1
|
Tang F, Ding A, Xu Y, Ye Y, Li L, Xie R, Huang W. Gene and Photothermal Combination Therapy: Principle, Materials, and Amplified Anticancer Intervention. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2307078. [PMID: 37775950 DOI: 10.1002/smll.202307078] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 09/19/2023] [Indexed: 10/01/2023]
Abstract
Gene therapy (GT) and photothermal therapy (PTT) have emerged as promising alternatives to chemotherapy and radiotherapy for cancer treatment, offering noninvasiveness and reduced side effects. However, their efficacy as standalone treatments is limited. GT exhibits slow response rates, while PTT is confined to local tumor ablation. The convergence of GT and PTT, known as GT-PTT, facilitated by photothermal gene nanocarriers, has attracted considerable attention across various disciplines. In this integrated approach, GT reciprocates PTT by sensitizing cellular response to heat, while PTT benefits GT by improving gene translocation, unpacking, and expression. Consequently, this integration presents a unique opportunity for cancer therapy with rapid response and improved effectiveness. Extensive efforts over the past few years have been dedicated to the development of GT-PTT, resulting in notable achievements and rapid progress from the laboratory to potential clinical applications. This comprehensive review outlines recent advances in GT-PTT, including synergistic mechanisms, material systems, imaging-guided therapy, and anticancer applications. It also explores the challenges and future prospects in this nascent field. By presenting innovative ideas and insights into the implementation of GT-PTT for enhanced cancer therapy, this review aims to inspire further progress in this promising area of research.
Collapse
Affiliation(s)
- Fang Tang
- The Institute of Flexible Electronics (IFE, Future Technologies), Xiamen University, Xiamen, 361005, China
- Future Display Institute in Xiamen, Xiamen, 361005, China
| | - Aixiang Ding
- The Institute of Flexible Electronics (IFE, Future Technologies), Xiamen University, Xiamen, 361005, China
| | - Yao Xu
- The Institute of Flexible Electronics (IFE, Future Technologies), Xiamen University, Xiamen, 361005, China
| | - Yingsong Ye
- The Institute of Flexible Electronics (IFE, Future Technologies), Xiamen University, Xiamen, 361005, China
| | - Lin Li
- The Institute of Flexible Electronics (IFE, Future Technologies), Xiamen University, Xiamen, 361005, China
- Future Display Institute in Xiamen, Xiamen, 361005, China
- Frontiers Science Center for Flexible Electronics (IFE), Northwestern Polytechnical University, Xi'an, 710072, China
| | - Rongjun Xie
- Fujian Key Laboratory of Materials Genome, College of Materials, Xiamen University, Xiamen, 361005, China
| | - Wei Huang
- The Institute of Flexible Electronics (IFE, Future Technologies), Xiamen University, Xiamen, 361005, China
- Future Display Institute in Xiamen, Xiamen, 361005, China
- Frontiers Science Center for Flexible Electronics (IFE), Northwestern Polytechnical University, Xi'an, 710072, China
| |
Collapse
|
2
|
Afshari MJ, Cheng X, Duan G, Duan R, Wu S, Zeng J, Gu Z, Gao M. Vision for Ratiometric Nanoprobes: In Vivo Noninvasive Visualization and Readout of Physiological Hallmarks. ACS NANO 2023; 17:7109-7134. [PMID: 37036400 DOI: 10.1021/acsnano.3c01641] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Lesion areas are distinguished from normal tissues surrounding them by distinct physiological characteristics. These features serve as biological hallmarks with which targeted biomedical imaging of the lesion sites can be achieved. Although tremendous efforts have been devoted to providing smart imaging probes with the capability of visualizing the physiological hallmarks at the molecular level, the majority of them are merely able to derive anatomical information from the tissues of interest, and thus are not suitable for taking part in in vivo quantification of the biomarkers. Recent advances in chemical construction of advanced ratiometric nanoprobes (RNPs) have enabled a horizon for quantitatively monitoring the biological abnormalities in vivo. In contrast to the conventional probes whose dependency of output on single-signal profiles restricts them from taking part in quantitative practices, RNPs are designed to provide information in two channels, affording a self-calibration opportunity to exclude the analyte-independent factors from the outputs and address the issue. Most of the conventional RNPs have encountered several challenges regarding the reliability and sufficiency of the obtained data for high-performance imaging. In this Review, we have summarized the recent progresses in developing highly advanced RNPs with the capabilities of deriving maximized information from the lesion areas of interest as well as adapting themselves to the complex biological systems in order to minimize microenvironmental-induced falsified signals. To provide a better outlook on the current advanced RNPs, nanoprobes based on optical, photoacoustic, and magnetic resonance imaging modalities for visualizing a wide range of analytes such as pH, reactive species, and different derivations of amino acids have been included. Furthermore, the physicochemical properties of the RNPs, the major constituents of the nanosystems and the analyte recognition mechanisms have been introduced. Moreover, the alterations in the values of the ratiometric signal in response to the analyte of interest as well as the time at which the highest value is achieved, have been included for most of RNPs discussed in this Review. Finally, the challenges as well as future perspectives in the field are discussed.
Collapse
Affiliation(s)
- Mohammad Javad Afshari
- Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, People's Republic of China
| | - Xiaju Cheng
- Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, People's Republic of China
| | - Guangxin Duan
- Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, People's Republic of China
| | - Ruixue Duan
- Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, People's Republic of China
| | - Shuwang Wu
- Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, People's Republic of China
| | - Jianfeng Zeng
- Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, People's Republic of China
| | - Zi Gu
- School of Chemical Engineering and Australian Centre for NanoMedicine (ACN), University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Mingyuan Gao
- Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, People's Republic of China
| |
Collapse
|
3
|
Li B, Wang G, Tong Y, Zhang Y, Sun SK, Yu C. Noninvasive Gastrointestinal Tract Imaging Using BSA-Ag 2Te Quantum Dots as a CT/NIR-II Fluorescence Dual-Modal Imaging Probe in Vivo. ACS Biomater Sci Eng 2023; 9:449-457. [PMID: 36475590 DOI: 10.1021/acsbiomaterials.2c00886] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The combination of high-resolution computed tomography (CT) and the real-time sensitive second near-infrared window (NIR-II) fluorescence bioimaging can provide complementary information for the diagnosis, progression and prognosis of gastrointestinal disorders. Ag2Te quantum dots (QDs) are a kind of promising CT/NIR-II fluorescence dual-modal imaging probe due to their high atomic number and narrow bandgap. However, conventional Ag2Te QDs synthesized by oil phase approaches often suffer from complicated steps, harsh reaction conditions, and toxic organic solvents. Herein, we report the synthesis of bovine serum albumin (BSA)-Ag2Te QDs using a biomineralization approach for CT/NIR-II fluorescence dual-modal imaging of the gastrointestinal tract. The BSA-Ag2Te QDs are fabricated in a facile one-pot approach under mild conditions and exhibit homogeneous size, favorable monodispersity, admirable aqueous solubility, excellent X-ray attenuation properties, and outstanding NIR-II fluorescence performance. In vivo imaging experiments show that BSA-Ag2Te QDs can be used in gastrointestinal tract CT/NIR-II dual-modal imaging with high spatiotemporal resolution and sensitivity. In addition, in an intestinal obstruction mouse model, accurate lesion positioning and imaging-guided obstruction relief surgery are successfully realized based on BSA-Ag2Te QDs. Besides, BSA-Ag2Te QDs have outstanding biocompatibility in vitro and in vivo. This study presents a high-performance and biosafe CT/NIR-II fluorescence dual-modal imaging probe for visualizing the gastrointestinal tract in vivo.
Collapse
Affiliation(s)
- Bingjie Li
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Guohe Wang
- School of Medical Imaging, Tianjin Medical University, Tianjin 300203, China
| | - Yujie Tong
- School of Medical Imaging, Tianjin Medical University, Tianjin 300203, China
| | - Yujie Zhang
- Department of Pathology, Tianjin First Central Hospital, Tianjin 300192, China
| | - Shao-Kai Sun
- School of Medical Imaging, Tianjin Medical University, Tianjin 300203, China
| | - Chunshui Yu
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin 300052, China
| |
Collapse
|
4
|
Afshari MJ, Li C, Zeng J, Cui J, Wu S, Gao M. Self-illuminating NIR-II bioluminescence imaging probe based on silver sulfide quantum dots. ACS NANO 2022; 16:16824-16832. [PMID: 36178795 DOI: 10.1021/acsnano.2c06667] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Bioluminescence (BL) imaging has emerged to tackle the potential challenges of fluorescence (FL) imaging including the autofluorescence background, inhomogeneous illumination over a wide imaging field, and the light-induced overheating effect. Taking advantage of the bioluminescence resonance energy transfer (BRET) mechanism between a conventional luciferin compound and a suitable acceptor, the visible light of the former can be extended to photons with longer wavelengths emitting from the latter. Although BRET-based self-illuminating imaging probes have already been prepared, employing potentially cytotoxic elements as the acceptor with the emission wavelengths which hardly reach the first near-infrared (NIR-I) window, has limited their applications as safe and high performance in vivo imaging agents. Herein, we report a biocompatible, self-illuminating, and second near-infrared (NIR-II) emissive probe to address the cytotoxicity concerns as well as improve the penetration depth and spatiotemporal resolution of BL imaging. To this end, NanoLuc luciferase enzyme molecules were immobilized on the surface of silver sulfide quantum dots to oxidize its luciferin substrate and initiate a single-step BRET mechanism, resulting in NIR-II photons from the quantum dots. The resulting dual modality (BL/FL) probes were successfully applied to in vivo tumor imaging in mice, demonstrating that NIR-II BL signals could be easily detected from the tumor sites, giving rise to ∼2 times higher signal-to-noise ratios compared to those obtained under FL mode. The results indicated that nontoxic NIR-II emitting nanocrystals deserve more attention to be tailored to fill the growing demands of preparing appropriate agents for high quality BL imaging.
Collapse
Affiliation(s)
- Mohammad Javad Afshari
- Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, P. R. China
| | - Cang Li
- Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, P. R. China
| | - Jianfeng Zeng
- Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, P. R. China
| | - Jiabin Cui
- Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, P. R. China
| | - Shuwang Wu
- Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, P. R. China
| | - Mingyuan Gao
- Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, P. R. China
| |
Collapse
|
5
|
Li Y, Zhang P, Tang W, McHugh KJ, Kershaw SV, Jiao M, Huang X, Kalytchuk S, Perkinson CF, Yue S, Qiao Y, Zhu L, Jing L, Gao M, Han B. Bright, Magnetic NIR-II Quantum Dot Probe for Sensitive Dual-Modality Imaging and Intensive Combination Therapy of Cancer. ACS NANO 2022; 16:8076-8094. [PMID: 35442624 DOI: 10.1021/acsnano.2c01153] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Improving the effectiveness of cancer therapy will require tools that enable more specific cancer targeting and improved tumor visualization. Theranostics have the potential for improving cancer care because of their ability to serve as both diagnostics and therapeutics; however, their diagnostic potential is often limited by tissue-associated light absorption and scattering. Herein, we develop CuInSe2@ZnS:Mn quantum dots (QDs) with intrinsic multifunctionality that both enable the accurate localization of small metastases and act as potent tumor ablation agents. By leveraging the growth kinetics of a ZnS shell on a biocompatible CuInSe2 core, Mn doping, and folic acid functionalization, we produce biocompatible QDs with high near-infrared (NIR)-II fluorescence efficiency up to 31.2%, high contrast on magnetic resonance imaging (MRI), and preferential distribution in 4T1 breast cancer tumors. MRI-enabled contrast of these nanoprobes is sufficient to timely identify small metastases in the lungs, which is critically important for preventing cancer spreading and recurrence. Further, exciting tumor-resident QDs with NIR light produces both fluorescence for tumor visualization through radiative recombination pathways as well as heat and radicals through nonradiative recombination pathways that kill cancer cells and initiate an anticancer immune response, which eliminates tumor and prevents tumor regrowth in 80% of mice.
Collapse
Affiliation(s)
- Yingying Li
- CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Bei Yi Jie 2, Zhong Guan Cun, Beijing 100190, China
| | - Peisen Zhang
- CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Bei Yi Jie 2, Zhong Guan Cun, Beijing 100190, China
| | - Wen Tang
- South China Advanced Institute for Soft Matter Science and Technology, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, China
| | - Kevin J McHugh
- Department of Bioengineering, Rice University, 6100 Main Street, MS-142, Houston, Texas 77005, United States
| | - Stephen V Kershaw
- Department of Materials Science and Engineering & Centre for Functional Photonics, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon 99077, Hong Kong SAR, China
| | - Mingxia Jiao
- Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Xiaodan Huang
- CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Bei Yi Jie 2, Zhong Guan Cun, Beijing 100190, China
| | - Sergii Kalytchuk
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute, Palacký University Olomouc, Olomouc 783 71, Czech Republic
| | - Collin F Perkinson
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Saisai Yue
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yuanyuan Qiao
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Lichong Zhu
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Lihong Jing
- CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Bei Yi Jie 2, Zhong Guan Cun, Beijing 100190, China
| | - Mingyuan Gao
- CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Bei Yi Jie 2, Zhong Guan Cun, Beijing 100190, China
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Buxing Han
- CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Bei Yi Jie 2, Zhong Guan Cun, Beijing 100190, China
| |
Collapse
|
6
|
Ge J, Chen L, Huang B, Gao Y, Zhou D, Zhou Y, Chen C, Wen L, Li Q, Zeng J, Zhong Z, Gao M. Anchoring Group-Mediated Radiolabeling of Inorganic Nanoparticles─A Universal Method for Constructing Nuclear Medicine Imaging Nanoprobes. ACS APPLIED MATERIALS & INTERFACES 2022; 14:8838-8846. [PMID: 35133124 DOI: 10.1021/acsami.1c23907] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Nuclear medicine imaging has aroused great interest in the design and synthesis of versatile radioactive nanoprobes, while most of the methods developed for radiolabeling nanoprobes are difficult to satisfy the criteria of clinical translation, including easy operation, mild labeling conditions, high efficiency, and high radiolabeling stability. Herein, we demonstrated the universality of a simple but efficient radiolabeling method recently developed for constructing nuclear imaging nanoprobes, that is, ligand anchoring group-mediated radiolabeling (LAGMERAL). In this method, a diphosphonate-polyethylene glycol (DP-PEG) decorating on the surface of inorganic nanoparticles plays an essential role. In principle, owing to the strong binding affinity to a great variety of metal ions, it can not only endow the underlying nanoparticles containing metal ions including some main group metal ions, transition metal ions, and lanthanide metal ions with excellent colloidal stability and biocompatibility but also enable efficient radiolabeling through the diphosphonate group. Based on this assumption, inorganic nanoparticles such as Fe3O4 nanoparticles, NaGdF4:Yb,Tm nanoparticles, and Cu2-xS nanoparticles, as representatives of functional inorganic nanoparticles suitable for different imaging modalities including magnetic resonance imaging (MRI), upconversion luminescence imaging (UCL), and photoacoustic imaging (PAI), respectively, were chosen to be radiolabeled with different kinds of radionuclides such as SPECT nuclides (e.g., 99mTc), PET nuclides (e.g., 68Ga), and therapeutic SPECT nuclides (e.g., 177Lu) to demonstrate the reliability of the LAGMERAL approach. The experimental results showed that the obtained nanoprobes exhibited high radiolabeling stability, and the whole radiolabeling process had negligible impacts on the physical and chemical properties of the initial nanoparticles. Through passive targeting SPECT/MRI of glioma tumor, active targeting SPECT/UCL of colorectal cancer, and SPECT/PAI of lymphatic metastasis, the outstanding potentials of the resulting radioactive nanoprobes for sensitive tumor diagnosis were demonstrated, manifesting the feasibility and efficiency of LAGMERAL.
Collapse
Affiliation(s)
- Jianxian Ge
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Lei Chen
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Baoxing Huang
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Yun Gao
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Dandan Zhou
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Yi Zhou
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Can Chen
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Ling Wen
- The First Affiliated Hospital of Soochow University, Soochow University, Suzhou 215000, China
| | - Qing Li
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Jianfeng Zeng
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Zhiyuan Zhong
- College of Chemistry, Chemical Engineering and Materials Science of Soochow University, Soochow University, Suzhou 215123, China
| | - Mingyuan Gao
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
- The Second Affiliated Hospital of Soochow University, Soochow University, Suzhou 215000, China
| |
Collapse
|
7
|
Zhang P, Jing L. Nanoprobes for Visualization of Cancer Pathology in Vivo※. ACTA CHIMICA SINICA 2022. [DOI: 10.6023/a21120609] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
8
|
Yuan Y, He N, Dong L, Guo Q, Zhang X, Li B, Li L. Multiscale Shellac-Based Delivery Systems: From Macro- to Nanoscale. ACS NANO 2021; 15:18794-18821. [PMID: 34806863 DOI: 10.1021/acsnano.1c07121] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Delivery systems play a crucial role in enhancing the activity of active substances; however, they require complex processing techniques and raw material design to achieve the desired properties. In this regard, raw materials that can be easily processed for different delivery systems are garnering attention. Among these raw materials, shellac, which is the only pharmaceutically used resin of animal origin, has been widely used in the development of various delivery systems owing to its pH responsiveness, biocompatibility, and degradability. Notably, shellac performs better on encapsulating hydrophobic active substances than other natural polymers, such as polysaccharides and proteins. In addition, specially designed shellac-based delivery systems can also be used for the codelivery of hydrophilic and hydrophobic active substances. Shellac is most widely used for oral administration, as shellac-based delivery systems can form a compact structure through hydrophobic interaction, protecting transported active substances from the harsh environment of the stomach to achieve targeted delivery in the small intestine or colon. In this review, the advantages of shellac in delivery systems are discussed in detail. Multiscale shellac-based delivery systems from the macroscale to nanoscale are comprehensively introduced, including matrix tablets, films, enteric coatings, hydrogels, microcapsules, microparticles (beads/spheres), nanoparticles, and nanofibers. Furthermore, the hotspots, deficiencies, and future perspectives of shellac-based delivery system development are also analyzed. We hoped this review will increase the understanding of shellac-based delivery systems and inspire their further development.
Collapse
Affiliation(s)
- Yi Yuan
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
- Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, China
- Engineering Research Center of Starch and Plant Protein Deep Processing, Ministry of Education, South China University of Technology, Guangzhou 510640, China
| | - Ni He
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
- Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, China
- Engineering Research Center of Starch and Plant Protein Deep Processing, Ministry of Education, South China University of Technology, Guangzhou 510640, China
| | - Liya Dong
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
- Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, China
- Engineering Research Center of Starch and Plant Protein Deep Processing, Ministry of Education, South China University of Technology, Guangzhou 510640, China
| | - Qiyong Guo
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
- Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, China
- Engineering Research Center of Starch and Plant Protein Deep Processing, Ministry of Education, South China University of Technology, Guangzhou 510640, China
| | - Xia Zhang
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
- Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, China
- Engineering Research Center of Starch and Plant Protein Deep Processing, Ministry of Education, South China University of Technology, Guangzhou 510640, China
| | - Bing Li
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
- Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, China
- Engineering Research Center of Starch and Plant Protein Deep Processing, Ministry of Education, South China University of Technology, Guangzhou 510640, China
| | - Lin Li
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
- Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, China
- Engineering Research Center of Starch and Plant Protein Deep Processing, Ministry of Education, South China University of Technology, Guangzhou 510640, China
- School of Chemical Engineering and Energy Technology, Dongguan University of Technology, Dongguan 523808, China
| |
Collapse
|
9
|
Chen L, Ge J, Huang B, Zhou D, Huang G, Zeng J, Gao M. Anchoring Group Mediated Radiolabeling for Achieving Robust Nanoimaging Probes. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2104977. [PMID: 34651420 DOI: 10.1002/smll.202104977] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 08/29/2021] [Indexed: 06/13/2023]
Abstract
Radiolabeling counts for much in the functionalization of inorganic nanoparticles (NPs) because it endows NPs with high-sensitive imaging capacities apart from providing accurate pharmacokinetic information on the labeled particles, which makes the development of relevant radiolabeling chemistry highly desirable. Herein, a novel Ligand Anchoring Group MEdiated RAdioLabeling (LAGMERAL) method is reported, in which a polyethylene glycol (PEG) ligand with a diphosphonate (DP) terminal group plays a key role. It offers possibilities to radiolabel NPs through the spare coordination sites of the DP anchoring group. Through X-ray absorption spectroscopy studies, the coordination states of the foreign metal ions on the particle surface are investigated. In addition, radioactive Fe3 O4 NPs are prepared by colabeling the particles with 125 I at the outskirt of the particles through a phenolic hydroxyl moiety of the PEG ligand, and 99m Tc at the root of the ligand, respectively. In this way, the stabilities of these types of radiolabeling are compared both in vitro and in vivo to show the advantages of the LAGMERAL method. The outstanding stability of probe and simplicity of the labeling process make the current approach universal for creating advanced NPs with different combinations of functionalities of the inorganic NPs and radioactive properties of the metal radioisotopes.
Collapse
Affiliation(s)
- Lei Chen
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Soochow University, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou, 215123, China
| | - Jianxian Ge
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Soochow University, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou, 215123, China
| | - Baoxing Huang
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Soochow University, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou, 215123, China
| | - Dandan Zhou
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Soochow University, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou, 215123, China
| | - Gang Huang
- Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai, 201318, China
| | - Jianfeng Zeng
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Soochow University, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou, 215123, China
| | - Mingyuan Gao
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Soochow University, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou, 215123, China
| |
Collapse
|
10
|
Liu X, Song N, Qian D, Gu S, Pu J, Huang L, Liu J, Qian K. Porous Inorganic Materials for Bioanalysis and Diagnostic Applications. ACS Biomater Sci Eng 2021; 8:4092-4109. [PMID: 34494831 DOI: 10.1021/acsbiomaterials.1c00733] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Porous inorganic materials play an important role in adsorbing targeted analytes and supporting efficient reactions in analytical science. The detection performance relies on the structural properties of porous materials, considering the tunable pore size, shape, connectivity, etc. Herein, we first clarify the enhancement mechanisms of porous materials for bioanalysis, concerning the detection sensitivity and selectivity. The diagnostic applications of porous material-assisted platforms by coupling with various analytical techniques, including electrochemical sensing, optical spectrometry, and mass spectrometry, etc., are then reviewed. We foresee that advanced porous materials will bring far-reaching implications in bioanalysis toward real-case applications, especially as diagnostic assays in clinical settings.
Collapse
Affiliation(s)
- Xun Liu
- School of Biomedical Engineering, Institute of Medical Robotics and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai 200030, P. R. China
| | - Naikun Song
- School of Biomedical Engineering, Institute of Medical Robotics and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai 200030, P. R. China
| | - Dahong Qian
- School of Biomedical Engineering, Institute of Medical Robotics and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai 200030, P. R. China
| | - Sai Gu
- School of Engineering, University of Warwick, Coventry CV4 7AL, W Midlands, England.,Department of Chemical and Process Engineering, University of Surrey, Guildford, Surrey GU27XH, United Kingdom
| | - Jun Pu
- Division of Cardiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai 200127, P. R. China
| | - Lin Huang
- Stem Cell Research Center, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai 200127, P. R. China
| | - Jian Liu
- Department of Chemical and Process Engineering, University of Surrey, Guildford, Surrey GU27XH, United Kingdom.,Chinese Academy of Sciences, Dalian Institute of Chemical Physics, CAS State Key Laboratory of Catalysis, 568 Zhongshan Road, Dalian 116023, P. R. China
| | - Kun Qian
- School of Biomedical Engineering, Institute of Medical Robotics and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai 200030, P. R. China.,Division of Cardiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai 200127, P. R. China
| |
Collapse
|
11
|
Zhang T, Xiong H, Ma X, Gao Y, Xue P, Kang Y, Sun ZJ, Xu Z. Supramolecular Tadalafil Nanovaccine for Cancer Immunotherapy by Alleviating Myeloid-Derived Suppressor Cells and Heightening Immunogenicity. SMALL METHODS 2021; 5:e2100115. [PMID: 34927922 DOI: 10.1002/smtd.202100115] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 04/24/2021] [Indexed: 06/14/2023]
Abstract
Tumor-induced immune suppression mediated by myeloid-derived suppressor cells (MDSCs) and insufficient immunogenicity are two major factors for the poor overall response rate to the immune checkpoint blockade (ICB). Here, a tumor microenvironment responsive nanoprodrug (FIT nanoparticles) is presented for co-delivering tadalafil (TAD) and indocyanine green (ICG) photosensitizer to simultaneously targeting intratumor MDSCs and amplifying tumor immunogenicity. The resulting nanoprodrug shows high drug loading (nearly 100%), tumor-specific release, and robust therapeutic efficacy by virtue of promoting immunogenic cell death (ICD) induction and alleviation of MDSCs for augmenting the photothermal immunotherapy. In an in vivo colon tumor model, the released TAD in the tumor can effectively ameliorate MDSCs immunosuppressive activity, while the photosensitizer ICG is capable of inducing ICD to promote sufficient dendritic cells maturation and T cell infiltration. The results reported here may provide a superior candidate of adjuvants for strengthening immune response and ICB efficacy.
Collapse
Affiliation(s)
- Tian Zhang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, School of Materials and Energy & Chongqing Engineering Research Center for Micro-Nano Biomedical Materials and Devices, Southwest University, Chongqing, 400715, P. R. China
| | - Honggang Xiong
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine, Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, 430079, P. R. China
| | - Xianbin Ma
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, School of Materials and Energy & Chongqing Engineering Research Center for Micro-Nano Biomedical Materials and Devices, Southwest University, Chongqing, 400715, P. R. China
| | - Yuan Gao
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, School of Materials and Energy & Chongqing Engineering Research Center for Micro-Nano Biomedical Materials and Devices, Southwest University, Chongqing, 400715, P. R. China
| | - Peng Xue
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, School of Materials and Energy & Chongqing Engineering Research Center for Micro-Nano Biomedical Materials and Devices, Southwest University, Chongqing, 400715, P. R. China
| | - Yuejun Kang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, School of Materials and Energy & Chongqing Engineering Research Center for Micro-Nano Biomedical Materials and Devices, Southwest University, Chongqing, 400715, P. R. China
| | - Zhi-Jun Sun
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine, Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, 430079, P. R. China
| | - Zhigang Xu
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, School of Materials and Energy & Chongqing Engineering Research Center for Micro-Nano Biomedical Materials and Devices, Southwest University, Chongqing, 400715, P. R. China
| |
Collapse
|
12
|
Xiao Z, Huang C, Jiang S, Kong X, Teng Y, Niu B, Zhu C, Xin W, Chen X, Wen L, Wei Y, Deng X. Ultra-Sensitive and Selective Electrochemical Bio-Fluid Biopsy for Oral Cancer Screening. SMALL METHODS 2021; 5:e2001205. [PMID: 34928075 DOI: 10.1002/smtd.202001205] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 12/29/2020] [Indexed: 06/14/2023]
Abstract
The early diagnosis of recurrence and metastasis is critically important for decreasing the morbidity and mortality associated with oral cancers. Although liquid biopsy methods hold great promise that provide a successive "time-slice" profile of primary and metastatic oral cancer, the development of non-invasive, rapid, simple, and cost-effective liquid biopsy techniques remains challenging. In this study, an ultrasensitive and selective electrochemical liquid biopsy is developed for oral cancer screening based on tracking trace amounts of cancer biomarker by functionalized asymmetric nano-channels. Detection via antigen-antibody reactions is assayed by evaluating changes in ionic current. Upon the recognition of cancer biomarker antigens in bio-fluids, the inner wall of nano-channel immobilized with the corresponding antibodies undergoes molecular conformation transformation and surface physicochemical changes, which significantly regulate the ion transport through the nano-channel and help achieve sensitivity with a detection limit of 10-12 g mL-1 . Furthermore, owing to the specificity of the monoclonal antibody for the antigen, the nano-channel exhibits high selectivity for the biomarker than for structurally similar biological molecules present in bio-fluids. The effectiveness of this technique is confirmed through the diagnosis of clinical cases of oral squamous cell carcinoma. This study presents a novel diagnostic tool for oral cancer detection in bio-fluids.
Collapse
Affiliation(s)
- Zuohui Xiao
- Beijing Laboratory of Biomedical Materials, Department of Geriatric Dentistry, Peking University School and Hospital of Stomatology, Beijing, 100081, P. R. China
| | - Chenyan Huang
- Beijing Laboratory of Biomedical Materials, Department of Geriatric Dentistry, Peking University School and Hospital of Stomatology, Beijing, 100081, P. R. China
| | - Shengjie Jiang
- Beijing Laboratory of Biomedical Materials, Department of Geriatric Dentistry, Peking University School and Hospital of Stomatology, Beijing, 100081, P. R. China
| | - Xiangyu Kong
- CAS Key Laboratory of Bio-inspired Smart Interfacial Science Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, 29 Zhongguancun East Road, Haidian District, Beijing, 100190, P. R. China
| | - Yunfei Teng
- CAS Key Laboratory of Bio-inspired Smart Interfacial Science Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, 29 Zhongguancun East Road, Haidian District, Beijing, 100190, P. R. China
| | - Bo Niu
- CAS Key Laboratory of Bio-inspired Smart Interfacial Science Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, 29 Zhongguancun East Road, Haidian District, Beijing, 100190, P. R. China
| | - CongCong Zhu
- CAS Key Laboratory of Bio-inspired Smart Interfacial Science Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, 29 Zhongguancun East Road, Haidian District, Beijing, 100190, P. R. China
| | - Weiwen Xin
- CAS Key Laboratory of Bio-inspired Smart Interfacial Science Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, 29 Zhongguancun East Road, Haidian District, Beijing, 100190, P. R. China
| | - Xiaohui Chen
- Division of Dentistry, School of Medical Sciences, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| | - Liping Wen
- CAS Key Laboratory of Bio-inspired Smart Interfacial Science Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, 29 Zhongguancun East Road, Haidian District, Beijing, 100190, P. R. China
| | - Yan Wei
- Beijing Laboratory of Biomedical Materials, Department of Geriatric Dentistry, Peking University School and Hospital of Stomatology, Beijing, 100081, P. R. China
| | - Xuliang Deng
- Beijing Laboratory of Biomedical Materials, Department of Geriatric Dentistry, Peking University School and Hospital of Stomatology, Beijing, 100081, P. R. China
| |
Collapse
|
13
|
Lan G, Yang J, Ye RP, Boyjoo Y, Liang J, Liu X, Li Y, Liu J, Qian K. Sustainable Carbon Materials toward Emerging Applications. SMALL METHODS 2021; 5:e2001250. [PMID: 34928103 DOI: 10.1002/smtd.202001250] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 02/10/2021] [Indexed: 06/14/2023]
Abstract
It is desirable for a sustainable society that the production and utilization of renewable materials are net-zero in terms of carbon emissions. Carbon materials with emerging applications in CO2 utilization, renewable energy storage and conversion, and biomedicine have attracted much attention both academically and industrially. However, the preparation process of some new carbon materials suffers from energy consumption and environmental pollution issues. Therefore, the development of low-cost, scalable, industrially and economically attractive, sustainable carbon material preparation methods are required. In this regard, the use of biomass and its derivatives as a precursor of carbon materials is a major feature of sustainability. Recent advances in the synthetic strategy of sustainable carbon materials and their emerging applications are summarized in this short review. Emphasis is made on the discussion of the original intentions and various sustainable strategies for producing sustainable carbon materials. This review provides basic insights and significant guidelines for the further design of sustainable carbon materials and their emerging applications in catalysis and the biomedical field.
Collapse
Affiliation(s)
- Guojun Lan
- Institute of Industrial Catalysis, Zhejiang University of Technology, Hangzhou Chaowang Road 18, Zhejiang, 310032, P. R. China
| | - Jing Yang
- State Key Laboratory for Oncogenes and Related Genes, Division of Cardiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Cancer Institute, 160 Pujian Road, Shanghai, 200127, P. R. China
- School of Biomedical Engineering and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, 200030, P. R. China
| | - Run-Ping Ye
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning, 116023, P. R. China
| | - Yash Boyjoo
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning, 116023, P. R. China
| | - Ji Liang
- Key Laboratory for Advanced Ceramics and Machining Technology of Ministry of Education, School of Materials Science and Engineering, Tianjin University, Tianjin, 300350, P. R. China
| | - Xiaoyan Liu
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning, 116023, P. R. China
| | - Ying Li
- Institute of Industrial Catalysis, Zhejiang University of Technology, Hangzhou Chaowang Road 18, Zhejiang, 310032, P. R. China
| | - Jian Liu
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning, 116023, P. R. China
- DICP-Surrey Joint Centre for Future Materials, Department of Chemical and Process Engineering, and Advanced Technology Institute, University of Surrey, Guilford, Surrey, GU2 7XH, UK
| | - Kun Qian
- State Key Laboratory for Oncogenes and Related Genes, Division of Cardiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Cancer Institute, 160 Pujian Road, Shanghai, 200127, P. R. China
- School of Biomedical Engineering and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, 200030, P. R. China
| |
Collapse
|
14
|
Zhang P, Draz MS, Xiong A, Yan W, Han H, Chen W. Immunoengineered magnetic-quantum dot nanobead system for the isolation and detection of circulating tumor cells. J Nanobiotechnology 2021; 19:116. [PMID: 33892737 PMCID: PMC8063296 DOI: 10.1186/s12951-021-00860-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Accepted: 04/09/2021] [Indexed: 01/04/2023] Open
Abstract
Background Highly efficient capture and detection of circulating tumor cells (CTCs) remain elusive mainly because of their extremely low concentration in patients’ peripheral blood. Methods We present an approach for the simultaneous capturing, isolation, and detection of CTCs using an immuno-fluorescent magnetic nanobead system (iFMNS) coated with a monoclonal anti-EpCAM antibody. Results The developed antibody nanobead system allows magnetic isolation and fluorescent-based quantification of CTCs. The expression of EpCAM on the surface of captured CTCs could be directly visualized without additional immune-fluorescent labeling. Our approach is shown to result in a 70–95% capture efficiency of CTCs, and 95% of the captured cells remain viable. Using our approach, the isolated cells could be directly used for culture, reverse transcription-polymerase chain reaction (RT-PCR), and immunocytochemistry (ICC) identification. We applied iFMNS for testing CTCs in peripheral blood samples from a lung cancer patient. Conclusions It is suggested that our iFMNS approach would be a promising tool for CTCs enrichment and detection in one step. Graphic abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s12951-021-00860-1.
Collapse
Affiliation(s)
- Pengfei Zhang
- Department of Pharmacy, Changzheng Hospital, Second Military Medical University, Shanghai, 200003, China.,Department of Central Laboratory, Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai, 200443, China
| | - Mohamed S Draz
- Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA.,Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA.,Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA, USA
| | - Anwen Xiong
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University Medical School Cancer Institute, Tongji University School of Medicine, Shanghai, 200433, China
| | - Wannian Yan
- Department of Central Laboratory, Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai, 200443, China
| | - Huanxing Han
- Department of Pharmacy, Changzheng Hospital, Second Military Medical University, Shanghai, 200003, China. .,Ailex Technology Group Co., Ltd., Shanghai, 201108, China.
| | - Wansheng Chen
- Department of Pharmacy, Changzheng Hospital, Second Military Medical University, Shanghai, 200003, China. .,Research and Development Center of Chinese Medicine Resources and Biotechnology, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| |
Collapse
|
15
|
Yang Y, Yue S, Qiao Y, Zhang P, Jiang N, Ning Z, Liu C, Hou Y. Activable Multi-Modal Nanoprobes for Imaging Diagnosis and Therapy of Tumors. Front Chem 2021; 8:572471. [PMID: 33912535 PMCID: PMC8075363 DOI: 10.3389/fchem.2020.572471] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Accepted: 12/18/2020] [Indexed: 01/05/2023] Open
Abstract
Malignant tumors have become one of the major causes of human death, but there remains a lack of effective methods for tiny tumor diagnosis, metastasis warning, clinical efficacy prediction, and effective treatment. In this context, localizing tiny tumors via imaging and non-invasively extracting molecular information related to tumor proliferation, invasion, metastasis, and drug resistance from the tumor microenvironment have become the most fundamental tasks faced by cancer researchers. Tumor-associated microenvironmental physiological parameters, such as hypoxia, acidic extracellular pH, protease, reducing conditions, and so forth, have much to do with prognostic indicators for cancer progression, and impact therapeutic administrations. By combining with various novel nanoparticle-based activatable probes, molecular imaging technologies can provide a feasible approach to visualize tumor-associated microenvironment parameters noninvasively and realize accurate treatment of tumors. This review focuses on the recent achievements in the design of “smart” nanomedicine responding to the tumor microenvironment-related features and highlights state-of- the-art technology in tumor imaging diagnosis and therapy.
Collapse
Affiliation(s)
- Yan Yang
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Saisai Yue
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Yuanyuan Qiao
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Peisen Zhang
- Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China.,School of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences, Beijing, China
| | - Ni Jiang
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Zhenbo Ning
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Chunyan Liu
- Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China
| | - Yi Hou
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China.,Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
16
|
Aflori M. Smart Nanomaterials for Biomedical Applications-A Review. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:396. [PMID: 33557177 PMCID: PMC7913901 DOI: 10.3390/nano11020396] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 01/19/2021] [Accepted: 01/22/2021] [Indexed: 12/12/2022]
Abstract
Recent advances in nanotechnology have forced the obtaining of new materials with multiple functionalities. Due to their reduced dimensions, nanomaterials exhibit outstanding physio-chemical functionalities: increased absorption and reactivity, higher surface area, molar extinction coefficients, tunable plasmonic properties, quantum effects, and magnetic and photo properties. However, in the biomedical field, it is still difficult to use tools made of nanomaterials for better therapeutics due to their limitations (including non-biocompatible, poor photostabilities, low targeting capacity, rapid renal clearance, side effects on other organs, insufficient cellular uptake, and small blood retention), so other types with controlled abilities must be developed, called "smart" nanomaterials. In this context, the modern scientific community developed a kind of nanomaterial which undergoes large reversible changes in its physical, chemical, or biological properties as a consequence of small environmental variations. This systematic mini-review is intended to provide an overview of the newest research on nanosized materials responding to various stimuli, including their up-to-date application in the biomedical field.
Collapse
Affiliation(s)
- Magdalena Aflori
- Petru Poni Institute of Macromolecular Chemistry, 41A Grigore Ghica Voda Alley, 700487 Iasi, Romania
| |
Collapse
|
17
|
Li B, Gong T, Xu N, Cui F, Yuan B, Yuan Q, Sun H, Wang L, Liu J. Improved Stability and Photothermal Performance of Polydopamine-Modified Fe 3 O 4 Nanocomposites for Highly Efficient Magnetic Resonance Imaging-Guided Photothermal Therapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e2003969. [PMID: 33053265 DOI: 10.1002/smll.202003969] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 09/16/2020] [Indexed: 05/20/2023]
Abstract
Magnetic nanomaterials are a promising class of contrast agents for magnetic resonance imaging (MRI). However, their poor stability and low relaxivity are major challenges hindering their clinical applications. In this study, magnetic theranostic nanoagents based on polydopamine-modified Fe3 O4 (Fe3 O4 @PDA) nanocomposites are fabricated for MRI-guided photothermal therapy (PTT) cancer treatments. Their high transverse relaxivity of 337.8 mM-1 s-1 makes these Fe3 O4 @PDA nanocomposites a promising T2 -weighted MRI contrast agent for cancer diagnosis and image-guided cancer therapy. Due to the good photothermal effect of polydopamine (PDA), the tumors of 4T1 tumor-bearing mice are completely excised by PTT. Most importantly, the PDA shell also improves the stability of the Fe3 O4 @PDA nanocomposites, which contributes to their excellent, long-term performance in MRI and PTT applications. Their good stability, high T2 relaxivity, robust biocompatibility, and satisfactory treatment effect give these Fe3 O4 @PDA nanocomposites great potential for use in cancer theranostics.
Collapse
Affiliation(s)
- Bo Li
- Department of Radiology, The Second Hospital of Jilin University, Changchun, 130041, P. R. China
| | - Tingting Gong
- Department of Radiology, The Second Hospital of Jilin University, Changchun, 130041, P. R. China
| | - Nannan Xu
- Department of Radiology, The Second Hospital of Jilin University, Changchun, 130041, P. R. China
| | - Fengzhi Cui
- Department of Radiology, The Second Hospital of Jilin University, Changchun, 130041, P. R. China
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Biying Yuan
- Department of Radiology, The Second Hospital of Jilin University, Changchun, 130041, P. R. China
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Qinghai Yuan
- Department of Radiology, The Second Hospital of Jilin University, Changchun, 130041, P. R. China
| | - Hongzan Sun
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang, 110004, P. R. China
| | - Lei Wang
- Department of Radiology, The Second Hospital of Jilin University, Changchun, 130041, P. R. China
| | - Jianhua Liu
- Department of Radiology, The Second Hospital of Jilin University, Changchun, 130041, P. R. China
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| |
Collapse
|
18
|
Xu W, Lin J, Gao M, Chen Y, Cao J, Pu J, Huang L, Zhao J, Qian K. Rapid Computer-Aided Diagnosis of Stroke by Serum Metabolic Fingerprint Based Multi-Modal Recognition. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:2002021. [PMID: 33173737 PMCID: PMC7610260 DOI: 10.1002/advs.202002021] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 06/30/2020] [Indexed: 05/07/2023]
Abstract
Stroke is a leading cause of mortality and disability worldwide, expected to result in 61 million disability-adjusted life-years in 2020. Rapid diagnostics is the core of stroke management for early prevention and medical treatment. Serum metabolic fingerprints (SMFs) reflect underlying disease progression, predictive of patient phenotypes. Deep learning (DL) encoding SMFs with clinical indexes outperforms single biomarkers, while posing challenges with poor prediction to interpret by feature selection. Herein, rapid computer-aided diagnosis of stroke is performed using SMF based multi-modal recognition by DL, to combine adaptive machine learning with a novel feature selection approach. SMFs are extracted by nano-assisted laser desorption/ionization mass spectrometry (LDI MS), consuming 100 nL of serum in seconds. A multi-modal recognition is constructed by integrating SMFs and clinical indexes with an enhanced area under curve (AUC) up to 0.845 for stroke screening, compared to single-modal diagnosis by only SMFs or clinical indexes. The prediction of DL is addressed by selecting 20 key metabolite features with differential regulation through a saliency map approach, shedding light on the molecular mechanisms in stroke. The approach highlights the emerging role of DL in precision medicine and suggests an expanding utility for computational analysis of SMFs in stroke screening.
Collapse
Affiliation(s)
- Wei Xu
- State Key Laboratory for Oncogenes and Related GenesDivision of CardiologyRenji HospitalSchool of MedicineShanghai Jiao Tong University160 Pujian RoadShanghai200127P. R. China
- State Key Laboratory for Oncogenes and Related GenesSchool of Biomedical EngineeringShanghai Jiao Tong UniversityShanghai200030P. R. China
| | - Jixian Lin
- Department of NeurologyMinhang HospitalFudan University170 Xinsong RoadShanghai201199P. R. China
| | - Ming Gao
- School of Management Science and EngineeringDongbei University of Finance and EconomicsDalian116025P. R. China
- Center for Post‐doctoral Studies of Computer ScienceNortheastern UniversityShenyang110819P. R. China
| | - Yuhan Chen
- School of Management Science and EngineeringDongbei University of Finance and EconomicsDalian116025P. R. China
- Center for Post‐doctoral Studies of Computer ScienceNortheastern UniversityShenyang110819P. R. China
| | - Jing Cao
- State Key Laboratory for Oncogenes and Related GenesDivision of CardiologyRenji HospitalSchool of MedicineShanghai Jiao Tong University160 Pujian RoadShanghai200127P. R. China
- State Key Laboratory for Oncogenes and Related GenesSchool of Biomedical EngineeringShanghai Jiao Tong UniversityShanghai200030P. R. China
| | - Jun Pu
- State Key Laboratory for Oncogenes and Related GenesDivision of CardiologyRenji HospitalSchool of MedicineShanghai Jiao Tong University160 Pujian RoadShanghai200127P. R. China
- State Key Laboratory for Oncogenes and Related GenesSchool of Biomedical EngineeringShanghai Jiao Tong UniversityShanghai200030P. R. China
| | - Lin Huang
- Stem Cell Research CenterRenji HospitalSchool of MedicineShanghai Jiao Tong University160 Pujian RoadShanghai200127P. R. China
| | - Jing Zhao
- Department of NeurologyMinhang HospitalFudan University170 Xinsong RoadShanghai201199P. R. China
| | - Kun Qian
- State Key Laboratory for Oncogenes and Related GenesDivision of CardiologyRenji HospitalSchool of MedicineShanghai Jiao Tong University160 Pujian RoadShanghai200127P. R. China
- State Key Laboratory for Oncogenes and Related GenesSchool of Biomedical EngineeringShanghai Jiao Tong UniversityShanghai200030P. R. China
| |
Collapse
|
19
|
Yan W, Fan L, Li J, Wang Y, Han H, Tan F, Zhang P. Bimodal size distribution immuno-quantum dots for fluorescent western blotting assay with high sensitivity and extended dynamic range. Mikrochim Acta 2020; 187:598. [PMID: 33034772 DOI: 10.1007/s00604-020-04578-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 09/29/2020] [Indexed: 11/25/2022]
Abstract
A highly sensitive quantum dot (QD)-based western blot assay with extended dynamic range was developed. Bimodal size distribution QD (BQ) immunoprobes composed of small size single QD (7.3 nm) and big size QD nanobead (QB) (82.9 nm) were employed for fluorescent western blot immunoassay on a membrane. Small size QD immunoprobes contributed to wider dynamic range of assay, while big size QB immunoprobes provided higher detection sensitivity. This BQ-based western blot assay can achieve a wide dynamic range (from 7.8 to 4000 ng IgG) and is nearly as sensitive as commercial available ultrasensitive chemiluminescent methods, just using a simple gel imager with UV light (365 nm) excitation and red light filter (610 nm). The fluorescent signals of BQ western blot were stable for 10 min, while chemiluminescent signals faded after 1 min. Moreover, this BQ immunoprobe was utilized for the detection of housekeeping protein and specific target proteins in complex cell lysate samples. The limit of detection of housekeeping protein is 0.25 μg of cell lysate, and the signal intensities were proportional to loading protein amount in a wide range from 0.61 to 80 μg. We believe that this new strategy of bimodal size distribution nanoparticles can also be expanded for other functional nanoparticle-based biological assays to improve the sensitivity and extend the dynamic range. Graphical abstract.
Collapse
Affiliation(s)
- Wannian Yan
- Department of Central Laboratory, Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai, 200443, China
| | - Lingzhi Fan
- Department of Central Laboratory, Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai, 200443, China
| | - Jin Li
- Shandong Zhifu Hospital, Yantai, 26400, Shandong, China
| | - Yijiang Wang
- Department of Periodontology, School & Hospital of Stomatology, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Tongji University, Shanghai, 200072, China
| | - Huanxing Han
- Department of Pharmacy, Changzheng Hospital, The Second Military Medical University, Shanghai, 200433, China
- Aliex Technology Group Co., Ltd, No. 152, Lane 468, North Hengshahe Road, Shanghai, China
| | - Fei Tan
- Department of Central Laboratory, Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai, 200443, China.
| | - Pengfei Zhang
- Department of Central Laboratory, Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai, 200443, China.
| |
Collapse
|
20
|
Kong L, Yuan F, Huang P, Yan L, Cai Z, Lawson T, Wu W, Chou S, Liu Y. A Metal-Polymer Hybrid Biomimetic System for use in the Chemodynamic-Enhanced Photothermal Therapy of Cancers. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e2004161. [PMID: 33000898 DOI: 10.1002/smll.202004161] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 09/03/2020] [Indexed: 06/11/2023]
Abstract
This article reports the fabrication of a smart biomimetic enzyme system, which incorporates a pH-responsive chemodynamic therapy (CDT) combined with a photothermal (PTT) therapy approach in resolving the high recurrence rate of deadly cancers. The resulting enzyme system comprises copper sulfide (CuS) nanoparticle (NP) cores as Fenton-like catalysts, and a photothermal-active generation 5 poly(amidoamine) (G5) dendrimer as a template for the entrapment of Cu NPs and the compression of glucose oxidase (GOD). GOD is introduced to produce H2 O2 necessary in the sequential Fenton-like reaction, and this generates hydroxyl radicals that kill the cancerous cells. Polyethylene glycol is added to the system to improve biocompatibility. Mechanism study suggests that the constructed CuS/G5-GOD-based system has a better Fenton-like catalytic activity than a Fe3 O4 -GOD-based system. This allows the further inhibition on the residual tumors from recurrence and metastasis through CDT after being treated by PTT. The developed smart nanoscale biomimetic system shows high efficiency for breast cancer suppression from recurrence and metastasis by combining PTT with a pH-responsive CDT. It has the potential to resolve the essential issue of cancer recurrence after its initial clinic treatment.
Collapse
Affiliation(s)
- Lingdan Kong
- Laboratory of Nanoscale Biosensing and Bioimaging, Eye Hospital, School of Ophthalmology and Optometry, School of Biomedical Engineering, Wenzhou Medical University, 270 Xuanyuanxi Road, Wenzhou, Zhejiang, 325027, China
| | - Feng Yuan
- Laboratory of Nanoscale Biosensing and Bioimaging, Eye Hospital, School of Ophthalmology and Optometry, School of Biomedical Engineering, Wenzhou Medical University, 270 Xuanyuanxi Road, Wenzhou, Zhejiang, 325027, China
| | - Pingping Huang
- Laboratory of Nanoscale Biosensing and Bioimaging, Eye Hospital, School of Ophthalmology and Optometry, School of Biomedical Engineering, Wenzhou Medical University, 270 Xuanyuanxi Road, Wenzhou, Zhejiang, 325027, China
| | - Lu Yan
- Laboratory of Nanoscale Biosensing and Bioimaging, Eye Hospital, School of Ophthalmology and Optometry, School of Biomedical Engineering, Wenzhou Medical University, 270 Xuanyuanxi Road, Wenzhou, Zhejiang, 325027, China
| | - Zhenzhai Cai
- Department of Gastroenterology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109 Xueyuanxi Road, Wenzhou, Zhejiang, 325027, China
| | - Tom Lawson
- ARC Centre of Excellence for Nanoscale Biophotonics (CNBP), Department of Physics and Astronomy, Macquarie University, Sydney, NSW, 2109, Australia
| | - Wencan Wu
- Laboratory of Nanoscale Biosensing and Bioimaging, Eye Hospital, School of Ophthalmology and Optometry, School of Biomedical Engineering, Wenzhou Medical University, 270 Xuanyuanxi Road, Wenzhou, Zhejiang, 325027, China
| | - Shulei Chou
- Institute for Superconducting and Electronic Materials, Australian Institute for Innovative Materials, University of Wollongong, Squires Way, North Wollongong, NSW, 2522, Australia
| | - Yong Liu
- Laboratory of Nanoscale Biosensing and Bioimaging, Eye Hospital, School of Ophthalmology and Optometry, School of Biomedical Engineering, Wenzhou Medical University, 270 Xuanyuanxi Road, Wenzhou, Zhejiang, 325027, China
| |
Collapse
|