1
|
Cipriano L, Russo R, Andolfo I, Manno M, Piscopo R, Iolascon A, Piscopo C. A Novel De Novo STAG1 Variant in Monozygotic Twins with Neurodevelopmental Disorder: New Insights in Clinical Heterogeneity. Genes (Basel) 2024; 15:1184. [PMID: 39336775 PMCID: PMC11431552 DOI: 10.3390/genes15091184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 09/05/2024] [Accepted: 09/06/2024] [Indexed: 09/30/2024] Open
Abstract
BACKGROUND The STAG1 gene encodes a component of the cohesin complex, involved in chromosome segregation and DNA repair. Variants in genes of the cohesin complex determine clinical conditions characterized by facial dysmorphisms, upper limb anomalies, intellectual disability, and other neurological deficits. However, to date, the STAG1-related clinical phenotype has been poorly investigated (around 20 cases reported). METHODS AND RESULTS We report, for the first time, two twins affected by a syndromic neurodevelopmental disorder associated with a de novo variant in the STAG1 gene. Although both the twins showed a neurodevelopmental delay, one of them showed a more severe phenotype with greater behavioral problems, speech defects and limb apraxia. CGH array showed a 15q13.3 microduplication, inherited from an unaffected mother. CONCLUSIONS We found different degrees of behavioral, speech and cognitive impairment in two twins affected by a neurodevelopmental disorder associated with a STAG1 variant. These findings highlight the variability of the STAG1-associated phenotype or a probable role of associated variants (like the discovered 15q13.3 microduplication) in modulating the clinical features.
Collapse
Affiliation(s)
- Lorenzo Cipriano
- Department of Molecular Medicine and Medical Biotechnology, University Federico II, 80131 Naples, Italy; (L.C.); (R.R.); (I.A.); (M.M.); (A.I.)
| | - Roberta Russo
- Department of Molecular Medicine and Medical Biotechnology, University Federico II, 80131 Naples, Italy; (L.C.); (R.R.); (I.A.); (M.M.); (A.I.)
- CEINGE Biotecnologie Avanzate Franco Salvatore, 80145 Naples, Italy
| | - Immacolata Andolfo
- Department of Molecular Medicine and Medical Biotechnology, University Federico II, 80131 Naples, Italy; (L.C.); (R.R.); (I.A.); (M.M.); (A.I.)
- CEINGE Biotecnologie Avanzate Franco Salvatore, 80145 Naples, Italy
| | - Mariangela Manno
- Department of Molecular Medicine and Medical Biotechnology, University Federico II, 80131 Naples, Italy; (L.C.); (R.R.); (I.A.); (M.M.); (A.I.)
- CEINGE Biotecnologie Avanzate Franco Salvatore, 80145 Naples, Italy
| | - Raffaele Piscopo
- Department of Neuroscience, Reproductive and Odontostomatological Sciences, University Federico II, 80131 Naples, Italy;
| | - Achille Iolascon
- Department of Molecular Medicine and Medical Biotechnology, University Federico II, 80131 Naples, Italy; (L.C.); (R.R.); (I.A.); (M.M.); (A.I.)
- CEINGE Biotecnologie Avanzate Franco Salvatore, 80145 Naples, Italy
| | - Carmelo Piscopo
- Medical and Laboratory Genetics Unit, A.O.R.N. “Antonio Cardarelli”, 80131 Naples, Italy
| |
Collapse
|
2
|
Bregvadze K, Sukhiashvili A, Lartsuliani M, Melikidze E, Tkemaladze T. A novel STAG1 variant associated with congenital clubfoot and microphthalmia: A case report. SAGE Open Med Case Rep 2024; 12:2050313X241277123. [PMID: 39224759 PMCID: PMC11367601 DOI: 10.1177/2050313x241277123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Accepted: 08/05/2024] [Indexed: 09/04/2024] Open
Abstract
The cohesin protein complex plays a vital role in various cellular processes such as sister chromatid cohesion, chromosome condensation, DNA repair, and transcriptional regulation. It is constituted by SMC1, SMC3, RAD21, STAG1/STAG2 subunits, and several regulatory proteins. Pathogenic variants in these components cause cohesinopathies, with common clinical features including facial dysmorphism, delayed growth, developmental delay, and limb anomalies. Pathogenic variants in the STAG1 contribute to an emerging syndromic developmental disorder with only 21 reported cases in the literature. We describe a 3-year-old girl presenting with congenital bilateral clubfoot and unilateral microphthalmia-clinical manifestations not previously reported in the literature. Whole exome sequencing revealed a novel de novo nonsense variant (c.1183C>T, p.(Arg395*)) in the STAG1, expanding the clinical and molecular spectrum of STAG1-related cohesinopathy. This patient's unique phenotype highlights the clinical diversity within cohesinopathies, emphasizing their relevance in cases of developmental delay and dysmorphic features. Further studies, including genotype-phenotype correlation analyses and functional investigations, are essential for enhancing our understanding of STAG1-related cohesinopathy.
Collapse
Affiliation(s)
- Kakha Bregvadze
- Department of Molecular and Medical Genetics, Tbilisi State Medical University, Tbilisi, Georgia
| | - Anastasia Sukhiashvili
- Department of Molecular and Medical Genetics, Tbilisi State Medical University, Tbilisi, Georgia
| | - Megi Lartsuliani
- Department of Molecular and Medical Genetics, Tbilisi State Medical University, Tbilisi, Georgia
| | - Elene Melikidze
- Department of Molecular and Medical Genetics, Tbilisi State Medical University, Tbilisi, Georgia
| | - Tinatin Tkemaladze
- Department of Molecular and Medical Genetics, Tbilisi State Medical University, Tbilisi, Georgia
- Department of Pediatrics, Givi Zhvania Pediatric Academic Clinic, Tbilisi State Medical University, Tbilisi, Georgia
| |
Collapse
|
3
|
Tae SK, RA M, Thong MK. Case report: The evolving phenotype of ESCO2 spectrum disorder in a 15-year-old Malaysian child. Front Genet 2024; 14:1286489. [PMID: 38288163 PMCID: PMC10822947 DOI: 10.3389/fgene.2023.1286489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 12/26/2023] [Indexed: 01/31/2024] Open
Abstract
ESCO2 spectrum disorder is an autosomal recessive developmental disorder characterized by growth retardation, symmetrical mesomelic limb malformation, and distinctive facies with microcephaly, with a wide phenotypic continuum that ranges from Roberts syndrome (MIM #268300) at the severe end to SC phocomelia (MIM #269000) at the milder end. ESCO2 encodes a 601-amino acid protein belonging to the Eco1/Ctf7 family of acetyltransferases that is involved in the establishment of sister chromatid cohesion, which is essential for accurate chromosome segregation and genomic stability and thus belongs to a group of disorders called "cohesinopathies". We describe a 15-year-old Malaysian female who presented with the characteristic triad of ESCO2 spectrum disorder, with an equivocal chromosomal breakage study and normal karyotyping findings. She was initially suspected to have mosaic Fanconi anemia but whole exome sequencing (WES) showed a likely pathogenic homozygous splice variant c.955 + 2_955+5del in the ESCO2 gene. During the 15-year diagnostic odyssey, she developed type 2 diabetes mellitus, primary ovarian insufficiency, increased optic cup-to-disc ratio with tortuous vessels bilaterally, and an evolving but distinct facial and skin hypopigmentation phenotype. Of note, there was an absence of learning disabilities. Our findings provide further evidence for ESCO2 spectrum disorder in an Asian child and contribute to defining the clinical and radiographic spectrum.
Collapse
Affiliation(s)
- Sok-Kun Tae
- Genetics and Metabolism Unit, Department of Paediatrics, Faculty of Medicine, Kuala Lumpur, Malaysia
- Genetic Medicine Unit, University of Malaya Medical Centre, Kuala Lumpur, Malaysia
| | - Mazlan RA
- Genetic Medicine Unit, University of Malaya Medical Centre, Kuala Lumpur, Malaysia
| | - Meow-Keong Thong
- Genetics and Metabolism Unit, Department of Paediatrics, Faculty of Medicine, Kuala Lumpur, Malaysia
- Genetic Medicine Unit, University of Malaya Medical Centre, Kuala Lumpur, Malaysia
| |
Collapse
|
4
|
Horsfield JA. Full circle: a brief history of cohesin and the regulation of gene expression. FEBS J 2023; 290:1670-1687. [PMID: 35048511 DOI: 10.1111/febs.16362] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 12/21/2021] [Accepted: 01/18/2022] [Indexed: 12/17/2022]
Abstract
The cohesin complex has a range of crucial functions in the cell. Cohesin is essential for mediating chromatid cohesion during mitosis, for repair of double-strand DNA breaks, and for control of gene transcription. This last function has been the subject of intense research ever since the discovery of cohesin's role in the long-range regulation of the cut gene in Drosophila. Subsequent research showed that the expression of some genes is exquisitely sensitive to cohesin depletion, while others remain relatively unperturbed. Sensitivity to cohesin depletion is also remarkably cell type- and/or condition-specific. The relatively recent discovery that cohesin is integral to forming chromatin loops via loop extrusion should explain much of cohesin's gene regulatory properties, but surprisingly, loop extrusion has failed to identify a 'one size fits all' mechanism for how cohesin controls gene expression. This review will illustrate how early examples of cohesin-dependent gene expression integrate with later work on cohesin's role in genome organization to explain mechanisms by which cohesin regulates gene expression.
Collapse
Affiliation(s)
- Julia A Horsfield
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
- Genetics Otago Research Centre, University of Otago, Dunedin, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, New Zealand
| |
Collapse
|
5
|
Shin H, Kim Y. Regulation of loop extrusion on the interphase genome. Crit Rev Biochem Mol Biol 2023; 58:1-18. [PMID: 36921088 DOI: 10.1080/10409238.2023.2182273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
Abstract
In the human cell nucleus, dynamically organized chromatin is the substrate for gene regulation, DNA replication, and repair. A central mechanism of DNA loop formation is an ATPase motor cohesin-mediated loop extrusion. The cohesin complexes load and unload onto the chromosome under the control of other regulators that physically interact and affect motor activity. Regulation of the dynamic loading cycle of cohesin influences not only the chromatin structure but also genome-associated human disorders and aging. This review focuses on the recently spotlighted genome organizing factors and the mechanism by which their dynamic interactions shape the genome architecture in interphase.
Collapse
Affiliation(s)
- Hyogyung Shin
- Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, South Korea
| | - Yoori Kim
- Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, South Korea.,New Biology Research Center, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, South Korea
| |
Collapse
|
6
|
Barañano KW, Kimball A, Fong SL, Egense AS, Hudon C, Kline AD. Further Characterization of SMC1A Loss of Function Epilepsy Distinct From Cornelia de Lange Syndrome. J Child Neurol 2022; 37:390-396. [PMID: 35238682 DOI: 10.1177/08830738221081244] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Cornelia de Lange syndrome is a rare developmental malformation syndrome characterized by small stature, limb anomalies, distinctive facial features, developmental delays, and behavioral issues. The diagnosis of Cornelia de Lange syndrome is made clinically or on the basis of an identified variant in one of the genes associated with Cornelia de Lange syndrome. SMC1A variants are the cause of 5% of the cases of Cornelia de Lange syndrome. SMC1A is located on the X-chromosome and is thought to escape X-inactivation in some females. Patients with SMC1A variants are being increasingly identified through panel testing or exome sequencing without prior clinical suspicion of Cornelia de Lange syndrome. In general, intractable epilepsy is not considered a prominent feature of Cornelia de Lange syndrome, yet this is found in these patients with SMC1A variants. Here we report on a series of patients with SMC1A variants and intractable epilepsy. In contrast to patients with typical SMC1A-associated Cornelia de Lange syndrome, all of the identified patients were female, and when available, X-inactivation studies were highly skewed with truncating variants. We describe the medical involvement and physical appearance of the participants, compared to the diagnostic criteria used for classical Cornelia de Lange syndrome. We also report on the clinical characteristics of the epilepsy, including age of onset, types of seizures, electroencephalographic (EEG) findings, and response to various antiepileptic medications. These findings allow us to draw conclusions about how this population of patients with SMC1A variants fit into the spectrum of Cornelia de Lange syndrome and the broader spectrum of cohesinopathies and allow generalizations that may impact clinical care and, in particular, epilepsy management.
Collapse
Affiliation(s)
- Kristin W Barañano
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Amy Kimball
- Harvey Institute for Human Genetics, Greater Baltimore Medical Center, Baltimore, MD, USA
| | - Susan L Fong
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA.,Division of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Alena S Egense
- Department of Pediatrics, University of California, Davis, Sacramento, CA, USA
| | - Catherine Hudon
- Department of Medical Genetics, McGill University, Montreal, Quebec, Canada
| | - Antonie D Kline
- Harvey Institute for Human Genetics, Greater Baltimore Medical Center, Baltimore, MD, USA
| |
Collapse
|
7
|
Osadska M, Selicky T, Kretova M, Jurcik J, Sivakova B, Cipakova I, Cipak L. The Interplay of Cohesin and RNA Processing Factors: The Impact of Their Alterations on Genome Stability. Int J Mol Sci 2022; 23:3939. [PMID: 35409298 PMCID: PMC8999970 DOI: 10.3390/ijms23073939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 03/28/2022] [Accepted: 03/31/2022] [Indexed: 12/01/2022] Open
Abstract
Cohesin, a multi-subunit protein complex, plays important roles in sister chromatid cohesion, DNA replication, chromatin organization, gene expression, transcription regulation, and the recombination or repair of DNA damage. Recently, several studies suggested that the functions of cohesin rely not only on cohesin-related protein-protein interactions, their post-translational modifications or specific DNA modifications, but that some RNA processing factors also play an important role in the regulation of cohesin functions. Therefore, the mutations and changes in the expression of cohesin subunits or alterations in the interactions between cohesin and RNA processing factors have been shown to have an impact on cohesion, the fidelity of chromosome segregation and, ultimately, on genome stability. In this review, we provide an overview of the cohesin complex and its role in chromosome segregation, highlight the causes and consequences of mutations and changes in the expression of cohesin subunits, and discuss the RNA processing factors that participate in the regulation of the processes involved in chromosome segregation. Overall, an understanding of the molecular determinants of the interplay between cohesin and RNA processing factors might help us to better understand the molecular mechanisms ensuring the integrity of the genome.
Collapse
Affiliation(s)
- Michaela Osadska
- Cancer Research Institute, Biomedical Research Center, Slovak Academy of Sciences, Dubravska cesta 9, 845 05 Bratislava, Slovakia; (M.O.); (T.S.); (M.K.); (J.J.)
| | - Tomas Selicky
- Cancer Research Institute, Biomedical Research Center, Slovak Academy of Sciences, Dubravska cesta 9, 845 05 Bratislava, Slovakia; (M.O.); (T.S.); (M.K.); (J.J.)
| | - Miroslava Kretova
- Cancer Research Institute, Biomedical Research Center, Slovak Academy of Sciences, Dubravska cesta 9, 845 05 Bratislava, Slovakia; (M.O.); (T.S.); (M.K.); (J.J.)
| | - Jan Jurcik
- Cancer Research Institute, Biomedical Research Center, Slovak Academy of Sciences, Dubravska cesta 9, 845 05 Bratislava, Slovakia; (M.O.); (T.S.); (M.K.); (J.J.)
| | - Barbara Sivakova
- Institute of Chemistry, Slovak Academy of Sciences, Dubravska Cesta 9, 845 38 Bratislava, Slovakia;
| | - Ingrid Cipakova
- Cancer Research Institute, Biomedical Research Center, Slovak Academy of Sciences, Dubravska cesta 9, 845 05 Bratislava, Slovakia; (M.O.); (T.S.); (M.K.); (J.J.)
| | - Lubos Cipak
- Cancer Research Institute, Biomedical Research Center, Slovak Academy of Sciences, Dubravska cesta 9, 845 05 Bratislava, Slovakia; (M.O.); (T.S.); (M.K.); (J.J.)
| |
Collapse
|
8
|
Sanchez AC, Thren ED, Iovine MK, Skibbens RV. Esco2 and cohesin regulate CRL4 ubiquitin ligase ddb1 expression and thalidomide teratogenicity. Cell Cycle 2022; 21:501-513. [PMID: 34989322 PMCID: PMC8942496 DOI: 10.1080/15384101.2021.2023304] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 12/13/2021] [Accepted: 12/20/2021] [Indexed: 11/03/2022] Open
Abstract
Cornelia de Lange syndrome (CdLS) and Roberts syndrome (RBS) are severe developmental maladies that arise from mutation of cohesin (including SMC3, CdLS) and ESCO2 (RBS). Though ESCO2 activates cohesin, CdLS and RBS etiologies are currently considered non-synonymous and for which pharmacological treatments are unavailable. Here, we identify a unifying mechanism that integrates these genetic maladies to pharmacologically-induced teratogenicity via thalidomide. Our results reveal that Esco2 and cohesin co-regulate the transcription of a component of CRL4 ubiquitin ligase through which thalidomide exerts teratogenic effects. These findings are the first to link RBS and CdLS to thalidomide teratogenicity and offer new insights into treatments.
Collapse
Affiliation(s)
- Annie C. Sanchez
- Department of Biological Sciences, Lehigh University, Bethlehem, PA, USA
| | - Elise D. Thren
- Department of Biological Sciences, Lehigh University, Bethlehem, PA, USA
| | - M. Kathryn Iovine
- Department of Biological Sciences, Lehigh University, Bethlehem, PA, USA
| | - Robert V. Skibbens
- Department of Biological Sciences, Lehigh University, Bethlehem, PA, USA
| |
Collapse
|
9
|
Chandrasekaran V, Oparina N, Garcia-Bonete MJ, Wasén C, Erlandsson MC, Malmhäll-Bah E, Andersson KME, Jensen M, Silfverswärd ST, Katona G, Bokarewa MI. Cohesin-Mediated Chromatin Interactions and Autoimmunity. Front Immunol 2022; 13:840002. [PMID: 35222432 PMCID: PMC8866859 DOI: 10.3389/fimmu.2022.840002] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 01/17/2022] [Indexed: 11/23/2022] Open
Abstract
Proper physiological functioning of any cell type requires ordered chromatin organization. In this context, cohesin complex performs important functions preventing premature separation of sister chromatids after DNA replication. In partnership with CCCTC-binding factor, it ensures insulator activity to organize enhancers and promoters within regulatory chromatin. Homozygous mutations and dysfunction of individual cohesin proteins are embryonically lethal in humans and mice, which limits in vivo research work to embryonic stem cells and progenitors. Conditional alleles of cohesin complex proteins have been generated to investigate their functional roles in greater detail at later developmental stages. Thus, genome regulation enabled by action of cohesin proteins is potentially crucial in lineage cell development, including immune homeostasis. In this review, we provide current knowledge on the role of cohesin complex in leukocyte maturation and adaptive immunity. Conditional knockout and shRNA-mediated inhibition of individual cohesin proteins in mice demonstrated their importance in haematopoiesis, adipogenesis and inflammation. Notably, these effects occur rather through changes in transcriptional gene regulation than through expected cell cycle defects. This positions cohesin at the crossroad of immune pathways including NF-kB, IL-6, and IFNγ signaling. Cohesin proteins emerged as vital regulators at early developmental stages of thymocytes and B cells and after antigen challenge. Human genome-wide association studies are remarkably concordant with these findings and present associations between cohesin and rheumatoid arthritis, multiple sclerosis and HLA-B27 related chronic inflammatory conditions. Furthermore, bioinformatic prediction based on protein-protein interactions reveal a tight connection between the cohesin complex and immune relevant processes supporting the notion that cohesin will unearth new clues in regulation of autoimmunity.
Collapse
Affiliation(s)
- Venkataragavan Chandrasekaran
- Department of Rheumatology and Inflammation Research, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Nina Oparina
- Rheumatology Clinic, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Maria-Jose Garcia-Bonete
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Caroline Wasén
- Ann Romney Center for Neurologic Diseases, Harvard Medical School, Brigham and Women’s Hospital, Boston, MA, United States
- Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | - Malin C. Erlandsson
- Department of Rheumatology and Inflammation Research, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Eric Malmhäll-Bah
- Department of Rheumatology and Inflammation Research, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Karin M. E. Andersson
- Department of Rheumatology and Inflammation Research, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Maja Jensen
- Department of Chemistry and Molecular Biology, Faculty of Science, University of Gothenburg, Gothenburg, Sweden
| | - Sofia T. Silfverswärd
- Department of Rheumatology and Inflammation Research, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Gergely Katona
- Department of Chemistry and Molecular Biology, Faculty of Science, University of Gothenburg, Gothenburg, Sweden
| | - Maria I. Bokarewa
- Department of Rheumatology and Inflammation Research, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden
- Rheumatology Clinic, Sahlgrenska University Hospital, Gothenburg, Sweden
| |
Collapse
|
10
|
Carvalhal S, Bader I, Rooimans MA, Oostra AB, Balk JA, Feichtinger RG, Beichler C, Speicher MR, van Hagen JM, Waisfisz Q, van Haelst M, Bruijn M, Tavares A, Mayr JA, Wolthuis RMF, Oliveira RA, de Lange J. Biallelic BUB1 mutations cause microcephaly, developmental delay, and variable effects on cohesion and chromosome segregation. SCIENCE ADVANCES 2022; 8:eabk0114. [PMID: 35044816 PMCID: PMC8769543 DOI: 10.1126/sciadv.abk0114] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Budding uninhibited by benzimidazoles (BUB1) contributes to multiple mitotic processes. Here, we describe the first two patients with biallelic BUB1 germline mutations, who both display microcephaly, intellectual disability, and several patient-specific features. The identified mutations cause variable degrees of reduced total protein level and kinase activity, leading to distinct mitotic defects. Both patients’ cells show prolonged mitosis duration, chromosome segregation errors, and an overall functional spindle assembly checkpoint. However, while BUB1 levels mostly affect BUBR1 kinetochore recruitment, impaired kinase activity prohibits centromeric recruitment of Aurora B, SGO1, and TOP2A, correlating with anaphase bridges, aneuploidy, and defective sister chromatid cohesion. We do not observe accelerated cohesion fatigue. We hypothesize that unresolved DNA catenanes increase cohesion strength, with concomitant increase in anaphase bridges. In conclusion, BUB1 mutations cause a neurodevelopmental disorder, with clinical and cellular phenotypes that partially resemble previously described syndromes, including autosomal recessive primary microcephaly, mosaic variegated aneuploidy, and cohesinopathies.
Collapse
Affiliation(s)
- Sara Carvalhal
- Instituto Gulbenkian de Ciência, R. Q.ta Grande 6, 2780-156 Oeiras, Portugal
- Algarve Biomedical Center Research Institute, Universidade do Algarve, 8005-139 Faro, Portugal
- Centre for Biomedical Research, Universidade do Algarve, 8005-139 Faro, Portugal
| | - Ingrid Bader
- Unit of Clinical Genetics, Paracelsus Medical University, Salzburg, Austria
| | - Martin A. Rooimans
- Cancer Center Amsterdam, Amsterdam University Medical Centers, Oncogenetics Section, De Boelelaan 1118, 1081 HV Amsterdam, Netherlands
| | - Anneke B. Oostra
- Cancer Center Amsterdam, Amsterdam University Medical Centers, Oncogenetics Section, De Boelelaan 1118, 1081 HV Amsterdam, Netherlands
| | - Jesper A. Balk
- Cancer Center Amsterdam, Amsterdam University Medical Centers, Oncogenetics Section, De Boelelaan 1118, 1081 HV Amsterdam, Netherlands
| | - René G. Feichtinger
- Department of Pediatrics, University Hospital Salzburg, Paracelsus Medical University, Salzburg, Austria
| | - Christine Beichler
- Institute of Human Genetics, Diagnostic and Research Center for Molecular BioMedicine, Medical University of Graz, Graz, Austria
| | - Michael R. Speicher
- Institute of Human Genetics, Diagnostic and Research Center for Molecular BioMedicine, Medical University of Graz, Graz, Austria
| | - Johanna M. van Hagen
- Department of Clinical Genetics, Amsterdam UMC, Vrije Universiteit Amsterdam, De Boelelaan 1118, 1081 HV Amsterdam, Netherlands
| | - Quinten Waisfisz
- Department of Clinical Genetics, Amsterdam UMC, Vrije Universiteit Amsterdam, De Boelelaan 1118, 1081 HV Amsterdam, Netherlands
| | - Mieke van Haelst
- Department of Clinical Genetics, Amsterdam UMC, Vrije Universiteit Amsterdam, De Boelelaan 1118, 1081 HV Amsterdam, Netherlands
| | - Martijn Bruijn
- Northwest Clinics, Wilhelminalaan 12, 1815 JD Alkmaar, Netherlands
| | - Alexandra Tavares
- Instituto Gulbenkian de Ciência, R. Q.ta Grande 6, 2780-156 Oeiras, Portugal
| | - Johannes A. Mayr
- Department of Pediatrics, University Hospital Salzburg, Paracelsus Medical University, Salzburg, Austria
| | - Rob M. F. Wolthuis
- Cancer Center Amsterdam, Amsterdam University Medical Centers, Oncogenetics Section, De Boelelaan 1118, 1081 HV Amsterdam, Netherlands
| | - Raquel A. Oliveira
- Instituto Gulbenkian de Ciência, R. Q.ta Grande 6, 2780-156 Oeiras, Portugal
- Corresponding author. (R.A.O.); (J.d.L.)
| | - Job de Lange
- Cancer Center Amsterdam, Amsterdam University Medical Centers, Oncogenetics Section, De Boelelaan 1118, 1081 HV Amsterdam, Netherlands
- Corresponding author. (R.A.O.); (J.d.L.)
| |
Collapse
|
11
|
Paulson JR, Hudson DF, Cisneros-Soberanis F, Earnshaw WC. Mitotic chromosomes. Semin Cell Dev Biol 2021; 117:7-29. [PMID: 33836947 PMCID: PMC8406421 DOI: 10.1016/j.semcdb.2021.03.014] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 03/23/2021] [Accepted: 03/23/2021] [Indexed: 01/25/2023]
Abstract
Our understanding of the structure and function of mitotic chromosomes has come a long way since these iconic objects were first recognized more than 140 years ago, though many details remain to be elucidated. In this chapter, we start with the early history of chromosome studies and then describe the path that led to our current understanding of the formation and structure of mitotic chromosomes. We also discuss some of the remaining questions. It is now well established that each mitotic chromatid consists of a central organizing region containing a so-called "chromosome scaffold" from which loops of DNA project radially. Only a few key non-histone proteins and protein complexes are required to form the chromosome: topoisomerase IIα, cohesin, condensin I and condensin II, and the chromokinesin KIF4A. These proteins are concentrated along the axis of the chromatid. Condensins I and II are primarily responsible for shaping the chromosome and the scaffold, and they produce the loops of DNA by an ATP-dependent process known as loop extrusion. Modelling of Hi-C data suggests that condensin II adopts a spiral staircase arrangement with an extruded loop extending out from each step in a roughly helical pattern. Condensin I then forms loops nested within these larger condensin II loops, thereby giving rise to the final compaction of the mitotic chromosome in a process that requires Topo IIα.
Collapse
Affiliation(s)
- James R Paulson
- Department of Chemistry, University of Wisconsin Oshkosh, 800 Algoma Boulevard, Oshkosh, WI 54901, USA.
| | - Damien F Hudson
- Murdoch Children's Research Institute, Royal Children's Hospital, Parkville, VIC 3052, Australia
| | - Fernanda Cisneros-Soberanis
- Wellcome Trust Centre for Cell Biology, ICB, University of Edinburgh, Michael Swann Building, King's Buildings, Max Born Crescent, Edinburgh EH9 3BF, Scotland, UK
| | - William C Earnshaw
- Wellcome Trust Centre for Cell Biology, ICB, University of Edinburgh, Michael Swann Building, King's Buildings, Max Born Crescent, Edinburgh EH9 3BF, Scotland, UK.
| |
Collapse
|
12
|
Santos D, Mahtab M, Boavida A, Pisani FM. Role of the DDX11 DNA Helicase in Warsaw Breakage Syndrome Etiology. Int J Mol Sci 2021; 22:2308. [PMID: 33669056 PMCID: PMC7956524 DOI: 10.3390/ijms22052308] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 02/13/2021] [Accepted: 02/23/2021] [Indexed: 12/23/2022] Open
Abstract
Warsaw breakage syndrome (WABS) is a genetic disorder characterized by sister chromatid cohesion defects, growth retardation, microcephaly, hearing loss and other variable clinical manifestations. WABS is due to biallelic mutations of the gene coding for the super-family 2 DNA helicase DDX11/ChlR1, orthologous to the yeast chromosome loss protein 1 (Chl1). WABS is classified in the group of "cohesinopathies", rare hereditary diseases that are caused by mutations in genes coding for subunits of the cohesin complex or protein factors having regulatory roles in the sister chromatid cohesion process. In fact, among the cohesion regulators, an important player is DDX11, which is believed to be important for the functional coupling of DNA synthesis and cohesion establishment at the replication forks. Here, we will review what is known about the molecular and cellular functions of human DDX11 and its role in WABS etiopathogenesis, even in light of recent findings on the role of cohesin and its regulator network in promoting chromatin loop formation and regulating chromatin spatial organization.
Collapse
Affiliation(s)
- Diana Santos
- Istituto di Biochimica e Biologia Cellulare, Consiglio Nazionale delle Ricerche, Via P. Castellino 111, 80131 Naples, Italy; (D.S.); (M.M.); (A.B.)
| | - Mohammad Mahtab
- Istituto di Biochimica e Biologia Cellulare, Consiglio Nazionale delle Ricerche, Via P. Castellino 111, 80131 Naples, Italy; (D.S.); (M.M.); (A.B.)
- Dipartimento di Scienze e Tecnologie Ambientali, Biologiche e Farmaceutiche, Università degli Studi della Campania Luigi Vanvitelli, Via Vivaldi 43, 81100 Caserta, Italy
| | - Ana Boavida
- Istituto di Biochimica e Biologia Cellulare, Consiglio Nazionale delle Ricerche, Via P. Castellino 111, 80131 Naples, Italy; (D.S.); (M.M.); (A.B.)
| | - Francesca M. Pisani
- Istituto di Biochimica e Biologia Cellulare, Consiglio Nazionale delle Ricerche, Via P. Castellino 111, 80131 Naples, Italy; (D.S.); (M.M.); (A.B.)
| |
Collapse
|
13
|
He X, Kim JS, Diaz-Martinez LA, Han C, Lane WS, Budnik B, Waldman T. USP13 interacts with cohesin and regulates its ubiquitination in human cells. J Biol Chem 2021; 296:100194. [PMID: 33334891 PMCID: PMC7948425 DOI: 10.1074/jbc.ra120.015762] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 12/14/2020] [Accepted: 12/15/2020] [Indexed: 01/26/2023] Open
Abstract
Cohesin is a multiprotein ring complex that regulates 3D genome organization, sister chromatid cohesion, gene expression, and DNA repair. Cohesin is known to be ubiquitinated, although the mechanism, regulation, and effects of cohesin ubiquitination remain poorly defined. We previously used gene editing to introduce a dual epitope tag into the endogenous allele of each of 11 known components of cohesin in human HCT116 cells. Here we report that mass spectrometry analysis of dual-affinity purifications identified the USP13 deubiquitinase as a novel cohesin-interacting protein. Subsequent immunoprecipitation/Western blots confirmed the endogenous interaction in HCT116, 293T, HeLa, and RPE-hTERT cells; demonstrated that the interaction occurs specifically in the soluble nuclear fraction (not in the chromatin); requires the ubiquitin-binding domains (UBA1/2) of USP13; and occurs preferentially during DNA replication. Reciprocal dual-affinity purification of endogenous USP13 followed by mass spectrometry demonstrated that cohesin is its primary interactor in the nucleus. Ectopic expression and CRISPR knockout of USP13 showed that USP13 is paradoxically required for both deubiquitination and ubiquitination of cohesin subunits in human cells. USP13 was dispensable for sister chromatid cohesion in HCT116 and HeLa cells, whereas it was required for the dissociation of cohesin from chromatin as cells transit through mitosis. Together these results identify USP13 as a new cohesin-interacting protein that regulates the ubiquitination of cohesin and its cell cycle regulated interaction with chromatin.
Collapse
Affiliation(s)
- Xiaoyuan He
- Departments of Oncology, Biochemistry & Molecular Biology, Lombardi Comprehensive Cancer Center, Georgetown University School of Medicine, Washington, District of Columbia, USA
| | - Jung-Sik Kim
- Departments of Oncology, Biochemistry & Molecular Biology, Lombardi Comprehensive Cancer Center, Georgetown University School of Medicine, Washington, District of Columbia, USA
| | | | - Cecil Han
- Departments of Oncology, Biochemistry & Molecular Biology, Lombardi Comprehensive Cancer Center, Georgetown University School of Medicine, Washington, District of Columbia, USA
| | - William S Lane
- Mass Spectrometry and Proteomics Resource Laboratory, Harvard University, Cambridge, Massachusetts, USA
| | - Bogdan Budnik
- Mass Spectrometry and Proteomics Resource Laboratory, Harvard University, Cambridge, Massachusetts, USA
| | - Todd Waldman
- Departments of Oncology, Biochemistry & Molecular Biology, Lombardi Comprehensive Cancer Center, Georgetown University School of Medicine, Washington, District of Columbia, USA.
| |
Collapse
|
14
|
Postema FAM, Oosterwijk JC, Hennekam RC. Genetic control of tumor development in malformation syndromes. Am J Med Genet A 2020; 185:324-335. [PMID: 33141500 DOI: 10.1002/ajmg.a.61947] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 10/19/2020] [Accepted: 10/19/2020] [Indexed: 02/01/2023]
Abstract
One of the questions that arises frequently when caring for an individual with a malformation syndrome, is whether some form of tumor surveillance is indicated. In some syndromes there is a highly variable increased risk to develop tumors, while in others this is not the case. The risks can be hard to predict and difficult to explain to affected individuals and their families, and often also to caregivers. The queries arise especially if syndrome causing mutations are also known to occur in tumors. It needs insight in the mechanisms to understand and explain differences of tumor occurrence, and to offer optimal care to individuals with syndromes. Here we provide a short overview of the major mechanisms of the control for tumor occurrences in malformation syndromes.
Collapse
Affiliation(s)
- Floor A M Postema
- Department of Pediatrics, Emma Children's Hospital, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Jan C Oosterwijk
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Raoul C Hennekam
- Department of Pediatrics, Emma Children's Hospital, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
15
|
Abstract
Mutations of the cohesin complex in human cancer were first discovered ~10 years ago. Since then, researchers worldwide have demonstrated that cohesin is among the most commonly mutated protein complexes in cancer. Inactivating mutations in genes encoding cohesin subunits are common in bladder cancers, paediatric sarcomas, leukaemias, brain tumours and other cancer types. Also in those 10 years, the prevailing view of the functions of cohesin in cell biology has undergone a revolutionary transformation. Initially, the predominant view of cohesin was as a ring that encircled and cohered replicated chromosomes until its cleavage triggered the metaphase-to-anaphase transition. As such, early studies focused on the role of tumour-derived cohesin mutations in the fidelity of chromosome segregation and aneuploidy. However, over the past 5 years the cohesin field has shifted dramatically, and research now focuses on the primary role of cohesin in generating, maintaining and regulating the intra-chromosomal DNA looping events that modulate 3D genome organization and gene expression. This Review focuses on recent discoveries in the cohesin field that provide insight into the role of cohesin inactivation in cancer pathogenesis, and opportunities for exploiting these findings for the clinical benefit of patients with cohesin-mutant cancers.
Collapse
Affiliation(s)
- Todd Waldman
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University School of Medicine, Washington, DC, USA.
| |
Collapse
|
16
|
Faramarz A, Balk JA, van Schie JJM, Oostra AB, Ghandour CA, Rooimans MA, Wolthuis RMF, de Lange J. Non-redundant roles in sister chromatid cohesion of the DNA helicase DDX11 and the SMC3 acetyl transferases ESCO1 and ESCO2. PLoS One 2020; 15:e0220348. [PMID: 31935221 PMCID: PMC6959578 DOI: 10.1371/journal.pone.0220348] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 12/30/2019] [Indexed: 12/30/2022] Open
Abstract
In a process linked to DNA replication, duplicated chromosomes are entrapped in large, circular cohesin complexes and functional sister chromatid cohesion (SCC) is established by acetylation of the SMC3 cohesin subunit. Roberts Syndrome (RBS) and Warsaw Breakage Syndrome (WABS) are rare human developmental syndromes that are characterized by defective SCC. RBS is caused by mutations in the SMC3 acetyltransferase ESCO2, whereas mutations in the DNA helicase DDX11 lead to WABS. We found that WABS-derived cells predominantly rely on ESCO2, not ESCO1, for residual SCC, growth and survival. Reciprocally, RBS-derived cells depend on DDX11 to maintain low levels of SCC. Synthetic lethality between DDX11 and ESCO2 correlated with a prolonged delay in mitosis, and was rescued by knockdown of the cohesin remover WAPL. Rescue experiments using human or mouse cDNAs revealed that DDX11, ESCO1 and ESCO2 act on different but related aspects of SCC establishment. Furthermore, a DNA binding DDX11 mutant failed to correct SCC in WABS cells and DDX11 deficiency reduced replication fork speed. We propose that DDX11, ESCO1 and ESCO2 control different fractions of cohesin that are spatially and mechanistically separated.
Collapse
Affiliation(s)
- Atiq Faramarz
- Cancer Center Amsterdam, Department of Clinical Genetics, section Oncogenetics, Amsterdam University Medical Centers, Amsterdam, the Netherlands
| | - Jesper A. Balk
- Cancer Center Amsterdam, Department of Clinical Genetics, section Oncogenetics, Amsterdam University Medical Centers, Amsterdam, the Netherlands
| | - Janne J. M. van Schie
- Cancer Center Amsterdam, Department of Clinical Genetics, section Oncogenetics, Amsterdam University Medical Centers, Amsterdam, the Netherlands
| | - Anneke B. Oostra
- Cancer Center Amsterdam, Department of Clinical Genetics, section Oncogenetics, Amsterdam University Medical Centers, Amsterdam, the Netherlands
| | - Cherien A. Ghandour
- Cancer Center Amsterdam, Department of Clinical Genetics, section Oncogenetics, Amsterdam University Medical Centers, Amsterdam, the Netherlands
| | - Martin A. Rooimans
- Cancer Center Amsterdam, Department of Clinical Genetics, section Oncogenetics, Amsterdam University Medical Centers, Amsterdam, the Netherlands
| | - Rob M. F. Wolthuis
- Cancer Center Amsterdam, Department of Clinical Genetics, section Oncogenetics, Amsterdam University Medical Centers, Amsterdam, the Netherlands
| | - Job de Lange
- Cancer Center Amsterdam, Department of Clinical Genetics, section Oncogenetics, Amsterdam University Medical Centers, Amsterdam, the Netherlands
| |
Collapse
|
17
|
Krumm A, Duan Z. Understanding the 3D genome: Emerging impacts on human disease. Semin Cell Dev Biol 2019; 90:62-77. [PMID: 29990539 PMCID: PMC6329682 DOI: 10.1016/j.semcdb.2018.07.004] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Accepted: 07/03/2018] [Indexed: 12/13/2022]
Abstract
Recent burst of new technologies that allow for quantitatively delineating chromatin structure has greatly expanded our understanding of how the genome is organized in the three-dimensional (3D) space of the nucleus. It is now clear that the hierarchical organization of the eukaryotic genome critically impacts nuclear activities such as transcription, replication, as well as cellular and developmental events such as cell cycle, cell fate decision and embryonic development. In this review, we discuss new insights into how the structural features of the 3D genome hierarchy are established and maintained, how this hierarchy undergoes dynamic rearrangement during normal development and how its perturbation will lead to human disease, highlighting the accumulating evidence that links the diverse 3D genome architecture components to a multitude of human diseases and the emerging mechanisms by which 3D genome derangement causes disease phenotypes.
Collapse
Affiliation(s)
- Anton Krumm
- Department of Microbiology, University of Washington, USA.
| | - Zhijun Duan
- Institute for Stem Cell and Regenerative Medicine, University of Washington, USA; Division of Hematology, Department of Medicine, University of Washington, USA.
| |
Collapse
|
18
|
Kim JS, He X, Liu J, Duan Z, Kim T, Gerard J, Kim B, Pillai MM, Lane WS, Noble WS, Budnik B, Waldman T. Systematic proteomics of endogenous human cohesin reveals an interaction with diverse splicing factors and RNA-binding proteins required for mitotic progression. J Biol Chem 2019; 294:8760-8772. [PMID: 31010829 PMCID: PMC6552432 DOI: 10.1074/jbc.ra119.007832] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 04/18/2019] [Indexed: 12/23/2022] Open
Abstract
The cohesin complex regulates sister chromatid cohesion, chromosome organization, gene expression, and DNA repair. Cohesin is a ring complex composed of four core subunits and seven regulatory subunits. In an effort to comprehensively identify additional cohesin-interacting proteins, we used gene editing to introduce a dual epitope tag into the endogenous allele of each of 11 known components of cohesin in cultured human cells, and we performed MS analyses on dual-affinity purifications. In addition to reciprocally identifying all known components of cohesin, we found that cohesin interacts with a panoply of splicing factors and RNA-binding proteins (RBPs). These included diverse components of the U4/U6.U5 tri-small nuclear ribonucleoprotein complex and several splicing factors that are commonly mutated in cancer. The interaction between cohesin and splicing factors/RBPs was RNA- and DNA-independent, occurred in chromatin, was enhanced during mitosis, and required RAD21. Furthermore, cohesin-interacting splicing factors and RBPs followed the cohesin cycle and prophase pathway of cell cycle-regulated interactions with chromatin. Depletion of cohesin-interacting splicing factors and RBPs resulted in aberrant mitotic progression. These results provide a comprehensive view of the endogenous human cohesin interactome and identify splicing factors and RBPs as functionally significant cohesin-interacting proteins.
Collapse
Affiliation(s)
- Jung-Sik Kim
- From the Departments of Oncology and Biochemistry & Molecular Biology, Georgetown University School of Medicine, Washington, D. C. 20057
| | - Xiaoyuan He
- From the Departments of Oncology and Biochemistry & Molecular Biology, Georgetown University School of Medicine, Washington, D. C. 20057
| | - Jie Liu
- the Department of Genome Sciences
| | - Zhijun Duan
- Institute for Stem Cell and Regenerative Medicine, and
- Division of Hematology, University of Washington, Seattle, Washington 98195
| | - Taeyeon Kim
- From the Departments of Oncology and Biochemistry & Molecular Biology, Georgetown University School of Medicine, Washington, D. C. 20057
| | - Julia Gerard
- From the Departments of Oncology and Biochemistry & Molecular Biology, Georgetown University School of Medicine, Washington, D. C. 20057
| | - Brian Kim
- From the Departments of Oncology and Biochemistry & Molecular Biology, Georgetown University School of Medicine, Washington, D. C. 20057
| | - Manoj M Pillai
- the Section of Hematology, Yale Cancer Center, Yale University School of Medicine, New Haven, Connecticut 06510, and
| | - William S Lane
- the Mass Spectrometry and Proteomics Resource Laboratory, Harvard University, Cambridge, Massachusetts 02138
| | | | - Bogdan Budnik
- the Mass Spectrometry and Proteomics Resource Laboratory, Harvard University, Cambridge, Massachusetts 02138
| | - Todd Waldman
- From the Departments of Oncology and Biochemistry & Molecular Biology, Georgetown University School of Medicine, Washington, D. C. 20057,
| |
Collapse
|
19
|
Potapova TA, Gerton JL. Ribosomal DNA and the nucleolus in the context of genome organization. Chromosome Res 2019; 27:109-127. [PMID: 30656516 DOI: 10.1007/s10577-018-9600-5] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 12/13/2018] [Accepted: 12/17/2018] [Indexed: 12/12/2022]
Abstract
The nucleolus constitutes a prominent nuclear compartment, a membraneless organelle that was first documented in the 1830s. The fact that specific chromosomal regions were present in the nucleolus was recognized by Barbara McClintock in the 1930s, and these regions were termed nucleolar organizing regions, or NORs. The primary function of ribosomal DNA (rDNA) is to produce RNA components of ribosomes. Yet, ribosomal DNA also plays a pivotal role in nuclear organization by assembling the nucleolus. This review is focused on the rDNA and associated proteins in the context of genome organization. Recent advances in understanding chromatin organization suggest that chromosomes are organized into topological domains by a DNA loop extrusion process. We discuss the perspective that rDNA may also be organized in topological domains constrained by structural maintenance of chromosome protein complexes such as cohesin and condensin. Moreover, biophysical studies indicate that the nucleolar compartment may be formed by active processes as well as phase separation, a perspective that lends further insight into nucleolar organization. The application of the latest perspectives and technologies to this organelle help further elucidate its role in nuclear structure and function.
Collapse
Affiliation(s)
| | - Jennifer L Gerton
- Stowers Institute for Medical Research, Kansas City, MO, USA
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS, USA
| |
Collapse
|
20
|
Hetman M, Slomnicki LP. Ribosomal biogenesis as an emerging target of neurodevelopmental pathologies. J Neurochem 2018; 148:325-347. [PMID: 30144322 DOI: 10.1111/jnc.14576] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 08/15/2018] [Accepted: 08/21/2018] [Indexed: 12/17/2022]
Abstract
Development of the nervous system is carried out by complex gene expression programs that are regulated at both transcriptional and translational level. In addition, quality control mechanisms such as the TP53-mediated apoptosis or neuronal activity-stimulated survival ensure successful neurogenesis and formation of functional circuitries. In the nucleolus, production of ribosomes is essential for protein synthesis. In addition, it participates in chromatin organization and regulates the TP53 pathway via the ribosomal stress response. Its tight regulation is required for maintenance of genomic integrity. Mutations in several ribosomal components and trans-acting ribosomal biogenesis factors result in neurodevelopmental syndromes that present with microcephaly, autism, intellectual deficits and/or progressive neurodegeneration. Furthermore, ribosomal biogenesis is perturbed by exogenous factors that disrupt neurodevelopment including alcohol or Zika virus. In this review, we present recent literature that argues for a role of dysregulated ribosomal biogenesis in pathogenesis of various neurodevelopmental syndromes. We also discuss potential mechanisms through which such dysregulation may lead to cellular pathologies of the developing nervous system including insufficient proliferation and/or loss of neuroprogenitors cells, apoptosis of immature neurons, altered neuronal morphogenesis, and neurodegeneration.
Collapse
Affiliation(s)
- Michal Hetman
- Departments of Neurological Surgery, Kentucky Spinal Cord Injury Research Center, Louisville, Kentucky, USA.,Pharmacology and Toxicology, University of Louisville, Louisville, Kentucky, USA
| | - Lukasz P Slomnicki
- Departments of Neurological Surgery, Kentucky Spinal Cord Injury Research Center, Louisville, Kentucky, USA
| |
Collapse
|
21
|
Villa-Hernández S, Bermejo R. Cohesin dynamic association to chromatin and interfacing with replication forks in genome integrity maintenance. Curr Genet 2018; 64:1005-1013. [PMID: 29549581 DOI: 10.1007/s00294-018-0824-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 03/12/2018] [Accepted: 03/13/2018] [Indexed: 01/09/2023]
Abstract
Proliferating cells need to accurately duplicate and pass their genetic material on to daughter cells. Problems during replication and partition challenge the structural and numerical integrity of chromosomes. Diverse mechanisms, as the DNA replication checkpoint, survey the correct progression of replication and couple it with other cell cycle events to preserve genome integrity. The structural maintenance of chromosomes (SMC) cohesin complex primarily contributes to chromosome duplication by mediating the tethering of newly replicated sister chromatids, thus assisting their equal segregation in mitosis. In addition, cohesin exerts important functions in genome organization, gene expression and DNA repair. These are determined by cohesin's ability to bring together different DNA segments and, hence, by the fashion and dynamics of its interaction with chromatin. It recently emerged that cohesin contributes to the protection of stalled replication forks through a mechanism requiring its timely mobilization from unreplicated DNA and relocation to nascent strands. This mechanism relies on DNA replication checkpoint-dependent cohesin ubiquitylation and promotes nascent sister chromatid entrapment, likely contributing to preserve stalled replisome-fork architectural integrity. Here we review how cohesin dynamic association to chromatin is controlled through post-translational modifications to dictate its functions during chromosome duplication. We also discuss recent insights on the mechanism that mediates interfacing of replisome components with chromatin-bound cohesin and its contribution to the establishment of sister chromatid cohesion and the protection of stalled replication forks.
Collapse
Affiliation(s)
- Sara Villa-Hernández
- Centro de Investigaciones Biológicas (CIB-CSIC), Calle Ramiro de Maeztu 9, 28040, Madrid, Spain
- Wolfson Centre for Age-Related Diseases, King's College London, London, SE1 1UL, UK
| | - Rodrigo Bermejo
- Centro de Investigaciones Biológicas (CIB-CSIC), Calle Ramiro de Maeztu 9, 28040, Madrid, Spain.
| |
Collapse
|
22
|
Countryman P, Fan Y, Gorthi A, Pan H, Strickland E, Kaur P, Wang X, Lin J, Lei X, White C, You C, Wirth N, Tessmer I, Piehler J, Riehn R, Bishop AJR, Tao YJ, Wang H. Cohesin SA2 is a sequence-independent DNA-binding protein that recognizes DNA replication and repair intermediates. J Biol Chem 2018; 293:1054-1069. [PMID: 29175904 PMCID: PMC5777247 DOI: 10.1074/jbc.m117.806406] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Revised: 11/22/2017] [Indexed: 11/06/2022] Open
Abstract
Proper chromosome alignment and segregation during mitosis depend on cohesion between sister chromatids, mediated by the cohesin protein complex, which also plays crucial roles in diverse genome maintenance pathways. Current models attribute DNA binding by cohesin to entrapment of dsDNA by the cohesin ring subunits (SMC1, SMC3, and RAD21 in humans). However, the biophysical properties and activities of the fourth core cohesin subunit SA2 (STAG2) are largely unknown. Here, using single-molecule atomic force and fluorescence microscopy imaging as well as fluorescence anisotropy measurements, we established that SA2 binds to both dsDNA and ssDNA, albeit with a higher binding affinity for ssDNA. We observed that SA2 can switch between the 1D diffusing (search) mode on dsDNA and stable binding (recognition) mode at ssDNA gaps. Although SA2 does not specifically bind to centromeric or telomeric sequences, it does recognize DNA structures often associated with DNA replication and double-strand break repair, such as a double-stranded end, single-stranded overhang, flap, fork, and ssDNA gap. SA2 loss leads to a defect in homologous recombination-mediated DNA double-strand break repair. These results suggest that SA2 functions at intermediate DNA structures during DNA transactions in genome maintenance pathways. These findings have important implications for understanding the function of cohesin in these pathways.
Collapse
Affiliation(s)
| | - Yanlin Fan
- the Department of BioSciences, Rice University, Houston, Texas 77251
| | - Aparna Gorthi
- the Greehey Children's Cancer Research Institute and
- Department of Cell Systems and Anatomy, University of Texas Health, San Antonio, Texas 78229
| | | | | | | | | | - Jiangguo Lin
- From the Physics Department
- the Institute of Biomechanics, School of Bioscience and Bioengineering, South China University of Technology, Guangzhou, Guangdong 510006, China
| | - Xiaoying Lei
- the Department of BioSciences, Rice University, Houston, Texas 77251
- the School of Public Health, Shandong University, Jinan 250012, China
| | | | - Changjiang You
- the Division of Biophysics, Universität Osnabrück, Barbarstrasse 11, 49076 Osnabrück, Germany, and
| | - Nicolas Wirth
- the Rudolf Virchow Center for Experimental Biomedicine, University of Würzburg, Josef-Schneider-Strasse 2, 97080 Würzburg, Germany
| | - Ingrid Tessmer
- the Rudolf Virchow Center for Experimental Biomedicine, University of Würzburg, Josef-Schneider-Strasse 2, 97080 Würzburg, Germany
| | - Jacob Piehler
- the Division of Biophysics, Universität Osnabrück, Barbarstrasse 11, 49076 Osnabrück, Germany, and
| | | | - Alexander J R Bishop
- the Greehey Children's Cancer Research Institute and
- Department of Cell Systems and Anatomy, University of Texas Health, San Antonio, Texas 78229
| | - Yizhi Jane Tao
- the Department of BioSciences, Rice University, Houston, Texas 77251
| | - Hong Wang
- From the Physics Department,
- Center for Human Health and the Environment, North Carolina State University, Raleigh, North Carolina 27695
| |
Collapse
|
23
|
Abstract
Structural maintenance of chromosome (SMC) protein complexes, including cohesin and condensin, are increasingly being recognized for their important role in cancer and development, making it critical that we understand how these evolutionarily conserved multi-subunit protein complexes associate with and organize the genome. We review adaptor proteins for SMC complexes and how these adaptors may capture SMC complexes following loop extrusion to provide a framework for chromosome organization.
Collapse
Affiliation(s)
- Kobe C. Yuen
- Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
- Department of Oncology Biomarker Development, Genentech, Inc., South San Francisco, California, United States of America
| | - Jennifer L. Gerton
- Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
- Department of Biochemistry and Molecular Biology, University of Kansas School of Medicine, Kansas City, Kansas, United States of America
- University of Kansas Cancer Center, Kansas City, Kansas, United States of America
| |
Collapse
|
24
|
Abstract
Cohesin was identified through its major role in holding sister chromatids together. We are learning through analysis of cohesin and other members of the protein family (SMC [structural maintenance of chromosomes]) and their regulators that these ring complexes contribute to chromosome organization and dynamics throughout the cell cycle. We need to consider not only how ring complexes are regulated but how they interact with their fluctuating chromatin substrate.
Collapse
Affiliation(s)
- Kerry Bloom
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| |
Collapse
|
25
|
Banerji R, Skibbens RV, Iovine MK. How many roads lead to cohesinopathies? Dev Dyn 2017; 246:881-888. [PMID: 28422453 DOI: 10.1002/dvdy.24510] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Revised: 03/10/2017] [Accepted: 04/11/2017] [Indexed: 12/16/2023] Open
Abstract
Genetic mapping studies reveal that mutations in cohesion pathways are responsible for multispectrum developmental abnormalities termed cohesinopathies. These include Roberts syndrome (RBS), Cornelia de Lange Syndrome (CdLS), and Warsaw Breakage Syndrome (WABS). The cohesinopathies are characterized by overlapping phenotypes ranging from craniofacial deformities, limb defects, and mental retardation. Though these syndromes share a similar suite of phenotypes and arise due to mutations in a common cohesion pathway, the underlying mechanisms are currently believed to be distinct. Defects in mitotic failure and apoptosis i.e. trans DNA tethering events are believed to be the underlying cause of RBS, whereas the underlying cause of CdLS is largely modeled as occurring through defects in transcriptional processes i.e. cis DNA tethering events. Here, we review recent findings described primarily in zebrafish, paired with additional studies in other model systems, including human patient cells, which challenge the notion that cohesinopathies represent separate syndromes. We highlight numerous studies that illustrate the utility of zebrafish to provide novel insights into the phenotypes, genes affected and the possible mechanisms underlying cohesinopathies. We propose that transcriptional deregulation is the predominant mechanism through which cohesinopathies arise. Developmental Dynamics 246:881-888, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Rajeswari Banerji
- Department of Biological Science, Lehigh University, Bethlehem, Pennsylvania
| | - Robert V Skibbens
- Department of Biological Science, Lehigh University, Bethlehem, Pennsylvania
| | - M Kathryn Iovine
- Department of Biological Science, Lehigh University, Bethlehem, Pennsylvania
| |
Collapse
|
26
|
Lehalle D, Mosca-Boidron AL, Begtrup A, Boute-Benejean O, Charles P, Cho MT, Clarkson A, Devinsky O, Duffourd Y, Duplomb-Jego L, Gérard B, Jacquette A, Kuentz P, Masurel-Paulet A, McDougall C, Moutton S, Olivié H, Park SM, Rauch A, Revencu N, Rivière JB, Rubin K, Simonic I, Shears DJ, Smol T, Taylor Tavares AL, Terhal P, Thevenon J, Van Gassen K, Vincent-Delorme C, Willemsen MH, Wilson GN, Zackai E, Zweier C, Callier P, Thauvin-Robinet C, Faivre L. STAG1 mutations cause a novel cohesinopathy characterised by unspecific syndromic intellectual disability. J Med Genet 2017; 54:479-488. [PMID: 28119487 DOI: 10.1136/jmedgenet-2016-104468] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Revised: 12/26/2016] [Accepted: 12/27/2016] [Indexed: 11/04/2022]
Abstract
BACKGROUND Cohesinopathies are rare neurodevelopmental disorders arising from a dysfunction in the cohesin pathway, which enables chromosome segregation and regulates gene transcription. So far, eight genes from this pathway have been reported in human disease. STAG1 belongs to the STAG subunit of the core cohesin complex, along with five other subunits. This work aimed to identify the phenotype ascribed to STAG1 mutations. METHODS Among patients referred for intellectual disability (ID) in genetics departments worldwide, array-comparative genomic hybridisation (CGH), gene panel, whole-exome sequencing or whole-genome sequencing were performed following the local diagnostic standards. RESULTS A mutation in STAG1 was identified in 17 individuals from 16 families, 9 males and 8 females aged 2-33 years. Four individuals harboured a small microdeletion encompassing STAG1; three individuals from two families had an intragenic STAG1 deletion. Six deletions were identified by array-CGH, one by whole-exome sequencing. Whole-exome sequencing found de novo heterozygous missense or frameshift STAG1 variants in eight patients, a panel of genes involved in ID identified a missense and a frameshift variant in two individuals. The 17 patients shared common facial features, with wide mouth and deep-set eyes. Four individuals had mild microcephaly, seven had epilepsy. CONCLUSIONS We report an international series of 17 individuals from 16 families presenting with syndromic unspecific ID that could be attributed to a STAG1 deletion or point mutation. This first series reporting the phenotype ascribed to mutation in STAG1 highlights the importance of data sharing in the field of rare disorders.
Collapse
Affiliation(s)
- Daphné Lehalle
- Fédération Hospitalo-Universitaire Médecine Translationnelle et Anomalies du Développement (TRANSLAD), Centre Hospitalier Universitaire Dijon, Dijon, France
- Centre de Génétique et Centre de Référence Anomalies du Développement et Syndromes Malformatifs de l'Interrégion Est, Centre Hospitalier Universitaire Dijon, Dijon, France
| | - Anne-Laure Mosca-Boidron
- Laboratoire de Cytogénétique, Centre Hospitalier Universitaire Dijon, Dijon, France
- Equipe GAD, EA4271, Faculté de Médecine, Université de Bourgogne Franche-Comté, Dijon, France
| | - Amber Begtrup
- GeneDx, 207 Perry Parkway, Gaithersburg, Maryland, USA
| | | | - Perrine Charles
- Genetic Department, University Hospital La Pitié Salpêtrière, Paris, France
| | - Megan T Cho
- GeneDx, 207 Perry Parkway, Gaithersburg, Maryland, USA
| | - Amanda Clarkson
- Department of Clinical Genetics, Cambridge University Hospitals, Cambridge, UK
| | - Orrin Devinsky
- Epilepsy Center, NYU Langone Medical Center, New York, New York, USA
| | - Yannis Duffourd
- Equipe GAD, EA4271, Faculté de Médecine, Université de Bourgogne Franche-Comté, Dijon, France
| | - Laurence Duplomb-Jego
- Laboratoire de Cytogénétique, Centre Hospitalier Universitaire Dijon, Dijon, France
- Equipe GAD, EA4271, Faculté de Médecine, Université de Bourgogne Franche-Comté, Dijon, France
| | - Bénédicte Gérard
- Laboratoire de biologie moléculaire, CHU Strasbourg, Strasbourg, France
| | - Aurélia Jacquette
- Genetic Department, University Hospital La Pitié Salpêtrière, Paris, France
| | - Paul Kuentz
- Laboratoire de Cytogénétique, Centre Hospitalier Universitaire Dijon, Dijon, France
- Equipe GAD, EA4271, Faculté de Médecine, Université de Bourgogne Franche-Comté, Dijon, France
| | - Alice Masurel-Paulet
- Fédération Hospitalo-Universitaire Médecine Translationnelle et Anomalies du Développement (TRANSLAD), Centre Hospitalier Universitaire Dijon, Dijon, France
- Centre de Génétique et Centre de Référence Anomalies du Développement et Syndromes Malformatifs de l'Interrégion Est, Centre Hospitalier Universitaire Dijon, Dijon, France
| | - Carey McDougall
- Clinical Genetics Center, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | | | - Hilde Olivié
- Department of Human Genetics and Centre for Developmental Disabilities, KU University Hospital Leuven, Leuven, Belgium
| | - Soo-Mi Park
- Department of Clinical Genetics, Cambridge University Hospitals, Cambridge, UK
| | - Anita Rauch
- Institute of Medical Genetics, University of Zurich, Schwerzenbach-Zurich, Switzerland
| | - Nicole Revencu
- Centre for Human Genetics, Cliniques universitaires Saint-Luc, Université catholique de Louvain, Brussels, Belgium
| | - Jean-Baptiste Rivière
- Fédération Hospitalo-Universitaire Médecine Translationnelle et Anomalies du Développement (TRANSLAD), Centre Hospitalier Universitaire Dijon, Dijon, France
- Laboratoire de Cytogénétique, Centre Hospitalier Universitaire Dijon, Dijon, France
- Equipe GAD, EA4271, Faculté de Médecine, Université de Bourgogne Franche-Comté, Dijon, France
| | - Karol Rubin
- University of Minnesota Children's Hospital, Minneapolis, Minnesota, USA
| | - Ingrid Simonic
- Department of Clinical Genetics, Cambridge University Hospitals, Cambridge, UK
| | - Deborah J Shears
- Oxford Centre for Genomic Medicine Nuffield Orthopaedic Centre, Oxford University Hospitals NHS Foundation Trust, Oxford OX3 7HE
| | - Thomas Smol
- Service de génétique clinique, CHU Lille, Lille, France
- Univ. Lille, RADEME (Research team on rare developmental and metabolic diseases), Lille, France
| | | | - Paulien Terhal
- Department of Medical Genetics, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Julien Thevenon
- Fédération Hospitalo-Universitaire Médecine Translationnelle et Anomalies du Développement (TRANSLAD), Centre Hospitalier Universitaire Dijon, Dijon, France
- Centre de Génétique et Centre de Référence Anomalies du Développement et Syndromes Malformatifs de l'Interrégion Est, Centre Hospitalier Universitaire Dijon, Dijon, France
- Equipe GAD, EA4271, Faculté de Médecine, Université de Bourgogne Franche-Comté, Dijon, France
| | - Koen Van Gassen
- Department of Medical Genetics, University Medical Centre Utrecht, Utrecht, The Netherlands
| | | | - Marjolein H Willemsen
- Department of Human Genetics, Radboud Institute for Molecular Life Sciences and Donders Centre for Neuroscience, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Golder N Wilson
- Department of Pediatrics, Texas Tech University Health Science Center, Lubbock, Texas, USA
| | | | - Christiane Zweier
- Institute of Human Genetics, Friedrich-Alexander-Universitat Erlangen-Nurnberg, Erlangen, Germany
| | - Patrick Callier
- Fédération Hospitalo-Universitaire Médecine Translationnelle et Anomalies du Développement (TRANSLAD), Centre Hospitalier Universitaire Dijon, Dijon, France
- Laboratoire de Cytogénétique, Centre Hospitalier Universitaire Dijon, Dijon, France
- Equipe GAD, EA4271, Faculté de Médecine, Université de Bourgogne Franche-Comté, Dijon, France
| | - Christel Thauvin-Robinet
- Fédération Hospitalo-Universitaire Médecine Translationnelle et Anomalies du Développement (TRANSLAD), Centre Hospitalier Universitaire Dijon, Dijon, France
- Centre de Génétique et Centre de Référence Anomalies du Développement et Syndromes Malformatifs de l'Interrégion Est, Centre Hospitalier Universitaire Dijon, Dijon, France
- Equipe GAD, EA4271, Faculté de Médecine, Université de Bourgogne Franche-Comté, Dijon, France
| | - Laurence Faivre
- Fédération Hospitalo-Universitaire Médecine Translationnelle et Anomalies du Développement (TRANSLAD), Centre Hospitalier Universitaire Dijon, Dijon, France
- Centre de Génétique et Centre de Référence Anomalies du Développement et Syndromes Malformatifs de l'Interrégion Est, Centre Hospitalier Universitaire Dijon, Dijon, France
- Equipe GAD, EA4271, Faculté de Médecine, Université de Bourgogne Franche-Comté, Dijon, France
| |
Collapse
|
27
|
de Wolf B, Kops GJPL. Kinetochore Malfunction in Human Pathologies. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1002:69-91. [DOI: 10.1007/978-3-319-57127-0_4] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
28
|
Neuronal CTCF Is Necessary for Basal and Experience-Dependent Gene Regulation, Memory Formation, and Genomic Structure of BDNF and Arc. Cell Rep 2016; 17:2418-2430. [DOI: 10.1016/j.celrep.2016.11.004] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2015] [Revised: 09/22/2016] [Accepted: 10/21/2016] [Indexed: 11/24/2022] Open
|
29
|
Mms21 SUMO Ligase Activity Promotes Nucleolar Function in Saccharomyces cerevisiae. Genetics 2016; 204:645-658. [PMID: 27510371 PMCID: PMC5068852 DOI: 10.1534/genetics.115.181750] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Accepted: 07/12/2016] [Indexed: 01/26/2023] Open
Abstract
The budding yeast E3 SUMO ligase Mms21, also known as Nse2, is a component of the Smc5/6 complex, which regulates sister chromatid cohesion, DNA replication, and repair. Our study shows that the mms21RINGΔ mutant exhibits (1) reduced ribosomal RNA production; (2) nuclear accumulation of ribosomal proteins; (3) elevated Gcn4 translation, indicating translational stress; and (4) upregulation of Gcn4 targets. Genes involved in ribosome biogenesis and translation are downregulated in the mms21RINGΔ mutant. We identified RPL19A as a novel genetic suppressor of the mms21RINGΔ mutant. Deletion of RPL19A partially suppresses growth defects in both smc5-6 and mms21RINGΔ mutants as well as nuclear accumulation of ribosome subunits in the mms21RINGΔ mutant. Deletion of a previously identified strong suppressor, MPH1, rescues both the accumulation of ribosome subunits and translational stress. This study suggests that the Smc5/6 complex supports nucleolar function.
Collapse
|
30
|
Xu B, Gogol M, Gaudenz K, Gerton JL. Improved transcription and translation with L-leucine stimulation of mTORC1 in Roberts syndrome. BMC Genomics 2016; 17:25. [PMID: 26729373 PMCID: PMC4700579 DOI: 10.1186/s12864-015-2354-y] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Accepted: 12/21/2015] [Indexed: 12/25/2022] Open
Abstract
Background Roberts syndrome (RBS) is a human developmental disorder caused by mutations in the cohesin acetyltransferase ESCO2. We previously reported that mTORC1 signaling was depressed and overall translation was reduced in RBS cells and zebrafish models for RBS. Treatment of RBS cells and zebrafish RBS models with L-leucine partially rescued mTOR function and protein synthesis, correlating with increased cell division and improved development. Results In this study, we use RBS cells to model mTORC1 repression and analyze transcription and translation with ribosome profiling to determine gene-level effects of L-leucine. L-leucine treatment partially rescued translational efficiency of ribosomal subunits, translation initiation factors, snoRNA production, and mitochondrial function in RBS cells, consistent with these processes being mTORC1 controlled. In contrast, other genes are differentially expressed independent of L-leucine treatment, including imprinted genes such as H19 and GTL2, miRNAs regulated by GTL2, HOX genes, and genes in nucleolar associated domains. Conclusions Our study distinguishes between gene expression changes in RBS cells that are TOR dependent and those that are independent. Some of the TOR independent gene expression changes likely reflect the architectural role of cohesin in chromatin looping and gene expression. This study reveals the dramatic rescue effects of L-leucine stimulation of mTORC1 in RBS cells and supports that normal gene expression and translation requires ESCO2 function. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-2354-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Baoshan Xu
- Stowers Institute for Medical Research, 1000 E 50th St, Kansas City, MO, 64110, USA.
| | - Madelaine Gogol
- Stowers Institute for Medical Research, 1000 E 50th St, Kansas City, MO, 64110, USA.
| | - Karin Gaudenz
- Stowers Institute for Medical Research, 1000 E 50th St, Kansas City, MO, 64110, USA.
| | - Jennifer L Gerton
- Stowers Institute for Medical Research, 1000 E 50th St, Kansas City, MO, 64110, USA. .,Department of Biochemistry and Molecular Biology, University of Kansas School of Medicine, 3901 Rainbow Blvd, Kansas City, KS, 66160, USA.
| |
Collapse
|
31
|
Yuen KC, Xu B, Krantz ID, Gerton JL. NIPBL Controls RNA Biogenesis to Prevent Activation of the Stress Kinase PKR. Cell Rep 2015; 14:93-102. [PMID: 26725122 PMCID: PMC4904785 DOI: 10.1016/j.celrep.2015.12.012] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Revised: 10/27/2015] [Accepted: 11/23/2015] [Indexed: 12/30/2022] Open
Abstract
NIPBL, a cohesin loader, has been implicated in transcriptional control and genome organization. Mutations in NIPBL, cohesin, and its deacetylase HDAC8 result in Cornelia de Lange syndrome. We report activation of the RNA-sensing kinase PKR in human lymphoblastoid cell lines carrying NIPBL or HDAC8 mutations, but not SMC1A or SMC3 mutations. PKR activation can be triggered by unmodified RNAs. Gene expression profiles in NIPBL-deficient lymphoblastoid cells and mouse embryonic stem cells reveal lower expression of genes involved in RNA processing and modification. NIPBL mutant lymphoblastoid cells show reduced proliferation and protein synthesis with increased apoptosis, all of which are partially reversed by a PKR inhibitor. Non-coding RNAs from an NIPBL mutant line had less m6A modification and activated PKR activity in vitro. This study provides insight into the molecular pathology of Cornelia de Lange syndrome by establishing a relationship between NIPBL and HDAC8 mutations and PKR activation.
Collapse
Affiliation(s)
- Kobe C Yuen
- Stowers Institute for Medical Research (SIMR), 1000 East 50(th) Street, Kansas City, MO 64110, USA
| | - Baoshan Xu
- Stowers Institute for Medical Research (SIMR), 1000 East 50(th) Street, Kansas City, MO 64110, USA
| | - Ian D Krantz
- Children's Hospital of Philadelphia, Division of Human Genetics, 3615 Civic Center Boulevard, Philadelphia, PA 19104, USA
| | - Jennifer L Gerton
- Stowers Institute for Medical Research (SIMR), 1000 East 50(th) Street, Kansas City, MO 64110, USA; University of Kansas School of Medicine, Department of Biochemistry and Molecular Biology, 3901 Rainbow Boulevard, Kansas City, KS 66160, USA.
| |
Collapse
|
32
|
Singh VP, Gerton JL. Cohesin and human disease: lessons from mouse models. Curr Opin Cell Biol 2015; 37:9-17. [PMID: 26343989 DOI: 10.1016/j.ceb.2015.08.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Accepted: 08/17/2015] [Indexed: 10/23/2022]
Abstract
Cohesin is an evolutionarily conserved large ring-like multi-subunit protein structure that can encircle DNA. Cohesin affects many processes that occur on chromosomes such as segregation, DNA replication, double-strand break repair, condensation, chromosome organization, and gene expression. Mutations in the genes that encode cohesin and its regulators cause human developmental disorders and cancer. Several mouse models have been established with the aim of understanding the cohesin mediated processes that are disrupted in these diseases. Mouse models support the idea that cohesin is essential for cell division, but partial loss of function can alter gene expression, DNA replication and repair, gametogenesis, and nuclear organization.
Collapse
Affiliation(s)
- Vijay Pratap Singh
- Stowers Institute for Medical Research, Kansas City, MO 64110, United States
| | - Jennifer L Gerton
- Stowers Institute for Medical Research, Kansas City, MO 64110, United States; Department of Biochemistry and Molecular Biology, University of Kansas School of Medicine, Kansas City, KS 66160, United States.
| |
Collapse
|