1
|
Malysheva DO, Dymova MA, Richter VA. Analyzing aptamer structure and interactions: in silico modelling and instrumental methods. Biophys Rev 2024; 16:685-700. [PMID: 39830127 PMCID: PMC11735759 DOI: 10.1007/s12551-024-01252-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 10/31/2024] [Indexed: 01/22/2025] Open
Abstract
Aptamers are short oligonucleotides that bind specifically to various ligands and are characterized by their low immunogenicity, thermostability, and ease of labeling. Many biomedical applications of aptamers as biosensors and drug delivery agents are currently being actively researched. Selective affinity selection with exponential ligand enrichment (SELEX) allows to discover aptamers for a specific target, but it only provides information about the sequence of aptamers; hence other approaches are used for determining aptamer structure, aptamer-ligand interactions and the mechanism of action. The first one is in silico modelling that allows to infer likely secondary and tertiary structures and model their interactions with a ligand. The second approach is to use instrumental methods to study structure and aptamer-ligand interaction. In silico modelling and instrumental methods are complimentary and their combined use allows to eliminate some ambiguity in their respective results. This review examines both the advantages and limitations of in silico modelling and instrumental approaches currently used to study aptamers, which will allow researchers to develop optimal study designs for analyzing aptamer structure and ligand interactions.
Collapse
Affiliation(s)
- Daria O. Malysheva
- Institute of Chemical Biology and Fundamental Medicine, SB RAS, Novosibirsk, Russia
- Physics Department, Novosibirsk State University, Novosibirsk, Russia
| | - Maya A. Dymova
- Institute of Chemical Biology and Fundamental Medicine, SB RAS, Novosibirsk, Russia
| | - Vladimir A. Richter
- Institute of Chemical Biology and Fundamental Medicine, SB RAS, Novosibirsk, Russia
| |
Collapse
|
2
|
Pederson JP, McDaniel JG. PyDFT-QMMM: A modular, extensible software framework for DFT-based QM/MM molecular dynamics. J Chem Phys 2024; 161:034103. [PMID: 39007371 DOI: 10.1063/5.0219851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 06/24/2024] [Indexed: 07/16/2024] Open
Abstract
PyDFT-QMMM is a Python-based package for performing hybrid quantum mechanics/molecular mechanics (QM/MM) simulations at the density functional level of theory. The program is designed to treat short-range and long-range interactions through user-specified combinations of electrostatic and mechanical embedding procedures within periodic simulation domains, providing necessary interfaces to external quantum chemistry and molecular dynamics software. To enable direct embedding of long-range electrostatics in periodic systems, we have derived and implemented force terms for our previously described QM/MM/PME approach [Pederson and McDaniel, J. Chem. Phys. 156, 174105 (2022)]. Communication with external software packages Psi4 and OpenMM is facilitated through Python application programming interfaces (APIs). The core library contains basic utilities for running QM/MM molecular dynamics simulations, and plug-in entry-points are provided for users to implement custom energy/force calculation and integration routines, within an extensible architecture. The user interacts with PyDFT-QMMM primarily through its Python API, allowing for complex workflow development with Python scripting, for example, interfacing with PLUMED for free energy simulations. We provide benchmarks of forces and energy conservation for the QM/MM/PME and alternative QM/MM electrostatic embedding approaches. We further demonstrate a simple example use case for water solute in a water solvent system, for which radial distribution functions are computed from 100 ps QM/MM simulations; in this example, we highlight how the solvation structure is sensitive to different basis-set choices due to under- or over-polarization of the QM water molecule's electron density.
Collapse
Affiliation(s)
- John P Pederson
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332-0400, USA
| | - Jesse G McDaniel
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332-0400, USA
| |
Collapse
|
3
|
Kiataki MB, Coutinho K, Varella MTDN. Toward a numerically efficient description of bulk-solvated anionic states. J Chem Phys 2024; 161:034301. [PMID: 39007383 DOI: 10.1063/5.0203247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Accepted: 06/27/2024] [Indexed: 07/16/2024] Open
Abstract
We investigate the vertical electron attachment energy (VAE) of 1-methyl-4-nitroimidazole, a model radiosensitizer, employing quantum mechanics/molecular mechanics (QM/MM) and QM/polarized continuum (QM/PCM) solvation models. We considered the solvent-excluded surface (QM/PCM-SES) and Van der Waals (QM/PCM-VDW) cavities within the PCM framework, the electrostatic embedding QM/MM (EE-QM/MM) model, and the self-consistent sequential QM/MM polarizable electrostatic embedding (scPEE-S-QM/MM) model. Due to slow VAE convergence concerning the number of QM solvent molecules, full QM calculations prove inefficient. Ensemble averages in these calculations do not align with VAEs computed for the representative solute-solvent configuration. QM/MM and QM/PCM calculations show agreement with each other for sufficiently large QM regions, although the QM/PCM-VDW model exhibits artifacts linked to the cavity. QM/MM models demonstrate good agreement between ensemble averages and VAEs calculated with the representative configuration. Notably, the VAE computed with the scPEE-S-QM/MM model achieves faster convergence concerning the number of QM water molecules compared to the EE-QM/MM model, attributed to enhanced efficiency from MM charge polarization in the scPEE-S-QM/MM approach. This emphasizes the importance of QM/classical models with accurate solute-solvent and solvent-solvent mutual polarization for obtaining converged VAEs at a reasonable computational cost. The full-QM approach is very inefficient, while the microsolvation model is inaccurate. Computational savings in QM/MM models result from electrostatic embedding and the representative configuration, with the scPEE-S-QM/MM approach emerging as an efficient tool for describing bulk-solvated anions within the QM/MM framework. Its potential extends to improving transient anion state descriptions in biomolecules and radiosensitizers, especially given the frequent employment of microsolvation models.
Collapse
Affiliation(s)
- Matheus B Kiataki
- Instituto de Física, Universidade de São Paulo, Rua do Matão 1731, 05508-090 São Paulo, Brazil
| | - Kaline Coutinho
- Instituto de Física, Universidade de São Paulo, Rua do Matão 1731, 05508-090 São Paulo, Brazil
| | - Márcio T do N Varella
- Instituto de Física, Universidade de São Paulo, Rua do Matão 1731, 05508-090 São Paulo, Brazil
| |
Collapse
|
4
|
Chatterjee S, Nochebuena J, Cisneros GA. Impact of an Ionic Liquid Solution on Horseradish Peroxidase Activity. J Am Chem Soc 2024; 146:13247-13257. [PMID: 38701006 DOI: 10.1021/jacs.4c01100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2024]
Abstract
Horseradish peroxidase (HRP) is an enzyme that oxidizes pollutants from wastewater. A previous report indicated that peroxidases can have an enhancement in initial enzymatic activity in an aqueous solution of 0.26 M 1-ethyl-3-methylimidazolium ethyl sulfate ([EMIm][EtSO4]) at neutral pH. However, the atomistic details remain elusive. In the enzymatic landscape of HRP, compound II (Cpd II) plays a key role and involves a histidine (H42) residue. Cpd II exists as oxoferryl (2a) or hydroxoferryl (2b(FeIV)) forms, where 2a is the predominantly observed form in experimental studies. Intriguingly, the ferric 2b(FeIII) form seen in synthetic complexes has not been observed in HRP. Here, we have investigated the structure and dynamics of HRP in pure water and aqueous [EMIm][EtSO4] (0.26 M), as well as the reaction mechanism of 2a to 2b conversion using polarizable molecular dynamics (MD) simulations and quantum mechanics/molecular mechanics (QM/MM) calculations. When HRP is solvated in aq [EMIm][EtSO4], the catalytic water displaces, and H42 directly orients over the ferryl moiety, allowing a direct proton transfer (PT) with a significant energy barrier reduction. Conversely, in neat water, the reaction of 2a to 2b follows the previously reported mechanism. We further investigated the deprotonated form of H42. Analysis of the electric fields at the active site indicates that the aq [EMIm][EtSO4] medium facilitates the reaction by providing a more favorable environment compared with the system solvated in neat water. Overall, the atomic level supports the previous experimental observations and underscores the importance of favorable electric fields in the active site to promote catalysis.
Collapse
Affiliation(s)
- Shubham Chatterjee
- Department of Chemistry and Biochemistry, University of Texas at Dallas, Richardson, Texas 75080, United States
| | - Jorge Nochebuena
- Department of Physics, University of Texas at Dallas, Richardson, Texas 75080, United States
| | - G Andrés Cisneros
- Department of Chemistry and Biochemistry, University of Texas at Dallas, Richardson, Texas 75080, United States
- Department of Physics, University of Texas at Dallas, Richardson, Texas 75080, United States
| |
Collapse
|
5
|
Nochebuena J, Simmonett AC, Cisneros GA. Seamless integration of GEM, a density based-force field, for QM/MM simulations via LICHEM, Psi4, and Tinker-HP. J Chem Phys 2024; 160:174103. [PMID: 38747990 PMCID: PMC11223170 DOI: 10.1063/5.0200722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Accepted: 04/14/2024] [Indexed: 07/06/2024] Open
Abstract
Hybrid quantum mechanics/molecular mechanics (QM/MM) simulations have become an essential tool in computational chemistry, particularly for analyzing complex biological and condensed phase systems. Building on this foundation, our work presents a novel implementation of the Gaussian Electrostatic Model (GEM), a polarizable density-based force field, within the QM/MM framework. This advancement provides seamless integration, enabling efficient and optimized QM/GEM calculations in a single step using the LICHEM Code. We have successfully applied our implementation to water dimers and hexamers, demonstrating the ability to handle water systems with varying numbers of water molecules. Moreover, we have extended the application to describe the double proton transfer of the aspartic acid dimer in a box of water, which highlights the method's proficiency in investigating heterogeneous systems. Our implementation offers the flexibility to perform on-the-fly density fitting or to utilize pre-fitted coefficients to estimate exchange and Coulomb contributions. This flexibility enhances efficiency and accuracy in modeling molecular interactions, especially in systems where polarization effects are significant.
Collapse
Affiliation(s)
- Jorge Nochebuena
- Department of Physics, University of Texas at Dallas, Richardson, Texas 75080, USA
| | - Andrew C. Simmonett
- Laboratory of Computational Biology, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | |
Collapse
|
6
|
Nochebuena J, Liu S, Cisneros GA. Relative cooperativity in neutral and charged molecular clusters using QM/MM calculations. J Chem Phys 2024; 160:134301. [PMID: 38557841 DOI: 10.1063/5.0203020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 03/13/2024] [Indexed: 04/04/2024] Open
Abstract
QM/MM methods have been used to study electronic structure properties and chemical reactivity in complex molecular systems where direct electronic structure calculations are not feasible. In our previous work, we showed that non-polarizable force fields, by design, describe intermolecular interactions through pairwise interactions, overlooking many-body interactions involving three or more particles. In contrast, polarizable force fields account partially for many-body effects through polarization, but still handle van der Waals and permanent electrostatic interactions pairwise. We showed that despite those limitations, polarizable and non-polarizable force fields can reproduce relative cooperativity achieved using density functional theory due to error compensation mechanisms. In this contribution, we assess the performance of QM/MM methods in reproducing these phenomena. Our study highlights the significance of the QM region size and force field choice in QM/MM calculations, emphasizing the importance of parameter validation to obtain accurate interaction energy predictions.
Collapse
Affiliation(s)
- Jorge Nochebuena
- Department of Physics, University of Texas at Dallas, Richardson, Texas 75080, USA
| | - Shubin Liu
- Research Computing Center, University of North Carolina, Chapel Hill, North Carolina 27599, USA
- Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina 27599, USA
| | - G Andrés Cisneros
- Department of Physics, University of Texas at Dallas, Richardson, Texas 75080, USA
- Department of Chemistry and Biochemistry, University of Texas at Dallas, Richardson, Texas 75080, USA
| |
Collapse
|
7
|
Salvadori G, Mazzeo P, Accomasso D, Cupellini L, Mennucci B. Deciphering Photoreceptors Through Atomistic Modeling from Light Absorption to Conformational Response. J Mol Biol 2024; 436:168358. [PMID: 37944793 DOI: 10.1016/j.jmb.2023.168358] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/28/2023] [Accepted: 11/02/2023] [Indexed: 11/12/2023]
Abstract
In this review, we discuss the successes and challenges of the atomistic modeling of photoreceptors. Throughout our presentation, we integrate explanations of the primary methodological approaches, ranging from quantum mechanical descriptions to classical enhanced sampling methods, all while providing illustrative examples of their practical application to specific systems. To enhance the effectiveness of our analysis, our primary focus has been directed towards the examination of applications across three distinct photoreceptors. These include an example of Blue Light-Using Flavin (BLUF) domains, a bacteriophytochrome, and the orange carotenoid protein (OCP) employed by cyanobacteria for photoprotection. Particular emphasis will be placed on the pivotal role played by the protein matrix in fine-tuning the initial photochemical event within the embedded chromophore. Furthermore, we will investigate how this localized perturbation initiates a cascade of events propagating from the binding pocket throughout the entire protein structure, thanks to the intricate network of interactions between the chromophore and the protein.
Collapse
Affiliation(s)
- Giacomo Salvadori
- Department of Chemistry and Industrial Chemistry, University of Pisa, 56124 Pisa, Italy
| | - Patrizia Mazzeo
- Department of Chemistry and Industrial Chemistry, University of Pisa, 56124 Pisa, Italy
| | - Davide Accomasso
- Department of Chemistry and Industrial Chemistry, University of Pisa, 56124 Pisa, Italy
| | - Lorenzo Cupellini
- Department of Chemistry and Industrial Chemistry, University of Pisa, 56124 Pisa, Italy
| | - Benedetta Mennucci
- Department of Chemistry and Industrial Chemistry, University of Pisa, 56124 Pisa, Italy
| |
Collapse
|
8
|
Wu Y, Cui Y, Song W, Wei W, He Z, Tao J, Yin D, Chen X, Gao C, Liu J, Liu L, Wu J. Reprogramming the Transition States to Enhance C-N Cleavage Efficiency of Rhodococcus opacusl-Amino Acid Oxidase. JACS AU 2024; 4:557-569. [PMID: 38425913 PMCID: PMC10900486 DOI: 10.1021/jacsau.3c00672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 12/21/2023] [Accepted: 12/26/2023] [Indexed: 03/02/2024]
Abstract
l-Amino acid oxidase (LAAO) is an important biocatalyst used for synthesizing α-keto acids. LAAO from Rhodococcus opacus (RoLAAO) has a broad substrate spectrum; however, its low total turnover number limits its industrial use. To overcome this, we aimed to employ crystal structure-guided density functional theory calculations and molecular dynamic simulations to investigate the catalytic mechanism. Two key steps were identified: S → [TS1] in step 1 and Int1 → [TS2] in step 2. We reprogrammed the transition states [TS1] and [TS2] to reduce the identified energy barrier and obtain a RoLAAO variant capable of catalyzing 19 kinds of l-amino acids to the corresponding high-value α-keto acids with a high total turnover number, yield (≥95.1 g/L), conversion rate (≥95%), and space-time yields ≥142.7 g/L/d in 12-24 h, in a 5 L reactor. Our results indicated the promising potential of the developed RoLAAO variant for use in the industrial production of α-keto acids while providing a potential catalytic-mechanism-guided protein design strategy to achieve the desired physical and catalytic properties of enzymes.
Collapse
Affiliation(s)
- Yaoyun Wu
- School
of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, China
- State
Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
- School
of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Yaozhong Cui
- Jiangsu
Xishan Senior High School, Wuxi 214174, China
| | - Wei Song
- School
of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, China
| | - Wanqing Wei
- State
Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
| | - Zhizhen He
- School
of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, China
| | - Jinyang Tao
- School
of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, China
| | - Dejing Yin
- School
of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Xiulai Chen
- State
Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
| | - Cong Gao
- State
Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
| | - Jia Liu
- State
Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
| | - Liming Liu
- State
Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
| | - Jing Wu
- School
of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
9
|
Yan S, Ji X, Peng W, Wang B. Evaluating the Transition State Stabilization/Destabilization Effects of the Electric Fields from Scaffold Residues by a QM/MM Approach. J Phys Chem B 2023; 127:4245-4253. [PMID: 37155960 DOI: 10.1021/acs.jpcb.3c01054] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
The protein scaffolds of enzymes not only provide structural support for the catalytic center but also exert preorganized electric fields for electrostatic catalysis. In recent years, uniform oriented external electric fields (OEEFs) have been widely applied to enzymatic reactions to mimic the electrostatic effects of the environment. However, the electric fields exerted by individual residues in proteins may be quite heterogeneous across the active site, with varying directions and strengths at different positions of the active site. Here, we propose a QM/MM-based approach to evaluate the effects of the electric fields exerted by individual residues in the protein scaffold. In particular, the heterogeneity of the residue electric fields and the effect of the native protein environment can be properly accounted for by this QM/MM approach. A case study of the O-O heterolysis reaction in the catalytic cycle of TyrH shows that (1) for scaffold residues that are relatively far from the active site, the heterogeneity of the residue electric field in the active site is not very significant and the electrostatic stabilization/destabilization due to each residue can be well approximated with the interaction energy between a uniform electric field and the QM region dipole; (2) for scaffold residues near the active site, the residue electric fields can be highly heterogeneous along the breaking O-O bond. In such a case, approximating the residue electric fields as uniform fields may misrepresent the overall electrostatic effect of the residue. The present QM/MM approach can be applied to evaluate the residues' electrostatic impact on enzymatic reactions, which also can be useful in computational optimization of electric fields to boost the enzyme catalysis.
Collapse
Affiliation(s)
- Shengheng Yan
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering and Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, Xiamen 361005, P. R. China
| | - Xinwei Ji
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering and Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, Xiamen 361005, P. R. China
| | - Wei Peng
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering and Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, Xiamen 361005, P. R. China
| | - Binju Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering and Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, Xiamen 361005, P. R. China
| |
Collapse
|
10
|
Jacobson G, Marmolejo-Tejada JM, Mosquera MA. Cluster Amplitudes and Their Interplay with Self-Consistency in Density Functional Methods. Chemphyschem 2023; 24:e202200592. [PMID: 36385578 DOI: 10.1002/cphc.202200592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 11/14/2022] [Indexed: 11/18/2022]
Abstract
Density functional theory (DFT) provides convenient electronic structure methods for the study of molecular systems and materials. Regular Kohn-Sham DFT calculations rely on unitary transformations to determine the ground-state electronic density, ground state energy, and related properties. However, for dissociation of molecular systems into open-shell fragments, due to the self-interaction error present in a large number of density functional approximations, the self-consistent procedure based on the this type of transformation gives rise to the well-known charge delocalization problem. To avoid this issue, we showed previously that the cluster operator of coupled-cluster theory can be utilized within the context of DFT to solve in an alternative and approximate fashion the ground-state self-consistent problem. This work further examines the application of the singles cluster operator to molecular ground state calculations. Two approximations are derived and explored: i) A linearized scheme of the quadratic equation used to determine the cluster amplitudes. ii) The effect of carrying the calculations in a non-self-consistent field fashion. These approaches are found to be capable of improving the energy and density of the system and are quite stable in either case. The theoretical framework discussed in this work could be used to describe, with an added flexibility, quantum systems that display challenging features and require expanded theoretical methods.
Collapse
Affiliation(s)
- Greta Jacobson
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana, 59717, USA.,Department of Chemistry, Millikin University, Decatur, Illinois, 62522, USA
| | - Juan M Marmolejo-Tejada
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana, 59717, USA
| | - Martín A Mosquera
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana, 59717, USA
| |
Collapse
|
11
|
Csizi K, Reiher M. Universal
QM
/
MM
approaches for general nanoscale applications. WIRES COMPUTATIONAL MOLECULAR SCIENCE 2023. [DOI: 10.1002/wcms.1656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
| | - Markus Reiher
- Laboratorium für Physikalische Chemie ETH Zürich Zürich Switzerland
| |
Collapse
|
12
|
Chen WK, Fang WH, Cui G. Extending multi-layer energy-based fragment method for excited-state calculations of large covalently bonded fragment systems. J Chem Phys 2023; 158:044110. [PMID: 36725521 DOI: 10.1063/5.0129458] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Recently, we developed a low-scaling Multi-Layer Energy-Based Fragment (MLEBF) method for accurate excited-state calculations and nonadiabatic dynamics simulations of nonbonded fragment systems. In this work, we extend the MLEBF method to treat covalently bonded fragment ones. The main idea is cutting a target system into many fragments according to chemical properties. Fragments with dangling bonds are first saturated by chemical groups; then, saturated fragments, together with the original fragments without dangling bonds, are grouped into different layers. The accurate total energy expression is formulated with the many-body energy expansion theory, in combination with the inclusion-exclusion principle that is used to delete the contribution of chemical groups introduced to saturate dangling bonds. Specifically, in a two-layer MLEBF model, the photochemically active and inert layers are calculated with high-level and efficient electronic structure methods, respectively. Intralayer and interlayer energies can be truncated at the two- or three-body interaction level. Subsequently, through several systems, including neutral and charged covalently bonded fragment systems, we demonstrate that MLEBF can provide accurate ground- and excited-state energies and gradients. Finally, we realize the structure, conical intersection, and path optimizations by combining our MLEBF program with commercial and free packages, e.g., ASE and SciPy. These developments make MLEBF a practical and reliable tool for studying complex photochemical and photophysical processes of large nonbonded and bonded fragment systems.
Collapse
Affiliation(s)
- Wen-Kai Chen
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Wei-Hai Fang
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Ganglong Cui
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
13
|
Bondanza M, Demoulin B, Lipparini F, Barbatti M, Mennucci B. Trajectory Surface Hopping for a Polarizable Embedding QM/MM Formulation. J Phys Chem A 2022; 126:6780-6789. [PMID: 36107729 PMCID: PMC9527758 DOI: 10.1021/acs.jpca.2c04756] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
![]()
We present the implementation of trajectory surface-hopping
nonadiabatic
dynamics for a polarizable embedding QM/MM formulation. Time-dependent
density functional theory was used at the quantum mechanical level
of theory, whereas the molecular mechanics description involved the
polarizable AMOEBA force field. This implementation has been obtained
by integrating the surface-hopping program Newton-X NS with an interface
between the Gaussian 16 and the Tinker suites of codes to calculate
QM/AMOEBA energies and forces. The implementation has been tested
on a photoinduced electron-driven proton-transfer reaction involving
pyrimidine and a hydrogen-bonded water surrounded by a small cluster
of water molecules and within a large water droplet.
Collapse
Affiliation(s)
- Mattia Bondanza
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, Via G. Moruzzi 13, 56124 Pisa, Italy
| | | | - Filippo Lipparini
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, Via G. Moruzzi 13, 56124 Pisa, Italy
| | - Mario Barbatti
- Aix Marseille University, CNRS, ICR, 13385 Marseille, France
- Institut Universitaire de France, 75231 Paris, France
| | - Benedetta Mennucci
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, Via G. Moruzzi 13, 56124 Pisa, Italy
| |
Collapse
|
14
|
Manathunga M, Götz AW, Merz KM. Computer-aided drug design, quantum-mechanical methods for biological problems. Curr Opin Struct Biol 2022; 75:102417. [PMID: 35779437 DOI: 10.1016/j.sbi.2022.102417] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 05/14/2022] [Accepted: 05/16/2022] [Indexed: 11/28/2022]
Abstract
Quantum chemistry enables to study systems with chemical accuracy (<1 kcal/mol from experiment) but is restricted to a handful of atoms due to its computational expense. This has led to ongoing interest to optimize and simplify these methods while retaining accuracy. Implementing quantum mechanical (QM) methods on modern hardware such as multiple-GPUs is one example of how the field is optimizing performance. Multiscale approaches like the so-called QM/molecular mechanical method are gaining popularity in drug discovery because they focus the application of QM methods on the region of choice (e.g., the binding site), while using efficient MM models to represent less relevant areas. The creation of simplified QM methods is another example, including the use of machine learning to create ultra-fast and accurate QM models. Herein, we summarize recent advancements in the development of optimized QM methods that enhance our ability to use these methods in computer aided drug discovery.
Collapse
Affiliation(s)
- Madushanka Manathunga
- Department of Chemistry and Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, United States. https://twitter.com/@MaduManathunga
| | - Andreas W Götz
- San Diego Supercomputer Center, University of California San Diego, La Jolla, CA 92093, United States. https://twitter.com/@awgoetz
| | - Kenneth M Merz
- Department of Chemistry and Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, United States.
| |
Collapse
|
15
|
Szabadi A, Schröder C. Recent Developments in Polarizable Molecular Dynamics Simulations of Electrolyte Solutions. JOURNAL OF COMPUTATIONAL BIOPHYSICS AND CHEMISTRY 2022. [DOI: 10.1142/s2737416521420035] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Polarizable molecular dynamics simulations are a fast progressing field in the scientific research of ionic liquids. The fundamentals of polarizable simulations, as well as their application to ionic liquids, were summarized in a review [Bedrov, D.; Piquemal, J.-P.; Borodin, O.; MacKerell, Jr., A. D.; Roux, B.; Schröder, C. Molecular Dynamics Simulations of Ionic Liquids and Electrolytes Using Polarizable Force Fields. Chem. Rev. 2019, 119, 7940–7995] in 2019. Since then, new methods to treat intermolecular interaction of induced dipoles in these highly charged systems were developed. This concerns the damping of these interactions and additional charge transfer as well as the prediction of ionic materials with ultrahigh refractive indices. In addition to the progress of the polarizable force fields, also thermostats and barostats for polarizable simulations evolved recently.
Collapse
Affiliation(s)
- András Szabadi
- University of Vienna, Faculty of Chemistry, Department of Computational Biological Chemistry, A-1090 Vienna, Austria
| | - Christian Schröder
- University of Vienna, Faculty of Chemistry, Department of Computational Biological Chemistry, A-1090 Vienna, Austria
| |
Collapse
|
16
|
Pederson JP, McDaniel J. DFT-based QM/MM with Particle-Mesh Ewald for Direct, Long-Range Electrostatic Embedding. J Chem Phys 2022; 156:174105. [DOI: 10.1063/5.0087386] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We present a DFT-based, QM/MM implementation with long-range electrostatic embedding achieved by direct real-space integration of the particle mesh Ewald (PME) computed electrostatic potential. The key transformation is the interpolation of the electrostatic potential from the PME grid to the DFT quadrature grid, from which integrals are easily evaluated utilizing standard DFT machinery. We provide benchmarks of the numerical accuracy with choice of grid size and real-space corrections, and demonstrate that good convergence is achieved while introducing nominal computational overhead. Furthermore, the approach requires only small modification to existing software packages, as is demonstrated with our implementation in the OpenMM and Psi4 software. After presenting convergence benchmarks, we evaluate the importance of long-range electrostatic embedding in three solute/solvent systems modeled with QM/MM. Water and BMIM/BF4 ionic liquid were considered as ``simple' and ``complex' solvents respectively, with water and p-phenylenediamine (PPD) solute molecules treated at QM level of theory. While electrostatic embedding with standard real-space truncation may introduce negligible error for simple systems such as water solute in water solvent, errors become more significant when QM/MM is applied to complex solvents such as ionic liquids. An extreme example is the electrostatic embedding energy for oxidized PPD in BMIM/BF4 for which real-space truncation produces severe error even at 2-3 nm cutoff distances. This latter example illustrates that utilization of QM/MM to compute redox potentials within concentrated electrolytes/ionic media requires carefully chosen long-range electrostatic embedding algorithms, with our presented algorithm providing a general and robust approach.
Collapse
Affiliation(s)
| | - Jesse McDaniel
- Chemistry, Georgia Institute of Technology, United States of America
| |
Collapse
|
17
|
Brandt F, Jacob CR. Systematic QM Region Construction in QM/MM Calculations Based on Uncertainty Quantification. J Chem Theory Comput 2022; 18:2584-2596. [PMID: 35271768 DOI: 10.1021/acs.jctc.1c01093] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
While QM/MM studies of enzymatic reactions are widely used in computational chemistry, the results of such studies are subject to numerous sources of uncertainty, and the effect of different choices by the simulation scientist that are required when setting up QM/MM calculations is often unclear. In particular, the selection of the QM region is crucial for obtaining accurate and reliable results. Simply including amino acids by their distance to the active site is mostly not sufficient as necessary residues are missing or unimportant residues are included without evidence. Here, we take a first step toward quantifying uncertainties in QM/MM calculations by assessing the sensitivity of QM/MM reaction energies with respect to variations of the MM point charges. We show that such a point charge variation analysis (PCVA) can be employed to judge the accuracy of QM/MM reaction energies obtained with a selected QM region and devise a protocol to systematically construct QM regions that minimize this uncertainty. We apply such a PCVA to the example of catechol O-methyltransferase and demonstrate that it provides a simple and reliable approach for the construction of the QM region. Our PCVA-based scheme is computationally efficient and requires only calculations for a system with a minimal QM region. Our work highlights the promise of applying methods of uncertainty quantification in computational chemistry.
Collapse
Affiliation(s)
- Felix Brandt
- Institute of Physical and Theoretical Chemistry, Technische Universität Braunschweig, Gaußstr. 17, 38106 Braunschweig, Germany
| | - Christoph R Jacob
- Institute of Physical and Theoretical Chemistry, Technische Universität Braunschweig, Gaußstr. 17, 38106 Braunschweig, Germany
| |
Collapse
|
18
|
González-Espinoza CE, Rumble CA, Borgis D, Wesolowski TA. Quantifying Fluctuations of Average Solvent Environments for Embedding Calculations. J Chem Theory Comput 2022; 18:1072-1088. [PMID: 35044168 DOI: 10.1021/acs.jctc.1c01108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The viability and effectiveness of replacing an ensemble of embedded solute calculations by a single calculation using an average description of the solvent environment are evaluated. This work explores the fluctuations of the average description of the system obtained in two ways: from calculations on an ensemble of geometries and from an average environment constructed from the same ensemble. To this end, classical molecular dynamics simulations of a rigid acetone solute in SPCE water are performed in order to generate an ensemble of solvent environments. From this ensemble of solvent configurations, a number of different approaches for constructing an average solvent environment are employed. We perform a thorough numerical analysis of the fluctuations of the electrostatic potential experienced by the solute, as well as the resulting fluctuations of the solute's electronic density, measured through its dipole moment and fitted atomic point charges. At the same time, we inspect the accuracy of the methods used to construct average environments. Finally, the proposed method for generating the embedding potential from an average environment density is applied to estimate the solvatochromic shift of the first excitation of acetone. In order to account for quantum confinement effects, which may be important in certain cases, the fluctuations in the shift due to the interaction with the solvent are evaluated using frozen-density-embedding theory. Our results demonstrate that, for normally distributed environments, the constructed average environment is a reasonably good representation of a fluctuating molecular solvent environment. We then provide guidance for future comparisons between these theoretical treatments of solute/solvent systems to experimental measurements.
Collapse
Affiliation(s)
| | - Christopher A Rumble
- Université de Genève, Départment de Chimie Physique 30, Quai Ernest-Ansermet, CH-1211 Genève 4, Switzerland
| | - Daniel Borgis
- Ecole Normale Supérieure, Départment de Chimie, UMR 8640, PSL University, Sorbonne University, CNRS, 75005 Paris, France
| | - Tomasz A Wesolowski
- Université de Genève, Départment de Chimie Physique 30, Quai Ernest-Ansermet, CH-1211 Genève 4, Switzerland
| |
Collapse
|
19
|
Naseem-Khan S, Piquemal JP, Cisneros GA. Improvement of the Gaussian Electrostatic Model by separate fitting of Coulomb and exchange-repulsion densities and implementation of a new dispersion term. J Chem Phys 2021; 155:194103. [PMID: 34800949 PMCID: PMC8598263 DOI: 10.1063/5.0072380] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 10/28/2021] [Indexed: 11/15/2022] Open
Abstract
The description of each separable contribution of the intermolecular interaction is a useful approach to develop polarizable force fields (polFFs). The Gaussian Electrostatic Model (GEM) is based on this approach, coupled with the use of density fitting techniques. In this work, we present the implementation and testing of two improvements of GEM: the Coulomb and exchange-repulsion energies are now computed with separate frozen molecular densities and a new dispersion formulation inspired by the Sum of Interactions Between Fragments Ab initio Computed polFF, which has been implemented to describe the dispersion and charge-transfer interactions. Thanks to the combination of GEM characteristics and these new features, we demonstrate a better agreement of the computed structural and condensed properties for water with experimental results, as well as binding energies in the gas phase with the ab initio reference compared with the previous GEM* potential. This work provides further improvements to GEM and the items that remain to be improved and the importance of the accurate reproduction for each separate contribution.
Collapse
Affiliation(s)
- Sehr Naseem-Khan
- Department of Chemistry, University of North Texas, Denton, Texas 76201, USA
| | - Jean-Philip Piquemal
- Laboratoire de Chimie Théorique, Sorbonne Université, UMR 7616 CNRS, 75005 Paris, France
| | - G. Andrés Cisneros
- Department of Chemistry, University of North Texas, Denton, Texas 76201, USA
| |
Collapse
|
20
|
Hix MA, Leddin EM, Cisneros GA. Combining Evolutionary Conservation and Quantum Topological Analyses To Determine Quantum Mechanics Subsystems for Biomolecular Quantum Mechanics/Molecular Mechanics Simulations. J Chem Theory Comput 2021; 17:4524-4537. [PMID: 34087064 PMCID: PMC8477969 DOI: 10.1021/acs.jctc.1c00313] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Selection of residues and other molecular fragments for inclusion in the quantum mechanics (QM) region for QM/molecular mechanics (MM) simulations is an important step for these calculations. Here, we present an approach that combines protein sequence/structure evolution and electron localization function (ELF) analyses. The combination of these two analyses allows the determination of whether a residue needs to be included in the QM subsystem or can be represented by the MM environment. We have applied this approach on two systems previously investigated by QM/MM simulations, 4-oxalocrotonate tautomerase (4OT) and ten-eleven translocation-2 (TET2), that provide examples where fragments may or may not need to be included in the QM subsystem. Subsequently, we present the use of this approach to determine the appropriate QM subsystem to calculate the minimum energy path (MEP) for the reaction catalyzed by human DNA polymerase λ (Polλ) with a third cation in the active site. Our results suggest that the combination of protein evolutionary and ELF analyses provides insights into residue/molecular fragment selection for QM/MM simulations.
Collapse
Affiliation(s)
- Mark A Hix
- Department of Chemistry, University of North Texas, Denton, Texas 76201, United States
| | - Emmett M Leddin
- Department of Chemistry, University of North Texas, Denton, Texas 76201, United States
| | - G Andrés Cisneros
- Department of Chemistry, University of North Texas, Denton, Texas 76201, United States
| |
Collapse
|
21
|
Loco D, Lagardère L, Adjoua O, Piquemal JP. Atomistic Polarizable Embeddings: Energy, Dynamics, Spectroscopy, and Reactivity. Acc Chem Res 2021; 54:2812-2822. [PMID: 33961401 PMCID: PMC8264944 DOI: 10.1021/acs.accounts.0c00662] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Indexed: 12/20/2022]
Abstract
The computational modeling of realistic extended systems, relevant in, e.g., Chemistry and Biophysics, is a fundamental problem of paramount importance in contemporary research. Enzymatic catalysis and photoinduced processes in pigment-protein complexes are typical problems targeted by computer-aided approaches, to complement experiments as interpretative tools at a molecular scale. The daunting complexity of this task lies in between the opposite stringent requirements of results' reliability for structural/dynamical properties and related intermolecular interactions, and a mandatory principle of realism in the modeling strategy. Therefore, in practice, a truly realistic computational model of a biologically relevant system can easily fail to meet the accuracy requirement, in order to balance the excessive computational cost necessary to reach the desired precision.To address such an "accuracy vs reality" dualistic requirement, mixed quantum mechanics/classical mechanics approaches within Atomistic (i.e., preserving the discrete particle configuration) Polarizable Embeddings (QM/APEs) methods have been proposed over the years. In this Account, we review recent developments in the design and application of general QM/APE methods, targeting situations where a local intrinsically quantum behavior is coupled to a large molecular system (i.e., an environment), often involving processes with different dynamical time scales, in order to avoid brute-force, unpractical quantum chemistry calculations on the complete system.In the first place, our interest is devoted to the available APEs models presently implemented in computational software, highlighting the quantum chemistry methods that can be used to treat the QM subsystem. We review the coupling strategy between the QM subsystem and the APE, which requires to examine the way the QM/MM mutual interactions are accounted for and how the polarization of the classical environment is considered with respect to (wrt) the quantum variables. Because of the need of reliable molecular and macromolecular structures, a pivotal aspect to address here is the handling of the system dynamics (i.e., gradients wrt nuclear positions are required), especially for large molecular assemblies composed by an overwhelming number of atoms, exploring many conformations on a complex energy landscape.Alongside, we highlight our views on the necessary steps to take toward more accurate general-purposes and transferable explicit embeddings. The main objective to achieve here is to design a more physically grounded multiscale approach. To do so, one should apply advanced new generation classical models to account for refined induction effects that are able to (i) improve the quality of QM/MM interaction energies; (ii) enhance transferability by avoiding the compulsory partial (or total) reparameterization of the classical model. Moreover, the extension of recent developments originating from the field of advanced classical molecular dynamics (MD) to the realm of QM/APE methods is a key direction to improve both speed and efficiency for the phase space exploration of systems of growing size and complexity.Lastly, we point out specific research topics where an advanced QM/APE dynamics can certainly shed some light. For example, we discuss chemical reactions in "harsh" environments and the case of spectroscopic theoretical modeling where the inclusion of refined environment effects is often mandatory.
Collapse
Affiliation(s)
- Daniele Loco
- Laboratoire
de Chimie Théorique, Sorbonne Université,
UMR 7616 CNRS, 75005 Paris, France
| | - Louis Lagardère
- Laboratoire
de Chimie Théorique, Sorbonne Université,
UMR 7616 CNRS, 75005 Paris, France
- Intitut
Parisien de Chimie Physique et Théorique, Sorbonne Université, FR 2622 CNRS, 75005 Paris, France
| | - Olivier Adjoua
- Laboratoire
de Chimie Théorique, Sorbonne Université,
UMR 7616 CNRS, 75005 Paris, France
| | - Jean-Philip Piquemal
- Laboratoire
de Chimie Théorique, Sorbonne Université,
UMR 7616 CNRS, 75005 Paris, France
- Institut
Universitaire de France, F-75005 Paris, France
- Department
of Biomedical Engineering, The University
of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
22
|
Cao X, Tian P. "Dividing and Conquering" and "Caching" in Molecular Modeling. Int J Mol Sci 2021; 22:5053. [PMID: 34068835 PMCID: PMC8126232 DOI: 10.3390/ijms22095053] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 04/26/2021] [Accepted: 04/27/2021] [Indexed: 11/17/2022] Open
Abstract
Molecular modeling is widely utilized in subjects including but not limited to physics, chemistry, biology, materials science and engineering. Impressive progress has been made in development of theories, algorithms and software packages. To divide and conquer, and to cache intermediate results have been long standing principles in development of algorithms. Not surprisingly, most important methodological advancements in more than half century of molecular modeling are various implementations of these two fundamental principles. In the mainstream classical computational molecular science, tremendous efforts have been invested on two lines of algorithm development. The first is coarse graining, which is to represent multiple basic particles in higher resolution modeling as a single larger and softer particle in lower resolution counterpart, with resulting force fields of partial transferability at the expense of some information loss. The second is enhanced sampling, which realizes "dividing and conquering" and/or "caching" in configurational space with focus either on reaction coordinates and collective variables as in metadynamics and related algorithms, or on the transition matrix and state discretization as in Markov state models. For this line of algorithms, spatial resolution is maintained but results are not transferable. Deep learning has been utilized to realize more efficient and accurate ways of "dividing and conquering" and "caching" along these two lines of algorithmic research. We proposed and demonstrated the local free energy landscape approach, a new framework for classical computational molecular science. This framework is based on a third class of algorithm that facilitates molecular modeling through partially transferable in resolution "caching" of distributions for local clusters of molecular degrees of freedom. Differences, connections and potential interactions among these three algorithmic directions are discussed, with the hope to stimulate development of more elegant, efficient and reliable formulations and algorithms for "dividing and conquering" and "caching" in complex molecular systems.
Collapse
Affiliation(s)
- Xiaoyong Cao
- School of Life Sciences, Jilin University, Changchun 130012, China;
| | - Pu Tian
- School of Life Sciences, Jilin University, Changchun 130012, China;
- School of Artificial Intelligence, Jilin University, Changchun 130012, China
| |
Collapse
|