1
|
Lu W. Sulforaphane regulates AngII-induced podocyte oxidative stress injury through the Nrf2-Keap1/ho-1/ROS pathway. Ren Fail 2024; 46:2416937. [PMID: 39417305 PMCID: PMC11488169 DOI: 10.1080/0886022x.2024.2416937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 09/19/2024] [Accepted: 10/10/2024] [Indexed: 10/19/2024] Open
Abstract
OBJECTIVE This study aimed to investigate the therapeutic effects of sulforaphane and the role of the Nrf2-Keap1/HO-1/ROS pathway in AngII-induced oxidative stress in podocyte injury. METHODS Mouse mpc5 podocytes were divided into four groups: control (Con), AngII, AngII + sulforaphane (AngII + SFN), and control + sulforaphane (Con + SFN). Western blotting was used to detect protein expression of Nrf2-Keap1, antioxidant enzyme HO-1, and apoptosis-related proteins. ROS levels were measured using a ROS assay kit, and cell survival and viability were assayed using the CCK-8 kit. Molecular interactions between Nrf2 and sulforaphane were analyzed computationally. RESULTS Compared with the Con group, podocytes treated with AngII alone exhibited inhibited proliferation, reduced cell viability, lower Bcl-2 expression, and higher cleaved caspase 3 expression. In the presence of sulforaphane, AngII group showed a mild inhibition on podocyte proliferation but did not induce the aforementioned changes in Bcl-2 and cleaved caspase 3 expression. Similarly, compared to the Con group, AngII treatment alone had lower Nrf2 expression and higher Keap1 expression in podocytes, accompanied by a significant decrease in ROS content. However, in the presence of sulforaphane, AngII failed to induce increases in Nrf2 and a decrease in Keap1 expression, as well as ROS levels. Furthermore, cells treated with sulforaphane exhibited higher HO-1 levels than control cells, and co-incubation with AngII did not alter HO-1 levels. Computational modeling revealed hydrophobic interactions between sulforaphane and the amino acid LYS-462 of Nrf2, as well as hydrogen bonding with amino acid HIS-465. The binding score between sulforaphane and Nrf2 was -4.7. CONCLUSION Sulforaphane alleviated AngII-induced podocyte oxidative stress injury via the Nrf2-Keap1/HO-1/ROS pathway, providing new insights into therapeutic compounds for mitigating chronic kidney disease.
Collapse
Affiliation(s)
- Wen Lu
- Department of General Medicine, Rizhao People’s Hospital, Rizhao, China
| |
Collapse
|
2
|
Song M, Yi F, Zeng F, Zheng L, Huang L, Sun X, Huang Q, Deng J, Wang H, Gu W. USP18 Stabilized FTO Protein to Activate Mitophagy in Ischemic Stroke Through Repressing m6A Modification of SIRT6. Mol Neurobiol 2024; 61:6658-6674. [PMID: 38340205 DOI: 10.1007/s12035-024-04001-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 01/28/2024] [Indexed: 02/12/2024]
Abstract
Ischemic stroke (IS) is a dangerous cerebrovascular disorder with a significant incidence and death rate. Ubiquitin-specific peptidase 18 (USP18) has been proven to mitigate ischemic brain damage; however, its potential regulatory mechanisms remain unclear. In vivo and in vitro models of IS were established by middle cerebral artery occlusion (MCAO) and oxygen-glucose deprivation/reoxygenation (OGD/R). Neurocyte injury was detected by MTT, LDH, ROS level, mitochondrial membrane potential (Δψm), and flow cytometry. Molecular expression was evaluated by qPCR, Western blotting, and immunofluorescence staining. Molecular mechanisms were determined by Co-IP, RIP, and MeRIP. IS injury was determined by neurological behavior score and TTC staining. Mitophagy was observed by TEM. USP18 and fat mass and obesity-associated protein (FTO) expression declined after OGD/R. Dysfunctional mitochondrial and apoptosis in OGD/R-stimulated neurocytes were eliminated by USP18/FTO overexpression via mitophagy activation. USP18-mediated de-ubiquitination was responsible for increasing FTO protein stability. Up-regulation of FTO protein restrained m6A modification of sirtuin6 (SIRT6) in a YTHDF2-dependent manner to enhance SIRT6 expression and subsequent activation of AMPK/PGC-1α/AKT signaling. FTO induced mitophagy to ameliorate nerve cell damage through SIRT6/AMPK/PGC-1α/AKT pathway. Finally, USP18/FTO overexpression relieved IS in rats via triggering SIRT6/AMPK/PGC-1α/AKT axis-mediated mitophagy. USP18 increased FTO protein stability to trigger SIRT6-induced mitophagy, thus mitigating IS. Our data unravel the novel neuroprotective mechanism of USP18 and suggest its potential as a promising treatment target for IS.
Collapse
Affiliation(s)
- Mingyu Song
- Department of Neurology, Xiangya Hospital, Central South University, Hunan Province, Changsha, 410008, People's Republic of China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Hunan Province, Changsha, 410008, People's Republic of China
- Clinical Research Center for Cerebrovascular Disease of Hunan Province, Central South University, Hunan Province, No.87, Xiangya Road, Changsha, 410008, People's Republic of China
| | - Fang Yi
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Hunan Province, Changsha, 410008, People's Republic of China
- Department of Geriatric Neurology, Xiangya Hospital, Central South University, Hunan Province, Changsha, 410008, People's Republic of China
| | - Feiyue Zeng
- Department of Radiology, Xiangya Hospital, Central South University, Hunan Province, Changsha, 410008, People's Republic of China
| | - Lan Zheng
- Department of Neurology, Xiangya Hospital, Central South University, Hunan Province, Changsha, 410008, People's Republic of China
| | - Lei Huang
- Department of Neurological Rehabilitation, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Hunan Province, Changsha, 410000, People's Republic of China
| | - Xinyu Sun
- Department of Neurology, Xiangya Hospital, Central South University, Hunan Province, Changsha, 410008, People's Republic of China
| | - Qianyi Huang
- Department of Neurology, Xiangya Hospital, Central South University, Hunan Province, Changsha, 410008, People's Republic of China
| | - Jun Deng
- Department of Neurology, Affiliated Hospital of Hunan Academy of Traditional Chinese Medicine, Hunan Province, Changsha, 410000, People's Republic of China
| | - Hong Wang
- Department of Geriatric Neurology, Xiangya Hospital, Central South University, Hunan Province, Changsha, 410008, People's Republic of China
| | - Wenping Gu
- Department of Neurology, Xiangya Hospital, Central South University, Hunan Province, Changsha, 410008, People's Republic of China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Hunan Province, Changsha, 410008, People's Republic of China.
- Clinical Research Center for Cerebrovascular Disease of Hunan Province, Central South University, Hunan Province, No.87, Xiangya Road, Changsha, 410008, People's Republic of China.
| |
Collapse
|
3
|
Yang X, Guo C, Yu L, Lv Z, Li S, Zhang Z. Dendrobium officinale polysaccharide alleviates thiacloprid-induced kidney injury in quails via activating the Nrf2/HO-1 pathway. ENVIRONMENTAL TOXICOLOGY 2024; 39:2655-2666. [PMID: 38224485 DOI: 10.1002/tox.24137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 12/14/2023] [Accepted: 12/29/2023] [Indexed: 01/17/2024]
Abstract
Thiacloprid (THI) is a neonicotinoid insecticide, and its wide-ranging use has contributed to severe environmental and health problems. Dendrobium officinale polysaccharide (DOP) possesses multiple biological activities such as antioxidant and antiapoptosis effect. Although present research has shown that THI causes kidney injury, the exact molecular mechanism and treatment of THI-induced kidney injury remain unclear. The study aimed to investigate if DOP could alleviate THI-induced kidney injury and identify the potential molecular mechanism in quails. In this study, Japanese quails received DOP (200 mg/kg) daily with or without THI (4 mg/kg) exposure for 42 days. Our results showed that DOP improved hematological changes, biochemical indexes, and nephric histopathological changes induced by THI. Meanwhile, THI exposure caused oxidative stress, apoptosis, and autophagy. Furthermore, THI and DOP cotreatment significantly activated the nuclear factor erythroid 2-related factor 2/heme oxygenase-1 (Nrf2/HO-1) pathway, restored antioxidant enzyme activity, and reduced apoptosis and autophagy in quail kidneys. In summary, our study demonstrated that DOP mitigated THI-mediated kidney injury was associated with oxidative stress, apoptosis, and autophagy via activation of the Nrf2/HO-1 signaling pathway in quails.
Collapse
Affiliation(s)
- Xu Yang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Changming Guo
- College of Veterinary Medicine, Jilin University, Changchun, China
| | - Lu Yu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Zhanjun Lv
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Siyu Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Zhigang Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| |
Collapse
|
4
|
Wu H, Gao J, Xie Z, Xie M, Song R, Yuan X, Wu Y, Ou D. Effect of chronic deltamethrin exposure on brain transcriptome and metabolome of juvenile crucian carp. ENVIRONMENTAL TOXICOLOGY 2024; 39:1544-1555. [PMID: 38009670 DOI: 10.1002/tox.24022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 05/05/2023] [Accepted: 10/31/2023] [Indexed: 11/29/2023]
Abstract
Deltamethrin (Del), a widely administered pyrethroid insecticide, has been established as a common contaminant of the freshwater environment and detected in many freshwater ecosystems. In this study, we investigated the changes in brain transcriptome and metabolome of crucian carp after exposure to 0.6 μg/L Del for 28 days. Elevated MDA levels and inhibition of SOD activity indicate damage to the antioxidant system. Moreover, a total of 70 differential metabolites (DMs) were identified using the liquid chromatography-mass spectrometry, including 32 upregulated and 38 downregulated DMs in the Del-exposed group. The DMs associated with chronic Del exposure were enriched in steroid hormone biosynthesis, fatty acid metabolism, and glycerophospholipid metabolism for prostaglandin G2, 5-oxoeicosatetraenoic acid, progesterone, androsterone, etiocholanolone, and hydrocortisone. Transcriptomics analysis revealed that chronic Del exposure caused lipid metabolism disorder, endocrine disruption, and proinflammatory immune response by upregulating the pla2g4, cox2, log5, ptgis, lcn, and cbr expression. Importantly, the integrative analysis of transcriptomics and metabolomics indicated that the arachidonic acid metabolism pathway and steroid hormone biosynthesis were decisive processes in the brain tissue of crucian carp after Del exposure. Furthermore, Del exposure perturbed the tight junction, HIF-1 signaling pathway, and thyroid hormone signaling pathway. Overall, transcriptome and metabolome data of our study offer a new insight to assess the risk of chronic Del exposure in fish brains.
Collapse
Affiliation(s)
- Hao Wu
- Hunan Fisheries Science Institute, Changsha, China
| | - Jinwei Gao
- Hunan Fisheries Science Institute, Changsha, China
| | - Zhonggui Xie
- Hunan Fisheries Science Institute, Changsha, China
| | - Min Xie
- Hunan Fisheries Science Institute, Changsha, China
| | - Rui Song
- Hunan Fisheries Science Institute, Changsha, China
| | - Xiping Yuan
- Hunan Fisheries Science Institute, Changsha, China
| | - Yuanan Wu
- Hunan Fisheries Science Institute, Changsha, China
| | - Dongsheng Ou
- Hunan Fisheries Science Institute, Changsha, China
| |
Collapse
|
5
|
Wen Y, Wu J, Pu Q, He X, Wang J, Feng J, Zhang Y, Si F, Wen JG, Yang J. ABT-263 exerts a protective effect on upper urinary tract damage by alleviating neurogenic bladder fibrosis. Ren Fail 2023; 45:2194440. [PMID: 37154092 PMCID: PMC10167888 DOI: 10.1080/0886022x.2023.2194440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2023] Open
Abstract
This study investigated the mechanism of action of ABT-263 in the treatment of neurogenic bladder fibrosis (NBF)and its protective effects against upper urinary tract damage (UUTD). Sixty 12-week-old Sprague-Dawley (SD) rats were randomly divided into sham, sham + ABT-263 (50 mg/kg), NBF, NBF + ABT-263 (25 mg/kg, oral gavage), and NBF + ABT-263 (50 mg/kg, oral gavage) groups. After cystometry, bladder and kidney tissue samples were collected for hematoxylin and eosin (HE), Masson, and Sirius red staining, and Western Blotting (WB) and qPCR detection. Primary rat bladder fibroblasts were isolated, extracted, and cultured. After co-stimulation with TGF-β1 (10 ng/mL) and ABT-263 (concentrations of 0, 0.1, 1, 10, and 100 µmol/L) for 24 h, cells were collected. Cell apoptosis was detected using CCK8, WB, immunofluorescence, and annexin/PI assays. Compared with the sham group, there was no significant difference in any physical parameters in the sham + ABT-263 (50 mg/kg) group. Compared with the NBF group, most of the markers involved in fibrosis were improved in the NBF + ABT-263 (25 mg/kg) and NBF + ABT-263 (50 mg/kg) groups, while the NBF + ABT-263 (50 mg/kg) group showed a significant improvement. When the concentration of ABT-263 was increased to 10 µmol/L, the apoptosis rate of primary bladder fibroblasts increased, and the expression of the anti-apoptotic protein BCL-xL began to decrease.ABT-263 plays an important role in relieving NBF and protecting against UUTD, which may be due to the promotion of myofibroblast apoptosis through the mitochondrial apoptosis pathway.
Collapse
Affiliation(s)
- Yibo Wen
- Department of Urology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, P.R. China
- Clinical Systems Biology Laboratories of the First Affiliated Hospital of Zhengzhou University, Zhengzhou, P.R. China
- The Academy of Medical Science, Zhengzhou University, Zhengzhou, P.R. China
| | - Junwei Wu
- Department of Urology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, P.R. China
- Bladder Structure and Function Reconstruction Henan Engineering Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, P.R. China
| | - Qingsong Pu
- Department of Urology, The First People's Hospital of Longquanyi District, Chengdu, P.R. China
| | - Xiangfei He
- Department of Urology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, P.R. China
- Bladder Structure and Function Reconstruction Henan Engineering Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, P.R. China
| | - Junkui Wang
- Department of Ultrasound, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, P.R. China
| | - Jinjin Feng
- Department of Urology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, P.R. China
- Bladder Structure and Function Reconstruction Henan Engineering Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, P.R. China
| | - Yanping Zhang
- Department of Urology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, P.R. China
- Bladder Structure and Function Reconstruction Henan Engineering Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, P.R. China
| | - Feng Si
- Department of Urology, The First Affiliated Hospital of Xinxiang Medical College, Xinxiang, P.R. China
| | - Jian Guo Wen
- Department of Urology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, P.R. China
- Bladder Structure and Function Reconstruction Henan Engineering Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, P.R. China
| | - Jinghua Yang
- Clinical Systems Biology Laboratories of the First Affiliated Hospital of Zhengzhou University, Zhengzhou, P.R. China
- The Academy of Medical Science, Zhengzhou University, Zhengzhou, P.R. China
| |
Collapse
|
6
|
Ma R, Sun T, Wang X, Ren K, Min T, Xie X, Wang D, Li K, Zhang Y, Zhu K, Mo C, Dang C, Yang Y, Zhang H. Chronic exposure to low-dose deltamethrin can lead to colon tissue injury through PRDX1 inactivation-induced mitochondrial oxidative stress injury and gut microbial dysbiosis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 264:115475. [PMID: 37714033 DOI: 10.1016/j.ecoenv.2023.115475] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 08/15/2023] [Accepted: 09/11/2023] [Indexed: 09/17/2023]
Abstract
OBJECTIVE To date, it is unclear whether deltamethrin (DLM) intake causes damage to colon tissue. Hence, in this study, we aimed to clarify the effect of long-term exposure to low-dose DLM on colon tissues, and its potential mechanisms. METHODS Mice were treated with DLM (0.2 mg/kg/day) or DLM combined with N-acetyl-l-cysteine (NAC) (50 mg/kg/day) for 8 weeks. Human colon cancer cells (HCT-116) were treated with DLM (0, 25, 50, or 100 µM), NAC (2 mM), or overexpression plasmids targeting peroxiredoxin 1 (PRDX1) for 48 h. DLM was detected using a DLM rapid detection card. Colon injury was evaluated using haematoxylin and eosin staining and transmission electron microscopy. Apoptosis was determined using immunofluorescence staining (IF), western blotting (WB) and flow cytometry (FC) assays. MitoTracker, JC-1, and glutathione (GSH) detection were used to detect mitochondrial oxidative stress. Intestinal flora were identified by 16 S rDNA sequencing. RESULTS DLM accumulation was detected in the colon tissue and faeces of mice following long-term intragastric administration. Interestingly, our results showed that, even at a low dose, long-term intake of DLM resulted in severe weight loss and decreased the disease activity index scores and colon length. The results of IF, WB, and FC showed that DLM induced apoptosis in the colon tissue and cells. MitoTracker, JC-1, and GSH assays showed that DLM increased mitochondrial stress in colonic epithelial cells. Mechanistic studies have shown that increased mitochondrial stress and apoptosis are mediated by PRDX1 inhibition. Further experiments showed that PRDX1 overexpression significantly reduced DLM-induced oxidative stress injury and apoptosis. In addition, we observed that chronic exposure to DLM altered the composition of the intestinal flora in mice, including an increase in Odoribacter and Bacteroides and a decrease in Lactobacillus. The gut microbial richness decreased after DLM exposure in mice. Supplementation with NAC both in vivo and in vitro alleviated DLM-induced oxidative stress injury, colonic epithelial cell apoptosis, and gut microbial dysbiosis. CONCLUSION Chronic exposure to DLM, even at small doses, can cause damage to the colon tissue, which cannot be ignored. The production and use of pesticides such as DLM should be strictly regulated during agricultural production.
Collapse
Affiliation(s)
- Rulan Ma
- Department of Surgical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Tuanhe Sun
- Department of Surgical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Xueni Wang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Kaijie Ren
- Department of Surgical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Tianhao Min
- Department of Surgical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Xin Xie
- Department of Nuclear Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Dangdang Wang
- Xi'an Analytical and Monitoring Centre for Agri-food Quality Safety, Xi'an 710077, China
| | - Kang Li
- Department of Surgical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Yong Zhang
- Department of Surgical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Kun Zhu
- Department of Surgical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Caijing Mo
- Department of Surgical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Chengxue Dang
- Department of Surgical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China.
| | - Yong Yang
- Xi'an Analytical and Monitoring Centre for Agri-food Quality Safety, Xi'an 710077, China.
| | - Hao Zhang
- Department of Surgical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China.
| |
Collapse
|
7
|
Pan EZ, Xin Y, Li XQ, Wu XY, Tan XL, Dong JQ. Ameliorative effects of silybin against avermectin-triggered carp spleen mitochondrial dysfunction and apoptosis through inhibition of PERK-ATF4-CHOP signaling pathway. FISH PHYSIOLOGY AND BIOCHEMISTRY 2023; 49:895-910. [PMID: 37542703 DOI: 10.1007/s10695-023-01228-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 07/30/2023] [Indexed: 08/07/2023]
Abstract
The aim of this study was to investigate the splenic tissue damage of environmental biological drug avermectin to freshwater cultured carp and to evaluate the effect of silybin on the splenic tissue damage of carp induced by avermectin. A total of 60 carp were divided into 4 groups with 15 carp in each group, including the control group fed with basic diet, experimental group fed with basal diet and exposed to avermectin (avermectin group), experimental group fed with basal diet supplement silybin (silybin group), and experimental group fed with basal diet supplement silybin and exposed to avermectin (silybin + avermectin group). The whole test period lasted for 30 days, and spleen tissue was collected for analysis. In this study, H&E staining, mitochondrial purification and membrane potential detection, ATP detection, DHE staining, biochemical tests, qPCR, immunohistochemistry, and apoptosis staining were used to evaluate the biological processes of spleen tissue injury, mitochondrial function, oxidative stress, apoptosis, and endoplasmic reticulum stress. The results show that silybin protected carp splenic tissue damage caused by chronic avermectin exposure, decreased mitochondrial membrane potential, decreased ATP content, ROS accumulation, oxidative stress, apoptosis, and endoplasmic reticulum stress. Silybin may ameliorate the splenic tissue damage of cultured freshwater carp caused by environmental biopesticide avermectin by alleviating mitochondrial dysfunction and inhibiting PERK-ATF4-CHOP-driven mitochondrial apoptosis. Adding silybin into the diet becomes a feasible strategy to resist the pollution of avermectin and provides a theoretical basis for creating a good living environment for freshwater carp.
Collapse
Affiliation(s)
- En-Zhuang Pan
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, School of Pharmacy, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Yue Xin
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, School of Pharmacy, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Xue-Qing Li
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, School of Pharmacy, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Xin-Yu Wu
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, School of Pharmacy, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Xue-Lian Tan
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, School of Pharmacy, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Jing-Quan Dong
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, School of Pharmacy, Jiangsu Ocean University, Lianyungang, 222005, China.
| |
Collapse
|
8
|
Chen C, Deng Y, Liu L, Zou Z, Jin C, Chen Z, Wang S. High-Dose Deltamethrin Induces Developmental Toxicity in Caenorhabditis elegans via IRE-1. Molecules 2023; 28:6303. [PMID: 37687132 PMCID: PMC10488762 DOI: 10.3390/molecules28176303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 08/21/2023] [Accepted: 08/24/2023] [Indexed: 09/10/2023] Open
Abstract
Deltamethrin (DM), a Type II pyrethroid, is widely used worldwide in agriculture, household applications, and medicine. Recent studies have shown that DM exerts a variety of toxic effects on organs such as the kidney, heart muscle, and nerves in animals. However, little is known about the effects of high-dose DM on growth and development, and the mechanism of toxicity remains unclear. Using the Caenorhabditis elegans model, we found that high-dose DM caused a delay in nematode development. Our results showed that high-dose DM reduced the activation of the endoplasmic reticulum unfolded protein response (UPRER). Further studies revealed that high-dose DM-induced developmental toxicity and reduced capacity for UPRER activation were associated with the IRE-1/XBP-1 pathway. Our results provide new evidence for the developmental toxicity of DM and new insights into the mechanism of DM toxicity.
Collapse
Affiliation(s)
- Chuhong Chen
- Key Laboratory of Green Control of Crop Pests in Hunan Higher Education, Hunan University of Humanities Science and Technology, Loudi 417000, China
- Collaborative Innovation Center for Farmland Weeds Control Techniques and Application of Hunan Province, Hunan University of Humanities Science and Technology, Loudi 417000, China (Z.C.)
| | - Ying Deng
- Key Laboratory of Green Control of Crop Pests in Hunan Higher Education, Hunan University of Humanities Science and Technology, Loudi 417000, China
| | - Linyan Liu
- Key Laboratory of Green Control of Crop Pests in Hunan Higher Education, Hunan University of Humanities Science and Technology, Loudi 417000, China
| | - Zhenyan Zou
- Collaborative Innovation Center for Farmland Weeds Control Techniques and Application of Hunan Province, Hunan University of Humanities Science and Technology, Loudi 417000, China (Z.C.)
| | - Chenzhong Jin
- Key Laboratory of Green Control of Crop Pests in Hunan Higher Education, Hunan University of Humanities Science and Technology, Loudi 417000, China
- Collaborative Innovation Center for Farmland Weeds Control Techniques and Application of Hunan Province, Hunan University of Humanities Science and Technology, Loudi 417000, China (Z.C.)
| | - Zhiyin Chen
- Collaborative Innovation Center for Farmland Weeds Control Techniques and Application of Hunan Province, Hunan University of Humanities Science and Technology, Loudi 417000, China (Z.C.)
| | - Shuanghui Wang
- Key Laboratory of Green Control of Crop Pests in Hunan Higher Education, Hunan University of Humanities Science and Technology, Loudi 417000, China
- Collaborative Innovation Center for Farmland Weeds Control Techniques and Application of Hunan Province, Hunan University of Humanities Science and Technology, Loudi 417000, China (Z.C.)
| |
Collapse
|
9
|
Wu Y, Duan Z, Qu L, Zhang Y, Zhu C, Fan D. Gastroprotective effects of ginsenoside Rh4 against ethanol-induced gastric mucosal injury by inhibiting the MAPK/NF-κB signaling pathway. Food Funct 2023. [PMID: 37184519 DOI: 10.1039/d2fo03693b] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Ginsenoside Rh4, a bioactive component extracted from Panax ginseng, exhibits various pharmacological activities, such as anti-inflammatory, anti-oxidation, anti-diabetes, anti-obesity, antitumor and immunity enhancement. However, the gastroprotective effect of ginsenoside Rh4 remains unknown. The present study evaluated the gastroprotective effect and potential mechanism of ginsenoside Rh4 in an ethanol-induced gastric ulcer model. Ginsenoside Rh4 (15, 30, and 60 mg kg-1) and omeprazole (30 mg kg-1) were administered orally for 7 days. The results showed that pretreatment with ginsenoside Rh4 reduced the gastric injury area and percentage of mucosal lesions in gastric tissue. Besides, treatment with ginsenoside Rh4 increased superoxide dismutase (SOD) activity, glutathione (GSH) and nitric oxide (NO) levels, reduced the content of malonaldehyde (MDA), tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), and interleukin-1β (IL-1β), mediated the prostaglandin E-2-cyclooxygenase-2 (PGE2-Cox-2) pathway, and mitigated inflammation and oxidative stress via blockade of proinflammatory mitogen-activated protein kinase-nuclear factor κB (MAPK/NF-κB) signaling pathways. Furthermore, ginsenoside Rh4 significantly enhanced the protein expression of B-cell lymphoma gene 2 (Bcl-2), decreased the protein expression of Bcl-2-associated X protein (Bax) and tumor necrosis factor receptor superfamily member 6 (Fas), and inhibited the number of apoptotic cells in gastric tissues. The present work demonstrated that ginsenoside Rh4 exerted a considerable gastroprotective effect against ethanol-induced gastric ulcers in rats.
Collapse
Affiliation(s)
- Yuqing Wu
- Shaanxi Key Laboratory of Degradable Biomedical Materials and Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Taibai North Road 229, Xi'an, Shaanxi 710069, China.
- Biotech & Biomed Research Institute, Northwest University, Taibai North Road 229, Xi'an, Shaanxi 710069, China
| | - Zhiguang Duan
- Shaanxi Key Laboratory of Degradable Biomedical Materials and Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Taibai North Road 229, Xi'an, Shaanxi 710069, China.
- Biotech & Biomed Research Institute, Northwest University, Taibai North Road 229, Xi'an, Shaanxi 710069, China
| | - Linlin Qu
- Shaanxi Key Laboratory of Degradable Biomedical Materials and Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Taibai North Road 229, Xi'an, Shaanxi 710069, China.
- Biotech & Biomed Research Institute, Northwest University, Taibai North Road 229, Xi'an, Shaanxi 710069, China
| | - Yi Zhang
- Shaanxi Key Laboratory of Degradable Biomedical Materials and Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Taibai North Road 229, Xi'an, Shaanxi 710069, China.
- Biotech & Biomed Research Institute, Northwest University, Taibai North Road 229, Xi'an, Shaanxi 710069, China
| | - Chenhui Zhu
- Shaanxi Key Laboratory of Degradable Biomedical Materials and Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Taibai North Road 229, Xi'an, Shaanxi 710069, China.
- Biotech & Biomed Research Institute, Northwest University, Taibai North Road 229, Xi'an, Shaanxi 710069, China
| | - Daidi Fan
- Shaanxi Key Laboratory of Degradable Biomedical Materials and Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Taibai North Road 229, Xi'an, Shaanxi 710069, China.
- Biotech & Biomed Research Institute, Northwest University, Taibai North Road 229, Xi'an, Shaanxi 710069, China
| |
Collapse
|
10
|
Tripathi S, Parmar D, Fathima S, Raval S, Singh G. Coenzyme Q10, Biochanin A and Phloretin Attenuate Cr(VI)-Induced Oxidative Stress and DNA Damage by Stimulating Nrf2/HO-1 Pathway in the Experimental Model. Biol Trace Elem Res 2023; 201:2427-2441. [PMID: 35953644 DOI: 10.1007/s12011-022-03358-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 07/12/2022] [Indexed: 11/02/2022]
Abstract
Hexavalent chromium [Cr(VI)] has emerged as a prevailing environmental and occupational contaminant over the past few decades. However, the knowledge is sparse regarding Cr(VI)-induced neurological aberrations, and its remediation through natural bioactive compounds has not been fully explored. This study intended to probe the possible invigorative effects of nutraceuticals such as coenzyme Q10 (CoQ10), biochanin A (BCA), and phloretin (PHL) on Cr(VI) intoxicated Swiss albino mice with special emphasis on Nrf2/HO-1/NQO1 gene expressions. Mice received potassium dichromate (75 ppm) through drinking water and were simultaneously co-treated intraperitoneally with CoQ10 (10 mg/kg), BCA, and PHL (50 mg/kg) each for 30-day treatment period. The statistics highlight the elevated levels of lipid peroxidation (LPO) and protein carbonyl content (PCC) with a concomitant reduction in the superoxide dismutase (SOD), glutathione-S-transferase (GST), reduced glutathione (GSH), total thiols (TT), catalase (CAT), and cholinesterase activities in the Cr(VI)-exposed mice. The collateral assessment of DNA fragmentation, DNA breakages, and induced histological alterations was in conformity with the above findings in conjugation with the dysregulation in the Nrf2 and associated downstream HO-1 and NQO1 gene expressions. Co-treatment with the selected natural compounds reversed the above-altered parameters significantly, thereby bringing cellular homeostasis in alleviating the Cr(VI)-induced conciliated impairments. Our study demonstrated that the combination of different bioactive compounds shields the brain better against Cr(VI)-induced neurotoxicity by revoking the oxidative stress-associated manifestations. These compounds may represent a new potential combination therapy due to their ability to modulate the cellular antioxidant responses by upregulating the Nrf2/HO-1/NQO1 signaling pathway against Cr(VI)-exposed population. HIGHLIGHTS: Cr(VI)-associated heavy metal exposure poses a significant threat to the environment, especially to living organisms. Cr(VI) exposure for 30 days resulted in the free radical's generation that caused neurotoxicity in the Swiss albino mice. Natural compounds such as coenzyme Q10, biochanin A, and phloretin counteracted the neurotoxic effect due to Cr(VI) exposure in scavenging of free radicals by enhancing Nrf2/HO-1/NQO1 gene expressions in maintaining the cellular homeostasis.
Collapse
Affiliation(s)
- Swapnil Tripathi
- Toxicology Department, ICMR-National Institute of Occupational Health, Ahmedabad, 380016, India
- Department of Biochemistry & Forensic Science, Gujarat University, Ahmedabad, 380009, India
| | - Dharati Parmar
- Toxicology Department, ICMR-National Institute of Occupational Health, Ahmedabad, 380016, India
| | - Shabrin Fathima
- Toxicology Department, ICMR-National Institute of Occupational Health, Ahmedabad, 380016, India
| | - Samir Raval
- College of Veterinary Science and Animal Husbandry, Kamdhenu University, Sardarkrushinagar, 385506, India
| | - Gyanendra Singh
- Toxicology Department, ICMR-National Institute of Occupational Health, Ahmedabad, 380016, India.
| |
Collapse
|
11
|
Wang R, Huang Y, Yu L, Li S, Li J, Han B, Zheng X, Zhang Z. The role of mitochondrial dynamics imbalance in hexavalent chromium-induced apoptosis and autophagy in rat testis. Chem Biol Interact 2023; 374:110424. [PMID: 36849043 DOI: 10.1016/j.cbi.2023.110424] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 02/22/2023] [Accepted: 02/23/2023] [Indexed: 02/27/2023]
Abstract
Hexavalent chromium (Cr(VI)) is a ubiquitous environmental pollutant that can cause reproductive toxicity. However, the exact mechanism of Cr(VI)-induced testis toxicity remains largely elusive. This study aims to explore the possible molecular mechanism of Cr(VI)-provoked testicular toxicity. Male Wistar rats were intraperitoneally injected with 0, 2, 4, or 6 mg/kg body weight/day of potassium dichromate (K2Cr2O7), respectively, for 5 weeks. The results revealed that Cr(VI)-treated rat testis presented varying degrees of damage in a dose-dependent manner. Concretely, Cr(VI) administration suppressed Sirtuin 1/Peroxisome proliferator-activated receptor-γ coactivator-1α pathway and led to mitochondrial dynamics disorder, along with the elevation of mitochondrial division and the repression of mitochondrial fusion. Meanwhile, the downstream effector of Sirt1, nuclear factor-erythroid-2-related factor 2 (Nrf2), was downregulated, and correspondingly exacerbated oxidative stress. Mitochondrial dynamics disorder and Nrf2 inhibition collectively contribute to abnormal mitochondrial dynamics in testis, which further promotes apoptosis and autophagy, evidenced by dose-dependently increasing the protein levels and gene expressions of apoptosis-related (including Bcl-2-associated X protein, cytochrome c, and cleaved-caspase 3) and autophagy-related (Beclin-1, ATG4B, and ATG5). Collectively, our results demonstrate that Cr(VI) exposure induced testis apoptosis and autophagy by disrupting the balance of mitochondrial dynamics and the oxidation-reduction process in rats.
Collapse
Affiliation(s)
- Ruonan Wang
- College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Road, Harbin, 150030, China
| | - Yuxiang Huang
- Branch of Animal Husbandry and Veterinary of Heilongjiang Academy of Agricultural Sciences, Qiqihar, 161000, China
| | - Lu Yu
- College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Road, Harbin, 150030, China
| | - Siyu Li
- College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Road, Harbin, 150030, China
| | - Jiayi Li
- College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Road, Harbin, 150030, China
| | - Biqi Han
- College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Road, Harbin, 150030, China
| | - Xiaoyan Zheng
- College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Road, Harbin, 150030, China
| | - Zhigang Zhang
- College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Road, Harbin, 150030, China.
| |
Collapse
|
12
|
Peng K, Yang F, Qiu C, Yang Y, Lan C. Rosmarinic acid protects against lipopolysaccharide-induced cardiac dysfunction via activating Sirt1/PGC-1α pathway to alleviate mitochondrial impairment. Clin Exp Pharmacol Physiol 2023; 50:218-227. [PMID: 36350269 DOI: 10.1111/1440-1681.13734] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 10/17/2022] [Accepted: 11/02/2022] [Indexed: 11/10/2022]
Abstract
Sepsis-induced cardiomyopathy is a decisive factor that plays a critical role in the high mortality of septic patients in the critically ill. Mitochondrial dysfunction occurring during sepsis is a vital contributor to the pathogenesis of myocardial damage. Rosmarinic acid (RA), a natural poly-phenolic compound, has showed cardio-protective and mitochondrial protective effect. The present study was aimed to investigate the effect of RA on sepsis-induced cardiomyopathy. Adult mice were subjected to intraperitoneal injection of saline (control) or lipopolysaccharide (LPS, 5 mg/kg) to mimic sepsis-induced cardiomyopathy. Immediately after LPS challenge, vehicle or RA (100 mg/kg/day) was administrated via gavage. Cardiac function was examined with echocardiographic analyses 12 hours after LPS challenge and cumulative survival of mice was recorded for 8 days. Heart tissues were harvested 12 hours after LPS challenge to perform histological analyses and determine mitochondrial function. We found RA significantly improved cardiac function and survival of LPS-injected mice. Histologically, RA attenuated LPS-mediated cardiomyocyte damage, indicated by decreased cardiomyocyte apoptosis and improved myocardial swollen and disarrangement. Moreover, RA attenuated LPS-mediated myocardial mitochondrial dysfunction, indicated by improved mitochondrial ultrastructure, increased mitochondrial membrane potential (MMP), synthesis of adenosine triphosphate (ATP), markedly decreased reactive oxygen species (ROS) level and alleviated oxidative stress in heart tissues. RA treatment downregulated protein expression of Sirt1 and peroxisome proliferator-activated receptor gamma coactivator-1α (PGC-1α), and Sirt1 inhibition blocked protective effect of RA on LPS-induced myocardial damage and mitochondrial dysfunction. Collectively, RA attenuates LPS-induced cardiac dysfunction via activating Sirt1/PGC-1α pathway to alleviate mitochondrial impairment. It may be a promising cardio-protective drug to be used for septic patients.
Collapse
Affiliation(s)
- Ke Peng
- School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan, China
| | - Fengyuan Yang
- Department of Nephrology, General Hospital of Western Theater Command, Chengdu, China
| | - Chenming Qiu
- Department of Burn and Plastic Surgery, General Hospital of Western Theater Command, Chengdu, China
| | - Yongjian Yang
- School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan, China.,Department of Cardiology, General Hospital of Western Theater Command, Chengdu, China
| | - Cong Lan
- School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan, China.,Department of Cardiology, General Hospital of Western Theater Command, Chengdu, China
| |
Collapse
|
13
|
Liu Y, Li H, Ren P, Che Y, Zhou J, Wang W, Yang Y, Guan L. Polysaccharide from Flammulina velutipes residues protects mice from Pb poisoning by activating Akt/GSK3β/Nrf-2/HO-1 signaling pathway and modulating gut microbiota. Int J Biol Macromol 2023; 230:123154. [PMID: 36610568 DOI: 10.1016/j.ijbiomac.2023.123154] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 12/10/2022] [Accepted: 01/02/2023] [Indexed: 01/06/2023]
Abstract
Lead (Pb) can cause damages to the brain, liver, kidney, endocrine and other systems. Flammulina velutipes residues polysaccharide (FVRP) has been reported to exhibit anti-heavy metal toxicity on yeast, but its regulating mechanism is unclear. Therefore, the protective effect and the underlying mechanism of FVRP on Pb-intoxicated mice were investigated. The results showed that FVRP could reduce liver and kidney function indexes, serum inflammatory factor levels, and increase antioxidant enzyme activity of Pb-poisoned mice. FVRP also exhibited a protective effect on histopathological damages in organs of Pb-intoxicated mice. Furthermore, FVRP attenuated Pb-induced kidney injury by inhibiting apoptosis via activating the Akt/GSK3β/Nrf-2/HO-1 signaling pathway. In addition, based on 16 s rRNA and ITS-2 sequencing data, FVRP regulated the imbalance of gut microbiota to alleviate the damage of Pb-poisoned mice by increasing the abundance of beneficial microbiota (Lachnospiraceae, Lactobacillaceae, Saccharomyces and Mycosphaerella) and decreasing the abundance of harmful microbiota (Muribaculaceae and Pleosporaceae). In conclusion, FVRP inhibited kidney injury in Pb-poisoned mice by inhibiting apoptosis via activating Akt/GSK3β/Nrf-2/HO-1 signaling pathway, and regulating gut fungi and gut bacteria. This study not only revealed the role of gut fungi in Pb-toxicity, but also laid a theoretical foundation for FVRP as a natural drug against Pb-toxicity.
Collapse
Affiliation(s)
- Yingying Liu
- College of Life Sciences, Jilin Agricultural University, Changchun 130118, Jilin, China
| | - Hailong Li
- College of Life Sciences, Jilin Agricultural University, Changchun 130118, Jilin, China
| | - Ping Ren
- College of Life Sciences, Jilin Agricultural University, Changchun 130118, Jilin, China
| | - Yange Che
- College of Life Sciences, Jilin Agricultural University, Changchun 130118, Jilin, China
| | - Jiaming Zhou
- College of Life Sciences, Jilin Agricultural University, Changchun 130118, Jilin, China
| | - Wanting Wang
- College of Life Sciences, Jilin Agricultural University, Changchun 130118, Jilin, China
| | - Yiting Yang
- College of Life Sciences, Jilin Agricultural University, Changchun 130118, Jilin, China
| | - Lili Guan
- College of Life Sciences, Jilin Agricultural University, Changchun 130118, Jilin, China; Engineering Research Center of Bioreactor and Pharmaceutical Development, Ministry of Education, Jilin Agricultural University, Changchun 130118, China.
| |
Collapse
|
14
|
Drishya S, Dhanisha SS, Raghukumar P, Guruvayoorappan C. Amomum subulatum mitigates experimental thoracic radiation-induced lung injury by regulating antioxidant status and inflammatory responses. Food Funct 2023; 14:1545-1559. [PMID: 36655677 DOI: 10.1039/d2fo03208b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Radiation-induced lung injury (RILI) is one of the most prominent complications of thoracic radiotherapy for which effective therapy is still lacking. This study investigates the nutraceutical potential of the culinary spice Amomum subulatum in mitigating thoracic radiation-induced pneumonitis (RP) and pulmonary fibrosis (PF). Mouse models of RP and PF were established by whole thorax irradiation at a dose of 25 gray. C57BL/6 mice were administered with 250 mg per kg body weight of methanolic extract of A. subulatum dry fruits (MEAS) for four consecutive weeks and observed for changes in lung tissue antioxidant activities, oxidative stress parameters, and expression of antioxidant, inflammation, and fibrosis-related genes by semi-quantitative reverse transcription polymerase chain reaction (RT-PCR) and real-time PCR analysis, and histology analysis. MEAS administration reduced radiation-induced oxidative stress by enhancing the expression of Nrf2 and its target genes. Irradiation increased gene expression of inflammatory mediators and lung histology further confirmed the characteristics of RP, which were reduced by MEAS treatment. Immunohistochemistry analysis revealed the potential of MEAS in reducing the radiation-induced elevation of cyclooxygenase 2 expression in the lungs. The late sequel of RILI was manifested as PF, characterized by the elevated expression of pro-fibrotic genes and increased collagen content. However, MEAS administration markedly reduced radiation-induced fibrotic changes in the lungs. These effects might be attributed to the synergistic effect of bioactive polyphenols in MEAS with antioxidant, anti-inflammatory, and anti-fibrotic efficacies. Taken together, this study demonstrates the potential of MEAS in mitigating RILI, suggesting the possible nutraceutical application of A. subulatum against radiation toxicities.
Collapse
Affiliation(s)
- Sudarsanan Drishya
- Laboratory of Immunopharmacology and Experimental Therapeutics, Division of Cancer Research, Regional Cancer Centre, Medical College Campus, Thiruvananthapuram 695011 (Research Centre, University of Kerala), Kerala, India.
| | - Suresh Sulekha Dhanisha
- Laboratory of Immunopharmacology and Experimental Therapeutics, Division of Cancer Research, Regional Cancer Centre, Medical College Campus, Thiruvananthapuram 695011 (Research Centre, University of Kerala), Kerala, India.
| | - Paramu Raghukumar
- Division of Radiation Physics, Regional Cancer Centre, Medical College Campus, Thiruvananthapuram 695011, Kerala, India
| | - Chandrasekharan Guruvayoorappan
- Laboratory of Immunopharmacology and Experimental Therapeutics, Division of Cancer Research, Regional Cancer Centre, Medical College Campus, Thiruvananthapuram 695011 (Research Centre, University of Kerala), Kerala, India.
| |
Collapse
|
15
|
Owumi SE, Otunla MT, Arunsi UO. A biochemical and histology experimental approach to investigate the adverse effect of chronic lead acetate and dietary furan on rat lungs. Biometals 2023; 36:201-216. [PMID: 36418810 DOI: 10.1007/s10534-022-00472-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 11/18/2022] [Indexed: 11/25/2022]
Abstract
Despite lead widespread environmental pollution, its effect on humans and livestock's respiratory systems remains inadequately investigated. Similarly, furan is industrially relevant with enormous environmental presence. Lead and furan can be ingested -via lead pipes contaminated water and heat-treated food respectively. Thus, humans are inadvertently exposed continuously. Lead toxicity is well studied, and furan have earned a position on the IARC's list of carcinogens. Here, we evaluate the effect of co-exposure to lead and furan on rat lungs. Thirty Wistar rats were grouped randomly into six cohorts (n = 6) consisting of a control group, furan alone group, lead acetate (PbAc) alone group and three other groups co-exposure to graded PbAc (1, 10 & 100 µg/L) alongside a constant furan (8 mg/kg) dose. After twenty-eight days, enzymatic and non-enzymatic antioxidant, oxidative stress and inflammatory biomarkers were biochemically evaluated. The ELISA-based technique was used to measure oxidative-DNA damage (8-OHG), tumour protein 53 (TP53) expressed and tumour necrotic factor-alpha (TNF-α) level. Dose-dependent increases (p < 0.05) in reactive oxygen and nitrogen species, malondialdehyde, nitric oxide, myeloperoxidase, TNF-α and TP53 level, with an associated decrease (p < 0.05) in enzymatic and non-enzymatic antioxidants were observed in the furan, PbAc and the co-treated rats relative to the control. In addition, PbAc and furan treatment impaired the histoarchitectural structures of rat lungs, exemplified by pro-inflammatory cell infiltration and trafficking into the bronchioles and alveolar spaces. Co-exposure to furan and PbAc may contribute to lung dysfunction via loss of redox balance, genomic damage/instability, inflammation and disrupted histoarchitectural features.
Collapse
Affiliation(s)
- Solomon E Owumi
- Cancer Research and Molecular Biology Laboratories, Department of Biochemistry, Faculty of Basic Medical Sciences, University of Ibadan, CRMB Laboratories, Room NB 302, Ibadan, 200004, Nigeria.
| | - Moses T Otunla
- Cancer Research and Molecular Biology Laboratories, Department of Biochemistry, Faculty of Basic Medical Sciences, University of Ibadan, CRMB Laboratories, Room NB 302, Ibadan, 200004, Nigeria
| | - Uche O Arunsi
- Department of Cancer Immunology and Biotechnology, School of Medicine, University of Nottingham, Nottingham, NG7 2RD, UK
| |
Collapse
|
16
|
Han B, Li J, Li S, Liu Y, Zhang Z. Effects of thiacloprid exposure on microbiota-gut-liver axis: Multiomics mechanistic analysis in Japanese quails. JOURNAL OF HAZARDOUS MATERIALS 2023; 442:130082. [PMID: 36209609 DOI: 10.1016/j.jhazmat.2022.130082] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 09/24/2022] [Accepted: 09/26/2022] [Indexed: 06/16/2023]
Abstract
Neonicotinoid insecticides (NNIs) are the most widely used class of pesticides globally. However, NNIs may cause adverse health effects, including chronic liver disease, and perturbation of the gut microbiota. Thiacloprid (THI) is one of the NNIs widely used in agriculture. Therefore, it is essential to elucidate effects of THI on the microbiota-gut-liver axis to assess the risk of chronic liver disease following exposure to NNIs. This study aimed at investigating whether THI exposure promoted liver injury by altering the gut microbiota and related metabolites. In this study, healthy male quails were exposed to 2 or 4 mg/kg THI or 0.75 % (w/v) saline once daily for 6 weeks, respectively. Metabolomics, 16S rRNA sequencing, and transcriptomic methods were performed to analyze the toxic mechanisms of THI in Japanese quails. We found that THI evoked damage and disruption to intestinal barrier function, leading to increased harmful substances such as lipopolysaccharide (LPS) and phenylacetic acid entering the liver. Besides, our results showed significantly altered hepatic bile acid and cholesterol metabolism in THI-exposed quails, with abnormal liver lipid metabolism, showing severe liver injury, fibrosis, and steatosis compared with the control quails. In conclusion, THI exposure aggravates liver injury via microbiota-gut-liver axis.
Collapse
Affiliation(s)
- Biqi Han
- College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Road, Harbin 150030, China
| | - Jiayi Li
- College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Road, Harbin 150030, China
| | - Siyu Li
- College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Road, Harbin 150030, China
| | - Yan Liu
- Life Sciences and Food Engineering, Inner Mongolia Minzu University, Tongliao 028000, China
| | - Zhigang Zhang
- College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Road, Harbin 150030, China.
| |
Collapse
|
17
|
Alrawaiq NS, Atia A, Abdullah A. Effect of Administration of an Equal Dose of Selected Dietary Chemicals on Nrf2 Nuclear Translocation in the Mouse Liver. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2023; 2023:9291417. [PMID: 37077659 PMCID: PMC10110381 DOI: 10.1155/2023/9291417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 10/05/2022] [Accepted: 10/06/2022] [Indexed: 04/21/2023]
Abstract
Certain dietary chemicals influenced the expression of chemopreventive genes through the Nrf2-Keap1 pathway. However, the difference in Nrf2 activation potency of these chemicals is not well studied. This study is aimed at determining the difference in the potency of liver Nrf2 nuclear translocation induced by the administration of equal doses of selected dietary chemicals in mice. Male ICR white mice were administered 50 mg/kg of sulforaphane, quercetin, curcumin, butylated hydroxyanisole, and indole-3-carbinol for 14 days. On day 15, the animals were sacrificed, and their livers were isolated. Liver nuclear extracts were prepared, and Nrf2 nuclear translocation was detected through Western blotting. To determine the implication of the Nrf2 nuclear translocation on the expression levels of several Nrf2-regulated genes, liver RNA was extracted for qPCR assay. Equal doses of sulforaphane, quercetin, curcumin, butylated hydroxyanisole, and indole-3-carbinol significantly induced the nuclear translocation of Nrf2 with different intensities and subsequently increased the expression of Nrf2-regulated genes with an almost similar pattern as the Nrf2 nuclear translocation intensities (sulforaphane > butylated hydroxyanisole = indole-3-carbinol > curcumin > quercetin). In conclusion, sulforaphane is the most potent dietary chemical that induces the Nrf2 translocation into the nuclear fraction in the mouse liver.
Collapse
Affiliation(s)
- Nadia Salem Alrawaiq
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, 56000 Cheras, Kuala Lumpur, Malaysia
- Department of Pharmacology, Faculty of Pharmacy, Sebha University, Sebha, Libya
| | - Ahmed Atia
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, 56000 Cheras, Kuala Lumpur, Malaysia
- Department of Anaesthesia and Intensive Care, Faculty of Medical Technology, Tripoli University, Tripoli, Libya
| | - Azman Abdullah
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, 56000 Cheras, Kuala Lumpur, Malaysia
| |
Collapse
|
18
|
Liu Y, Guo X, Yu L, Huang Y, Guo C, Li S, Yang X, Zhang Z. Luteolin alleviates inorganic mercury-induced liver injury in quails by resisting oxidative stress and promoting mercury ion excretion. Mol Biol Rep 2023; 50:399-408. [PMID: 36336778 DOI: 10.1007/s11033-022-08049-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Accepted: 10/19/2022] [Indexed: 11/08/2022]
Abstract
BackgroundInorganic mercury is a well-known toxic substance that can cause oxidative stress and liver damage. Luteolin (Lut) is a kind of natural antioxidant, which is widely found in plants. Therefore, we focused on exploring the alleviative effect of Lut on liver injury induced by mercuric chloride (HgCl2), and the potential molecular mechanism of eliminating mercury ions in quails.Methods and resultsTwenty-one-day-old male quails were randomly split into four groups: control group, Lut group, HgCl2 group, and HgCl2 + Lut group. The test period was 12 weeks. The results showed that Lut could significantly ameliorate oxidative stress, the release of inflammatory factors, and liver damage caused by HgCl2, and reduce the accumulation of Hg2+ in quail liver. Furthermore, Lut evidently increased the levels of protein kinase C α (PKCα), nuclear factor-erythroid-2-related factor 2 (Nrf2), and its downstream proteins, and inhibited nuclear factor-kappaB (NF-κB) production in the liver of quails treated by HgCl2.ConclusionsTo sum up, our results suggest that Lut not only reduces the levels of oxidative stress and inflammation, but also promotes the excretion of Hg2+ by promoting the PKCα/Nrf2 signaling pathway to alleviate HgCl2-induced liver injury in quails.
Collapse
Affiliation(s)
- Yan Liu
- College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Road, Harbin, 150030, China.,College of Life Sciences and Food Engineering, Inner Mongolia Minzu University, Tongliao, 028000, China
| | - Xinyu Guo
- College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Road, Harbin, 150030, China
| | - Lu Yu
- College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Road, Harbin, 150030, China
| | - Yuxiang Huang
- Branch of Animal Husbandry and Veterinary of Heilongjiang Academy of Agricultural Sciences, Qiqihar, 161000, China
| | - Changming Guo
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, 130062, China
| | - Siyu Li
- College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Road, Harbin, 150030, China
| | - Xu Yang
- College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Road, Harbin, 150030, China
| | - Zhigang Zhang
- College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Road, Harbin, 150030, China.
| |
Collapse
|
19
|
Yan L, Yu Z, Lin P, Qiu S, He L, Wu Z, Ma L, Gu Y, He L, Dai Z, Zhou C, Hong P, Li C. Polystyrene nanoplastics promote the apoptosis in Caco-2 cells induced by okadaic acid more than microplastics. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 249:114375. [PMID: 36508836 DOI: 10.1016/j.ecoenv.2022.114375] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 10/28/2022] [Accepted: 11/28/2022] [Indexed: 06/17/2023]
Abstract
Microplastics (MPs) are widespread in the environment and can be ingested through food, water, and air, posing a threat to human health. In addition, MPs can have a potential combined effect with other toxic compounds. Polystyrene (PS) has been shown to enhance the cytotoxicity of okadaic acid (OA). However, it remains unclear whether this enhancement effect is related to the size of PS particles. In this study, we investigated the mechanism of the combined effect of PS microplastics (PS-MPs) or PS nanoplastics (PS-NPs) and OA on Caco-2 cells. The results indicated that PS-NPs enhanced the cytotoxicity of OA and induced endoplasmic reticulum (ER) stress-mediated apoptosis in Caco-2 cells, compared to PS-MPs. Specifically, PS-NPs and OA cause more severe oxidative stress, lactate dehydrogenase (LDH) release, and mitochondrial membrane depolarization. Furthermore, it induced intracellular calcium overload through store-operated channels (SOCs) and activated the PERK/ATF-4/CHOP pathway to cause ER stress. ER stress promoted mitochondrial damage and finally activated the caspase family to induce apoptosis. This study provided an indirect basis for the assessment of the combined toxicity of MPs or NPs with OA.
Collapse
Affiliation(s)
- Linhong Yan
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Zhanjiang 524088, PR China
| | - Zihua Yu
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Zhanjiang 524088, PR China
| | - Peichun Lin
- School of Chemistry and Environment, Guangdong Ocean University, Zhanjiang 524088, PR China
| | - Shijie Qiu
- School of Chemistry and Environment, Guangdong Ocean University, Zhanjiang 524088, PR China
| | - Liuying He
- School of Chemistry and Environment, Guangdong Ocean University, Zhanjiang 524088, PR China
| | - Zijie Wu
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Zhanjiang 524088, PR China
| | - Lihua Ma
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Zhanjiang 524088, PR China
| | - Yanggao Gu
- School of Chemistry and Environment, Guangdong Ocean University, Zhanjiang 524088, PR China
| | - Lei He
- School of Chemistry and Environment, Guangdong Ocean University, Zhanjiang 524088, PR China
| | - Zhenqing Dai
- Shenzhen Institute of Guangdong Ocean University, Shenzhen 518108, PR China.
| | - Chunxia Zhou
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Zhanjiang 524088, PR China
| | - Pengzhi Hong
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Zhanjiang 524088, PR China
| | - Chengyong Li
- School of Chemistry and Environment, Guangdong Ocean University, Zhanjiang 524088, PR China; Shenzhen Institute of Guangdong Ocean University, Shenzhen 518108, PR China.
| |
Collapse
|
20
|
Ala M. Sestrin2 Signaling Pathway Regulates Podocyte Biology and Protects against Diabetic Nephropathy. J Diabetes Res 2023; 2023:8776878. [PMID: 36818747 PMCID: PMC9937769 DOI: 10.1155/2023/8776878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/22/2022] [Accepted: 02/04/2023] [Indexed: 02/12/2023] Open
Abstract
Sestrin2 regulates cell homeostasis and is an upstream signaling molecule for several signaling pathways. Sestrin2 leads to AMP-activated protein kinase- (AMPK-) and GTPase-activating protein activity toward Rags (GATOR) 1-mediated inhibition of mammalian target of rapamycin complex 1 (mTORC1), thereby enhancing autophagy. Sestrin2 also improves mitochondrial biogenesis via AMPK/Sirt1/peroxisome proliferator-activated receptor-gamma coactivator 1 alpha (PGC-1α) signaling pathway. Blockade of ribosomal protein synthesis and augmentation of autophagy by Sestrin2 can prevent misfolded protein accumulation and attenuate endoplasmic reticulum (ER) stress. In addition, Sestrin2 enhances P62-mediated autophagic degradation of Keap1 to release nuclear factor erythroid 2-related factor 2 (Nrf2). Nrf2 release by Sestrin2 vigorously potentiates antioxidant defense in diabetic nephropathy. Impaired autophagy and mitochondrial biogenesis, severe oxidative stress, and ER stress are all deeply involved in the development and progression of diabetic nephropathy. It has been shown that Sestrin2 expression is lower in the kidney of animals and patients with diabetic nephropathy. Sestrin2 knockdown aggravated diabetic nephropathy in animal models. In contrast, upregulation of Sestrin2 enhanced autophagy, mitophagy, and mitochondrial biogenesis and suppressed oxidative stress, ER stress, and apoptosis in diabetic nephropathy. Consistently, overexpression of Sestrin2 ameliorated podocyte injury, mesangial proliferation, proteinuria, and renal fibrosis in animal models of diabetic nephropathy. By suppressing transforming growth factor beta (TGF-β)/Smad and Yes-associated protein (YAP)/transcription enhancer factor 1 (TEF1) signaling pathways in experimental models, Sestrin2 hindered epithelial-mesenchymal transition and extracellular matrix accumulation in diabetic kidneys. Moreover, modulation of the downstream molecules of Sestrin2, for instance, augmentation of AMPK or Nrf2 signaling and inhibition of mTORC1, has been protective in diabetic nephropathy. Regarding the beneficial effects of Sestrin2 on diabetic nephropathy and its interaction with several signaling molecules, it is worth targeting Sestrin2 in diabetic nephropathy.
Collapse
Affiliation(s)
- Moein Ala
- School of Medicine, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| |
Collapse
|
21
|
Eleutheroside B ameliorated high altitude pulmonary edema by attenuating ferroptosis and necroptosis through Nrf2-antioxidant response signaling. Biomed Pharmacother 2022; 156:113982. [DOI: 10.1016/j.biopha.2022.113982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/31/2022] [Accepted: 11/04/2022] [Indexed: 11/09/2022] Open
|
22
|
Chen X, Tong G, Chen S. Basic fibroblast growth factor protects against liver ischemia-reperfusion injury via the Nrf2/Hippo signaling pathway. Tissue Cell 2022; 79:101921. [DOI: 10.1016/j.tice.2022.101921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 09/06/2022] [Accepted: 09/06/2022] [Indexed: 11/25/2022]
|
23
|
Zhang Y, Zhang Z, Wang J, Zhang X, Zhao J, Bai N, Vijayalakshmi A, Huo Q. Scutellarin alleviates cerebral ischemia/reperfusion by suppressing oxidative stress and inflammatory responses via MAPK/NF-κB pathways in rats. ENVIRONMENTAL TOXICOLOGY 2022; 37:2889-2896. [PMID: 36036213 DOI: 10.1002/tox.23645] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 08/09/2022] [Accepted: 08/15/2022] [Indexed: 06/15/2023]
Abstract
Neuroinflammation contributes to the progression of cerebral ischemia/reperfusion (I/R) damage. Scutellarin (SL) is a glucuronide flavonoid that has apoptotic, anti-inflammatory, and anti-tumor properties. It is anti-oxidant and anti-inflammatory mechanism as a neuroprotective against ischemic brain injury is unknown. The purpose of the study was to examine the role and mechanism of SL in preventing I/R damage in a rat model. SL (40 and 80 mg/kg) was given to the rats for 14 days before the ischemic stroke. SL administration prevented I/R mediated brain injury, and neuronal apoptosis. Malondialdehyde, superoxide dismutase, glutathione, IL-6, and IL-1β and nitric oxide were modulated by SL. SL suppressed the p65 and p38 expressions in particular. The findings show that SL protects rats from cerebral damage caused by I/R through the nuclear factor kappa-B p65 and p38 mitogen-activated protein kinase signaling pathway. Thus, SL protected the brain of rats from ischemic injury by inhibiting the inflammatory process.
Collapse
Affiliation(s)
- Yuming Zhang
- Department of Anesthesiology, Shaanxi Provincial People's Hospital, Xi'an, China
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, China
| | - Zhen Zhang
- Department of Anesthesiology, The Second Affiliated Hospital of Air Force Medical University, Xi'an, China
| | - Jun Wang
- Department of Anesthesiology, Shaanxi Provincial Cancer Hospital, Xi'an, China
| | - Xiajing Zhang
- Institute of Medical Research, Nothwestern Polytechnical University, Xi'an, China
| | - Jing Zhao
- Department of Anesthesiology, Shaanxi Provincial People's Hospital, Xi'an, China
| | - Ning Bai
- Department of Anesthesiology, Shaanxi Provincial People's Hospital, Xi'an, China
| | | | - Qifan Huo
- Department of Anesthesiology, Shaanxi Provincial People's Hospital, Xi'an, China
| |
Collapse
|
24
|
Dong W, Chen W, Zou H, Shen Z, Yu D, Chen W, Jiang H, Yan X, Yu Z. Ginsenoside Rb1 Prevents Oxidative Stress-Induced Apoptosis and Mitochondrial Dysfunction in Muscle Stem Cells via NF- κB Pathway. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:9159101. [PMID: 36466088 PMCID: PMC9715322 DOI: 10.1155/2022/9159101] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 09/30/2022] [Accepted: 10/10/2022] [Indexed: 07/22/2023]
Abstract
Sarcopenia, featured by the progressive loss of skeletal muscle function and mass, is associated with the impaired function of muscle stem cells (MuSCs) caused by increasing oxidative stress in senescent skeletal muscle tissue during aging. Intact function of MuSCs maintains the regenerative potential as well as the homeostasis of skeletal muscle tissues during aging. Ginsenoside Rb1, a natural compound from ginseng, exhibited the effects of antioxidation and against apoptosis. However, its effects of restoring MuSC function during aging and improving age-related sarcopenia remained unknown. In this study, we investigated the role of Rb1 in improving MuSC function and inhibiting apoptosis by reducing oxidative stress levels. We found that Rb1 inhibited the accumulation of reactive oxygen species (ROS) and protected the cells from oxidative stress to attenuate the H2O2-induced cytotoxicity. Rb1 also blocked oxidative stress-induced apoptosis by inhibiting the activation of caspase-3/9, which antagonized the decrease in mitochondrial content and the increase in mitochondrial abnormalities caused by oxidative stress via promoting the protein expression of genes involved in mitochondrial biogenesis. Mechanistically, it was proven that Rb1 exerted its antioxidant effects and avoided the apoptosis of myoblasts by targeting the core regulator of the nuclear factor-kappa B (NF-κB) signal pathway. Therefore, these findings suggest that Rb1 may have a beneficial role in the prevention and treatment of MuSC exhaustion-related diseases like sarcopenia.
Collapse
Affiliation(s)
- Wenxi Dong
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Department of Gastrointestinal Surgery, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Wenhao Chen
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Department of Gastrointestinal Surgery, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Hongbo Zou
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Department of Gastrointestinal Surgery, People's Hospital of Deyang City, Deyang, Sichuan, China
| | - Zile Shen
- Department of Gastrointestinal Surgery, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Dingye Yu
- Department of General Surgery, Huadong Hospital, Fudan University, Shanghai, China
| | - Weizhe Chen
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Department of Gastrointestinal Surgery, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Haojie Jiang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xialin Yan
- Department of Gastrointestinal Surgery, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
- Department of Colorectal Anal Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Zhen Yu
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Department of Gastrointestinal Surgery, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| |
Collapse
|
25
|
Docosahexaenoic Acid Alleviates Brain Damage by Promoting Mitophagy in Mice with Ischaemic Stroke. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:3119649. [PMID: 36254232 PMCID: PMC9569200 DOI: 10.1155/2022/3119649] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 09/04/2022] [Accepted: 09/15/2022] [Indexed: 12/06/2022]
Abstract
Mitophagy, the selective removal of damaged mitochondria through autophagy, is crucial for mitochondrial turnover and quality control. Docosahexaenoic acid (DHA), an essential omega-3 fatty acid, protects mitochondria in various diseases. This study aimed to investigate the neuroprotective role of DHA in ischaemic stroke models in vitro and in vivo and its involvement in mitophagy and mitochondrial dysfunction. A mouse model of ischaemic stroke was established through middle cerebral artery occlusion (MCAO). To simulate ischaemic stroke in vitro, PC12 cells were subjected to oxygen–glucose deprivation (OGD). Immunofluorescence analysis, western blotting (WB), electron microscopy (EM), functional behavioural tests, and Seahorse assay were used for analysis. DHA treatment significantly alleviated the brain infarction volume, neuronal apoptosis, and behavioural dysfunction in mice with ischaemic stroke. In addition, DHA enhanced mitophagy by significantly increasing the number of autophagosomes and LC3-positive mitochondria in neurons. The Seahorse assay revealed that DHA increased glutamate and succinate metabolism in neurons after ischaemic stroke. JC-1 and MitoSox staining, and evaluation of ATP levels indicated that DHA-induced mitophagy alleviated reactive oxygen species (ROS) accumulation and mitochondrial injury. Mechanistically, DHA improved mitochondrial dynamics by increasing the expression of dynamin-related protein 1 (Drp1), LC3, and the mitophagy clearance protein Pink1/Parkin. Mdivi-1, a specific mitophagy inhibitor, abrogated the neuroprotective effects of DHA, indicating that DHA protected neurons by enhancing mitophagy. Therefore, DHA can protect against neuronal apoptosis after stroke by clearing the damaged mitochondria through Pink1/Parkin-mediated mitophagy and by alleviating mitochondrial dysfunction.
Collapse
|
26
|
Deng N, Lv Y, Bing Q, Li S, Han B, Jiang H, Yang Q, Wang X, Wu P, Liu Y, Zhang Z. Inhibition of the Nrf2 signaling pathway involved in imidacloprid-induced liver fibrosis in Coturnix japonica. ENVIRONMENTAL TOXICOLOGY 2022; 37:2354-2365. [PMID: 35716027 DOI: 10.1002/tox.23601] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 06/01/2022] [Accepted: 06/03/2022] [Indexed: 06/15/2023]
Abstract
Imidacloprid (IMI) is a kind of widely used neonicotinoid insecticide. However, the toxicity of IMI is not only applied to target pests but also causes serious negative effects on birds and other creatures. Our previous studies have shown that long-term exposure to IMI can induce liver fibrosis in quails. However, the specific mechanism of quail liver fibrosis induced by IMI is not completely clear. Accordingly, the purpose of this study is to further clarify the potential molecular mechanism of IMI-induced liver fibrosis in quails. Japanese quails (Coturnix japonica) were treated with/without IMI (intragastric administration with 6 mg/kg body weight) in the presence/absence of luteolin (Lut) (fed with 800 mg/kg) for 90 days. The results reveal that IMI can induce hepatic fibrosis, oxidative stress, fatty degeneration, inflammation, and the down-expression of nuclear factor-E2-related factor-2 (Nrf2). Furthermore, the treatment of Lut, a kind of Nrf2 activator, increased the expression of Nrf2 in livers and alleviated liver fibrosis in quails. Altogether, our study demonstrates that inhibition of the Nrf2 pathway is the key to liver fibrosis induced by IMI in quails. These results provide a new understanding for the study of the toxicity of IMI and a practical basis for the treatment of liver fibrosis caused by IMI.
Collapse
Affiliation(s)
- Ning Deng
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Yueying Lv
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Northeast Agricultural University, Harbin, China
- Department of Laboratory Animal Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qizheng Bing
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Northeast Agricultural University, Harbin, China
| | - Siyu Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Northeast Agricultural University, Harbin, China
| | - Bing Han
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Northeast Agricultural University, Harbin, China
| | - Huijie Jiang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Northeast Agricultural University, Harbin, China
| | - Qingyue Yang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Xiaoqiao Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Pengfei Wu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Yan Liu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
- College of Life Sciences and Food Engineering, Inner Mongolia Minzu University, Tongliao, China
| | - Zhigang Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Northeast Agricultural University, Harbin, China
| |
Collapse
|
27
|
Omaveloxolone attenuates the sepsis-induced cardiomyopathy via activating the nuclear factor erythroid 2-related factor 2. Int Immunopharmacol 2022; 111:109067. [PMID: 35908503 DOI: 10.1016/j.intimp.2022.109067] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 07/12/2022] [Accepted: 07/13/2022] [Indexed: 12/14/2022]
Abstract
Sepsis-induced cardiomyopathy (SIC) is a common complication of sepsis and is the main reason for the high mortality in sepsis patients. More recent studies have indicated that activating nuclear factor erythroid 2-related factor 2 (Nrf2) signaling plays a protective role in SIC. As a potent activator of Nrf2, Omaveloxolone plays a pivotal role in defending against oxidative stress and the inflammatory response. Thus, we examined the efficacy of omaveloxolone in SIC. In the present study, the mice were injected intraperitoneally with a single dose of LPS (10 mg/kg) for 12 h to induce SIC. The data in our study indicated that omaveloxolone administration significantly improved cardiac injury and dysfunction in LPS-induced SIC. In addition, omaveloxolone administration reduced SIC-related cardiac oxidative stress, the inflammatory response and cardiomyocyte apoptosis in mice. In addition, omaveloxolone administration also improved LPS-induced cardiomyocyte injury in an in vitro model using H9C2 cells. Moreover, knockdown of Nrf2 by si-Nrf2 abolished the omaveloxolone-mediated cardioprotective effects. In conclusion, omaveloxolone has potent cardioprotective potential in treating sepsis and SIC via activation of the Nrf2 signaling pathway.
Collapse
|
28
|
Li F, Wei R, Huang M, Chen J, Li P, Ma Y, Chen X. Luteolin can ameliorate renal interstitial fibrosis-induced renal anaemia through the SIRT1/FOXO3 pathway. Food Funct 2022; 13:11896-11914. [DOI: 10.1039/d2fo02477b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Luteolin is a natural flavonoid exhibiting multiple pharmacological activities.
Collapse
Affiliation(s)
- Fei Li
- Nankai University School of Medicine, Nankai University, Tianjin 300073, China
- State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Department of Nephrology, The General Hospital of the People's Liberation Army, Beijing 100853, China
- Department of Surgical Intensive Critical Unit, Beijing Chao-yang Hospital, Capital Medical University, Beijing, China
| | - Ribao Wei
- Nankai University School of Medicine, Nankai University, Tianjin 300073, China
- State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Department of Nephrology, The General Hospital of the People's Liberation Army, Beijing 100853, China
| | - Mengjie Huang
- State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Department of Nephrology, The General Hospital of the People's Liberation Army, Beijing 100853, China
| | - Jianwen Chen
- State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Department of Nephrology, The General Hospital of the People's Liberation Army, Beijing 100853, China
| | - Ping Li
- State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Department of Nephrology, The General Hospital of the People's Liberation Army, Beijing 100853, China
| | - Yue Ma
- State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Department of Nephrology, The General Hospital of the People's Liberation Army, Beijing 100853, China
| | - Xiangmei Chen
- Nankai University School of Medicine, Nankai University, Tianjin 300073, China
- State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Department of Nephrology, The General Hospital of the People's Liberation Army, Beijing 100853, China
| |
Collapse
|
29
|
Kou RW, Xia B, Han R, Li ZQ, Yang JR, Yin X, Gao YQ, Gao JM. Neuroprotective effects of a new triterpenoid from edible mushroom on oxidative stress and apoptosis through the BDNF/TrkB/ERK/CREB and Nrf2 signaling pathway in vitro and in vivo. Food Funct 2022; 13:12121-12134. [DOI: 10.1039/d2fo02854a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Inonotus obliquus (Fr.) Pilat is an edible mushroom which is used to produce tea and syrup due to its medicinal properties.
Collapse
Affiliation(s)
- Rong-Wei Kou
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, Shaanxi, People's Republic of China
| | - Bing Xia
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, Shaanxi, People's Republic of China
| | - Rui Han
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, Shaanxi, People's Republic of China
| | - Zhi-Qing Li
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, Shaanxi, People's Republic of China
| | - Jun-Ren Yang
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, Shaanxi, People's Republic of China
| | - Xia Yin
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, Shaanxi, People's Republic of China
| | - Yu-Qi Gao
- College of Food Science and Technology, Northwest University, Xi'an, 710069, Shaanxi, People's Republic of China
| | - Jin-Ming Gao
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, Shaanxi, People's Republic of China
| |
Collapse
|