1
|
Chen D, Xing ZX, Li SP, Lu T, Wang JX, Wu YX, Pang QF. Preconception maternal hyperoxia exposure causes cardiac insufficiency through induction of mitochondrial toxicity in mice offspring. Reprod Toxicol 2025:108864. [PMID: 39988061 DOI: 10.1016/j.reprotox.2025.108864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 01/22/2025] [Accepted: 02/20/2025] [Indexed: 02/25/2025]
Abstract
Although essential, excessive oxygen is toxic. The adverse effects of maternal hyperoxygenation have recently garnered attention. However, the potential toxicity of maternal hyperoxia exposure before pregnancy and its effects on offspring development remain unclear. This study aims to investigate the cardiac developmental toxicity of maternal pre-pregnancy hyperoxia exposure on the offspring. Our findings reveal that preconception maternal hyperoxia exposure leads to growth retardation, cardiac insufficiency, and remodeling in both male and female offspring. Additionally, maternal pre-pregnancy hyperoxia exposure induces mitochondrial damage characterized by reduced oxidative phosphorylation, inhibited tricarboxylic acid (TCA) cycle, and decreased ATP production in the cardiac tissues of offspring mice. Supplementation of sodium propionate during lactation significantly improves growth retardation, mitigates metabolic remodeling, and partially restores cardiac function in hyperoxia-exposed offspring. In conclusion, our study suggests that maternal hyperoxia exposure before pregnancy leads to cardiac insufficiency in murine offspring. These findings may have important implications for mitigating maternal high oxygen toxicity on offspring development and disease risk, especially the cardiotoxic effects of hyperoxia on offspring development.
Collapse
Affiliation(s)
- Dan Chen
- A Department of physiopathology, Wuxi School of Medicine, Jiangnan university, Wuxi 214122, Jiangsu Province, China.
| | - Zhi-Xuan Xing
- A Department of physiopathology, Wuxi School of Medicine, Jiangnan university, Wuxi 214122, Jiangsu Province, China
| | - Sheng-Peng Li
- A Department of physiopathology, Wuxi School of Medicine, Jiangnan university, Wuxi 214122, Jiangsu Province, China
| | - Tao Lu
- A Department of physiopathology, Wuxi School of Medicine, Jiangnan university, Wuxi 214122, Jiangsu Province, China
| | - Jia-Xin Wang
- A Department of physiopathology, Wuxi School of Medicine, Jiangnan university, Wuxi 214122, Jiangsu Province, China
| | - Ya-Xian Wu
- A Department of physiopathology, Wuxi School of Medicine, Jiangnan university, Wuxi 214122, Jiangsu Province, China
| | - Qing-Feng Pang
- A Department of physiopathology, Wuxi School of Medicine, Jiangnan university, Wuxi 214122, Jiangsu Province, China.
| |
Collapse
|
2
|
Mugaba PM, Hornberger LK, McBrien A, Mills L, Eckersley LG. A Comparison of Perinatal Circulatory Transition in Critical Right and Left Heart Obstructive Lesions. J Am Soc Echocardiogr 2024; 37:1073-1082. [PMID: 39019199 DOI: 10.1016/j.echo.2024.07.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 07/05/2024] [Accepted: 07/06/2024] [Indexed: 07/19/2024]
Abstract
BACKGROUND During perinatal transition in hypoplastic left heart syndrome (HLHS), reduced systemic blood flow (Qs) and cerebral blood flow and increased pulmonary blood flow (Qp) are observed, contributing to hemodynamic instability. The aim of the present study was to explore whether similar or discordant perinatal changes occur in critical pulmonary outflow tract obstruction (POFO) compared with HLHS and healthy control subjects. METHODS Echocardiography was prospectively performed at 36 to 39 gestational weeks and then serially from 6 to 96 hours after birth, before cardiac intervention. Combined cardiac output (CCO), superior vena cava (SVC) flow rate, Qs and Qp, and resistance indices (RIs) in the middle cerebral artery (MCA), celiac artery, and superior mesenteric artery were compared among the three groups. RESULTS In fetal POFO (n = 19) and HLHS (n = 31), CCO was comparable with that in control subjects (n = 21) because of elevated stroke volume, but CCO in POFO was lower compared with HLHS (P < .01). Compared with control subjects, POFO CCO was lower at 6 hours after delivery but comparable at 24 to 96 hours. In contrast, from 6 to 96 hours, the HLHS group had higher CCO than POFO and control subjects. Compared with control subjects, both neonates with POFO and those with HLHS had lower Qs and SVC flow (POFO at 24 hours, P < .001; HLHS 6-hour Qs and 6- to 24-hour SVC flow). Compared with control subjects, Qp was increased in POFO at 48 to 96 hours (P < .05) and in HLHS at all time points (P < .001). Compared with fetal MCA RI, postnatal MCA RI was acutely higher in both POFO and HLHS, whereas in control subjects, it tended to decrease postnatally. Celiac artery RI and superior mesenteric artery pulsatility index were higher in POFO and HLHS from 6 to 48 hours vs control subjects. CONCLUSIONS POFO and HLHS demonstrate divergent acute hemodynamic changes in the early neonatal period, with early decreased CCO in POFO and increased CCO in HLHS. Both demonstrate early compromise in Qs and SVC (cerebral flow) and ongoing altered splanchnic flow.
Collapse
Affiliation(s)
- Proscovia M Mugaba
- Fetal and Neonatal Cardiology Program, Division of Cardiology, Department of Pediatrics, University of Alberta, Edmonton, Alberta, Canada
| | - Lisa K Hornberger
- Fetal and Neonatal Cardiology Program, Division of Cardiology, Department of Pediatrics, University of Alberta, Edmonton, Alberta, Canada; Women's and Children's Health Research Institute, University of Alberta, Edmonton, Alberta, Canada; Department of Obstetrics and Gynecology, University of Alberta, Edmonton, Alberta, Canada
| | - Angela McBrien
- Fetal and Neonatal Cardiology Program, Division of Cardiology, Department of Pediatrics, University of Alberta, Edmonton, Alberta, Canada; Women's and Children's Health Research Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Lindsay Mills
- Fetal and Neonatal Cardiology Program, Division of Cardiology, Department of Pediatrics, University of Alberta, Edmonton, Alberta, Canada
| | - Luke G Eckersley
- Fetal and Neonatal Cardiology Program, Division of Cardiology, Department of Pediatrics, University of Alberta, Edmonton, Alberta, Canada; Women's and Children's Health Research Institute, University of Alberta, Edmonton, Alberta, Canada.
| |
Collapse
|
3
|
Lee FT, Sun L, Szabo A, Milligan N, Saini A, Chetan D, Hunt JL, Macgowan CK, Freud L, Jaeggi E, Van Mieghem T, Kingdom J, Miller SP, Seed M. Safety and feasibility pilot study of continuous low-dose maternal supplemental oxygen in fetal single ventricle heart disease. ULTRASOUND IN OBSTETRICS & GYNECOLOGY : THE OFFICIAL JOURNAL OF THE INTERNATIONAL SOCIETY OF ULTRASOUND IN OBSTETRICS AND GYNECOLOGY 2024; 64:493-503. [PMID: 38629477 DOI: 10.1002/uog.27657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 03/12/2024] [Accepted: 03/16/2024] [Indexed: 10/02/2024]
Abstract
OBJECTIVE Fetuses with single ventricle physiology (SVP) exhibit reductions in fetal cerebral oxygenation, with associated delays in fetal brain growth and neurodevelopmental outcomes. Maternal supplemental oxygen (MSO) has been proposed to improve fetal brain growth, but current evidence on dosing, candidacy and outcomes is limited. In this pilot study, we evaluated the safety and feasibility of continuous low-dose MSO in the setting of SVP. METHODS This single-center, open-label, pilot phase-1 safety and feasibility clinical trial included 25 pregnant individuals with a diagnosis of fetal SVP. Participants self-administered continuous MSO using medical-grade oxygen concentrators for up to 24 h per day from the second half of gestation until delivery. The primary aim was the evaluation of the safety profile and feasibility of MSO. A secondary preliminary analysis was performed to assess the impact of MSO on the fetal circulation using echocardiography and late-gestation cardiovascular magnetic resonance imaging. Early outcomes were assessed, including perinatal growth and preoperative brain injury, and neurodevelopmental outcomes were assessed at 18 months using the Bayley Scales of Infant and Toddler Development 3rd edition, and compared with those of a contemporary fetal SVP cohort (n = 217) that received the normal standard of care (SOC). RESULTS Among the 25 participants, the median maternal age at conception was 35 years, and fetal SVP diagnoses included 16 with right ventricle dominant, eight with left ventricle dominant and one with indeterminate ventricular morphology. Participants started the trial at approximately 29 + 2 weeks' gestation and self-administered MSO for a median of 16.1 h per day for 63 days, accumulating a median of 1029 h of oxygen intake from enrolment until delivery. The only treatment-associated adverse events were nasal complications that were resolved typically by attaching a humidifier unit to the oxygen concentrator. No premature closure of the ductus arteriosus or unexpected fetal demise was observed. In the secondary analysis, MSO was not associated with any changes in fetal growth, middle cerebral artery pulsatility index, cerebroplacental ratio or head-circumference-to-abdominal-circumference ratio Z-scores over gestation compared with SOC. Although MSO was associated with changes in umbilical artery pulsatility index Z-score over the study period compared with SOC (P = 0.02), this was probably due to initial baseline differences in placental resistance. At late-gestation cardiovascular magnetic resonance imaging, MSO was not associated with an increase in fetal cerebral oxygen delivery. Similarly, no differences were observed in neonatal outcomes, including preoperative brain weight Z-score and brain injury, mortality by 18 months of age and neurodevelopmental outcomes at 18 months of age. CONCLUSIONS This pilot phase-1 clinical trial indicates that low-dose MSO therapy is safe and well tolerated in pregnancies diagnosed with fetal SVP. However, our protocol was not associated with an increase in fetal cerebral oxygen delivery or improvements in early neurological or neurodevelopmental outcomes. © 2024 International Society of Ultrasound in Obstetrics and Gynecology.
Collapse
Affiliation(s)
- F-T Lee
- Department of Physiology, Temerty Faculty of Medicine, University of Toronto, Toronto, Canada
- Division of Cardiology, Department of Pediatrics, The Hospital for Sick Children, University of Toronto, Toronto, Canada
- Translational Medicine Program, SickKids Research Institute, Toronto, Canada
| | - L Sun
- Division of Cardiology, Department of Pediatrics, The Hospital for Sick Children, University of Toronto, Toronto, Canada
- Translational Medicine Program, SickKids Research Institute, Toronto, Canada
| | - A Szabo
- Division of Cardiology, Department of Pediatrics, The Hospital for Sick Children, University of Toronto, Toronto, Canada
| | - N Milligan
- Division of Cardiology, Department of Pediatrics, The Hospital for Sick Children, University of Toronto, Toronto, Canada
| | - A Saini
- Division of Cardiology, Department of Pediatrics, The Hospital for Sick Children, University of Toronto, Toronto, Canada
| | - D Chetan
- Division of Cardiology, Department of Pediatrics, The Hospital for Sick Children, University of Toronto, Toronto, Canada
| | | | - C K Macgowan
- Translational Medicine Program, SickKids Research Institute, Toronto, Canada
- Department of Medical Biophysics, Temerty Faculty of Medicine, University of Toronto, Toronto, Canada
| | - L Freud
- Division of Cardiology, Department of Pediatrics, The Hospital for Sick Children, University of Toronto, Toronto, Canada
- Translational Medicine Program, SickKids Research Institute, Toronto, Canada
| | - E Jaeggi
- Division of Cardiology, Department of Pediatrics, The Hospital for Sick Children, University of Toronto, Toronto, Canada
- Translational Medicine Program, SickKids Research Institute, Toronto, Canada
| | - T Van Mieghem
- Department of Obstetrics and Gynecology, Mount Sinai Hospital, University of Toronto, Toronto, Canada
| | - J Kingdom
- Department of Obstetrics and Gynecology, Mount Sinai Hospital, University of Toronto, Toronto, Canada
| | - S P Miller
- Department of Pediatrics, BC Children's Hospital and University of British Columbia, Vancouver, Canada
- Department of Pediatrics, The Hospital for Sick Children, University of Toronto, Toronto, Canada
| | - M Seed
- Department of Physiology, Temerty Faculty of Medicine, University of Toronto, Toronto, Canada
- Division of Cardiology, Department of Pediatrics, The Hospital for Sick Children, University of Toronto, Toronto, Canada
- Translational Medicine Program, SickKids Research Institute, Toronto, Canada
- Department of Diagnostic Imaging, The Hospital for Sick Children, University of Toronto, Toronto, Canada
| |
Collapse
|
4
|
Biouss G, Antounians L, Aguet J, Kopcalic K, Fakhari N, Baranger J, Mertens L, Villemain O, Zani A. The brain of fetuses with congenital diaphragmatic hernia shows signs of hypoxic injury with loss of progenitor cells, neurons, and oligodendrocytes. Sci Rep 2024; 14:13680. [PMID: 38871804 DOI: 10.1038/s41598-024-64412-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Accepted: 06/08/2024] [Indexed: 06/15/2024] Open
Abstract
Congenital diaphragmatic hernia (CDH) is a birth defect characterized by incomplete closure of the diaphragm, herniation of abdominal organs into the chest, and compression of the lungs and the heart. Besides complications related to pulmonary hypoplasia, 1 in 4 survivors develop neurodevelopmental impairment, whose etiology remains unclear. Using a fetal rat model of CDH, we demonstrated that the compression exerted by herniated organs on the mediastinal structures results in decreased brain perfusion on ultrafast ultrasound, cerebral hypoxia with compensatory angiogenesis, mature neuron and oligodendrocyte loss, and activated microglia. In CDH fetuses, apoptosis was prominent in the subventricular and subgranular zones, areas that are key for neurogenesis. We validated these findings in the autopsy samples of four human fetuses with CDH compared to age- and sex-matched controls. This study reveals the molecular mechanisms and cellular changes that occur in the brain of fetuses with CDH and creates opportunities for therapeutic targets.
Collapse
Affiliation(s)
- George Biouss
- Developmental and Stem Cell Biology Program, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, 686 Bay Street, Toronto, ON, M5G 0A4, Canada
- Division of General and Thoracic Surgery, The Hospital for Sick Children, 555 University Avenue, Toronto, ON, M5G 1X8, Canada
| | - Lina Antounians
- Developmental and Stem Cell Biology Program, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, 686 Bay Street, Toronto, ON, M5G 0A4, Canada
- Division of General and Thoracic Surgery, The Hospital for Sick Children, 555 University Avenue, Toronto, ON, M5G 1X8, Canada
| | - Julien Aguet
- Department of Diagnostic Imaging, The Hospital for Sick Children, 555 University Avenue, Toronto, ON, M5G 1X8, Canada
- Department of Medical Imaging, University of Toronto, 263 McCaul Street, Toronto, ON, M5T 1W7, Canada
| | - Katarina Kopcalic
- Developmental and Stem Cell Biology Program, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, 686 Bay Street, Toronto, ON, M5G 0A4, Canada
- Division of General and Thoracic Surgery, The Hospital for Sick Children, 555 University Avenue, Toronto, ON, M5G 1X8, Canada
| | - Nikan Fakhari
- Translation Medicine, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, 686 Bay Street, Toronto, ON, M5G 0A4, Canada
| | - Jerome Baranger
- Translation Medicine, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, 686 Bay Street, Toronto, ON, M5G 0A4, Canada
- Department of Pediatrics, Labatt Family Heart Centre, The Hospital for Sick Children, 555 University Avenue, Toronto, ON, M5G 1X8, Canada
| | - Luc Mertens
- Translation Medicine, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, 686 Bay Street, Toronto, ON, M5G 0A4, Canada
- Department of Pediatrics, Labatt Family Heart Centre, The Hospital for Sick Children, 555 University Avenue, Toronto, ON, M5G 1X8, Canada
| | - Olivier Villemain
- Translation Medicine, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, 686 Bay Street, Toronto, ON, M5G 0A4, Canada
- Department of Pediatrics, Labatt Family Heart Centre, The Hospital for Sick Children, 555 University Avenue, Toronto, ON, M5G 1X8, Canada
- Department of Medical Biophysics, University of Toronto, 101 College Street, Toronto, ON, M5G 1L7, Canada
| | - Augusto Zani
- Developmental and Stem Cell Biology Program, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, 686 Bay Street, Toronto, ON, M5G 0A4, Canada.
- Division of General and Thoracic Surgery, The Hospital for Sick Children, 555 University Avenue, Toronto, ON, M5G 1X8, Canada.
- Department of Surgery, University of Toronto, 200 Elizabeth Street, Toronto, ON, M5G 2C4, Canada.
| |
Collapse
|
5
|
Juergensen S, Liu J, Xu D, Zhao Y, Moon-Grady AJ, Glenn O, McQuillen P, Peyvandi S. Fetal circulatory physiology and brain development in complex congenital heart disease: A multi-modal imaging study. Prenat Diagn 2024; 44:856-864. [PMID: 37817395 PMCID: PMC11004088 DOI: 10.1002/pd.6450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 09/07/2023] [Accepted: 09/25/2023] [Indexed: 10/12/2023]
Abstract
OBJECTIVE Fetuses with complex congenital heart disease have altered physiology, contributing to abnormal neurodevelopment. The effects of altered physiology on brain development have not been well studied. We used multi-modal imaging to study fetal circulatory physiology and brain development in hypoplastic left heart syndrome (HLHS) and d-transposition of the great arteries (TGA). METHODS This prospective, cross-sectional study investigated individuals with fetal congenital heart disease and controls undergoing fetal echocardiography and fetal brain MRI. MRI measured total brain volume and cerebral oxygenation by the MRI quantification method T2*. Indexed cardiac outputs (CCOi) and vascular impedances were calculated by fetal echocardiography. Descriptive statistics assessed MRI and echocardiogram measurement relationships by physiology. RESULTS Sixty-six participants enrolled (control = 20; HLHS = 25; TGA = 21), mean gestational age 33.8 weeks (95% CI: 33.3-34.2). Total brain volume and T2* were significantly lower in fetuses with cardiac disease. CCOi was lower in HLHS, correlating with total brain volume - for every 10% CCOi increase, volume increased 8 mm3 (95% CI: 1.78-14.1; p = 0.012). Echocardiography parameters and cerebral oxygenation showed no correlation. TGA showed no CCOi or aortic output correlation with MRI measures. CONCLUSIONS In HLHS, lower cardiac output is deleterious to brain development. Our findings provide insight into the role of fetal cardiovascular physiology in brain health.
Collapse
Affiliation(s)
- Stephan Juergensen
- Department of Pediatrics, Division of Pediatric Cardiology, Columbia University Vagelos College of Physicians and Surgeons and New York-Presbyterian Morgan Stanley Children's Hospital, New York, New York, USA
- Department of Pediatrics, Division of Pediatric Cardiology, University of California San Francisco, San Francisco, California, USA
| | - Jing Liu
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California, USA
| | - Duan Xu
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California, USA
| | - Yili Zhao
- Department of Pediatrics, Division of Pediatric Cardiology, University of California San Francisco, San Francisco, California, USA
| | - Anita J Moon-Grady
- Department of Pediatrics, Division of Pediatric Cardiology, University of California San Francisco, San Francisco, California, USA
| | - Orit Glenn
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California, USA
| | - Patrick McQuillen
- Department of Pediatrics, Division of Critical Care, University of California San Francisco, San Francisco, California, USA
| | - Shabnam Peyvandi
- Department of Pediatrics, Division of Pediatric Cardiology, University of California San Francisco, San Francisco, California, USA
| |
Collapse
|
6
|
Sanz JH, Cox S, Donofrio MT, Ishibashi N, McQuillen P, Peyvandi S, Schlatterer S. [Formula: see text] Trajectories of neurodevelopment and opportunities for intervention across the lifespan in congenital heart disease. Child Neuropsychol 2023; 29:1128-1154. [PMID: 36752083 PMCID: PMC10406974 DOI: 10.1080/09297049.2023.2173162] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 01/20/2023] [Indexed: 02/09/2023]
Abstract
Children with congenital heart disease (CHD) are at increased risk for neurodevelopmental challenges across the lifespan. These are associated with neurological changes and potential acquired brain injury, which occur across a developmental trajectory and which are influenced by an array of medical, sociodemographic, environmental, and personal factors. These alterations to brain development lead to an array of adverse neurodevelopmental outcomes, which impact a characteristic set of skills over the course of development. The current paper reviews existing knowledge of aberrant brain development and brain injury alongside associated neurodevelopmental challenges across the lifespan. These provide a framework for discussion of emerging and potential interventions to improve neurodevelopmental outcomes at each developmental stage.
Collapse
Affiliation(s)
- Jacqueline H Sanz
- Division of Neuropsychology, Children's National Hospital, Washington, D.C
- Departments of Psychiatry and Behavioral Sciences & Pediatrics at The George Washington University School of Medicine
| | - Stephany Cox
- Department of Pediatrics, Division of Developmental Medicine, Benioff Children's Hospital, University of California, San Francisco, CA
| | - Mary T Donofrio
- Division of Cardiology, Children's National Health System, Washington, D.C
- Department of Pediatrics at The George Washington University School of Medicine
| | - Nobuyuki Ishibashi
- Department of Pediatrics at The George Washington University School of Medicine
- Center for Neuroscience Research, Sheikh Zayed Institute for Pediatric Surgical Innovation, Children's National Hospital, Washington D.C
| | - Patrick McQuillen
- Department of Pediatrics, Division of Developmental Medicine, Benioff Children's Hospital, University of California, San Francisco, CA
| | - Shabnam Peyvandi
- Department of Pediatrics, Division of Developmental Medicine, Benioff Children's Hospital, University of California, San Francisco, CA
| | - Sarah Schlatterer
- Department of Pediatrics at The George Washington University School of Medicine
- Prenatal Pediatrics Institute, Children's National Hospital, Washington, D.C
- Department of Neurology, The George Washington University School of Medicine and Health Sciences, Washington, D.C
| |
Collapse
|
7
|
Bolluk G, Oztarhan A, Vural C, Oztarhan K, Gedikbasi A. Successful prenatal treatment with continuous chronic maternal hyperoxygenation therapy in hypoplastic left heart in two pregnancies: Case report. Echocardiography 2023; 40:1292-1299. [PMID: 37805960 DOI: 10.1111/echo.15701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 09/04/2023] [Accepted: 09/25/2023] [Indexed: 10/10/2023] Open
Abstract
Maternal hyperoxygenation (MH) has been studied as a diagnostic tool to evaluate pulmonary vasculature and as a treatment option to improve the growth of fetal left heart in fetuses with left-sided cardiac defects. Chronic maternal hyperoxygenation (CMH) therapy leads to an improvement in fetal pulmonary blood flow resulting in an enhanced venous return to the left heart with increased gestational age. With this manipulation it is anticipated to augment blood flow directed remodeling of the left heart structures and to improve left heart growth spanning from the mitral valve to the aortic isthmus. However, there are concerns about CMH therapy with regard to fetal complications with growth restriction and fetal brain development. Now, with two successful cases we try to discuss this fetal treatment option and related concerns.
Collapse
Affiliation(s)
- Gokhan Bolluk
- Maternal-Fetal Medicine Division, Cam Sakura City Hospital, Health Sciences University Istanbul, İstanbul, Türkiye
| | - Aylin Oztarhan
- Department of Obstetrics and Gynecology, Istanbul Sisli Etfal Hospital, Health Science University, İstanbul, Türkiye
| | - Cagdas Vural
- Division of Pediatric Cardiology, Eskisehir City Hospital, Eskisehir, Türkiye
| | - Kazim Oztarhan
- Division of Pediatric Cardiology, İstanbul Medical School, İstanbul, Türkiye
| | | |
Collapse
|
8
|
Andescavage NN, Pradhan S, Gimovsky AC, Kapse K, Donofrio MT, Cheng JJ, Sharker Y, Wessel D, du Plessis AJ, Limperopoulos C. Magnetic Resonance Spectroscopy of Brain Metabolism in Fetuses With Congenital Heart Disease. J Am Coll Cardiol 2023; 82:1614-1623. [PMID: 37821172 DOI: 10.1016/j.jacc.2023.08.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 08/07/2023] [Accepted: 08/09/2023] [Indexed: 10/13/2023]
Abstract
BACKGROUND Congenital heart disease (CHD) remains a significant risk factor for neurologic injury because altered fetal hemodynamics may be unable to support typical brain development during critical periods of growth and maturation. OBJECTIVES The primary objective was to assess differences in the cerebral biochemical profile between healthy fetuses and fetuses with complex CHD and to relate these with infant outcomes. METHODS Pregnant participants underwent fetal magnetic resonance imaging with cerebral proton magnetic resonance spectroscopy acquisitions as part of a prospective observational study. Cerebral metabolites of N-acetyl aspartate, creatine, choline, myo-inositol, scyllo-inositol, lactate, and relevant ratios were quantified using LCModel. RESULTS We acquired 503 proton magnetic resonance spectroscopy images (controls = 333; CHD = 170) from 333 participants (controls = 221; CHD = 112). Mean choline levels were higher in CHD compared with controls (CHD 2.47 IU [Institutional Units] ± 0.44 and Controls 2.35 IU ± 0.45; P = 0.02), whereas N-acetyl aspartate:choline ratios were lower among CHD fetuses compared with controls (CHD 1.34 ± 0.40 IU vs controls 1.44 ± 0.48 IU; P = 0.001). Cerebral lactate was detected in all cohorts but increased in fetuses with transposition of the great arteries and single-ventricle CHD (median: 1.63 [IQR: 0.56-3.27] in transposition of the great arteries and median: 1.28 [IQR: 0-2.42] in single-ventricle CHD) compared with 2-ventricle CHD (median: 0.79 [IQR: 0-1.45]). Cerebral lactate also was associated with increased odds of death before discharge (OR: 1.75; P = 0.04). CONCLUSIONS CHD is associated with altered cerebral metabolites in utero, particularly in the third trimester period of pregnancy, which is characterized by exponential brain growth and maturation, and is associated with survival to hospital discharge. The long-term neurodevelopmental consequences of these findings warrant further study.
Collapse
Affiliation(s)
- Nickie N Andescavage
- Department of Neonatology, Children's National Hospital, Washington, DC, USA; Developing Brain Institute, Children's National Hospital, Washington, DC, USA; Department of Pediatrics, the George Washington University School of Medicine & Health Sciences, Washington, DC, USA
| | - Subechhya Pradhan
- Developing Brain Institute, Children's National Hospital, Washington, DC, USA
| | - Alexis C Gimovsky
- Division of Maternal Fetal Medicine, Department of Obstetrics & Gynecology, the George Washington University School of Medicine & Health Sciences, Washington, DC, USA
| | - Kushal Kapse
- Developing Brain Institute, Children's National Hospital, Washington, DC, USA
| | - Mary T Donofrio
- Department of Pediatrics, the George Washington University School of Medicine & Health Sciences, Washington, DC, USA; Department of Cardiology, Children's National Hospital, Washington, DC, USA
| | - Jenhao Jacob Cheng
- Department of Biostatistics, Children's National Hospital, Washington, DC, USA
| | - Yushuf Sharker
- Developing Brain Institute, Children's National Hospital, Washington, DC, USA
| | - David Wessel
- Department of Pediatrics, the George Washington University School of Medicine & Health Sciences, Washington, DC, USA; Department of Critical Care Medicine, Children's National Hospital, Washington, DC, USA
| | - Adre J du Plessis
- Department of Pediatrics, the George Washington University School of Medicine & Health Sciences, Washington, DC, USA; Prenatal Pediatric Institute, Children's National Hospital, Washington, DC, USA
| | - Catherine Limperopoulos
- Developing Brain Institute, Children's National Hospital, Washington, DC, USA; Department of Pediatrics, the George Washington University School of Medicine & Health Sciences, Washington, DC, USA; Department of Radiology, Children's National Hospital, Washington, DC, USA; Department of Radiology, the George Washington University School of Medicine & Health Sciences, Washington, DC, USA.
| |
Collapse
|
9
|
Grzyb A, Szymkiewicz-Dangel J. Cerebroplacental hemodynamics in fetuses with transposition of the great arteries and usefulness in predicting neonatal condition. ULTRASOUND IN OBSTETRICS & GYNECOLOGY : THE OFFICIAL JOURNAL OF THE INTERNATIONAL SOCIETY OF ULTRASOUND IN OBSTETRICS AND GYNECOLOGY 2023; 62:414-421. [PMID: 37021693 DOI: 10.1002/uog.26211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 03/07/2023] [Accepted: 03/15/2023] [Indexed: 06/19/2023]
Abstract
OBJECTIVES Literature on cerebroplacental hemodynamics in fetuses with transposition of the great arteries (TGA) is scarce and provides conflicting results regarding the presence of a brain-sparing effect. The aims of this study were to examine Doppler parameters in the middle cerebral artery (MCA) and umbilical artery (UA) in a large cohort of fetuses with TGA, and to assess their possible utility in predicting the need for urgent balloon atrial septostomy (BAS) in the neonate. METHODS This was a retrospective observational study of fetuses diagnosed with TGA between 2008 and 2022 and an age-matched cohort of normal fetuses, conducted in a single tertiary fetal cardiology center. Medical records and echocardiographic examinations were reviewed to collect demographic, sonographic and follow-up data. Selected Doppler parameters were compared between fetuses with TGA and normal fetuses, as well as between TGA fetuses with and those without an associated ventricular septal defect (VSD), to assess the impact of this congenital heart defect on cerebroplacental circulation. Additionally, Doppler indices in patients with a restrictive foramen ovale (FO) were analyzed to identify potential predictors of the need for urgent BAS. RESULTS A total of 541 examinations of 159 fetuses with TGA performed between 19 and 40 weeks' gestation and 1300 examinations of 1215 age-matched normal fetuses were included in the study. MCA pulsatility index (PI) and UA-PI followed expected trends throughout pregnancy, with slightly higher values observed in TGA fetuses, albeit within the limits for the normal population. Cerebroplacental ratio (CPR) values were similar in normal and TGA fetuses. The presence of a small VSD did not have a clinically significant impact on Doppler parameters. Peak systolic velocity (PSV) in the MCA increased gradually after 35 weeks' gestation, especially in fetuses that did not develop restriction of the FO after birth. MCA-PSV values below 1.16 multiples of the median measured at 38 weeks or later predicted the need for urgent BAS with 81.4% sensitivity and 52.4% specificity. CONCLUSIONS MCA-PI, UA-PI and CPR values in fetuses with TGA usually fall within normal limits throughout pregnancy. The presence of a small VSD does not affect the Doppler parameters significantly. MCA-PSV increases in TGA fetuses after 35 weeks, and its value measured at the last prenatal examination (ideally after 37 weeks) may serve as an additional predictive factor for the need for urgent BAS. © 2023 International Society of Ultrasound in Obstetrics and Gynecology.
Collapse
Affiliation(s)
- A Grzyb
- Department of Perinatal Cardiology and Congenital Anomalies, Centre of Postgraduate Medical Education, Warsaw, Poland
- Department of Cardiology, The Children's Memorial Health Institute, Warsaw, Poland
| | - J Szymkiewicz-Dangel
- Department of Perinatal Cardiology and Congenital Anomalies, Centre of Postgraduate Medical Education, Warsaw, Poland
| |
Collapse
|
10
|
Moon-Grady AJ. Why Would a Cardiologist Be Interested in the Placenta? JACC. ADVANCES 2023; 2:100403. [PMID: 38938231 PMCID: PMC11198137 DOI: 10.1016/j.jacadv.2023.100403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/29/2024]
Affiliation(s)
- Anita J. Moon-Grady
- Division of Cardiology, Department of Pediatrics, University of California-San Francisco, San Francisco, California, USA
| |
Collapse
|
11
|
Corno AF, Findley TO, Salazar JD. Narrative review of single ventricle: where are we after 40 years? Transl Pediatr 2023; 12:221-244. [PMID: 36891374 PMCID: PMC9986776 DOI: 10.21037/tp-22-573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Accepted: 01/10/2023] [Indexed: 02/09/2023] Open
Abstract
BACKGROUND AND OBJECTIVE Key medical and surgical advances have been made in the longitudinal management of patients with "functionally" single ventricle physiology, with the principles of Fontan circulation applied to other complex congenital heart defects. The purpose of this article is to review all of the innovations, starting from fetal life, that led to a change of strategy for single ventricle. METHODS Our literature review included all full articles published in English language on the Cochrane, MedLine, and Embase with references to "single ventricle" and "univentricular hearts", including the initial history of the treatments for this congenital heart defects as well as the innovations reported within the last decades. KEY CONTENT AND FINDINGS All innovations introduced have been analyzed, including: (I) fetal diagnosis and interventions, in particular to prevent or reduce brain damages; (II) neonatal care; (III) post-natal diagnosis; (IV) interventional cardiology procedures; (V) surgical procedures, including neonatal palliations, hybrid procedures, bidirectional Glenn and variations, Fontan completion, biventricular repair; (VI) peri-operative management; (VII) Fontan failure, with Fontan take-down and conversion, and mechanical circulatory support; (VIII) transplantation, including heart, heart and lung, heart and liver; (IX) exercise; (X) pregnancy; (XI) adolescents and adults without Fontan completion; (XII) future studies, including experimental studies on animals, computational studies, genetics, stem cells and bioengineering. CONCLUSIONS These last 40 years have certainly changed the course of natural history for children born with any form of "functionally" single ventricle, thanks to the improvement in diagnostic and treatment techniques, and particularly to the increased knowledge of the morphology and function of these complex hearts, from fetal to adult life. There is still much left unexplored and room for improvement, and all efforts should be concentrated in collaborations among different institutions and specialties, focused on the same matter.
Collapse
Affiliation(s)
- Antonio F Corno
- Pediatric and Congenital Cardiac Surgery, Children's Heart Institute, Department of Pediatrics, Memorial Hermann Children's Hospital, McGovern Medical School at the University of Texas Health Science Center in Houston, Houston, TX, USA
| | - Tina O Findley
- Division of Neonatal-Perinatal Medicine, Department of Pediatrics, Memorial Hermann Children's Hospital, McGovern Medical School at the University of Texas Health Science Center in Houston, Houston, TX, USA
| | - Jorge D Salazar
- Pediatric and Congenital Cardiac Surgery, Children's Heart Institute, Department of Pediatrics, Memorial Hermann Children's Hospital, McGovern Medical School at the University of Texas Health Science Center in Houston, Houston, TX, USA
| |
Collapse
|
12
|
Zalinska A, Respondek-Liberska M, Slodki M. Maternal hyperoxygenation during pregnancy as a tool in fetal disease diagnosis and treatment. JOURNAL OF CLINICAL ULTRASOUND : JCU 2023; 51:273-282. [PMID: 36785501 DOI: 10.1002/jcu.23347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/27/2022] [Accepted: 08/30/2022] [Indexed: 06/18/2023]
Abstract
Maternal hyperoxygenation (MHO) consists of giving pregnant women (60% to 100%) oxygen through a facemask and using ultrasound assess or monitor the influence on fetal cardiovascular circulation. This review discusses the findings and the utility of acute and chronic MHO in various fetal diseases.
Collapse
Affiliation(s)
- Agnieszka Zalinska
- Department of Prenatal Cardiology, Polish Mother's Memorial Hospital Research Institute, Lodz, Poland
- Department of Obstetrics and Perinatology, Chair of Obstetrics, Gynecology and Oncological Gynecology, Medical University of Lodz, Lodz, Poland
| | - Maria Respondek-Liberska
- Department of Prenatal Cardiology, Polish Mother's Memorial Hospital Research Institute, Lodz, Poland
- Department of Diagnosis and Prevention of Fetal Malformations, Medical University of Lodz, Lodz, Poland
| | - Maciej Slodki
- Department of Prenatal Cardiology, Polish Mother's Memorial Hospital Research Institute, Lodz, Poland
- Faculty of Health Sciences, The Mazovian State University, Plock, Poland
| |
Collapse
|
13
|
Advances in the Prenatal Management of Fetal Cardiac Disease. CHILDREN 2022; 9:children9060812. [PMID: 35740749 PMCID: PMC9222001 DOI: 10.3390/children9060812] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 05/09/2022] [Accepted: 05/11/2022] [Indexed: 11/16/2022]
Abstract
Advances in the field have improved the prenatal management of cardiovascular diseases over the past few decades; however, there remains considerable challenges in the approach towards patient selection as well as the applicability of available therapies. This review aims to discuss the current knowledge, outcomes and challenges for prenatal intervention for congenital heart disease.
Collapse
|
14
|
Zhang L, Liu H, Huang S, Tong C, Wang Z, Qi H, Baker PN, Kilby MD. Alterations in Fetal Doppler Parameters Before and Twenty-Four Hours After Radiofrequency Ablation for Twin Reversed Arterial Perfusion Sequence. Front Med (Lausanne) 2022; 9:802666. [PMID: 35492315 PMCID: PMC9046669 DOI: 10.3389/fmed.2022.802666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 03/07/2022] [Indexed: 11/22/2022] Open
Abstract
Objective To evaluate alterations in the fetal Doppler parameters of pump fetuses before and 24 h after radiofrequency ablation surgery for twin reversed arterial perfusion sequence (TRAPs). Methods This is a retrospective study of 28 pump fetuses in TRAPs and 28 normal control twins between 2016 and 2021. The fetal Doppler parameters, including the umbilical artery pulsatility index (UA-PI), middle cerebral artery peak systolic velocity (MCA-PSV), middle cerebral artery pulsatility index (MCA-PI), and cerebroplacental ratio (CPR), of the controls, and pump fetuses before and 24 h after surgery were compared. Results An increasing trend and a further increase in the MCA-PSV, MCA-PI, MCA-PSV Z score, and MCA-PI Z score after surgery were observed in pump fetuses with gestational age (GA) ≥20 weeks; however, such changes were not observed in those with a GA of <20 weeks. The UA-PI and CPR before and after surgery were not different between control and pump fetuses, whether the GA was ≥20 or <20 weeks. Conclusion In the middle second trimester, the pump fetus might suffer from high cardiac output rather than hypoxemia before surgery and congestive heart failure, or hemodilutional anemia after surgery. This may provide some theoretical evidence in favor of early intervention, rather than waiting for a more advanced GA, to avoid unnecessary hemodynamic alterations.
Collapse
Affiliation(s)
- Lan Zhang
- State Key Laboratory of Maternal and Fetal Medicine of Chongqing Municipality, First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Department of Obstetrics and Gynecology, First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Fetal Medicine Unit, First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- International Collaborative Joint Laboratory of Reproduction and Development of Ministry of Education P.R.C., Chongqing Medical University, Chongqing, China
| | - Hongli Liu
- State Key Laboratory of Maternal and Fetal Medicine of Chongqing Municipality, First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Department of Obstetrics and Gynecology, First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Fetal Medicine Unit, First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- International Collaborative Joint Laboratory of Reproduction and Development of Ministry of Education P.R.C., Chongqing Medical University, Chongqing, China
| | - Shuai Huang
- State Key Laboratory of Maternal and Fetal Medicine of Chongqing Municipality, First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Department of Obstetrics and Gynecology, First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Fetal Medicine Unit, First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- International Collaborative Joint Laboratory of Reproduction and Development of Ministry of Education P.R.C., Chongqing Medical University, Chongqing, China
| | - Chao Tong
- State Key Laboratory of Maternal and Fetal Medicine of Chongqing Municipality, First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Department of Obstetrics and Gynecology, First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- International Collaborative Joint Laboratory of Reproduction and Development of Ministry of Education P.R.C., Chongqing Medical University, Chongqing, China
- *Correspondence: Chao Tong,
| | - Zhigang Wang
- Institute of Ultrasound Imaging, Department of Ultrasound, Second Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ultrasound Molecular Imaging, Chongqing, China
- Zhigang Wang,
| | - Hongbo Qi
- State Key Laboratory of Maternal and Fetal Medicine of Chongqing Municipality, First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Department of Obstetrics and Gynecology, First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Fetal Medicine Unit, First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- International Collaborative Joint Laboratory of Reproduction and Development of Ministry of Education P.R.C., Chongqing Medical University, Chongqing, China
- Hongbo Qi,
| | - Philip N. Baker
- College of Life Sciences, University of Leicester, Leicester, United Kingdom
| | - Mark D. Kilby
- Institute of Metabolism and System Research, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
15
|
Cox KL, Morris SA, Tacy T, Long J, Becker J, Schoppe RDCS L, Zhang RDCS J, Maskatia SA. The Impact of Maternal Hyperoxygenation on Myocardial Deformation and Loading Conditions in Fetuses With and Without Left-Heart Hypoplasia. J Am Soc Echocardiogr 2022; 35:773-781.e4. [DOI: 10.1016/j.echo.2022.03.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 01/19/2022] [Accepted: 03/20/2022] [Indexed: 11/30/2022]
|
16
|
Ottolenghi S, Milano G, Cas MD, Findley TO, Paroni R, Corno AF. Can Erythropoietin Reduce Hypoxemic Neurological Damages in Neonates With Congenital Heart Defects? Front Pharmacol 2021; 12:770590. [PMID: 34912224 PMCID: PMC8666450 DOI: 10.3389/fphar.2021.770590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Accepted: 11/11/2021] [Indexed: 11/21/2022] Open
Abstract
Congenital heart defects (CHD), the most common cause of birth defects with increasing birth prevalence, affect nearly 1% of live births worldwide. Cyanotic CHD are characterized by hypoxemia, with subsequent reduced oxygen delivery to the brain, especially critical during brain development, beginning in the fetus and continuing through the neonatal period. Therefore, neonates with CHD carry a high risk for neurological comorbidities, even more frequently when there are associated underlying genetic disorders. We review the currently available knowledge on potential prevention strategies to reduce brain damage induced by hypoxemia during fetal development and immediately after birth, and the role of erythropoietin (EPO) as a potential adjunctive treatment. Maternal hyper-oxygenation had been studied as a potential therapeutic to improve fetal oxygenation. Despite demonstrating some effectiveness, maternal hyper-oxygenation has proven to be impractical for extensive clinical application, thus prompting the investigation of specific pathways for pharmacological intervention. Among those, the role of antioxidant pathways and Hypoxia Inducible Factors (HIF) have been studied for their involvement in the protective response to hypoxic injury. One of the proteins induced by HIF, EPO, has properties of being anti-apoptotic, antioxidant, and protective for neurons, astrocytes, and oligodendrocytes. In human trials, EPO administration in neonates with hypoxic ischemic encephalopathy (HIE) significantly reduced the neurological hypoxemic damages in several reported studies. Currently, it is unknown if the mechanisms of pathophysiology of cyanotic CHD are like HIE. Neonates with cyanotic CHD are exposed to both chronic hypoxemia and episodes of acute ischemia-reperfusion injury when undergo cardiopulmonary bypass surgery requiring aortic cross-clamp and general anesthesia. Our review supports future trials to evaluate the potential efficiency of EPO in reducing the hypoxemic neurologic damages in neonates with CHD. Furthermore, it suggests the need to identify early biomarkers of hypoxia-induced neurological damage, which must be sensitive to the neuroprotective effects of EPO.
Collapse
Affiliation(s)
- Sara Ottolenghi
- Department of Health Science, University of Milan, Milan, Italy.,Department of Medicine and Surgery, University of Milano Bicocca, Milan, Italy
| | - Giuseppina Milano
- Department Cœur-Vaisseaux, Cardiac Surgery Center, University Hospital of Lausanne, Lausanne, Switzerland
| | - Michele Dei Cas
- Department of Health Science, University of Milan, Milan, Italy
| | - Tina O Findley
- Department of Pediatrics, Children's Heart Institute, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Rita Paroni
- Department of Health Science, University of Milan, Milan, Italy
| | - Antonio F Corno
- Department of Pediatrics, Children's Heart Institute, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, United States
| |
Collapse
|
17
|
Lee FT, Marini D, Seed M, Sun L. Maternal hyperoxygenation in congenital heart disease. Transl Pediatr 2021; 10:2197-2209. [PMID: 34584891 PMCID: PMC8429855 DOI: 10.21037/tp-20-226] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 08/27/2020] [Indexed: 01/26/2023] Open
Abstract
The importance of prenatal diagnosis and fetal intervention has been increasing as a preventative strategy for improving the morbidity and mortality in congenital heart disease (CHD). The advancements in medical imaging technology have greatly enhanced our understanding of disease progression, assessment, and impact in those with CHD. In particular, there has been a growing focus on improving the morbidity and mortality of fetuses diagnosed with left-sided lesions. The disruption of fetal hemodynamics resulting from poor structural developmental of the left outflow tract during cardiogenesis is considered a major factor in the progressive lethal underdevelopment of the left ventricle (LV). This positive feedback cycle of inadequate flow and underdevelopment of the LV leads to a disrupted fetal circulation, which has been described to impact fetal brain growth where systemic outflow is poor and, in some cases, the fetal lungs in the setting of a restrictive interatrial communication. For the past decade, maternal hyperoxygenation (MH) has been investigated as a diagnostic tool to assess the pulmonary vasculature and a therapeutic agent to improve the development of the heart and brain in fetuses with CHD with a focus on left-sided cardiac defects. This review discusses the findings of these studies as well as the utility of acute and chronic administration of MH in CHD.
Collapse
Affiliation(s)
- Fu-Tsuen Lee
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Canada.,Division of Cardiology, Department of Paediatrics, Hospital for Sick Children, University of Toronto, Toronto, Canada
| | - Davide Marini
- Division of Cardiology, Department of Paediatrics, Hospital for Sick Children, University of Toronto, Toronto, Canada
| | - Mike Seed
- Division of Cardiology, Department of Paediatrics, Hospital for Sick Children, University of Toronto, Toronto, Canada.,Department of Diagnostic Imaging, Hospital for Sick Children, University of Toronto, Toronto, Canada
| | - Liqun Sun
- Division of Cardiology, Department of Paediatrics, Hospital for Sick Children, University of Toronto, Toronto, Canada
| |
Collapse
|
18
|
Peyvandi S, Xu D, Wang Y, Hogan W, Moon-Grady A, Barkovich AJ, Glenn O, McQuillen P, Liu J. Fetal Cerebral Oxygenation Is Impaired in Congenital Heart Disease and Shows Variable Response to Maternal Hyperoxia. J Am Heart Assoc 2020; 10:e018777. [PMID: 33345557 PMCID: PMC7955474 DOI: 10.1161/jaha.120.018777] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Background Impairments in fetal oxygen delivery have been implicated in brain dysmaturation seen in congenital heart disease (CHD), suggesting a role for in utero transplacental oxygen therapy. We applied a novel imaging tool to quantify fetal cerebral oxygenation by measuring T2* decay. We compared T2* in fetuses with CHD with controls with a focus on cardiovascular physiologies (transposition or left‐sided obstruction) and described the effect of brief administration of maternal hyperoxia on T2* decay. Methods and Results This is a prospective study performed on pregnant mothers with a prenatal diagnosis of CHD compared with controls in the third trimester. Participants underwent a fetal brain magnetic resonance imaging scan including a T2* sequence before and after maternal hyperoxia. Comparisons were made between control and CHD fetuses including subgroup analyses by cardiac physiology. Forty‐four mothers (CHD=24, control=20) participated. Fetuses with CHD had lower total brain volume (238.2 mm3, 95% CI, 224.6–251.9) compared with controls (262.4 mm3, 95% CI, 245.0–279.8, P=0.04). T2* decay time was faster in CHD compared with controls (beta=−14.4, 95% CI, −23.3 to −5.6, P=0.002). The magnitude of change in T2* with maternal hyperoxia was higher in fetuses with transposition compared with controls (increase of 8.4 ms, 95% CI, 0.5–14.3, P=0.01), though between‐subject variability was noted. Conclusions Cerebral tissue oxygenation is lower in fetuses with complex CHD. There was variability in the response to maternal hyperoxia by CHD subgroup that can be tested in future larger studies. Cardiovascular physiology is critical when designing neuroprotective clinical trials in the fetus with CHD.
Collapse
Affiliation(s)
- Shabnam Peyvandi
- Department of Pediatrics Division of Cardiology University of California San Francisco San Francisco CA.,Department of Epidemiology and Biostatistics University of California San Francisco San Francisco CA
| | - Duan Xu
- Department of Radiology and Biomedical Imaging University of California San Francisco San Francisco CA
| | - Yan Wang
- Department of Radiology and Biomedical Imaging University of California San Francisco San Francisco CA
| | - Whitnee Hogan
- Department of Pediatrics Division of Cardiology University of California San Francisco San Francisco CA
| | - Anita Moon-Grady
- Department of Pediatrics Division of Cardiology University of California San Francisco San Francisco CA
| | - A James Barkovich
- Department of Radiology and Biomedical Imaging University of California San Francisco San Francisco CA
| | - Orit Glenn
- Department of Radiology and Biomedical Imaging University of California San Francisco San Francisco CA
| | - Patrick McQuillen
- Department of Pediatrics, Division of Critical Care University of California San Francisco San Francisco CA
| | - Jing Liu
- Department of Radiology and Biomedical Imaging University of California San Francisco San Francisco CA
| |
Collapse
|