderly, corresponding to different cognitive ability assessment methods, the regression coefficients were: -0.11 (-0.20, -0.03), -0.46 (-0.71, -0.21), -0.54 (-0.90, -0.17), -0.19 (-0.37, -0.01), and -2.29 (-3.41, -1.16). The regression coefficients between urinary Cd level and cognition score were -1.42 (-2.38, -0.46), and 0.76 (-1.28, -0.23). When dietary Cd increased by 1 μg/kg, the composite z-score decreased by 3.64 (p = 0.001). There was no significant correlation between drinking water Cd, fingernail Cd and cognition (p > 0.05).Conclusion: We concluded that blood Cd (including whole blood and plasma), urine Cd and dietary Cd were negatively correlated with the cognition of the elderly, but the relationship between Cd in drinking water and fingernails and cognition was not statistically significant.
Collapse
Affiliation(s)
- Xueke Yang
- College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Lijing Xi
- College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Zhaoyan Guo
- College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Li Liu
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Zhiguang Ping
- College of Public Health, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
16
|
Liu J, Xie Y, Lu Y, Zhao Z, Zhuang Z, Yang L, Huang H, Li H, Mao Z, Pi S, Chen F, He Y. APP/PS1 Gene-Environmental Cadmium Interaction Aggravates the Progression of Alzheimer's Disease in Mice via the Blood-Brain Barrier, Amyloid-β, and Inflammation. J Alzheimers Dis 2023; 94:115-136. [PMID: 37248897 DOI: 10.3233/jad-221205] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
BACKGROUND There is limited information about gene-environment interaction on the occurrence and the progression of Alzheimer's disease. OBJECTIVE To explore the effect of environmental low-dose cadmium (Cd) exposure on the progress of Alzheimer's disease and the underlining mechanism. METHODS We administered 1 mg/L, 10 mg/L cadmium chloride (treated groups), and water (control group) to C57BL/6J and APP/PS1 mice through drinking water, from one week before mating, until the offspring were sacrificed at 6 months of age. The behaviors, Cd level, blood-brain barrier (BBB) leakage, Aβ1-42 deposition, and inflammation expression were evaluated in these mice. RESULTS Mice of both genotypes had similar blood Cd levels after exposure to the same dose of Cd. The toxic effects of Cd on the two genotypes differed little in terms of neuronal histomorphology and BBB permeability. Cd caused a series of pathological morphological changes in the mouse brains and more fluorescent dye leakage at higher doses. Furthermore, the APP/PS1 mice had more severe damage than the C57BL/6J mice, based on the following five criteria. They were increasing anxiety-like behavior and chaos movement, spatial reference memory damage, Aβ plaque deposition in mouse brains, increasing microglia expression in the brain, and IL-6 higher expression in the cortex and in the serum. CONCLUSION Low-dose Cd exposure for 6 months increases Aβ plaque deposition and BBB permeability, exacerbates inflammatory responses, and activates microglia, in APP/PS1 mice. APP/PS1 gene-environmental Cd interaction aggravates the progression of Alzheimer's disease in mice.
Collapse
Affiliation(s)
- Jieyi Liu
- Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yirong Xie
- Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yao Lu
- Office of Academic Affairs, Southern Medical University, Guangzhou, Guangdong, China
| | - Zhiqiang Zhao
- Department of Toxicology, Guangdong Province Hospital for Occupational Disease Prevention and Treatment, Guangzhou, Guangdong, China
| | - Zhixiong Zhuang
- Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Linqing Yang
- Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Haiyan Huang
- Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Hongya Li
- Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Zhiyi Mao
- Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Shurong Pi
- Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Fubin Chen
- Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yun He
- Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong, China
| |
Collapse
|
17
|
Li T, Dong S, He C, Yang J, Li W, Li S, Li J, Du X, Hou Z, Li L, Li S, Huang Z, Sun T. Apoptosis, rather than neurogenesis, induces significant hippocampal-dependent learning and memory impairment in chronic low Cd 2+ exposure. ENVIRONMENTAL TOXICOLOGY 2022; 37:814-824. [PMID: 34989457 DOI: 10.1002/tox.23445] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 12/23/2021] [Accepted: 12/27/2021] [Indexed: 06/14/2023]
Abstract
Cadmium (Cd), a ubiquitous toxic heavy metal, with the intractable trait of low degradation, can induce multiple organ damage. Whereas, far less is known about its neurotoxicity and the specific mechanism in the chronic low Cd exposure. To investigate the chronic neurotoxicity of Cd2+ , we traced its effects for up to 30 months in mice which were exposed to Cd2+ by drinking the mimicking Cd-polluted water. We found the toxicity of chronic Cd exposure was a process associated with the transition from autophagy to apoptosis, and the switch of autophagy-apoptosis was Cd dose-dependent with the threshold of [Cd2+ ] 0.04 mg/L. Furthermore, JNK was found to be a hub molecule orchestrated the switch of autophagy-apoptosis by interacting with Sirt1 and p53. At last, the hippocampus-dependent learning and memory was damaged by continuous neuron apoptosis rather than deficit of neurogenesis. Therefore, elucidation of the effect, process, and potential molecular mechanism of the chronic low Cd2+ exposure is important for controlling of the environmental-pollutant Cd.
Collapse
Affiliation(s)
- Tianpeng Li
- Zaozhuang Key Laboratory of Research in Neurodegenerative Diseases and Development of Neuropharmaceuticals, Zaozhuang University, Zaozhuang, China
- College of City and Architecture Engineering, Zaozhuang University, Zaozhuang, China
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, Shandong University, Qingdao, China
| | - Shuyan Dong
- Zaozhuang Key Laboratory of Research in Neurodegenerative Diseases and Development of Neuropharmaceuticals, Zaozhuang University, Zaozhuang, China
- College of Food Science and Pharmaceutical Engineering, Zaozhuang University, Zaozhuang, China
| | - Chengjian He
- Zaozhuang Key Laboratory of Research in Neurodegenerative Diseases and Development of Neuropharmaceuticals, Zaozhuang University, Zaozhuang, China
- College of Food Science and Pharmaceutical Engineering, Zaozhuang University, Zaozhuang, China
| | - Jing Yang
- Department of Clinical Medicine, Zhejiang University City College, Hangzhou, China
| | - Weiyun Li
- Department of Clinical Medicine, Zhejiang University City College, Hangzhou, China
| | - Shanshan Li
- Department of Clinical Medicine, Zhejiang University City College, Hangzhou, China
| | - Jing Li
- Department of Anatomy, School of Medicine, Zhejiang University, Hangzhou, China
| | - Xiaoxue Du
- Translation Medicine Center, Affiliated Hangzhou First People's Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Zhaoxia Hou
- Zaozhuang Key Laboratory of Research in Neurodegenerative Diseases and Development of Neuropharmaceuticals, Zaozhuang University, Zaozhuang, China
- College of Food Science and Pharmaceutical Engineering, Zaozhuang University, Zaozhuang, China
| | - Luping Li
- Zaozhuang Key Laboratory of Research in Neurodegenerative Diseases and Development of Neuropharmaceuticals, Zaozhuang University, Zaozhuang, China
- College of Food Science and Pharmaceutical Engineering, Zaozhuang University, Zaozhuang, China
| | - Songtao Li
- Zaozhuang Key Laboratory of Research in Neurodegenerative Diseases and Development of Neuropharmaceuticals, Zaozhuang University, Zaozhuang, China
- College of Food Science and Pharmaceutical Engineering, Zaozhuang University, Zaozhuang, China
| | - Zhihui Huang
- College of Pharmacy, Hangzhou Normal University, Hangzhou, China
| | - Tingting Sun
- Zaozhuang Key Laboratory of Research in Neurodegenerative Diseases and Development of Neuropharmaceuticals, Zaozhuang University, Zaozhuang, China
- College of Food Science and Pharmaceutical Engineering, Zaozhuang University, Zaozhuang, China
| |
Collapse
|