1
|
Wu S, Liu M, Wang X, Wang S. The histone lactylation of AIM2 influences the suppression of ferroptosis by ACSL4 through STAT5B and promotes the progression of lung cancer. FASEB J 2025; 39:e70308. [PMID: 39792364 DOI: 10.1096/fj.202402139r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 12/03/2024] [Accepted: 12/27/2024] [Indexed: 01/12/2025]
Abstract
Lung cancer progression is characterized by intricate epigenetic changes that impact critical metabolic processes and cell death pathways. In this study, we investigate the role of histone lactylation at the AIM2 locus and its downstream effects on ferroptosis regulation and lung cancer progression. We utilized a combination of biochemical assays, including chromatin immunoprecipitation (ChIP), quantitative real-time PCR (qRT-PCR), and western blotting to assess histone lactylation levels and gene expression. To evaluate the functional consequences, we employed gain- and loss-of-function approaches using shikonin treatment and siRNA knockdowns in lung cancer cell lines. Additionally, we assessed the impact of these interventions on ferroptosis markers and lung cancer cell viability. Our results reveal that increased histone lactylation at the AIM2 locus correlates with enhanced transcriptional activity of AIM2, leading to reduced ferroptosis through modulation of ACSL4 and STAT5B. Furthermore, we demonstrate that shikonin, a natural naphthoquinone derivative, effectively downregulates PKM2 and AIM2 expression, thereby inhibiting lung cancer progression by counteracting the effects of histone lactylation on AIM2 expression. These findings highlight the importance of histone lactylation in regulating AIM2 expression and ferroptosis in lung cancer cells. They also suggest that targeting PKM2 and AIM2, particularly through the use of shikonin, could be a promising strategy for developing novel therapies against lung cancer.
Collapse
Affiliation(s)
- Songze Wu
- Department of Respiratory and Critical Care Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, West China Hospital, Sichuan University, Chengdu, China
| | - Man Liu
- Department of Cardiology, CCU, West China Hospital, Sichuan University, Chengdu, China
| | - Xu Wang
- Department of Hepatobiliary Surgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Department of Hepatobiliary Surgery, Chinese Academy of Science Sichuan Translational Medicine Research Hospital, Chengdu, China
| | - Shan Wang
- Ultrasound in Cardiac Electrophysiology and Biomechanics Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Department of Cardiovascular Ultrasound & Noninvasive Cardiology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
2
|
Kalyanaraman B, Cheng G, Hardy M. The role of short-chain fatty acids in cancer prevention and cancer treatment. Arch Biochem Biophys 2024; 761:110172. [PMID: 39369836 DOI: 10.1016/j.abb.2024.110172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 09/25/2024] [Accepted: 10/03/2024] [Indexed: 10/08/2024]
Abstract
Short-chain fatty acids (SCFAs) are microbial metabolites in the gut that may play a role in cancer prevention and treatment. They affect the metabolism of both normal and cancer cells, regulating various cellular energetic processes. SCFAs also inhibit histone deacetylases, which are targets for cancer therapy. The three main SCFAs are acetate, propionate, and butyrate, which are transported into cells through specific transporters. SCFAs may enhance the efficacy of chemotherapeutic agents and modulate immune cell metabolism, potentially reprogramming the tumor microenvironment. Although SCFAs and SCFA-generating microbes enhance therapeutic efficacy of several forms of cancer therapy, published data also support the opposing viewpoint that SCFAs mitigate the efficacy of some cancer therapies. Therefore, the relationship between SCFAs and cancer is more complex, and this review discusses some of these aspects. Clearly, further research is needed to understand the role of SCFAs, their mechanisms, and applications in cancer prevention and treatment.
Collapse
Affiliation(s)
- Balaraman Kalyanaraman
- Department of Biophysics, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, United States.
| | - Gang Cheng
- Department of Biophysics, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, United States
| | - Micael Hardy
- Aix-Marseille Univ, CNRS, ICR, UMR 7273, Marseille, 13013, France
| |
Collapse
|
3
|
Liu Q, Yao F, Wu L, Xu T, Na J, Shen Z, Liu X, Shi W, Zhao Y, Liao Y. Heterogeneity and interplay: the multifaceted role of cancer-associated fibroblasts in the tumor and therapeutic strategies. Clin Transl Oncol 2024; 26:2395-2417. [PMID: 38602644 DOI: 10.1007/s12094-024-03492-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 03/31/2024] [Indexed: 04/12/2024]
Abstract
The journey of cancer development is a multifaceted and staged process. The array of treatments available for cancer varies significantly, dictated by the disease's type and stage. Cancer-associated fibroblasts (CAFs), prevalent across various cancer types and stages, play a pivotal role in tumor genesis, progression, metastasis, and drug resistance. The strategy of concurrently targeting cancer cells and CAFs holds great promise in cancer therapy. In this review, we focus intently on CAFs, delving into their critical role in cancer's progression. We begin by exploring the origins, classification, and surface markers of CAFs. Following this, we emphasize the key cytokines and signaling pathways involved in the interplay between cancer cells and CAFs and their influence on the tumor immune microenvironment. Additionally, we examine current therapeutic approaches targeting CAFs. This article underscores the multifarious roles of CAFs within the tumor microenvironment and their potential applications in cancer treatment, highlighting their importance as key targets in overcoming drug resistance and enhancing the efficacy of tumor therapies.
Collapse
Affiliation(s)
- Qiaoqiao Liu
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, 530021, China
| | - Fei Yao
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, 530021, China
| | - Liangliang Wu
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, 530021, China
| | - Tianyuan Xu
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, 530021, China
| | - Jintong Na
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, 530021, China
| | - Zhen Shen
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, 530021, China
| | - Xiyu Liu
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, 530021, China
| | - Wei Shi
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, 530021, China.
- Department of Oncology, The First Affiliated Tumor Hospital, Guangxi University of Chinese Medicine, Nanning, 530021, Guangxi, China.
| | - Yongxiang Zhao
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, 530021, China.
| | - Yuan Liao
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, 530021, China.
| |
Collapse
|
4
|
Dang Y, He X, Liu X, Wang Y, Geng S, Cheng Y, Ma H, Zhao X. Causal associations between constipation and pan-cancer: a bidirectional Mendelian randomization study. Front Oncol 2024; 14:1428003. [PMID: 39346734 PMCID: PMC11427234 DOI: 10.3389/fonc.2024.1428003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Accepted: 08/26/2024] [Indexed: 10/01/2024] Open
Abstract
Objective Observational studies have suggested a potential association between constipation and several cancers. However, the causal relationship between constipation and cancer remains unclear. The purpose of this study is to explore the potential causal relationship between constipation and pan-cancer using Mendelian Randomization (MR) methods. Methods We performed a bidirectional MR analysis using publicly available summary data from Genome-Wide Association Studies (GWAS) statistics. The Inverse Variance Weighted (IVW) method was used as the main analysis method. We also used four MR methods: MR-Egger, Weighted Median, MR-PRESSO and MR.RAPS. Simultaneously, MR-Egger regression, Cochran's Q test and MR-PRESSO Global test were used to estimate the pleiotropy and heterogeneity of SNPs. In addition, we performed "leave-one-out" analyses" to avoid bias caused by horizontal pleiotropy of individual SNPs. Results MR analysis revealed a potential causal association between constipation and the risk of colorectal cancer (CRC) [IVW (OR= 1.0021 (1.0003, 1.0039), P= 0.0234)], lung cancer (LC) [IVW (OR=1.0955 (1.0134, 1.1843), P=0.0218)], Oral cavity and pharyngeal cancer (OPC) [IVW (OR=1.4068 (1.0070, 1.9652), P=0.0454)], and Pancreatic cancer (PC) [IVW (OR=1.5580 (1.0659, 2.2773), P=0.0221)]. In addition, we explored causal relationships between constipation and 12 other types of cancers, including gastric cancer, esophageal cancer, skin melanoma and so on. All five methods yielded no evidence of a causal association between constipation and the risk of these cancer types. In the reverse MR analysis, there was no evidence of a causal association between cancer and the risk of constipation for all five methods. Conclusion Our bidirectional MR study suggests a potential relationship between constipation and an increased risk of CRC, LC OPC and PC. The underlying mechanisms behind these associations will need to be explored in future experimental studies.
Collapse
Affiliation(s)
- Yongze Dang
- Department of Radiation Oncology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Xinyu He
- Department of Radiation Oncology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Xiaoxiao Liu
- Department of Radiation Oncology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Yuchen Wang
- Department of Radiation Oncology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Shangyi Geng
- Department of Radiation Oncology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Yutong Cheng
- Department of Gastroenterology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Hongbing Ma
- Department of Radiation Oncology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Xixi Zhao
- Department of Radiation Oncology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| |
Collapse
|
5
|
Cui W, Hao M, Yang X, Yin C, Chu B. Gut microbial metabolism in ferroptosis and colorectal cancer. Trends Cell Biol 2024:S0962-8924(24)00163-6. [PMID: 39261152 DOI: 10.1016/j.tcb.2024.08.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 08/14/2024] [Accepted: 08/16/2024] [Indexed: 09/13/2024]
Abstract
Ferroptosis is programmed cell death induced by iron-driven lipid peroxidation. Numerous studies have shown that ferroptosis is implicated in the progression of colorectal cancer (CRC) and has emerged as a promising strategy to combat therapy-resistant CRC. While the intrinsic antiferroptotic and proferroptotic pathways in CRC cells have been well characterized, extrinsic metabolism pathways regulating ferroptosis in CRC pathogenesis remain less understood. Emerging evidence shows that gut microbial metabolism is tightly correlated with the progression of CRC. This review provides an overview of gut microbial metabolism and discusses how these metabolites derived from intestinal microflora contribute to cancer plasticity through ferroptosis. Targeting gut microbe-mediated ferroptosis is a potential approach for CRC treatment.
Collapse
Affiliation(s)
- Weiwei Cui
- Department of Clinical Laboratory, Qilu Hospital of Shandong University, Jinan 250012, China
| | - Meng Hao
- Institute of Cancer Research, Shenzhen Bay Laboratory, Shenzhen 518107, China
| | - Xin Yang
- Jiangsu Key Laboratory of Infection and Immunity, The Institutes of Biology and Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, Jiangsu 215123, China.
| | - Chengqian Yin
- Institute of Cancer Research, Shenzhen Bay Laboratory, Shenzhen 518107, China.
| | - Bo Chu
- Department of Cell Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China.
| |
Collapse
|
6
|
Liu R, Wang J, Liu Y, Gao Y, Yang R. Regulation of gut microbiota on immune cell ferroptosis: A novel insight for immunotherapy against tumor. Cancer Lett 2024; 598:217115. [PMID: 39025428 DOI: 10.1016/j.canlet.2024.217115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 06/26/2024] [Accepted: 07/09/2024] [Indexed: 07/20/2024]
Abstract
Gut microbiota contributes to the homeostasis of immune system and is related to various diseases such as tumorigenesis. Ferroptosis, a new type of cell death, is also involved in the disease pathogenesis. Recent studies have found the correlations of gut microbiota mediated ferroptosis and immune cell death. Gut microbiota derived immunosuppressive metabolites, which can promote differentiation and function of immune cells, tend to inhibit ferroptosis through their receptors, whereas inflammatory metabolites from gut microbiota also affect the differentiation and function of immune cells and their ferroptosis. Thus, it is possible for gut microbiota to regulate immune cell ferroptosis. Indeed, gut microbiota metabolite receptor aryl hydrocarbon receptor (AhR) can affect ferroptosis of intestinal intraepithelial lymphocytes, leading to disease pathogenesis. Since immune cell ferroptosis in tumor microenvironment (TME) affects the occurrence and development of tumor, the modulation of gut microbiota in these cell ferroptosis might influence on the tumorigenesis, and also immunotherapy against tumors. Here we will summarize the recent advance of ferroptosis mediated by gut microbiota metabolites, which potentially acts as regulator(s) on immune cells in TME for therapy against tumor.
Collapse
Affiliation(s)
- Ruobing Liu
- Department of Immunology, Nankai University School of Medicine, Nankai University, Tianjin 300071, China
| | - Juanjuan Wang
- Department of Immunology, Nankai University School of Medicine, Nankai University, Tianjin 300071, China
| | - Yuqing Liu
- Department of Immunology, Nankai University School of Medicine, Nankai University, Tianjin 300071, China
| | - Yunhuan Gao
- Department of Immunology, Nankai University School of Medicine, Nankai University, Tianjin 300071, China
| | - Rongcun Yang
- Department of Immunology, Nankai University School of Medicine, Nankai University, Tianjin 300071, China; State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China; Translational Medicine Institute, Affiliated Tianjin Union Medical Center of Nankai University, Nankai University, Tianjin 300071, China.
| |
Collapse
|
7
|
Zhang X, Li Z, Zhang X, Yuan Z, Zhang L, Miao P. ATF family members as therapeutic targets in cancer: From mechanisms to pharmacological interventions. Pharmacol Res 2024; 208:107355. [PMID: 39179052 DOI: 10.1016/j.phrs.2024.107355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 08/09/2024] [Accepted: 08/15/2024] [Indexed: 08/26/2024]
Abstract
The activating transcription factor (ATF)/ cAMP-response element binding protein (CREB) family represents a large group of basic zone leucine zip (bZIP) transcription factors (TFs) with a variety of physiological functions, such as endoplasmic reticulum (ER) stress, amino acid stress, heat stress, oxidative stress, integrated stress response (ISR) and thus inducing cell survival or apoptosis. Interestingly, ATF family has been increasingly implicated in autophagy and ferroptosis in recent years. Thus, the ATF family is important for homeostasis and its dysregulation may promote disease progression including cancer. Current therapeutic approaches to modulate the ATF family include direct modulators, upstream modulators, post-translational modifications (PTMs) modulators. This review summarizes the structural domain and the PTMs feature of the ATF/CREB family and comprehensively explores the molecular regulatory mechanisms. On this basis, their pathways affecting proliferation, metastasis, and drug resistance in various types of cancer cells are sorted out and discussed. We then systematically summarize the status of the therapeutic applications of existing ATF family modulators and finally look forward to the future prospect of clinical applications in the treatment of tumors by modulating the ATF family.
Collapse
Affiliation(s)
- Xueyao Zhang
- Department of Anus and Intestine Surgery, Department of Cardiology, and Department of Respiratory and Critical Care Medicine, The First Hospital of China Medical University, Shenyang 110001, China
| | - Zhijia Li
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Xiaochun Zhang
- Department of Anus and Intestine Surgery, Department of Cardiology, and Department of Respiratory and Critical Care Medicine, The First Hospital of China Medical University, Shenyang 110001, China
| | - Ziyue Yuan
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Lan Zhang
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China.
| | - Peng Miao
- Department of Anus and Intestine Surgery, Department of Cardiology, and Department of Respiratory and Critical Care Medicine, The First Hospital of China Medical University, Shenyang 110001, China.
| |
Collapse
|
8
|
Kalinina E. Glutathione-Dependent Pathways in Cancer Cells. Int J Mol Sci 2024; 25:8423. [PMID: 39125992 PMCID: PMC11312684 DOI: 10.3390/ijms25158423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 07/29/2024] [Accepted: 07/30/2024] [Indexed: 08/12/2024] Open
Abstract
The most abundant tripeptide-glutathione (GSH)-and the major GSH-related enzymes-glutathione peroxidases (GPxs) and glutathione S-transferases (GSTs)-are highly significant in the regulation of tumor cell viability, initiation of tumor development, its progression, and drug resistance. The high level of GSH synthesis in different cancer types depends not only on the increasing expression of the key enzymes of the γ-glutamyl cycle but also on the changes in transport velocity of its precursor amino acids. The ability of GPxs to reduce hydroperoxides is used for cellular viability, and each member of the GPx family has a different mechanism of action and site for maintaining redox balance. GSTs not only catalyze the conjugation of GSH to electrophilic substances and the reduction of organic hydroperoxides but also take part in the regulation of cellular signaling pathways. By catalyzing the S-glutathionylation of key target proteins, GSTs are involved in the regulation of major cellular processes, including metabolism (e.g., glycolysis and the PPP), signal transduction, transcription regulation, and the development of resistance to anticancer drugs. In this review, recent findings in GSH synthesis, the roles and functions of GPxs, and GST isoforms in cancer development are discussed, along with the search for GST and GPx inhibitors for cancer treatment.
Collapse
Affiliation(s)
- Elena Kalinina
- T.T. Berezov Department of Biochemistry, Peoples' Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya Street, 117198 Moscow, Russia
| |
Collapse
|
9
|
Huang Z, Lin G, Hong Y, Weng L, Zhu K, Zhuang W. High expression of AlkB homolog 5 suppresses the progression of non-small cell lung cancer by facilitating ferroptosis through m6A demethylation of SLC7A11. ENVIRONMENTAL TOXICOLOGY 2024; 39:4035-4046. [PMID: 38642004 DOI: 10.1002/tox.24272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 03/17/2024] [Accepted: 03/23/2024] [Indexed: 04/22/2024]
Abstract
OBJECTIVE Non-small cell lung cancer (NSCLC) is a prevailing LC characterized by poor outcomes. AlkB homolog 5 (ALKBH5) functions as a tumor suppressor in several cancers. This study delved into the role of ALKBH5 in NSCLC development. METHODS TCGA database predicted ALKBH5 expression in NSCLC patients. ALKBH5 levels in NSCLC and human bronchial epithelial cells were determined. pcDNA3.1-ALKBH5/NC, pcDNA3.1-SLC7A11/NC, and ferrostatin-1 were used to explore the interactions among ALKBH5, SLC7A11, and ferroptosis. SLC7A11 mRNA and its protein levels were measured by RT-qPCR and Western blot. Cell viability, apoptosis, migration, and invasion were assessed by CCK-8, flow cytometry, and Transwell. Total N6-methyladenosine (m6A) quantification and its enrichment on SLC7A11 mRNA were determined, followed by the observation of Ki67, ALKBH5 and SLC7A11-positive cell numbers. Glutathione (GSH), lipid reactive oxygen species (lipid-ROS), malondialdehyde (MDA), and iron ion contents were determined. Animal experiments further analyzed the role of ALKBH5 in tumor development and glutathione peroxidase 4 (GPX4) expression. RESULTS Bioinformatics analysis revealed the lowly-expressed ALKBH5 in LC patients. ALKBH5 was downregulated in NSCLC cells and its upregulation repressed proliferation activity, invasion, and migration, and facilitated apoptosis. ALKBH5 upregulation decreased GSH, increased lipid-ROS, MDA, and iron ion contents, and downregulated SLC7A11 by reducing m6A modification. SLC7A11 upregulation partly annulled the effect of ALKBH5 overexpression on cell ferroptosis and malignant behaviors. In vivo assays elucidated the suppression of ALKBH5 upregulation on tumor development and GPX4 levels. CONCLUSION ALKBH5 upregulation downregulates SLC7A11 transcription by decreasing m6A modification, thus promoting NSCLC cell ferroptosis and ultimately repressing NSCLC progression.
Collapse
Affiliation(s)
- Zhangzhou Huang
- Department of Thoracic Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, China
| | - Gen Lin
- Department of Thoracic Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, China
| | - Yaping Hong
- Department of Thoracic Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, China
| | - Lihong Weng
- Department of Thoracic Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, China
| | - Kai Zhu
- Department of Thoracic Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, China
| | - Wu Zhuang
- Department of Thoracic Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, China
| |
Collapse
|
10
|
Li S, Yang L, Li J. FKBP3, a poor prognostic indicator, promotes the progression of LUAD via regulating ferroptosis and immune infiltration. Medicine (Baltimore) 2024; 103:e38606. [PMID: 38941396 PMCID: PMC11466140 DOI: 10.1097/md.0000000000038606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 05/24/2024] [Indexed: 06/30/2024] Open
Abstract
BACKGROUND Ferroptosis was reported to possess the therapeutic potentials in various human cancers. In the present study, we explored the expression, clinical significance and the molecular mechanism of FK506 binding protein 3 (FKBP3) in the progression of lung adenocarcinoma (LUAD). MATERIAL AND METHOD Cox regression was performed to obtain the prognosis related to differentially expressed genes (DEGs) in LUAD datasets from TCGA. We also downloaded the ferroptosis-related gene datasets from GeneCards. Venn diagram was performed to find the intersecting genes and FKBP3 was selected as the targeted gene by analyzing the diagnostic and prognostic values of Top10 intersecting genes. Moreover, univariate and multivariate analyses were performed to evaluate the association between clinicopathological factors and survival rates. GO/KEGG and GSEA analysis was performed to explore the function of FKBP3 in LUAD progression. Protein-protein interaction (PPI) network was performed via STRING database and the top10 hub genes were selected. Finally, the relationship between FKBP3 and immune infiltration was explored by ssGSEA analysis. RESULTS Firstly, 184 genes associated with the prognosis of LUAD and ferroptosis were obtained. FKBP3 was found to be significantly associated with a poor overall survival rate of LUAD patients. Immunohistochemical staining results showed that FKBP3 was highly located in cytoplasm and membrane of cells in LUAD tissues. PPI network analysis results showed that HDAC1, YY1, HDAC2, MTOR, PSMA3, PIN1, NCL, C14orf166, PIN4, and LARP6 were the top10 hub genes. Furthermore, spearman analysis results showed that the expression of FKBP3 was positively correlated with the abundance of Th2 cells and T helper cells. CONCLUSION High level of FKBP3 was associated with poor prognostic outcomes of LUAD patients, which also inhibited immune infiltration in LUAD tissues. Additionally, FKBP3 was involved in regulating the ferroptosis process in LUAD patients. Thus, FKBP3 possessed the tumor promotion role might be involving in regulating ferroptosis and immune infiltration in LUAD progression.
Collapse
Affiliation(s)
- Shengyi Li
- Internet of Things Engineering, Beijing-Dublin International College, Beijing University of Technology, Beijing, China
| | - Lexin Yang
- Internet of Things Engineering, Beijing-Dublin International College, Beijing University of Technology, Beijing, China
| | - Jing Li
- State Key Laboratory of Protein and Plant Gene Research, College of Life Science, Peking University, Beijing, China
| |
Collapse
|
11
|
Bi R, Jiang L, Hu R, Wen B, Jiang Z, Liu H, Mei J. Butyrate attenuates the stemness of lung cancer cells through lysosome Fe 2+- and SLC7A11-mediated ferroptosis. Heliyon 2024; 10:e28093. [PMID: 38560222 PMCID: PMC10981023 DOI: 10.1016/j.heliyon.2024.e28093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 03/11/2024] [Accepted: 03/12/2024] [Indexed: 04/04/2024] Open
Abstract
Cancer stem cells (CSCs) are considered key contributors to tumor progression, and ferroptosis has been identified as a potential target for CSCs. We have previously shown that butyrate enhances the ferroptosis induced by erastin in lung cancer cell, this study aimed to investigate the impact of butyrate on the progression of lung CSCs. To investigate these effects, we constructed a series of in vitro experiments, including 3D non-adherent sphere-formation, cytometry analysis, assessment of CSC marker expression, cell migration assay, and in vivo tumorigenesis analyses. Additionally, the influence of butyrate on chemotherapeutic sensitivity were determined through both in vitro and in vivo experiments. Mechanistically, immunofluorescence analysis was employed to examine the localization of biotin-conjugated butyrate. We identified that butyrate predominantly localized in the lysosome and concurrently recruited Fe2+ in lysosome. Moreover, butyrate reduced the stability of SLC7A11 protein stability in lung cancer cells through ubiquitination and proteasome degradation. Importantly, the effects of butyrate on lung CSCs were found to be dependent on lysosome Fe2+- and SLC7A11-mediated ferroptosis. In summary, our results demonstrate that butyrate could induce the ferroptosis in lung CSCs by recruiting Fe2+ in lysosome and promoting the ubiquitination-lysosome degradation of SLC7A11 protein.
Collapse
Affiliation(s)
| | | | | | - Bohan Wen
- Department of Cardiothoracic Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 1665 Kongjiang Road, Yangpu District, Shanghai, China
| | - Zhaolei Jiang
- Department of Cardiothoracic Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 1665 Kongjiang Road, Yangpu District, Shanghai, China
| | - Hongtao Liu
- Department of Cardiothoracic Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 1665 Kongjiang Road, Yangpu District, Shanghai, China
| | - Ju Mei
- Department of Cardiothoracic Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 1665 Kongjiang Road, Yangpu District, Shanghai, China
| |
Collapse
|
12
|
Li Y, Li X, Li J. Ferroptosis in lung cancer: dual role, multi-level regulation, and new therapeutic strategies. Front Oncol 2024; 14:1360638. [PMID: 38515565 PMCID: PMC10955378 DOI: 10.3389/fonc.2024.1360638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Accepted: 02/26/2024] [Indexed: 03/23/2024] Open
Abstract
Lung cancer is a highly prevalent malignant tumor worldwide, with high incidence and death rates. Recently, there has been increasing recognition of the role of ferroptosis, a unique cell death mechanism, in lung cancer. This review aims to summarize the current research progress on the relationship between ferroptosis and lung cancer. It also provides a comprehensive analysis of the regulatory processes of ferroptosis in various stages, including epigenetics, transcription, post-transcription, translation, and post-translation. Additionally, the review explores the dual nature of ferroptosis in lung cancer progression, which presents interesting therapeutic possibilities. On one hand, ferroptosis can promote the escape of immune surveillance and reduce the efficacy of treatment in the early stages of tumors. On the other hand, it can counter drug resistance, enhance radiosensitivity, and promote immunotherapy. The article also discusses various combination treatment strategies based on the mechanism of ferroptosis. Overall, this review offers a holistic perspective on the role of ferroptosis in the onset, progression, and treatment of lung cancer. It aims to contribute to future research and clinical interventions in this field.
Collapse
Affiliation(s)
| | | | - Jian Li
- Department of Thoracic Surgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
| |
Collapse
|
13
|
Nie J, Ling Y, Jin M, Chen Z, Liu W, Shen W, Fang T, Li J, He Y. Butyrate enhances erastin-induced ferroptosis of osteosarcoma cells via regulating ATF3/SLC7A11 pathway. Eur J Pharmacol 2023; 957:176009. [PMID: 37619784 DOI: 10.1016/j.ejphar.2023.176009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 08/04/2023] [Accepted: 08/21/2023] [Indexed: 08/26/2023]
Abstract
Osteosarcoma (OS) is a highly fatal bone tumor characterized by high degree of malignancy and early lung metastasis. Traditional chemotherapy fails in improving the efficacy and survival rate of patients with OS. Butyrate (NaBu) has been reported as a new antitumor drug for inhibiting proliferation and inducing apoptosis in various cancer cells. However, the effect of NaBu on the ferroptosis of OS is still unknown. This study aimed to investigate whether NaBu promotes erastin-induced ferroptosis in OS cells and to uncover the underlying mechanism. Here, we found that NaBu significantly enhanced erastin-induced ferroptosis in vitro and in vivo. Compared with the group that erastin used alonely, pre-treating with NaBu exacerbated erastin-meditated GSH depletion, lipid peroxidation, and mitochondrial morphologic changes in OS cells. In a subcutaneous OS model, NaBu combined with erastin significantly reduced tumor growth and increased the levels of 4-HNE. Mechanistically, NaBu downregulated SLC7A11 transcription via regulating ATF3 expression. Overexpression of ATF3 facilitated erastin to induce ferroptosis, while ATF3 knockdown attenuated NaBu-induced ferroptosis sensitivity. In conclusion, our findings revealed a previously unidentified role of NaBu in erastin-induced ferroptosis by regulating SLC7A11, suggesting that NaBu may be a potential therapeutic agent for OS treatment.
Collapse
Affiliation(s)
- Jiangbo Nie
- Department of Orthopedics, Huzhou Central Hospital, Huzhou, Zhejiang, 313000, China; Zhejiang University Huzhou Hospital, Huzhou, Zhejiang, 313000, China
| | - Yuhang Ling
- Central Laboratory, The First Affiliated Hospital of Huzhou University, Huzhou, Zhejiang, 313000, China; Huzhou Key Laboratory of Translational Medicine, The First Affiliated Hospital of Huzhou University, Huzhou, Zhejiang, 313000, China
| | - Mingchao Jin
- Department of Orthopedics, Huzhou Central Hospital, Huzhou, Zhejiang, 313000, China; Zhejiang University Huzhou Hospital, Huzhou, Zhejiang, 313000, China
| | - Zhuo Chen
- Department of Orthopedics, Huzhou Central Hospital, Huzhou, Zhejiang, 313000, China; Zhejiang University Huzhou Hospital, Huzhou, Zhejiang, 313000, China
| | - Wei Liu
- Department of Orthopedics, Huzhou Central Hospital, Huzhou, Zhejiang, 313000, China
| | - Weiyun Shen
- Central Laboratory, The First Affiliated Hospital of Huzhou University, Huzhou, Zhejiang, 313000, China; Huzhou Key Laboratory of Translational Medicine, The First Affiliated Hospital of Huzhou University, Huzhou, Zhejiang, 313000, China
| | - Tianshun Fang
- Department of Orthopedics, Huzhou Central Hospital, Huzhou, Zhejiang, 313000, China; Zhejiang University Huzhou Hospital, Huzhou, Zhejiang, 313000, China
| | - Jianyou Li
- Department of Orthopedics, Huzhou Central Hospital, Huzhou, Zhejiang, 313000, China; Zhejiang University Huzhou Hospital, Huzhou, Zhejiang, 313000, China.
| | - Ying He
- Central Laboratory, The First Affiliated Hospital of Huzhou University, Huzhou, Zhejiang, 313000, China; Huzhou Key Laboratory of Translational Medicine, The First Affiliated Hospital of Huzhou University, Huzhou, Zhejiang, 313000, China.
| |
Collapse
|