1
|
DiCecco L, Tang T, Sone ED, Grandfield K. Exploring Biomineralization Processes Using In Situ Liquid Transmission Electron Microscopy: A Review. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2407539. [PMID: 39523734 PMCID: PMC11735904 DOI: 10.1002/smll.202407539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 10/21/2024] [Indexed: 11/16/2024]
Abstract
Liquid transmission electron microscopy (TEM) is a newly established technique broadly used to study reactions in situ. Since its emergence, complex and multifaceted biomineralization processes have been revealed with real-time resolution, where classical and non-classical mineralization pathways have been dynamically observed primarily for Ca and Fe-based mineral systems in situ. For years, classical crystallization pathways have dominated theories on biomineralization progression despite observations of non-traditional routes involving precursor phases using traditional- and cryo-TEM. The new dynamic lens provided by liquid TEM is a key correlate to techniques limited to time-stamped, static observations - helping shift paradigms in biomineralization toward non-classical theories with dynamic mechanistic visualization. Liquid TEM provides new insights into fundamental biomineralization processes and essential physiological and pathological processes for a wide range of organisms. This review critically reviews a summary of recent in situ liquid TEM research related to the biomineralization field. Key liquid TEM preparation and imaging parameters are provided as a foundation for researchers while technical challenges are discussed. In future, the expansion of liquid TEM research in the biomineralization field will lead to transformative discoveries, providing complementary dynamic insights into biological systems.
Collapse
Affiliation(s)
- Liza‐Anastasia DiCecco
- Department of Materials Science and EngineeringMcMaster UniversityHamiltonONL8S 4L7Canada
- Department of Biomedical EngineeringPennsylvania State UniversityUniversity ParkPA16802USA
| | - Tengteng Tang
- Department of Materials Science and EngineeringMcMaster UniversityHamiltonONL8S 4L7Canada
- Center for Applied Biomechanics and Department of Mechanical and Aerospace EngineeringUniversity of VirginiaCharlottesvilleVA22911USA
| | - Eli D. Sone
- Institute of Biomedical EngineeringUniversity of TorontoTorontoONM5S 3G9Canada
- Materials Science and EngineeringUniversity of TorontoTorontoONM5S 3E4Canada
- Faculty of DentistryUniversity of TorontoTorontoONM5G 1G6Canada
| | - Kathryn Grandfield
- Department of Materials Science and EngineeringMcMaster UniversityHamiltonONL8S 4L7Canada
- School of Biomedical EngineeringMcMaster UniversityHamiltonONL8S 4L7Canada
| |
Collapse
|
2
|
Cotrut CM, Blidisel A, Vranceanu DM, Vladescu (Dragomir) A, Ungureanu E, Pana I, Dinu M, Vitelaru C, Parau AC, Pruna V, Magurean MS, Titorencu I. Evaluation of the In Vitro Behavior of Electrochemically Deposited Plate-like Crystal Hydroxyapatite Coatings. Biomimetics (Basel) 2024; 9:704. [PMID: 39590276 PMCID: PMC11592108 DOI: 10.3390/biomimetics9110704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 11/10/2024] [Accepted: 11/13/2024] [Indexed: 11/28/2024] Open
Abstract
The purpose of coatings is to protect or enhance the functionality of the substrate material, irrespective of the field in which the material was designed. The use of coatings in medicine is rapidly expanding with the objective of enhancing the osseointegration ability of metallic materials such as titanium. The aim of this study was to obtain biomimetic hydroxyapatite (HAp)-based coatings on titanium by using the pulsed galvanostatic method. The morphology of the HAp-based coatings revealed the presence of very thin and wide plate-like crystals, grown perpendicular to the Ti substrate, while the chemical composition highlighted a Ca/P ratio of 1.66, which is close to that of stoichiometric HAp (1.67). The main phases and chemical bonds identified confirmed the presence of the HAp phase in the developed coatings. A roughness of 228 nm and a contact angle of approx. 17° were obtained for the HAp coatings, highlighting a hydrophilic character. In terms of biomineralization and electrochemical behavior, it was shown that the HAp coatings have significantly enhanced the titanium properties. Finally, the in vitro cell tests carried out with human mesenchymal stem cells showed that the Ti samples coated with HAp have increased cell viability, extracellular matrix, and Ca intracellular deposition when compared with the uncoated Ti, indicating the beneficial effect.
Collapse
Affiliation(s)
- Cosmin M. Cotrut
- Faculty of Materials Science and Engineering, National University of Science and Technology Politehnica Bucharest, 313 Independentei Street, 060042 Bucharest, Romania; (C.M.C.); (E.U.)
| | - Alexandru Blidisel
- Hepato-Bilio-Pancreatic Surgery Center, University Clinic Surgical Semiology and Thoracic Surgery, “Victor Babes” University of Medicine and Pharmacy, Sq. Eftimie Murgu No. 2, 300041 Timisoara, Romania
| | - Diana M. Vranceanu
- Faculty of Materials Science and Engineering, National University of Science and Technology Politehnica Bucharest, 313 Independentei Street, 060042 Bucharest, Romania; (C.M.C.); (E.U.)
| | - Alina Vladescu (Dragomir)
- Department for Advanced Surface Processing and Analysis by Vacuum Technologies, National Institute of Research and Development for Optoelectronics—INOE 2000, 077125 Magurele, Romania
| | - Elena Ungureanu
- Faculty of Materials Science and Engineering, National University of Science and Technology Politehnica Bucharest, 313 Independentei Street, 060042 Bucharest, Romania; (C.M.C.); (E.U.)
| | - Iulian Pana
- Department for Advanced Surface Processing and Analysis by Vacuum Technologies, National Institute of Research and Development for Optoelectronics—INOE 2000, 077125 Magurele, Romania
| | - Mihaela Dinu
- Department for Advanced Surface Processing and Analysis by Vacuum Technologies, National Institute of Research and Development for Optoelectronics—INOE 2000, 077125 Magurele, Romania
| | - Catalin Vitelaru
- Department for Advanced Surface Processing and Analysis by Vacuum Technologies, National Institute of Research and Development for Optoelectronics—INOE 2000, 077125 Magurele, Romania
| | - Anca C. Parau
- Department for Advanced Surface Processing and Analysis by Vacuum Technologies, National Institute of Research and Development for Optoelectronics—INOE 2000, 077125 Magurele, Romania
| | - Vasile Pruna
- Romanian Academy Institute of Cellular Biology and Pathology “Nicolae Simionescu”, 8 B.P. Hasdeu, 050568 Bucharest, Romania
| | | | - Irina Titorencu
- Romanian Academy Institute of Cellular Biology and Pathology “Nicolae Simionescu”, 8 B.P. Hasdeu, 050568 Bucharest, Romania
| |
Collapse
|
3
|
Liu Q, Zhang Y, Yu S, Zhao C, Yang Y, Yan J, Wang Y, Liu D, Liu Y, Zhang X. Proanthocyanidins modification of the mineralized collagen scaffold based on synchronous self-assembly/mineralization for bone regeneration. Colloids Surf B Biointerfaces 2024; 245:114290. [PMID: 39383582 DOI: 10.1016/j.colsurfb.2024.114290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 09/25/2024] [Accepted: 10/01/2024] [Indexed: 10/11/2024]
Abstract
Proteoglycans (PG) is crucial for regulating collagen formation and mineralization during bone tissue development. A wide variety of PG-modified collagen scaffolds have been proposed for bone engineering application to promote biological responses and work as artificial matrices that guide tissue regeneration. However, poor performance of theses biomaterials against infections has led to an unmet need for clinical prevention. Therefore, we utilized proanthocyanidins (PA) to simulate the functions of PG, including mediating the collagen assembly and intrafibrillar mineralization, to optimize scaffolds performance. The excellent antibacterial properties of PA can endow the scaffolds with anti-infection effects in the process of tissue regeneration. When PA was added during fibrillogenesis, the collagen fibrils appeared irregular aggregation and the mineralization degree was reduced. In contrast, the addition of PA after collagen self-assembly improved the latter's ability to act as a deposition template and remarkably promoted mineral ions infiltration, thus enhancing intrafibrillar mineralization. The PA-modified scaffold displayed a highly hydrophilicity behaviour and long-term resistance to degradation. The sustained release of PA effectively inhibited the activity of Staphylococcus aureus. The scaffold also showed excellent biocompatibility and improved bone regeneration in calvarial critical-size defect models. The application of PA enables a dual-function scaffold with favourable intrafibrillar mineralization and anti-bacterial properties for bone regeneration.
Collapse
Affiliation(s)
- Qing Liu
- Department of Endodontics, Tianjin Medical University School and Hospital of Stomatology & Tianjin Key Laboratory of Oral Soft and Hard Tissues Restoration and Regeneration, No. 12 Qixiangtai Road, Heping District, Tianjin 300070, China
| | - Ye Zhang
- Department of Endodontics, Tianjin Medical University School and Hospital of Stomatology & Tianjin Key Laboratory of Oral Soft and Hard Tissues Restoration and Regeneration, No. 12 Qixiangtai Road, Heping District, Tianjin 300070, China; Department of Biomaterials, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan 250012, China
| | - Shuxian Yu
- Department of Endodontics, Tianjin Medical University School and Hospital of Stomatology & Tianjin Key Laboratory of Oral Soft and Hard Tissues Restoration and Regeneration, No. 12 Qixiangtai Road, Heping District, Tianjin 300070, China
| | - Chuanze Zhao
- Department of Endodontics, Tianjin Medical University School and Hospital of Stomatology & Tianjin Key Laboratory of Oral Soft and Hard Tissues Restoration and Regeneration, No. 12 Qixiangtai Road, Heping District, Tianjin 300070, China
| | - Yuqing Yang
- Department of Endodontics, Tianjin Medical University School and Hospital of Stomatology & Tianjin Key Laboratory of Oral Soft and Hard Tissues Restoration and Regeneration, No. 12 Qixiangtai Road, Heping District, Tianjin 300070, China
| | - Jianyu Yan
- Department of Endodontics, Tianjin Medical University School and Hospital of Stomatology & Tianjin Key Laboratory of Oral Soft and Hard Tissues Restoration and Regeneration, No. 12 Qixiangtai Road, Heping District, Tianjin 300070, China
| | - Yuge Wang
- Department of Endodontics, Tianjin Medical University School and Hospital of Stomatology & Tianjin Key Laboratory of Oral Soft and Hard Tissues Restoration and Regeneration, No. 12 Qixiangtai Road, Heping District, Tianjin 300070, China
| | - Dayong Liu
- Department of Endodontics, Tianjin Medical University School and Hospital of Stomatology & Tianjin Key Laboratory of Oral Soft and Hard Tissues Restoration and Regeneration, No. 12 Qixiangtai Road, Heping District, Tianjin 300070, China
| | - Ying Liu
- Department of Endodontics, Tianjin Medical University School and Hospital of Stomatology & Tianjin Key Laboratory of Oral Soft and Hard Tissues Restoration and Regeneration, No. 12 Qixiangtai Road, Heping District, Tianjin 300070, China.
| | - Xu Zhang
- Department of Endodontics, Tianjin Medical University School and Hospital of Stomatology & Tianjin Key Laboratory of Oral Soft and Hard Tissues Restoration and Regeneration, No. 12 Qixiangtai Road, Heping District, Tianjin 300070, China; Tianjin Medical University Institute of Stomatology, No. 12 Qixiangtai Road, Heping District, Tianjin 300070, China.
| |
Collapse
|
4
|
Abd-Elhafeez HH, Massoud D, Mahmoud MS, Abdellah N, Salah AS, Mohamed NE, Sayed MAA, Shaalan M, Rutland CS, Abu-ELhamed AS, Soliman SA, Mustafa FEZA. Microstructural architecture of the bony scutes, spine, and rays of the bony fins in the common pleco (Hypostomus plecostomus). Int J Vet Sci Med 2024; 12:101-124. [PMID: 39239634 PMCID: PMC11376312 DOI: 10.1080/23144599.2024.2374201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 06/17/2024] [Accepted: 06/24/2024] [Indexed: 09/07/2024] Open
Abstract
Studying scute and fin morphology are advantageous approaches for phylogenetic identification and provide information on biological linkages and evolutionary history that are essential for deciphering the fossil record. Despite this, no prior research has precisely characterized the histological structures of scutes in the common pleco. Therefore, this research investigated the microstructure and organization of bone tissue within the dermal skeleton, including the scutes and fins, in the common pleco, using light microscopy, stereomicroscopy, and scanning electron microscopy. The dermal scutes were organized in a pentagonal shape with denticular coverage and were obliquely aligned with the caudal portion pointing dorsally. The dermal scutes consisted of three distinct portions: the central, preterminal, and terminal portions. Each portion comprised three layers: a superficial bony plate, a basal bony plate, and a mid-plate. Both the superficial and basal bony plates were composed of lamellar bone and lamellar zonal bone, whilst the mid-plate consisted of secondary osteons and woven bone. In the terminal portion, the superficial and basal bony plates became thinner. The pectoral fin consists of spines and rays composed of lepidotrichium (two symmetrical hemi-rays). The spine contained centrifugal and centripetal lamellar and trabecular bones. A centripetal fibrous bone was implanted between the lamellar bones. Besides being oriented in a V shape, the hemi-rays were also composed of thin centrifugal and centripetal lamellar bones and trabecular bones. A fibrous bone was identified between the centrifugal and centripetal bones. The trabecular bone and lamellar bone were made up of bone spicules.
Collapse
Affiliation(s)
- Hanan H Abd-Elhafeez
- Department of Cell and Tissues, Faculty of Veterinary Medicine, Assiut University, Assiut, Egypt
| | - Diaa Massoud
- Department of Biology, College of Science, Jouf University, Sakaka, Saudi Arabia
- Department of Zoology, Faculty of Science, Fayoum University, Fayoum, Egypt
| | - Mohammed S Mahmoud
- Department of Zoology, Faculty of Science, Fayoum University, Fayoum, Egypt
| | - Nada Abdellah
- Department of Histology, Faculty of Veterinary Medicine, Sohag University, Sohag, Egypt
- Department of Histology and Anatomy, School of Veterinary Medicine, Badr University in Assiut, New Nasser City, Egypt
| | - Abdallah S Salah
- Institute of Aquaculture, University of Stirling, Stirling, UK
- Department of Aquaculture, Faculty of Aquatic and Fisheries Sciences, Kafrelsheikh University, Kafrelsheikh, Egypt
| | - Nor-Elhoda Mohamed
- Faculty of Science, Biomedicine Branch, University of Science & Technology, Zewail, Egypt
| | | | - Mohamed Shaalan
- Department of Pathology, Faculty of Veterinary Medicine, Caio University, Giza, Egypt
- Polymer Institute, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Catrin S Rutland
- School of Veterinary Medicine and Science, University of Nottingham, Nottingham, UK
| | - Alaa Sayed Abu-ELhamed
- Department of Cell and Tissues, Faculty of Veterinary Medicine, Assiut University, Assiut, Egypt
- Department of Respiratory Therapy, Faculty of Applied Medical Sciences, Jazan University, Jazan, Saudi Arabia
| | - Soha A Soliman
- Department of Histology, Faculty of Veterinary Medicine, South Valley University, Qena, Egypt
| | | |
Collapse
|
5
|
Wei X, Chen J, Shen HY, Jiang K, Ren H, Liu Y, Luo E, Zhang J, Xu JZ, Li ZM. Hierarchically Biomimetic Scaffolds with Anisotropic Micropores and Nanotopological Patterns to Promote Bone Regeneration via Geometric Modulation. Adv Healthc Mater 2024; 13:e2304178. [PMID: 38490686 DOI: 10.1002/adhm.202304178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 02/29/2024] [Indexed: 03/17/2024]
Abstract
Structural engineering is an appealing means to modulate osteogenesis without the intervention of exogenous cells or therapeutic agents. In this work, a novel 3D scaffold with anisotropic micropores and nanotopographical patterns is developed. Scaffolds with oriented pores are fabricated via the selective extraction of water-soluble polyethylene oxide from its poly(ε-caprolactone) co-continuous mixture and uniaxial stretching. The plate apatite-like lamellae are subsequently hatched on the pore walls through surface-induced epitaxial crystallization. Such a unique geometric architecture yields a synergistic effect on the osteogenic capability. The prepared scaffold leads to a 19.2% and 128.0% increase in the alkaline phosphatase activity of rat bone mesenchymal stem cells compared to that of the scaffolds with only oriented pores and only nanotopographical patterns, respectively. It also induces the greatest upregulation of osteogenic-related gene expression in vitro. The cranial defect repair results demonstrate that the prepared scaffold effectively promotes new bone regeneration, as indicated by a 350% increase in collagen I expression in vivo compared to the isotropic porous scaffold without surface nanotopology after implantation for 14 weeks. Overall, this work provides geometric motifs for the transduction of biophysical cues in 3D porous scaffolds, which is a promising option for tissue engineering applications.
Collapse
Affiliation(s)
- Xin Wei
- College of Polymer Science and Engineering and State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Jiaxin Chen
- Center for Plastic & Reconstructive Surgery, Department of Plastic & Reconstructive Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, 310014, P. R. China
| | - Hui-Yuan Shen
- College of Polymer Science and Engineering and State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Kai Jiang
- College of Polymer Science and Engineering and State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Haohao Ren
- College of Physics, Sichuan University, Chengdu, 610064, P. R. China
| | - Yao Liu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Dept. of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, P. R. China
| | - En Luo
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Dept. of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, P. R. China
| | - Jin Zhang
- College of Chemical Engineering, Fuzhou University, 2 Xueyuan Road, Fuzhou, 350108, P. R. China
- Qingyuan Innovation Laboratory, 1 Xueyuan Road, Quanzhou, 362801, P. R. China
| | - Jia-Zhuang Xu
- College of Polymer Science and Engineering and State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Zhong-Ming Li
- College of Polymer Science and Engineering and State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, P. R. China
| |
Collapse
|
6
|
Puertas-Bartolomé M, Venegas-Bustos D, Acosta S, Rodríguez-Cabello JC. Contribution of the ELRs to the development of advanced in vitro models. Front Bioeng Biotechnol 2024; 12:1363865. [PMID: 38650751 PMCID: PMC11033926 DOI: 10.3389/fbioe.2024.1363865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Accepted: 03/18/2024] [Indexed: 04/25/2024] Open
Abstract
Developing in vitro models that accurately mimic the microenvironment of biological structures or processes holds substantial promise for gaining insights into specific biological functions. In the field of tissue engineering and regenerative medicine, in vitro models able to capture the precise structural, topographical, and functional complexity of living tissues, prove to be valuable tools for comprehending disease mechanisms, assessing drug responses, and serving as alternatives or complements to animal testing. The choice of the right biomaterial and fabrication technique for the development of these in vitro models plays an important role in their functionality. In this sense, elastin-like recombinamers (ELRs) have emerged as an important tool for the fabrication of in vitro models overcoming the challenges encountered in natural and synthetic materials due to their intrinsic properties, such as phase transition behavior, tunable biological properties, viscoelasticity, and easy processability. In this review article, we will delve into the use of ELRs for molecular models of intrinsically disordered proteins (IDPs), as well as for the development of in vitro 3D models for regenerative medicine. The easy processability of the ELRs and their rational design has allowed their use for the development of spheroids and organoids, or bioinks for 3D bioprinting. Thus, incorporating ELRs into the toolkit of biomaterials used for the fabrication of in vitro models, represents a transformative step forward in improving the accuracy, efficiency, and functionality of these models, and opening up a wide range of possibilities in combination with advanced biofabrication techniques that remains to be explored.
Collapse
Affiliation(s)
- María Puertas-Bartolomé
- Technical Proteins Nanobiotechnology, S.L. (TPNBT), Valladolid, Spain
- Bioforge Lab (Group for Advanced Materials and Nanobiotechnology), CIBER's Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Edificio LUCIA, Universidad de Valladolid, Valladolid, Spain
| | - Desiré Venegas-Bustos
- Bioforge Lab (Group for Advanced Materials and Nanobiotechnology), CIBER's Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Edificio LUCIA, Universidad de Valladolid, Valladolid, Spain
| | - Sergio Acosta
- Bioforge Lab (Group for Advanced Materials and Nanobiotechnology), CIBER's Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Edificio LUCIA, Universidad de Valladolid, Valladolid, Spain
| | - José Carlos Rodríguez-Cabello
- Bioforge Lab (Group for Advanced Materials and Nanobiotechnology), CIBER's Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Edificio LUCIA, Universidad de Valladolid, Valladolid, Spain
| |
Collapse
|
7
|
Hussain Z, Ullah I, Liu X, Mehmood S, Wang L, Ma F, Ullah S, Lu Z, Wang Z, Pei R. GelMA-catechol coated FeHAp nanorods functionalized nanofibrous reinforced bio-instructive and mechanically robust composite hydrogel scaffold for bone tissue engineering. BIOMATERIALS ADVANCES 2023; 155:213696. [PMID: 37952462 DOI: 10.1016/j.bioadv.2023.213696] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 10/24/2023] [Accepted: 11/05/2023] [Indexed: 11/14/2023]
Abstract
Critical bone defects complicate tissue graft-based surgeries, raising healthcare expenditures and underscoring scaffold-based tissue-engineering strategies to support bone reconstruction. Our study highlighted that the phase-compatible combination of inorganic nanorods, nanofibers, and hydrogels is promising for developing biomimetic and cell-instructive scaffolds since the bone matrix is a porous organic/inorganic composite. In brief, methacrylated gelatin (GelMA) was reacted with dopamine to form catechol-modified GeLMA (GelMA-C). The GelMA-C was nanocoated onto an iron-doped hydroxyapatite (FeHAp) nanorod via metal-catechol network coordination. The modified nanorod (FeHAp@GelMA-C) was loaded onto GelMA-based nanofibers. The nanorods loaded pre-fibers were electrospun onto GelMA solution and photochemically crosslinked to fabricate a fiber-reinforced hydrogel. The structural, mechanical, physicochemical, biocompatibility, swelling properties, osteogenic potential, and bone remodelling potential (using rat femoral defect model) of modified nanorods, simple hydrogel, and nanorod-loaded fiber-reinforced hydrogel were studied. The results supported that the interface interaction between GelMA-C/nanorods, nanorods/nanofibers, nanorods/hydrogels, and nanofiber/hydrogels significantly improved the microstructural and mechanical properties of the scaffold. Compared to pristine hydrogel, the nanorod-loaded fiber-reinforced scaffold better supported cellular responses, osteogenic differentiation, matrix mineralization, and accelerated bone regeneration. The nanorod-loaded fiber-reinforced hydrogel proved more biomimetic and cell-instructive for guided bone reconstruction.
Collapse
Affiliation(s)
- Zahid Hussain
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China (USTC), Hefei 230026, PR China; CAS Key Laboratory for Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences, Suzhou 215123, PR China
| | - Ismat Ullah
- CAS Key Laboratory for Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences, Suzhou 215123, PR China
| | - Xingzhu Liu
- CAS Key Laboratory for Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences, Suzhou 215123, PR China
| | - Shah Mehmood
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China (USTC), Hefei 230026, PR China; CAS Key Laboratory for Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences, Suzhou 215123, PR China
| | - Li Wang
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China (USTC), Hefei 230026, PR China; CAS Key Laboratory for Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences, Suzhou 215123, PR China
| | - Fanshu Ma
- CAS Key Laboratory for Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences, Suzhou 215123, PR China
| | - Salim Ullah
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China (USTC), Hefei 230026, PR China; CAS Key Laboratory for Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences, Suzhou 215123, PR China
| | - Zhongzhong Lu
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China (USTC), Hefei 230026, PR China; CAS Key Laboratory for Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences, Suzhou 215123, PR China
| | - Zixun Wang
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China (USTC), Hefei 230026, PR China; CAS Key Laboratory for Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences, Suzhou 215123, PR China
| | - Renjun Pei
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China (USTC), Hefei 230026, PR China; CAS Key Laboratory for Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences, Suzhou 215123, PR China.
| |
Collapse
|
8
|
Yan X, Zhang Q, Ma X, Zhong Y, Tang H, Mai S. The mechanism of biomineralization: Progress in mineralization from intracellular generation to extracellular deposition. JAPANESE DENTAL SCIENCE REVIEW 2023; 59:181-190. [PMID: 37388714 PMCID: PMC10302165 DOI: 10.1016/j.jdsr.2023.06.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 06/01/2023] [Accepted: 06/13/2023] [Indexed: 07/01/2023] Open
Abstract
Biomineralization is a highly regulated process that results in the deposition of minerals in a precise manner, ultimately producing skeletal and dental hard tissues. Recent studies have highlighted the crucial role played by intracellular processes in initiating biomineralization. These processes involve various organelles, such as the endoplasmic reticulum(ER), mitochondria, and lysosomes, in the formation, accumulation, maturation, and secretion of calcium phosphate (CaP) particles. Particularly, the recent in-depth study of the dynamic process of the formation of amorphous calcium phosphate(ACP) precursors among organelles has made great progress in the development of the integrity of the biomineralization chain. However, the precise mechanisms underlying these intracellular processes remain unclear, and they cannot be fully integrated with the extracellular mineralization mechanism and the physicochemical structure development of the mineralization particles. In this review, we aim to focus on the recent progress made in understanding intracellular mineralization organelles' processes and their relationship with the physicochemical structure development of CaP and extracellular deposition of CaP particles.
Collapse
Affiliation(s)
- Xin Yan
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
- Institute of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Qi Zhang
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
- Institute of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Xinyue Ma
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
- Institute of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Yewen Zhong
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
- Institute of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Hengni Tang
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
- Institute of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Sui Mai
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
- Institute of Stomatology, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
9
|
Luo X, Niu J, Su G, Zhou L, Zhang X, Liu Y, Wang Q, Sun N. Research progress of biomimetic materials in oral medicine. J Biol Eng 2023; 17:72. [PMID: 37996886 PMCID: PMC10668381 DOI: 10.1186/s13036-023-00382-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 10/02/2023] [Indexed: 11/25/2023] Open
Abstract
Biomimetic materials are able to mimic the structure and functional properties of native tissues especially natural oral tissues. They have attracted growing attention for their potential to achieve configurable and functional reconstruction in oral medicine. Though tremendous progress has been made regarding biomimetic materials, significant challenges still remain in terms of controversy on the mechanism of tooth tissue regeneration, lack of options for manufacturing such materials and insufficiency of in vivo experimental tests in related fields. In this review, the biomimetic materials used in oral medicine are summarized systematically, including tooth defect, tooth loss, periodontal diseases and maxillofacial bone defect. Various theoretical foundations of biomimetic materials research are reviewed, introducing the current and pertinent results. The benefits and limitations of these materials are summed up at the same time. Finally, challenges and potential of this field are discussed. This review provides the framework and support for further research in addition to giving a generally novel and fundamental basis for the utilization of biomimetic materials in the future.
Collapse
Affiliation(s)
- Xinyu Luo
- Liaoning Provincial Key Laboratory of Oral Diseases, School and Hospital of Stomatology, China Medical University, No. 117 Nanjing North Street, Shenyang, 110001, China
| | - Jiayue Niu
- Liaoning Provincial Key Laboratory of Oral Diseases, School and Hospital of Stomatology, China Medical University, No. 117 Nanjing North Street, Shenyang, 110001, China
| | - Guanyu Su
- Liaoning Provincial Key Laboratory of Oral Diseases, School and Hospital of Stomatology, China Medical University, No. 117 Nanjing North Street, Shenyang, 110001, China
| | - Linxi Zhou
- Department of Orthodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, 200011, China.
- National Center for Stomatology, Shanghai, 200011, China.
- National Clinical Research Center for Oral Diseases, Shanghai, 200011, China.
- Shanghai Key Laboratory of Stomatology, Shanghai, 200011, China.
| | - Xue Zhang
- Liaoning Provincial Key Laboratory of Oral Diseases, School and Hospital of Stomatology, China Medical University, No. 117 Nanjing North Street, Shenyang, 110001, China
| | - Ying Liu
- Liaoning Provincial Key Laboratory of Oral Diseases, School and Hospital of Stomatology, China Medical University, No. 117 Nanjing North Street, Shenyang, 110001, China
| | - Qiang Wang
- Liaoning Provincial Key Laboratory of Oral Diseases, School and Hospital of Stomatology, China Medical University, No. 117 Nanjing North Street, Shenyang, 110001, China
| | - Ningning Sun
- Liaoning Provincial Key Laboratory of Oral Diseases, School and Hospital of Stomatology, China Medical University, No. 117 Nanjing North Street, Shenyang, 110001, China.
| |
Collapse
|
10
|
Lew AJ, Stifler CA, Tits A, Schmidt CA, Scholl A, Cantamessa A, Müller L, Delaunois Y, Compère P, Ruffoni D, Buehler MJ, Gilbert PUPA. A Molecular-Scale Understanding of Misorientation Toughening in Corals and Seashells. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023:e2300373. [PMID: 36864010 DOI: 10.1002/adma.202300373] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 02/15/2023] [Indexed: 06/19/2023]
Abstract
Biominerals are organic-mineral composites formed by living organisms. They are the hardest and toughest tissues in those organisms, are often polycrystalline, and their mesostructure (which includes nano- and microscale crystallite size, shape, arrangement, and orientation) can vary dramatically. Marine biominerals may be aragonite, vaterite, or calcite, all calcium carbonate (CaCO3 ) polymorphs, differing in crystal structure. Unexpectedly, diverse CaCO3 biominerals such as coral skeletons and nacre share a similar characteristic: Adjacent crystals are slightly misoriented. This observation is documented quantitatively at the micro- and nanoscales, using polarization-dependent imaging contrast mapping (PIC mapping), and the slight misorientations is consistently between 1° and 40°. Nanoindentation shows that both polycrystalline biominerals and abiotic synthetic spherulites are tougher than single-crystalline geologic aragonite, and molecular dynamics (MD) simulations of bicrystals at the molecular scale reveals that aragonite, vaterite, and calcite exhibit toughness maxima when the bicrystals are misoriented by 10°, 20°, and 30°, respectively, demonstrating that slight misorientation alone can increase fracture toughness. Slight-misorientation-toughening can be harnessed for synthesis of bioinspired materials that only require one material, are not limited to specific top-down architecture, and are easily achieved by self-assembly of organic molecules (e.g., aspirin, chocolate), polymers, metals, and ceramics well beyond biominerals.
Collapse
Affiliation(s)
- Andrew J Lew
- Laboratory for Atomistic and Molecular Mechanics (LAMM), Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, MA, 02139, USA
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, MA, 02139, USA
| | - Cayla A Stifler
- Department of Physics, University of Wisconsin, Madison, WI, 53706, USA
| | - Alexandra Tits
- Mechanics of Biological and Bioinspired Materials Laboratory, Department of Aerospace and Mechanical Engineering, University of Liège, Liège, B-4000, Belgium
| | - Connor A Schmidt
- Department of Physics, University of Wisconsin, Madison, WI, 53706, USA
- Department of Chemistry, University of Wisconsin, Madison, WI, 53706, USA
| | - Andreas Scholl
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Astrid Cantamessa
- Mechanics of Biological and Bioinspired Materials Laboratory, Department of Aerospace and Mechanical Engineering, University of Liège, Liège, B-4000, Belgium
| | - Laura Müller
- Mechanics of Biological and Bioinspired Materials Laboratory, Department of Aerospace and Mechanical Engineering, University of Liège, Liège, B-4000, Belgium
| | - Yann Delaunois
- Laboratory of Functional and Evolutionary Morphology (FOCUS Research Unit) and Center for Applied Research and Education in Microscopy (CAREM), University of Liège, Liège, B-4000, Belgium
| | - Philippe Compère
- Laboratory of Functional and Evolutionary Morphology (FOCUS Research Unit) and Center for Applied Research and Education in Microscopy (CAREM), University of Liège, Liège, B-4000, Belgium
| | - Davide Ruffoni
- Mechanics of Biological and Bioinspired Materials Laboratory, Department of Aerospace and Mechanical Engineering, University of Liège, Liège, B-4000, Belgium
| | - Markus J Buehler
- Laboratory for Atomistic and Molecular Mechanics (LAMM), Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, MA, 02139, USA
| | - Pupa U P A Gilbert
- Department of Physics, University of Wisconsin, Madison, WI, 53706, USA
- Department of Chemistry, University of Wisconsin, Madison, WI, 53706, USA
- Departments of Materials Science and Engineering, Geoscience, University of Wisconsin, Madison, WI, 53706, USA
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| |
Collapse
|
11
|
Cianflone E, Brouillet F, Grossin D, Soulié J, Josse C, Vig S, Fernandes MH, Tenailleau C, Duployer B, Thouron C, Drouet C. Toward Smart Biomimetic Apatite-Based Bone Scaffolds with Spatially Controlled Ion Substitutions. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:nano13030519. [PMID: 36770480 PMCID: PMC9919144 DOI: 10.3390/nano13030519] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 01/25/2023] [Accepted: 01/26/2023] [Indexed: 05/31/2023]
Abstract
Biomimetic apatites exhibit a high reactivity allowing ion substitutions to modulate their in vivo response. We developed a novel approach combining several bioactive ions in a spatially controlled way in view of subsequent releases to address the sequence of events occurring after implantation, including potential microorganisms' colonization. Innovative micron-sized core-shell particles were designed with an external shell enriched with an antibacterial ion and an internal core substituted with a pro-angiogenic or osteogenic ion. After developing the proof of concept, two ions were particularly considered, Ag+ in the outer shell and Cu2+ in the inner core. In vitro evaluations confirmed the cytocompatibility through Ag-/Cu-substituting and the antibacterial properties provided by Ag+. Then, these multifunctional "smart" particles were embedded in a polymeric matrix by freeze-casting to prepare 3D porous scaffolds for bone engineering. This approach envisions the development of a new generation of scaffolds with tailored sequential properties for optimal bone regeneration.
Collapse
Affiliation(s)
- Edoardo Cianflone
- CIRIMAT, Université de Toulouse, CNRS, INP-ENSIACET, 31030 Toulouse, France
- CIRIMAT, Université de Toulouse, CNRS, UT3 Paul Sabatier, 31062 Toulouse, France
| | - Fabien Brouillet
- CIRIMAT, Université de Toulouse, CNRS, UT3 Paul Sabatier, 31062 Toulouse, France
| | - David Grossin
- CIRIMAT, Université de Toulouse, CNRS, INP-ENSIACET, 31030 Toulouse, France
| | - Jérémy Soulié
- CIRIMAT, Université de Toulouse, CNRS, INP-ENSIACET, 31030 Toulouse, France
| | - Claudie Josse
- Centre de Microcaractérisation Raimond Castaing, Université de Toulouse, UPS, CNRS, INP, INSA, 31400 Toulouse, France
| | - Sanjana Vig
- Faculdade de Medicina Dentaria, Universidade do Porto, Rua Dr Manuel Pereira da Silva, 4200-393 Porto, Portugal
- LAQV/REQUIMTE, University of Porto, 4160-007 Porto, Portugal
| | - Maria Helena Fernandes
- Faculdade de Medicina Dentaria, Universidade do Porto, Rua Dr Manuel Pereira da Silva, 4200-393 Porto, Portugal
- LAQV/REQUIMTE, University of Porto, 4160-007 Porto, Portugal
| | | | - Benjamin Duployer
- CIRIMAT, Université de Toulouse, CNRS, UT3 Paul Sabatier, 31062 Toulouse, France
| | - Carole Thouron
- CIRIMAT, Université de Toulouse, CNRS, INP-ENSIACET, 31030 Toulouse, France
| | - Christophe Drouet
- CIRIMAT, Université de Toulouse, CNRS, INP-ENSIACET, 31030 Toulouse, France
| |
Collapse
|
12
|
Xu Z, Liu Z, Zhang C, Xu D. Advance in barnacle cement with high underwater adhesion. J Appl Polym Sci 2022. [DOI: 10.1002/app.52894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Zhenzhen Xu
- Beijing Institute of Basic Medical Sciences Beijing China
- College of Pharmaceutical Sciences Hebei University Baoding China
| | - Zhongcheng Liu
- College of Pharmaceutical Sciences Hebei University Baoding China
| | - Chao Zhang
- Beijing Institute of Basic Medical Sciences Beijing China
| | - Donggang Xu
- Beijing Institute of Basic Medical Sciences Beijing China
| |
Collapse
|
13
|
Lang A, Polishchuk I, Confalonieri G, Dejoie C, Maniv A, Potashnikov D, Caspi EN, Pokroy B. Tuning the Magnetization of Manganese (II) Carbonate by Intracrystalline Amino Acids. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2201652. [PMID: 35776129 DOI: 10.1002/adma.202201652] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 06/09/2022] [Indexed: 06/15/2023]
Abstract
Incorporation of organic molecules into the lattice of inorganic crystalline hosts is a common phenomenon in biomineralization and is shown to alter various properties of the crystalline host. Taking this phenomenon as a source of inspiration, it is shown herein that incorporation of specific single amino acids into the lattice of manganese (II) carbonate strongly alters its inherent magnetic properties. At room temperature, the magnetic susceptibility of the amino-acid-incorporating paramagnetic MnCO3 decreases, following a simple rule of mixtures. When cooled below the Néel temperature, however, the opposite trend is observed, namely an increase in magnetic susceptibility measured in a high magnetic field. Such an increase, accompanied by a drastic change in the Néel phase transformation temperature, results from a decrease in MnCO3 orbital overlapping and the weakening of superexchange interactions. It may be that this is the first time that the magnetic properties of a host crystal are tuned via the incorporation of amino acids.
Collapse
Affiliation(s)
- Arad Lang
- Department of Materials Science and Engineering and The Russell Berrie Nanotechnology Institute, Technion - Israel Institute of Technology, Haifa, 32000, Israel
| | - Iryna Polishchuk
- Department of Materials Science and Engineering and The Russell Berrie Nanotechnology Institute, Technion - Israel Institute of Technology, Haifa, 32000, Israel
| | - Giorgia Confalonieri
- ESRF - The European Synchrotron Radiation Facility, CS 40220, Grenoble, Cedex 9, 38043, France
| | - Catherine Dejoie
- ESRF - The European Synchrotron Radiation Facility, CS 40220, Grenoble, Cedex 9, 38043, France
| | - Ariel Maniv
- Physics Department, Nuclear Research Centre - Negev, P.O. Box 9001, Beer-Sheva, 84190, Israel
| | | | - El'ad N Caspi
- Physics Department, Nuclear Research Centre - Negev, P.O. Box 9001, Beer-Sheva, 84190, Israel
| | - Boaz Pokroy
- Department of Materials Science and Engineering and The Russell Berrie Nanotechnology Institute, Technion - Israel Institute of Technology, Haifa, 32000, Israel
- The Nancy and Stephen Grand Technion Energy Program, Technion - Israel Institute of Technology, Haifa, 3200003, Israel
| |
Collapse
|
14
|
Nanda R, Hazan S, Sauer K, Aladin V, Keinan-Adamsky K, Corzilius B, Shahar R, Zaslansky P, Goobes G. Molecular differences in collagen organization and in organic-inorganic interfacial structure of bones with and without osteocytes. Acta Biomater 2022; 144:195-209. [PMID: 35331939 DOI: 10.1016/j.actbio.2022.03.032] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 03/10/2022] [Accepted: 03/17/2022] [Indexed: 12/22/2022]
Abstract
Bone is a fascinating biomaterial composed mostly of type-I collagen fibers as an organic phase, apatite as an inorganic phase, and water molecules residing at the interfaces between these phases. They are hierarchically organized with minor constituents such as non-collagenous proteins, citrate ions and glycosaminoglycans into a composite structure that is mechanically durable yet contains enough porosity to accommodate cells and blood vessels. The nanometer scale organization of the collagen fibrous structure and the mineral constituents in bone were recently extensively scrutinized. However, molecular details at the lowest hierarchical level still need to be unraveled to better understand the exact atomic-level arrangement of all these important components in the context of the integral structure of the bone. In this report, we unfold some of the molecular characteristics differentiating between two load-bearing (cleithrum) bones, one from sturgeon fish, where the matrix contains osteocytes and one from pike fish where the bone tissue is devoid of these bone cells. Using enhanced solid-state NMR measurements, we underpin disparities in the collagen fibril structure and dynamics, the mineral phases, the citrate content at the organic-inorganic interface and water penetrability in the two bones. These findings suggest that different strategies are undertaken in the erection of the mineral-organic interfaces in various bones characterized by dissimilar osteogenesis or remodeling pathways and may have implications for the mechanical properties of the particular bone. STATEMENT OF SIGNIFICANCE: Bone boasts unique interactions between collagen fibers and mineral phases through interfaces holding together this bio-composite structure. Over evolution, fish have gone from mineralizing their bones aided by certain bone cells called osteocytes, like tetrapod, to mineralization without these cells. Here, we report atomic level differences in collagen fiber cross linking and organization, porosity of the mineral phases and content of citrate molecules at the bio-mineral interface in bones from modern versus ancient fish. The dissimilar structural features may suggest disparate mechanical properties for the two bones. Fundamental level understanding of the organic and inorganic components in bone and the interfacial interactions holding them together is essential for successful bone repair and for treating better tissue pathologies.
Collapse
|
15
|
Wang J, Liu Q, Guo Z, Pan H, Liu Z, Tang R. Progress on Biomimetic Mineralization and Materials for Hard Tissue Regeneration. ACS Biomater Sci Eng 2021; 9:1757-1773. [PMID: 34870411 DOI: 10.1021/acsbiomaterials.1c01070] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Biomineralization is a process in which natural organisms regulate the crystal growth of inorganic minerals, resulting in hierarchical structured biominerals with excellent properties. Typical biominerals in the human body are the bones and teeth, and damage to these hard tissues directly affect our daily lives. The repair of bones and teeth in a biomimetic way, either by using a biomimetic mineralization strategy or biomimetic materials, is the key for hard tissue regeneration. In this review, we briefly introduce the structure of bone and tooth, and highlight the fundamental role of collagen mineralization in tissue repair. The recent progress on intra-/extrafibrillar collagen mineralization by a biomimetic strategy or materials is presented, and their potential for tissue regeneration is discussed. Then, recent achievements on bone and tooth repair are summarized, and these works are discussed in the view of materials science and biological science, providing a broader vision for the future research of hard tissue repair techniques. Lastly, recent progress on hard tissue regeneration is concluded, and existing problems and future directions are prospected.
Collapse
Affiliation(s)
- Jie Wang
- Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang 310027, China
| | - Qiqi Liu
- Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang 310027, China
| | - Zhengxi Guo
- Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang 310027, China
| | - Haihua Pan
- Qiushi Academy for Advanced Studies, Zhejiang University, Hangzhou 310027, China
| | - Zhaoming Liu
- Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang 310027, China.,State Key Laboratory of Silicon Materials, Zhejiang University, Hangzhou, Zhejiang 310027, China
| | - Ruikang Tang
- Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang 310027, China.,State Key Laboratory of Silicon Materials, Zhejiang University, Hangzhou, Zhejiang 310027, China
| |
Collapse
|
16
|
Di Foggia M, Tsukada M, Taddei P. Vibrational Study on Structure and Bioactivity of Protein Fibers Grafted with Phosphorylated Methacrylates. Molecules 2021; 26:6487. [PMID: 34770891 PMCID: PMC8587459 DOI: 10.3390/molecules26216487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 10/25/2021] [Accepted: 10/25/2021] [Indexed: 11/25/2022] Open
Abstract
In the last decades, silk fibroin and wool keratin have been considered functional materials for biomedical applications. In this study, fabrics containing silk fibers from Bombyx mori and Tussah silk fibers from Antheraea pernyi, as well as wool keratin fabrics, were grafted with phosmer CL and phosmer M (commercial names, i.e., methacrylate monomers containing phosphate groups in the molecular side chain) with different weight gains. Both phosmers were recently proposed as flame retarding agents, and their chemical composition suggested a possible application in bone tissue engineering. IR and Raman spectroscopy were used to disclose the possible structural changes induced by grafting and identify the most reactive amino acids towards the phosmers. The same techniques were used to investigate the nucleation of a calcium phosphate phase on the surface of the samples (i.e., bioactivity) after ageing in simulated body fluid (SBF). The phosmers were found to polymerize onto the biopolymers efficiently, and tyrosine and serine underwent phosphorylation (monitored through the strengthening of the Raman band at 1600 cm-1 and the weakening of the Raman band at 1400 cm-1, respectively). In grafted wool keratin, cysteic acid and other oxidation products of disulphide bridges were detected together with sulphated residues. Only slight conformational changes were observed upon grafting, generally towards an enrichment in ordered domains, suggesting that the amorphous regions were more prone to react (and, sometimes, degrade). All samples were shown to be bioactive, with a weight gain of up to 8%. The most bioactive samples contained the highest phosmers amounts, i.e., the highest amounts of phosphate nucleating sites. The sulphate/sulphonate groups present in grafted wool samples appeared to increase bioactivity, as shown by the five-fold increase of the IR phosphate band at 1040 cm-1.
Collapse
Affiliation(s)
- Michele Di Foggia
- Department of Biomedical and Neuromotor Sciences, University of Bologna, via Belmeloro 8/2, 40126 Bologna, Italy;
| | - Masuhiro Tsukada
- Division of Applied Biology, Faculty of Textile Science and Technology, Shinshu University, Ueda 386-8567, Japan;
| | - Paola Taddei
- Department of Biomedical and Neuromotor Sciences, University of Bologna, via Belmeloro 8/2, 40126 Bologna, Italy;
| |
Collapse
|
17
|
The homogenous alternative to biomineralization: Zn- and Mn-rich materials enable sharp organismal "tools" that reduce force requirements. Sci Rep 2021; 11:17481. [PMID: 34471148 PMCID: PMC8410824 DOI: 10.1038/s41598-021-91795-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 03/18/2021] [Indexed: 11/09/2022] Open
Abstract
We measured hardness, modulus of elasticity, and, for the first time, loss tangent, energy of fracture, abrasion resistance, and impact resistance of zinc- and manganese-enriched materials from fangs, stings and other "tools" of an ant, spider, scorpion and nereid worm. The mechanical properties of the Zn- and Mn-materials tended to cluster together between plain and biomineralized "tool" materials, with the hardness reaching, and most abrasion resistance values exceeding, those of calcified salmon teeth and crab claws. Atom probe tomography indicated that Zn was distributed homogeneously on a nanometer scale and likely bound as individual atoms to more than ¼ of the protein residues in ant mandibular teeth. This homogeneity appears to enable sharper, more precisely sculpted "tools" than materials with biomineral inclusions do, and also eliminates interfaces with the inclusions that could be susceptible to fracture. Based on contact mechanics and simplified models, we hypothesize that, relative to plain materials, the higher elastic modulus, hardness and abrasion resistance minimize temporary or permanent tool blunting, resulting in a roughly 2/3 reduction in the force, energy, and muscle mass required to initiate puncture of stiff materials, and even greater force reductions when the cumulative effects of abrasion are considered. We suggest that the sharpness-related force reductions lead to significant energy savings, and can also enable organisms, especially smaller ones, to puncture, cut, and grasp objects that would not be accessible with plain or biomineralized "tools".
Collapse
|
18
|
Epasto LM, Georges T, Selimović A, Guigner JM, Azaïs T, Kurzbach D. Formation and Evolution of Nanoscale Calcium Phosphate Precursors under Biomimetic Conditions. Anal Chem 2021; 93:10204-10211. [PMID: 34251166 PMCID: PMC8319911 DOI: 10.1021/acs.analchem.1c01561] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Simulated body fluids (SBFs) that mimic human blood plasma are widely used media for in vitro studies in an extensive array of research fields, from biomineralization to surface and corrosion sciences. We show that these solutions undergo dynamic nanoscopic conformational rearrangements on the timescale of minutes to hours, even though they are commonly considered stable or metastable. In particular, we find and characterize nanoscale inhomogeneities made of calcium phosphate (CaP) aggregates that emerge from homogeneous SBFs within a few hours and evolve into prenucleation species (PNS) that act as precursors in CaP crystallization processes. These ionic clusters consist of ∼2 nm large spherical building units that can aggregate into suprastructures with sizes of over 200 nm. We show that the residence times of phosphate ions in the PNS depend critically on the total PNS surface. These findings are particularly relevant for understanding nonclassical crystallization phenomena, in which PNS are assumed to act as building blocks for the final crystal structure.
Collapse
Affiliation(s)
- Ludovica M Epasto
- Faculty of Chemistry, Institute of Biological Chemistry, University Vienna, Währinger Str. 38, 1090 Vienna, Austria
| | - Tristan Georges
- Sorbonne Université, CNRS, Laboratoire de Chimie de la Matière Condensée de Paris (LCMCP), 4, Place Jussieu, F-75005 Paris, France
| | - Albina Selimović
- Faculty of Chemistry, Institute of Biological Chemistry, University Vienna, Währinger Str. 38, 1090 Vienna, Austria
| | - Jean-Michel Guigner
- Institut de Minéralogie et Physique des Milieux Condensés (IMPMC), Sorbonne Université, 4, Place Jussieu, F-75005 Paris, France
| | - Thierry Azaïs
- Sorbonne Université, CNRS, Laboratoire de Chimie de la Matière Condensée de Paris (LCMCP), 4, Place Jussieu, F-75005 Paris, France
| | - Dennis Kurzbach
- Faculty of Chemistry, Institute of Biological Chemistry, University Vienna, Währinger Str. 38, 1090 Vienna, Austria
| |
Collapse
|
19
|
Ustriyana P, Schulte F, Gombedza F, Gil-Bona A, Paruchuri S, Bidlack FB, Hardt M, Landis WJ, Sahai N. Spatial survey of non-collagenous proteins in mineralizing and non-mineralizing vertebrate tissues ex vivo. Bone Rep 2021; 14:100754. [PMID: 33665237 PMCID: PMC7900015 DOI: 10.1016/j.bonr.2021.100754] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 02/05/2021] [Accepted: 02/05/2021] [Indexed: 11/24/2022] Open
Abstract
Bone biomineralization is a complex process in which type I collagen and associated non-collagenous proteins (NCPs), including glycoproteins and proteoglycans, interact closely with inorganic calcium and phosphate ions to control the precipitation of nanosized, non-stoichiometric hydroxyapatite (HAP, idealized stoichiometry Ca10(PO4)6(OH)2) within the organic matrix of a tissue. The ability of certain vertebrate tissues to mineralize is critically related to several aspects of their function. The goal of this study was to identify specific NCPs in mineralizing and non-mineralizing tissues of two animal models, rat and turkey, and to determine whether some NCPs are unique to each type of tissue. The tissues investigated were rat femur (mineralizing) and tail tendon (non-mineralizing) and turkey leg tendon (having both mineralizing and non-mineralizing regions in the same individual specimen). An experimental approach ex vivo was designed for this investigation by combining sequential protein extraction with comprehensive protein mapping using proteomics and Western blotting. The extraction method enabled separation of various NCPs based on their association with either the extracellular organic collagenous matrix phases or the inorganic mineral phases of the tissues. The proteomics work generated a complete picture of NCPs in different tissues and animal species. Subsequently, Western blotting provided validation for some of the proteomics findings. The survey then yielded generalized results relevant to various protein families, rather than only individual NCPs. This study focused primarily on the NCPs belonging to the small leucine-rich proteoglycan (SLRP) family and the small integrin-binding ligand N-linked glycoproteins (SIBLINGs). SLRPs were found to be associated only with the collagenous matrix, a result suggesting that they are mainly involved in structural matrix organization and not in mineralization. SIBLINGs as well as matrix Gla (γ-carboxyglutamate) protein were strictly localized within the inorganic mineral phase of mineralizing tissues, a finding suggesting that their roles are limited to mineralization. The results from this study indicated that osteocalcin was closely involved in mineralization but did not preclude possible additional roles as a hormone. This report provides for the first time a spatial survey and comparison of NCPs from mineralizing and non-mineralizing tissues ex vivo and defines the proteome of turkey leg tendons as a model for vertebrate mineralization.
Collapse
Key Words
- B, rat bone
- BSP, bone sialoprotein
- DCN, decorin
- E, EDTA extract
- ECM, extracellular matrix
- G, guanidine-HCl-only extract (for non-mineralizing tissues)
- G1, first guanidine-HCl extract
- G2, second guanidine-HCl extract
- Gla, gamma-carboxylated glutamic acid
- MGP, matrix Gla protein
- MT, turkey mineralizing tendon
- Mineralization
- NCP, non-collagenous protein
- NMT, turkey never-mineralizing tendon
- NT, turkey not-yet-mineralized tendon
- Non-collagenous protein
- OCN, osteocalcin
- OPN, osteopontin
- Proteomics
- SIBLING, small integrin-binding ligand N-linked glycoprotein
- SLRP, small leucine-rich proteoglycan
- T, rat tail tendon
- TLT, turkey leg tendon (gastrocnemius)
- TNAP, tissue-nonspecific alkaline phosphatase
- Type I collagen
- Vertebrate
Collapse
Affiliation(s)
- Putu Ustriyana
- School of Polymer Science and Polymer Engineering, The University of Akron, Akron, OH 44325, USA
| | - Fabian Schulte
- The Forsyth Institute, Cambridge, MA 02142, USA
- Department of Developmental Biology, Harvard School of Dental Medicine, Boston, MA 02115, USA
| | - Farai Gombedza
- Department of Chemistry, The University of Akron, Akron, OH 44325, USA
| | - Ana Gil-Bona
- The Forsyth Institute, Cambridge, MA 02142, USA
- Department of Developmental Biology, Harvard School of Dental Medicine, Boston, MA 02115, USA
| | - Sailaja Paruchuri
- Department of Chemistry, The University of Akron, Akron, OH 44325, USA
| | - Felicitas B. Bidlack
- The Forsyth Institute, Cambridge, MA 02142, USA
- Department of Developmental Biology, Harvard School of Dental Medicine, Boston, MA 02115, USA
| | - Markus Hardt
- The Forsyth Institute, Cambridge, MA 02142, USA
- Department of Developmental Biology, Harvard School of Dental Medicine, Boston, MA 02115, USA
| | - William J. Landis
- School of Polymer Science and Polymer Engineering, The University of Akron, Akron, OH 44325, USA
| | - Nita Sahai
- School of Polymer Science and Polymer Engineering, The University of Akron, Akron, OH 44325, USA
- Department of Geosciences, The University of Akron, Akron, OH 44325, USA
- Integrated Bioscience Program, The University of Akron, Akron, OH 44325, USA
| |
Collapse
|
20
|
Moussa H, El Hadad A, Sarrigiannidis S, Saad A, Wang M, Taqi D, Al-Hamed FS, Salmerón-Sánchez M, Cerruti M, Tamimi F. High toughness resorbable brushite-gypsum fiber-reinforced cements. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 127:112205. [PMID: 34225857 DOI: 10.1016/j.msec.2021.112205] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 04/18/2021] [Accepted: 05/19/2021] [Indexed: 12/27/2022]
Abstract
The ideal bone substitute material should be mechanically strong, biocompatible with a resorption rate matching the rate of new bone formation. Brushite (dicalcium phosphate dihydrate) cement is a promising bone substitute material but with limited resorbability and mechanical properties. To improve the resorbability and mechanical performance of brushite cements, we incorporated gypsum (calcium sulfate dihydrate) and diazonium-treated polyglactin fibers which are well-known for their biocompatibility and bioresorbability. Here we show that by combining brushite and gypsum, we were able to fabricate biocompatible composite cements with high fracture toughness (0.47 MPa·m1/2) and a resorption rate that matched the rate of new bone formation. Adding functionalized polyglactin fibers to this composite cement further improved the fracture toughness up to 1.00 MPa·m1/2. XPS and SEM revealed that the improvement in fracture toughness is due to the strong interfacial bonding between the functionalized fibers and the cement matrix. This study shows that adding gypsum and functionalized polyglactin fibers to brushite cements results in composite biomaterials that combine high fracture toughness, resorbability, and biocompatibility, and have great potential for bone regeneration.
Collapse
Affiliation(s)
- Hanan Moussa
- Faculty of Dentistry, McGill University, Montreal, QC H3A 0C7, Canada; Faculty of Dentistry, Benghazi University, Benghazi 9504, Libya
| | - Amir El Hadad
- Faculty of Dentistry, McGill University, Montreal, QC H3A 0C7, Canada; Physics Department, Faculty of Science, Al-Azhar University, Nasr City, Cairo 11884, Egypt
| | | | - Ahmed Saad
- Department of Mining and Materials Engineering, McGill University, Montreal, QC H3A 0C5, Canada
| | - Min Wang
- Faculty of Dentistry, McGill University, Montreal, QC H3A 0C7, Canada; Department of Oral Implantology, School and Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Doaa Taqi
- Faculty of Dentistry, McGill University, Montreal, QC H3A 0C7, Canada
| | | | | | - Marta Cerruti
- Department of Mining and Materials Engineering, McGill University, Montreal, QC H3A 0C5, Canada
| | - Faleh Tamimi
- Faculty of Dentistry, McGill University, Montreal, QC H3A 0C7, Canada; College of Dental Medicine, Qatar University, Doha 2713, Qatar.
| |
Collapse
|
21
|
Li Z, Du T, Ruan C, Niu X. Bioinspired mineralized collagen scaffolds for bone tissue engineering. Bioact Mater 2021; 6:1491-1511. [PMID: 33294729 PMCID: PMC7680706 DOI: 10.1016/j.bioactmat.2020.11.004] [Citation(s) in RCA: 108] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 10/20/2020] [Accepted: 11/02/2020] [Indexed: 12/13/2022] Open
Abstract
Successful regeneration of large segmental bone defects remains a major challenge in clinical orthopedics, thus it is of important significance to fabricate a suitable alternative material to stimulate bone regeneration. Due to their excellent biocompatibility, sufficient mechanical strength, and similar structure and composition of natural bone, the mineralized collagen scaffolds (MCSs) have been increasingly used as bone substitutes via tissue engineering approaches. Herein, we thoroughly summarize the state of the art of MCSs as tissue-engineered scaffolds for acceleration of bone repair, including their fabrication methods, critical factors for osteogenesis regulation, current opportunities and challenges in the future. First, the current fabrication methods for MCSs, mainly including direct mineral composite, in-situ mineralization and 3D printing techniques, have been proposed to improve their biomimetic physical structures in this review. Meanwhile, three aspects of physical (mechanics and morphology), biological (cells and growth factors) and chemical (composition and cross-linking) cues are described as the critical factors for regulating the osteogenic feature of MCSs. Finally, the opportunities and challenges associated with MCSs as bone tissue-engineered scaffolds are also discussed to point out the future directions for building the next generation of MCSs that should be endowed with satisfactorily mimetic structures and appropriately biological characters for bone regeneration.
Collapse
Affiliation(s)
- Zhengwei Li
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, PR China
- Research Center for Human Tissue and Organs Degeneration, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, PR China
| | - Tianming Du
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, PR China
| | - Changshun Ruan
- Research Center for Human Tissue and Organs Degeneration, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, PR China
| | - Xufeng Niu
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, PR China
- Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, 100083, PR China
- Research Institute of Beihang University in Shenzhen, Shenzhen, 518057, PR China
| |
Collapse
|
22
|
Córdova-Udaeta M, Kim Y, Yasukawa K, Kato Y, Fujita T, Dodbiba G. Study on the Synthesis of Hydroxyapatite under Highly Alkaline Conditions. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.0c05969] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Mauricio Córdova-Udaeta
- Department of Systems Innovation, Graduate School Of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, 113-8656 Tokyo, Japan
| | - Yonggu Kim
- Department of Systems Innovation, Graduate School Of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, 113-8656 Tokyo, Japan
| | - Kazutaka Yasukawa
- Department of Systems Innovation, Graduate School Of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, 113-8656 Tokyo, Japan
- Frontier Research Center for Energy and Resources, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, 113-8656 Tokyo, Japan
- Ocean Resources Research Center for Next Generation, Chiba Institute of Technology, 2-17-1 Tsudanuma, Narashino, Chiba 275-0016, Japan
| | - Yasuhiro Kato
- Department of Systems Innovation, Graduate School Of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, 113-8656 Tokyo, Japan
- Frontier Research Center for Energy and Resources, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, 113-8656 Tokyo, Japan
- Ocean Resources Research Center for Next Generation, Chiba Institute of Technology, 2-17-1 Tsudanuma, Narashino, Chiba 275-0016, Japan
- Submarine Resources Research Center, Research Institute for Marine Resources Utilization, Japan Agency for Marine-Earth Science and Technology, 2-15 Natsushima-cho, Yokosuka, Kanagawa 237-0061, Japan
| | - Toyohisa Fujita
- School of Resources, Environment and Materials, Guangxi University, 100 Daxue Road, Nanning, Guangxi 530004, P. R. China
| | - Gjergj Dodbiba
- Department of Systems Innovation, Graduate School Of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, 113-8656 Tokyo, Japan
| |
Collapse
|
23
|
Neubauer VJ, Döbl A, Scheibel T. Silk-Based Materials for Hard Tissue Engineering. MATERIALS (BASEL, SWITZERLAND) 2021; 14:674. [PMID: 33535662 PMCID: PMC7867174 DOI: 10.3390/ma14030674] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 01/25/2021] [Accepted: 01/26/2021] [Indexed: 02/07/2023]
Abstract
Hard tissues, e.g., bone, are mechanically stiff and, most typically, mineralized. To design scaffolds for hard tissue regeneration, mechanical, physico-chemical and biological cues must align with those found in the natural tissue. Combining these aspects poses challenges for material and construct design. Silk-based materials are promising for bone tissue regeneration as they fulfill several of such necessary requirements, and they are non-toxic and biodegradable. They can be processed into a variety of morphologies such as hydrogels, particles and fibers and can be mineralized. Therefore, silk-based materials are versatile candidates for biomedical applications in the field of hard tissue engineering. This review summarizes silk-based approaches for mineralized tissue replacements, and how to find the balance between sufficient material stiffness upon mineralization and cell survival upon attachment as well as nutrient supply.
Collapse
Affiliation(s)
- Vanessa J. Neubauer
- Lehrstuhl Biomaterialien, Fakultät für Ingenieurwissenschaften, Universität Bayreuth, Prof.-Rüdiger-Bormann-Straße 1, 95447 Bayreuth, Germany; (V.J.N.); (A.D.)
| | - Annika Döbl
- Lehrstuhl Biomaterialien, Fakultät für Ingenieurwissenschaften, Universität Bayreuth, Prof.-Rüdiger-Bormann-Straße 1, 95447 Bayreuth, Germany; (V.J.N.); (A.D.)
| | - Thomas Scheibel
- Lehrstuhl Biomaterialien, Fakultät für Ingenieurwissenschaften, Universität Bayreuth, Prof.-Rüdiger-Bormann-Straße 1, 95447 Bayreuth, Germany; (V.J.N.); (A.D.)
- Bayreuther Zentrum für Kolloide und Grenzflächen (BZKG), Universität Bayreuth, Universitätsstraße 30, 95440 Bayreuth, Germany
- Bayerisches Polymerinstitut (BPI), Universitätsstraße 30, 95440 Bayreuth, Germany
- Bayreuther Zentrum für Molekulare Biowissenschaften (BZMB), Universität Bayreuth, Universitätsstraße 30, 95440 Bayreuth, Germany
- Bayreuther Materialzentrum (BayMAT), Universität Bayreuth, Universitätsstraße 30, 95440 Bayreuth, Germany
| |
Collapse
|
24
|
Sharma V, Srinivasan A, Nikolajeff F, Kumar S. Biomineralization process in hard tissues: The interaction complexity within protein and inorganic counterparts. Acta Biomater 2021; 120:20-37. [PMID: 32413577 DOI: 10.1016/j.actbio.2020.04.049] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 04/17/2020] [Accepted: 04/26/2020] [Indexed: 02/07/2023]
Abstract
Biomineralization can be considered as nature's strategy to produce and sustain biominerals, primarily via creation of hard tissues for protection and support. This review examines the biomineralization process within the hard tissues of the human body with special emphasis on the mechanisms and principles of bone and teeth mineralization. We describe the detailed role of proteins and inorganic ions in mediating the mineralization process. Furthermore, we highlight the various available models for studying bone physiology and mineralization starting from the historical static cell line-based methods to the most advanced 3D culture systems, elucidating the pros and cons of each one of these methods. With respect to the mineralization process in teeth, enamel and dentin mineralization is discussed in detail. The key role of intrinsically disordered proteins in modulating the process of mineralization in enamel and dentine is given attention. Finally, nanotechnological interventions in the area of bone and teeth mineralization, diseases and tissue regeneration is also discussed. STATEMENT OF SIGNIFICANCE: This article provides an overview of the biomineralization process within hard tissues of the human body, which encompasses the detailed mechanism innvolved in the formation of structures like teeth and bone. Moreover, we have discussed various available models used for studying biomineralization and also explored the nanotechnological applications in the field of bone regeneration and dentistry.
Collapse
Affiliation(s)
- Vaibhav Sharma
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, India.
| | | | | | - Saroj Kumar
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, India.
| |
Collapse
|
25
|
Collagen Structure-Function Mapping Informs Applications for Regenerative Medicine. Bioengineering (Basel) 2020; 8:bioengineering8010003. [PMID: 33383610 PMCID: PMC7824244 DOI: 10.3390/bioengineering8010003] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 12/21/2020] [Accepted: 12/22/2020] [Indexed: 12/21/2022] Open
Abstract
Type I collagen, the predominant protein of vertebrates, assembles into fibrils that orchestrate the form and function of bone, tendon, skin, and other tissues. Collagen plays roles in hemostasis, wound healing, angiogenesis, and biomineralization, and its dysfunction contributes to fibrosis, atherosclerosis, cancer metastasis, and brittle bone disease. To elucidate the type I collagen structure-function relationship, we constructed a type I collagen fibril interactome, including its functional sites and disease-associated mutations. When projected onto an X-ray diffraction model of the native collagen microfibril, data revealed a matrix interaction domain that assumes structural roles including collagen assembly, crosslinking, proteoglycan (PG) binding, and mineralization, and the cell interaction domain supporting dynamic aspects of collagen biology such as hemostasis, tissue remodeling, and cell adhesion. Our type III collagen interactome corroborates this model. We propose that in quiescent tissues, the fibril projects a structural face; however, tissue injury releases blood into the collagenous stroma, triggering exposure of the fibrils' cell and ligand binding sites crucial for tissue remodeling and regeneration. Applications of our research include discovery of anti-fibrotic antibodies and elucidating their interactions with collagen, and using insights from our angiogenesis studies and collagen structure-function model to inform the design of super-angiogenic collagens and collagen mimetics.
Collapse
|
26
|
Romero-Castillo I, López-Ruiz E, Fernández-Sánchez JF, Marchal JA, Gómez-Morales J. Self-Assembled Type I Collagen-Apatite Fibers with Varying Mineralization Extent and Luminescent Terbium Promote Osteogenic Differentiation of Mesenchymal Stem Cells. Macromol Biosci 2020; 21:e2000319. [PMID: 33369064 DOI: 10.1002/mabi.202000319] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 11/27/2020] [Indexed: 11/10/2022]
Abstract
This work explores in depth the simultaneous self-assembly and mineralization of type I collagen by a base-acid neutralization technique to prepare biomimetic collagen-apatite fibrils with varying mineralization extent and doped with luminescent bactericidal Tb3+ ions. Two variants of the method are tested: base-acid titration, a solution of Ca(OH)2 is added dropwise to a stirred solution containing type I collagen dispersed in H3 PO4 ; and direct mixing, the Ca(OH)2 solution is added by fast dripping onto the acidic solution. Only the direct mixing variant yielded an effective control of calcium phosphate polymorphism. Luminescence spectroscopy reveals the long luminescence lifetime and high relative luminescence intensity of the Tb3+ -doped materials, while two-photon confocal fluorescence microscopy shows the characteristic green fluorescence light when using excitation wavelength of 458 nm, which is not harmful to bone tissue. Cytotoxicity/viability tests reveal that direct mixing samples show higher cell proliferation than titration samples. Additionally, osteogenic differentiation essays show that all mineralized fibrils promote the osteogenic differentiation, but the effect is more pronounced when using samples prepared by direct mixing, and more notably when using the Tb3+ -doped mineralized fibrils. Based on these findings it is concluded that the new nanocomposite is an ideal candidate for bone regenerative therapy.
Collapse
Affiliation(s)
- Ismael Romero-Castillo
- Laboratorio de Estudios Cristalográficos, IACT-CSIC-UGR, Avda. Las Palmeras, no. 4, Armilla, Granada, E-18100, Spain
| | - Elena López-Ruiz
- Instituto de Investigación Biosanitaria ibs. Granada, University of Granada, Granada, E-18014, Spain.,Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research, University of Granada, Granada, E-18100, Spain.,Excellence Research Unit "Modelling Nature" (MNat), University of Granada, Granada, E-18071, Spain.,Department of Health Science, Faculty of Experimental Science, University of Jaén, Jaén, E-23071, Spain
| | | | - Juan Antonio Marchal
- Instituto de Investigación Biosanitaria ibs. Granada, University of Granada, Granada, E-18014, Spain.,Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research, University of Granada, Granada, E-18100, Spain.,Excellence Research Unit "Modelling Nature" (MNat), University of Granada, Granada, E-18071, Spain
| | - Jaime Gómez-Morales
- Laboratorio de Estudios Cristalográficos, IACT-CSIC-UGR, Avda. Las Palmeras, no. 4, Armilla, Granada, E-18100, Spain
| |
Collapse
|
27
|
|
28
|
Neubauer VJ, Scheibel T. Spider Silk Fusion Proteins for Controlled Collagen Binding and Biomineralization. ACS Biomater Sci Eng 2020; 6:5599-5608. [PMID: 33320578 DOI: 10.1021/acsbiomaterials.0c00818] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The development of biomaterials for the interface between tendon and bone is important for realizing functional tendon replacements. Toward the development of new materials for such applications, engineered recombinant spider silk proteins were modified with peptide tag sequences derived from noncollagenous proteins in bone, so-called SIBLING proteins, such as osteopontin and sialoprotein, which are known to interact with collagen and to initiate mineralization. Materials made of these spider silk-SIBLING hybrids were analyzed concerning mineralization and interaction with cells. They showed enhanced calcium phosphate formation upon incubation in mineralization agents. In gradient films, MC3T3-E1 mouse preosteoblasts adhered preferentially along the gradient toward the variant with a collagen binding motif.
Collapse
Affiliation(s)
- Vanessa J Neubauer
- Lehrstuhl Biomaterialien, Fakultät für Ingenieurwissenschaften, Universität Bayreuth, Prof.-Rüdiger-Bormann-Straße 1, 95447 Bayreuth, Germany
| | - Thomas Scheibel
- Lehrstuhl Biomaterialien, Fakultät für Ingenieurwissenschaften, Universität Bayreuth, Prof.-Rüdiger-Bormann-Straße 1, 95447 Bayreuth, Germany.,Bayreuther Zentrum für Kolloide und Grenzflächen (BZKG), Universität Bayreuth, Universitätsstraße 30, 95440 Bayreuth, Germany.,Bayerisches Polymerinstitut (BPI), Universitätsstraße 30, 95440 Bayreuth, Germany.,Bayreuther Zentrum für Molekulare Biowissenschaften (BZMB), Universität Bayreuth, Universitätsstraße 30, 95440 Bayreuth, Germany.,Bayreuther Materialzentrum (BayMAT), Universität Bayreuth, Universitätsstraße 30, 95440 Bayreuth, Germany
| |
Collapse
|
29
|
Patel A, Zaky SH, Schoedel K, Li H, Sant V, Beniash E, Sfeir C, Stolz DB, Sant S. Design and evaluation of collagen-inspired mineral-hydrogel nanocomposites for bone regeneration. Acta Biomater 2020; 112:262-273. [PMID: 32497742 DOI: 10.1016/j.actbio.2020.05.034] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 04/29/2020] [Accepted: 05/26/2020] [Indexed: 12/21/2022]
Abstract
Bone loss due to trauma and tumors remains a serious clinical concern. Due to limited availability and disease transmission risk with autografts and allografts, calcium phosphate bone fillers and growth factor-based substitute bone grafts are currently used in the clinic. However, substitute grafts lack bone regeneration potential when used without growth factors. When used along with the added growth factors, they lead to unwanted side effects such as uncontrolled bone growth. Collagen-based hydrogel grafts available on the market fail to provide structural guidance to native cells due to high water-solubility and faster degradation. To overcome these limitations, we employed bioinspired material design and fabricated three different hydrogels with structural features similar to native collagen at multiple length-scales. These hydrogels fabricated using polyionic complexation of oppositely charged natural polysaccharides exhibited multi-scale architecture mimicking nanoscale banding pattern, and microscale fibrous structure of native collagen. All three hydrogels promoted biomimetic apatite-like mineral deposition in vitro elucidating crystalline structure on the surface while amorphous calcium phosphate inside the hydrogels resulting in mineral-hydrogel nanocomposites. When evaluated in a non-load bearing critical size mouse calvaria defect model, chitosan - kappa carrageenan mineral-hydrogel nanocomposites enhanced bone regeneration without added growth factors compared to empty defect as well as widely used marketed collagen scaffolds. Histological assessment of the regenerated bone revealed improved healing and tissue remodeling with mineral-hydrogel nanocomposites. Overall, these collagen-inspired mineral-hydrogel nanocomposites showed multi-scale hierarchical structure and can potentially serve as promising bioactive hydrogel to promote bone regeneration. STATEMENT OF SIGNIFICANCE: Hydrogels, especially collagen, are widely used in bone tissue engineering. Collagen fibrils play arguably the most important role during natural bone development. Its multi-scale hierarchical structure to form fibers from fibrils and electrostatic charges enable mineral sequestration, nucleation, and growth. However, bulk collagen hydrogels exhibit limited bone regeneration and are mostly used as carriers for highly potent growth factors such as bone morphogenic protein-2, which increase the risk of uncontrolled bone growth. Thus, there is an unmet clinical need for a collagen-inspired biomaterial that can recreate structural hierarchy, mineral sequestration ability, and stimulate recruitment of host progenitor cells to facilitate bone regeneration. Here, we propose collagen-inspired bioactive mineral-hydrogel nanocomposites as a growth factor-free approach to guide and enhance bone regeneration.
Collapse
Affiliation(s)
- Akhil Patel
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA 15261
| | - Samer H Zaky
- Center for Craniofacial Regeneration, School of Dental Medicine, University of Pittsburgh, Pittsburgh, PA 15261
| | - Karen Schoedel
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261
| | - Hongshuai Li
- Musculoskeletal Growth & Regeneration Laboratory, Department of Orthopaedic Surgery, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261
| | - Vinayak Sant
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA 15261
| | - Elia Beniash
- Center for Craniofacial Regeneration, School of Dental Medicine, University of Pittsburgh, Pittsburgh, PA 15261; Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA 15219; McGowan Institute for Regenerative Medicine, Pittsburgh, PA 15260
| | - Charles Sfeir
- Center for Craniofacial Regeneration, School of Dental Medicine, University of Pittsburgh, Pittsburgh, PA 15261; Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA 15219; McGowan Institute for Regenerative Medicine, Pittsburgh, PA 15260
| | - Donna B Stolz
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261; McGowan Institute for Regenerative Medicine, Pittsburgh, PA 15260; Department of Cell Biology, University of Pittsburgh, Pittsburgh, PA 15260
| | - Shilpa Sant
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA 15261; Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA 15219; McGowan Institute for Regenerative Medicine, Pittsburgh, PA 15260; UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA 15260.
| |
Collapse
|
30
|
Peled Y, Drake JL, Malik A, Almuly R, Lalzar M, Morgenstern D, Mass T. Optimization of skeletal protein preparation for LC-MS/MS sequencing yields additional coral skeletal proteins in Stylophora pistillata. ACTA ACUST UNITED AC 2020; 2:8. [PMID: 32724895 PMCID: PMC7115838 DOI: 10.1186/s42833-020-00014-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Stony corals generate their calcium carbonate exoskeleton in a highly controlled biomineralization process mediated by a variety of macromolecules including proteins. Fully identifying and classifying these proteins is crucial to understanding their role in exoskeleton formation, yet no optimal method to purify and characterize the full suite of extracted coral skeletal proteins has been established and hence their complete composition remains obscure. Here, we tested four skeletal protein purification protocols using acetone precipitation and ultrafiltration dialysis filters to present a comprehensive scleractinian coral skeletal proteome. We identified a total of 60 proteins in the coral skeleton, 44 of which were not present in previously published stony coral skeletal proteomes. Extracted protein purification protocols carried out in this study revealed that no one method captures all proteins and each protocol revealed a unique set of method-exclusive proteins. To better understand the general mechanism of skeletal protein transportation, we further examined the proteins’ gene ontology, transmembrane domains, and signal peptides. We found that transmembrane domain proteins and signal peptide secretion pathways, by themselves, could not explain the transportation of proteins to the skeleton. We therefore propose that some proteins are transported to the skeleton via non-traditional secretion pathways.
Collapse
Affiliation(s)
- Yanai Peled
- Marine Biology Department, University of Haifa, Haifa, Israel
| | - Jeana L Drake
- Marine Biology Department, University of Haifa, Haifa, Israel
| | - Assaf Malik
- Marine Biology Department, University of Haifa, Haifa, Israel
| | - Ricardo Almuly
- Marine Biology Department, University of Haifa, Haifa, Israel
| | - Maya Lalzar
- Bioinformatics Core Unit, University of Haifa, Haifa, Israel
| | - David Morgenstern
- De Botton Protein Profiling Institute of the Nancy and Stephen Grand Israel National Center for Personalized Medicine, Weizmann Institute of Science, Rehovot, Israel
| | - Tali Mass
- Marine Biology Department, University of Haifa, Haifa, Israel
| |
Collapse
|
31
|
Wang Z, Ustriyana P, Chen K, Zhao W, Xu Z, Sahai N. Toward the Understanding of Small Protein-Mediated Collagen Intrafibrillar Mineralization. ACS Biomater Sci Eng 2020; 6:4247-4255. [PMID: 33463336 DOI: 10.1021/acsbiomaterials.0c00386] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The design of improved materials for orthopedic implants and bone tissue engineering scaffolds relies on materials mimicking the properties of bone. Calcium phosphate (Ca-PO4)-mineralized collagen fibrils arranged in a characteristic hierarchical structure constitute the building blocks of mineralized vertebrate tissues and control their biomechanical and biochemical properties. Large, flexible, acidic noncollagenous proteins (ANCPs) have been shown to influence collagen mineralization but little is known about mineralization mechanisms with the aid of small proteins. Osteocalcin (OCN) is a small, highly structured biomolecule known as a multifunctional hormone in its undercarboxylated form. Here, we examined the potential mechanism of collagen intrafibrillar mineralization in vitro mediated by OCN as a model protein. Rapid and random extrafibrillar mineralization of flakey Ca-PO4 particles was observed by transmission electron microscopy mainly on the outer surfaces of collagen fibrils of a preformed collagen scaffold in the absence of the protein. In contrast, the protein stabilized hydrated, spherical nanoclusters of Ca-PO4 on the outer surface of the fibrils, thereby retarding extrafibrillar mineralization. The nanoclusters then infiltrated the fibrils resulting in intrafibrillar mineralization with HAP crystals aligned with the fibrils. This mechanism is similar to that observed for unstructured ANCPs. Results of fibrillogenesis and immunogold labeling studies showed that OCN was associated primarily with the fibrils, consistent with ex vivo studies on mineralizing turkey tendon. The present findings contribute to expanding our understanding of collagen intrafibrillar mineralization and provide insight into design synthetic macromolecular matrices for orthopedic implants and bone regeneration.
Collapse
|
32
|
de Lacerda Schickert S, van den Beucken JJ, Leeuwenburgh SC, Jansen JA. Pre-Clinical Evaluation of Biological Bone Substitute Materials for Application in Highly Loaded Skeletal Sites. Biomolecules 2020; 10:E883. [PMID: 32526829 PMCID: PMC7356650 DOI: 10.3390/biom10060883] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 05/31/2020] [Accepted: 06/02/2020] [Indexed: 12/27/2022] Open
Abstract
The development of bone substitute materials (BSMs) intended for load-bearing bone defects is highly complicated, as biological and mechanical requirements are often contradictory. In recent years, biological BSMs have been developed which allow for a more efficient integration of the material with the surrounding osseous environment and, hence, a higher mechanical stability of the treated defect. However, while these materials are promising, they are still far from ideal. Consequently, extensive preclinical experimentation is still required. The current review provides a comprehensive overview of biomechanical considerations relevant for the design of biological BSMs. Further, the preclinical evaluation of biological BSMs intended for application in highly loaded skeletal sites is discussed. The selected animal models and implantation site should mimic the pathophysiology and biomechanical loading patterns of human bone as closely as possible. In general, sheep are among the most frequently selected animal models for the evaluation of biomaterials intended for highly loaded skeletal sites. Regarding the anatomical sites, segmental bone defects created in the limbs and spinal column are suggested as the most suitable. Furthermore, the outcome measurements used to assess biological BSMs for regeneration of defects in heavily loaded bone should be relevant and straightforward. The quantitative evaluation of bone defect healing through ex vivo biomechanical tests is a valuable addition to conventional in vivo tests, as it determines the functional efficacy of BSM-induced bone healing. Finally, we conclude that further standardization of preclinical studies is essential for reliable evaluation of biological BSMs in highly loaded skeletal sites.
Collapse
Affiliation(s)
| | | | | | - John A. Jansen
- Department of Dentistry—Regenerative Biomaterials, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Philips van Leydenlaan 25, 6525EX Nijmegen, The Netherlands; (S.d.L.S.); (J.J.J.P.v.d.B.); (S.C.G.L.)
| |
Collapse
|
33
|
Mastrogiacomo S, Dou W, Jansen JA, Walboomers XF. Magnetic Resonance Imaging of Hard Tissues and Hard Tissue Engineered Bio-substitutes. Mol Imaging Biol 2020; 21:1003-1019. [PMID: 30989438 DOI: 10.1007/s11307-019-01345-2] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Magnetic resonance imaging (MRI) is a non-invasive diagnostic imaging tool based on the detection of protons into the tissues. This imaging technique is remarkable because of high spatial resolution, strong soft tissue contrast and specificity, and good depth penetration. However, MR imaging of hard tissues, such as bone and teeth, remains challenging due to low proton content in such tissues as well as to very short transverse relaxation times (T2). To overcome these issues, new MRI techniques, such as sweep imaging with Fourier transformation (SWIFT), ultrashort echo time (UTE) imaging, and zero echo time (ZTE) imaging, have been developed for hard tissues imaging with promising results reported. Within this article, MRI techniques developed for the detection of hard tissues, such as bone and dental tissues, have been reviewed. The main goal was thus to give a comprehensive overview on the corresponding (pre-) clinical applications and on the potential future directions with such techniques applied. In addition, a section dedicated to MR imaging of novel biomaterials developed for hard tissue applications was given as well.
Collapse
Affiliation(s)
- Simone Mastrogiacomo
- Department of Biomaterials, Radboud University Medical Center, Philips van Leijdenlaan 25, 6525 EX, Nijmegen, The Netherlands.
- Laboratory of Functional and Molecular Imaging, NINDS, National Institutes of Health, Building 10, 5S261, Bethesda, MD, 20892, USA.
| | - Weiqiang Dou
- Department of Radiology and Nuclear Medicine, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525 GA, Nijmegen, The Netherlands
- GE Healthcare, MR Research, Beijing, People's Republic of China
| | - John A Jansen
- Department of Biomaterials, Radboud University Medical Center, Philips van Leijdenlaan 25, 6525 EX, Nijmegen, The Netherlands
| | - X Frank Walboomers
- Department of Biomaterials, Radboud University Medical Center, Philips van Leijdenlaan 25, 6525 EX, Nijmegen, The Netherlands
| |
Collapse
|
34
|
Qu Y, Gu T, Du Q, Shao C, Wang J, Jin B, Kong W, Sun J, Chen C, Pan H, Tang R, Gu X. Polydopamine Promotes Dentin Remineralization via Interfacial Control. ACS Biomater Sci Eng 2020; 6:3327-3334. [PMID: 33463183 DOI: 10.1021/acsbiomaterials.0c00035] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Biomineralization has intrigued researchers for decades. Although mineralization of type I collagen has been universally investigated, this process remains a great challenge due to the lack of mechanistic understanding of the roles of biomolecules. In our study, dentine was successfully repaired using the biomolecule polydopamine (PDA), and the remineralized dentine exhibited mechanical properties comparable to those of natural dentine. Detailed analyses of the collagen mineralization process facilitated by PDA showed that PDA can promote intrafibrillar mineralization with a decreased heterogeneous nucleation barrier for hydroxyapatite (HAP) by reducing the interfacial energy between collagen fibrils and amorphous calcium phosphate (ACP), resulting in the conversion of an increasing amount of nanoprecursors into collagen fibrils. The present work highlights the importance of interfacial control in dentine remineralization and provides profound insight into the regulatory effect of biomolecules in collagen mineralization as well as the clinical application of dentine restoration.
Collapse
Affiliation(s)
- Yinan Qu
- Department of Stomatology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310058, P. R. China
| | - Tianyi Gu
- School of Stomatology, Zhejiang Chinese Medical University, Hangzhou 310000, P. R. China
| | - Qiaolin Du
- Department of Stomatology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310058, P. R. China
| | - Changyu Shao
- Centre for Biopathways and Biomaterials, Department of Chemistry, Zhejiang University, Hangzhou 310027, P. R. China
| | - Jing Wang
- Department of Stomatology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310058, P. R. China
| | - Biao Jin
- Centre for Biopathways and Biomaterials, Department of Chemistry, Zhejiang University, Hangzhou 310027, P. R. China
| | - Weijing Kong
- Department of Stomatology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310058, P. R. China
| | - Jian Sun
- Department of Stomatology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310058, P. R. China
| | - Chaoqun Chen
- Department of Stomatology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310058, P. R. China
| | - Haihua Pan
- Centre for Biopathways and Biomaterials, Department of Chemistry, Zhejiang University, Hangzhou 310027, P. R. China
| | - Ruikang Tang
- Centre for Biopathways and Biomaterials, Department of Chemistry, Zhejiang University, Hangzhou 310027, P. R. China
| | - Xinhua Gu
- Department of Stomatology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310058, P. R. China
| |
Collapse
|
35
|
Ling C, Zhao W, Wang Z, Chen J, Ustriyana P, Gao M, Sahai N. Structure-Activity Relationships of Hydroxyapatite-Binding Peptides. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:2729-2739. [PMID: 32078330 DOI: 10.1021/acs.langmuir.9b03779] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Elucidating the structure-activity relationships between biomolecules and hydroxyapatite (HAP) is essential to understand bone mineralization mechanisms, develop HAP-based implants, and design drug delivery vectors. Here, four peptides identified by phage display were selected as model HAP-binding peptides (HBPs) to examine the effects of primary amino acid sequence, phosphorylation of serine, presence of charged amino acid residues, and net charge of the peptide on (1) HAP-binding affinity, (2) secondary conformation, and (3) HAP nucleation and crystal growth. Binding affinities were determined by obtaining adsorption isotherms by mass depletion, and the conformations of the peptides in solution and bound states were observed by circular dichroism. Results showed that the magnitude of the net charge primarily controlled binding affinity, with little dependence on the other HBP features. The binding affinity and conformation results were in good agreement with our previous molecular dynamics simulation results, thus providing an excellent benchmark for the simulations. Transmission electron microscopy was used to explore the effect of these HBPs on calcium phosphate (Ca-PO4) nucleation and growth. Results indicated that HBPs may inhibit nucleation of Ca-PO4 nanoparticles and their phase transition to crystalline HAP, as well as control crystal growth rates in specific crystallographic directions, thus changing the classical needle-like morphology of inorganically grown HAP crystals to a biomimetic plate-like morphology.
Collapse
Affiliation(s)
- Chen Ling
- Department of Polymer Science, The University of Akron, Akron, Ohio 44325, United States
| | - Weilong Zhao
- Department of Polymer Science, The University of Akron, Akron, Ohio 44325, United States
| | - Ziqiu Wang
- Department of Polymer Science, The University of Akron, Akron, Ohio 44325, United States
| | - Jiadong Chen
- Department of Polymer Science, The University of Akron, Akron, Ohio 44325, United States
| | - Putu Ustriyana
- Department of Polymer Science, The University of Akron, Akron, Ohio 44325, United States
| | - Min Gao
- Advanced Materials and Liquid Crystal Institute, Kent State University, Kent, Ohio 44242, United States
| | - Nita Sahai
- Department of Polymer Science, The University of Akron, Akron, Ohio 44325, United States
- Department of Geosciences, The University of Akron, Akron, Ohio 44325, United States
- Integrated Bioscience Program, The University of Akron, Akron, Ohio 44325, United States
| |
Collapse
|
36
|
Zeller-Plumhoff B, Malich C, Krüger D, Campbell G, Wiese B, Galli S, Wennerberg A, Willumeit-Römer R, Wieland DCF. Analysis of the bone ultrastructure around biodegradable Mg-xGd implants using small angle X-ray scattering and X-ray diffraction. Acta Biomater 2020; 101:637-645. [PMID: 31734411 DOI: 10.1016/j.actbio.2019.11.030] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 11/11/2019] [Accepted: 11/12/2019] [Indexed: 01/29/2023]
Abstract
Magnesium alloys are increasingly researched as temporary biodegradable metal implants in bone applications due to their mechanical properties which are more similar to bone than conventional implant metals and the fact that Magnesium occurs naturally within the body. However, the degradation processes in vivo and in particular the interaction of the bone with the degrading material need to be further investigated. In this study we are presenting the first quantitative comparison of the bone ultrastructure formed at the interface of biodegradable Mg-5Gd and Mg-10Gd implants and titanium and PEEK implants after 4, 8 and 12 weeks healing time using two-dimensional small angle X-ray scattering and X-ray diffraction. Differences in mineralization, orientation and thickness of the hydroxyapatite are assessed. We find statistically significant (p < 0.05) differences for the lattice spacing of the (310)-reflex of hydroxyapatite between titanium and Mg-xGd materials, as well as for the (310) crystal size between titanium and Mg-5Gd, indicating a possible deposition of Mg within the bone matrix. The (310) lattice spacing and crystallite size further differ significantly between implant degradation layer and surrounding bone (p < 0.001 for Mg-10Gd), suggesting apatite formation with significant amounts of Gd and Mg within the degradation layer. STATEMENT OF SIGNIFICANCE: Biodegradable Magnesium-based alloys are emerging as a viable alternative for temporary bone implant applications. However, in order to understand if the degradation of the implant material influences the bone ultrastructure, it is necessary to study the bone structure using high-resolution techniques. We have therefore employed 2D small angle X-ray scattering and X-ray diffraction to study the bone ultrastructure surrounding Magnesium-Gadolinium alloys as well as Titanium and PEEK alloys at three different healing times. This is the first time, that the bone ultrastructure around these materials is directly compared and that a statistical evaluation is performed. We found differences indicating a possible deposition of Mg within the bone matrix as well as a local deposition of Mg and/or Gd at the implant site. DATA AVAILABILITY STATEMENT: The raw/processed data required to reproduce these findings cannot be shared at this time as the data also forms part of an ongoing study.
Collapse
Affiliation(s)
- Berit Zeller-Plumhoff
- Division of Metallic Biomaterials, Helmholtz Zentrum Geesthacht, Institute for Materials Research, Max-Planck-Straße 1, 21502 Geesthacht, Germany.
| | - Carina Malich
- Division of Metallic Biomaterials, Helmholtz Zentrum Geesthacht, Institute for Materials Research, Max-Planck-Straße 1, 21502 Geesthacht, Germany
| | - Diana Krüger
- Division of Metallic Biomaterials, Helmholtz Zentrum Geesthacht, Institute for Materials Research, Max-Planck-Straße 1, 21502 Geesthacht, Germany
| | - Graeme Campbell
- Division of Metallic Biomaterials, Helmholtz Zentrum Geesthacht, Institute for Materials Research, Max-Planck-Straße 1, 21502 Geesthacht, Germany
| | - Björn Wiese
- Division of Metallic Biomaterials, Helmholtz Zentrum Geesthacht, Institute for Materials Research, Max-Planck-Straße 1, 21502 Geesthacht, Germany
| | - Silvia Galli
- Department of Prosthodontics, University of Malmö, Faculty of Odontology, Carl Gustafs väg 34, Klerken, 20506 Malmö, Sweden
| | - Ann Wennerberg
- Department of Odontology, University of Gothenburg, Medicinaregatan 12 f, 41390 Göteborg, Sweden
| | - Regine Willumeit-Römer
- Division of Metallic Biomaterials, Helmholtz Zentrum Geesthacht, Institute for Materials Research, Max-Planck-Straße 1, 21502 Geesthacht, Germany.
| | - D C Florian Wieland
- Division of Metallic Biomaterials, Helmholtz Zentrum Geesthacht, Institute for Materials Research, Max-Planck-Straße 1, 21502 Geesthacht, Germany
| |
Collapse
|
37
|
GU T, SHUAI J, CHEN C, FENG J. [Effect of genipin pretreatment on type Ⅰ collagen mineralization]. Zhejiang Da Xue Xue Bao Yi Xue Ban 2019; 48:638-643. [PMID: 31955538 PMCID: PMC8800766 DOI: 10.3785/j.issn.1008-9292.2019.12.08] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 03/25/2019] [Indexed: 06/10/2023]
Abstract
OBJECTIVE To investigate the effects of bio-crosslinker genipin pretreatment on type Ⅰ collagen mineralization. METHODS Type Ⅰ collagen gels were prepared and pretreated with 0.5wt%genipin (experimental group) and deionized water (control group) for 2 h, respectively. The pretreated products were subjected to Fourier transform infrared spectroscopy (FT-IR). Reconstituted collagen fibrils were pretreated with genipin or deionized water for 2 h and were mineralized for 4 h. The collagen density and mineralization degree were examined with transmission electron microscopy (TEM) and analyzed with ImageJ software. Then scanning electron microscopy (SEM) and TEM were used to observe the mineralization of cross-linked demineralized dentin collagen. RESULTS FT-IR spectrum showed that the genipin was crosslinked with collagen. TEM observation and ImageJ results showed that after 4 h mineralization, the mineralization effect of 0.5wt% genipin group was significantly better than that of the control group[(73.3±5.3)%vs.(7.4±3.5)%,P<0.01]. TEM and SEM observation showed that the mineralization rate of type Ⅰ collagen and demineralized dentin pretreated with genipin were significantly faster than that of the control group. CONCLUSIONS The study demonstrates that 0.5 wt% concentration of genipin can significantly promote the mineralization of type Ⅰ collagen.
Collapse
Affiliation(s)
| | | | | | - Jianying FENG
- 冯剑颖(1976-), 女, 博士, 副教授, 主要从事正畸正颌手术联合治疗和颞下颌关节病正畸治疗研究, E-mail:
;
https://orcid.org/0000-0002-6403-9663
| |
Collapse
|
38
|
Wang D, Gilbert JR, Zhang X, Zhao B, Ker DFE, Cooper GM. Calvarial Versus Long Bone: Implications for Tailoring Skeletal Tissue Engineering. TISSUE ENGINEERING PART B-REVIEWS 2019; 26:46-63. [PMID: 31588853 DOI: 10.1089/ten.teb.2018.0353] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Tissue-engineered graft substitutes have shown great potential to treat large bone defects. While we usually assume that therapeutic approaches developed for appendicular bone healing could be similarly translated for application in craniofacial reconstruction and vice versa, this is not necessarily accurate. In addition to those more well-known healing-associated factors, such as age, lifestyle (e.g., nutrition and smoking), preexisting disease (e.g., diabetes), medication, and poor blood supply, the developmental origins and surrounding tissue of the wound sites can largely affect the fracture healing outcome as well as designed treatments. Therefore, the strategies developed for long bone fracture repair might not be suitable or directly applicable to skull bone repair. In this review, we discuss aspects of development, healing process, structure, and tissue engineering considerations between calvarial and long bones to assist in designing the tailored bone repair strategies. Impact Statement We summarized, in this review, the existing body of knowledge between long bone and calvarial bone with regard to their development and healing, tissue structure, and consideration of current tissue engineering strategies. By highlighting their similarities and differences, we propose that tailored tissue engineering strategies, such as scaffold features, growth factor usage, and the source of cells for tissue or region-specific bone repair, are necessary to ensure an optimized healing outcome.
Collapse
Affiliation(s)
- Dan Wang
- Department of Stomatology, Tenth People's Hospital of Tongji University, Shanghai, China.,Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Hong Kong, China.,School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China.,Department of Plastic Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - James R Gilbert
- Department of Plastic Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania.,McGowan Institute for Regenerative Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Xu Zhang
- Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Hong Kong, China.,School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Bingkun Zhao
- Department of Stomatology, Tenth People's Hospital of Tongji University, Shanghai, China.,Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Hong Kong, China.,School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Dai Fei Elmer Ker
- Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Hong Kong, China.,School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Gregory M Cooper
- Department of Plastic Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania.,Department of Oral Biology, University of Pittsburgh, Pittsburgh, Pennsylvania.,Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania
| |
Collapse
|
39
|
Dubus M, Rammal H, Alem H, Bercu NB, Royaud I, Quilès F, Boulmedais F, Gangloff SC, Mauprivez C, Kerdjoudj H. Boosting mesenchymal stem cells regenerative activities on biopolymers-calcium phosphate functionalized collagen membrane. Colloids Surf B Biointerfaces 2019; 181:671-679. [PMID: 31226642 DOI: 10.1016/j.colsurfb.2019.06.021] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 06/09/2019] [Accepted: 06/10/2019] [Indexed: 01/20/2023]
Abstract
The regeneration of bone-soft tissue interface, using functional membranes, remains challenging and can be promoted by improving mesenchymal stem cells (MSCs) paracrine function. Herein, a collagen membrane, used as guided bone regeneration membrane, was functionalized by calcium phosphate, chitosan and hyaluronic acid hybrid coating by simultaneous spray of interacting species process. Composed of brushite, octacalcium phosphate and hydroxyapatite, the hybrid coating increased the membrane stiffness by 50%. After 7 days of MSCs culture on the hybrid coated polymeric membrane, biological studies were marked by a lack of osteoblastic commitment. However, MSCs showed an enhanced proliferation along with the secretion of cytokines and growth factors that could block bone resorption and favour endothelial cell recruitment without exacerbating polynuclear neutrophils infiltration. These data shed light on the great potential of inorganic/organic coated collagen membranes as an alternative bioactive factor-like platform to improve MSCs regenerative capacity, in particular to support bone tissue vascularization and to modulate inflammatory infiltrates.
Collapse
Affiliation(s)
- Marie Dubus
- EA 4691, Biomatériaux et Inflammation en Site Osseux (BIOS), SFR CAP Santé (FED 4231), Université de Reims Champagne Ardenne, 51100 Reims, France; UFR d'Odontologie, Université de Reims Champagne Ardenne, 51100 Reims, France
| | - Hassan Rammal
- EA 4691, Biomatériaux et Inflammation en Site Osseux (BIOS), SFR CAP Santé (FED 4231), Université de Reims Champagne Ardenne, 51100 Reims, France; UFR d'Odontologie, Université de Reims Champagne Ardenne, 51100 Reims, France
| | - Halima Alem
- Université de Lorraine, UMR 7198 CNRS, Institut Jean Lamour, 54011 Nancy, France
| | - Nicolae B Bercu
- EA 4682, Laboratoire de Recherche en Nanoscience (LRN), Université de Reims Champagne-Ardenne, 51100 Reims, France
| | - Isabelle Royaud
- Université de Lorraine, UMR 7198 CNRS, Institut Jean Lamour, 54011 Nancy, France
| | - Fabienne Quilès
- CNRS, Laboratoire de Chimie Physique et Microbiologie pour les Matériaux et l'Environnement, LCPME, UMR 7564, Villers-lès-Nancy F-54600, France; Université de Lorraine, Laboratoire de Chimie Physique et Microbiologie pour les Matériaux et l'Environnement, LCPME, UMR 7564, Villers-lès-Nancy F-54600, France
| | - Fouzia Boulmedais
- Université de Strasbourg, CNRS, Institut Charles Sadron, UPR22, 23 rue du Loess, BP 84047, 67034, Strasbourg Cedex 2, France
| | - Sophie C Gangloff
- EA 4691, Biomatériaux et Inflammation en Site Osseux (BIOS), SFR CAP Santé (FED 4231), Université de Reims Champagne Ardenne, 51100 Reims, France; UFR de Pharmacie, Université de Reims Champagne Ardenne, 51100 Reims, France
| | - Cedric Mauprivez
- EA 4691, Biomatériaux et Inflammation en Site Osseux (BIOS), SFR CAP Santé (FED 4231), Université de Reims Champagne Ardenne, 51100 Reims, France; UFR d'Odontologie, Université de Reims Champagne Ardenne, 51100 Reims, France; Pôle Médecine bucco-dentaire, Hôpital Maison Blanche, Centre Hospitalier Universitaire de Reims, France
| | - Halima Kerdjoudj
- EA 4691, Biomatériaux et Inflammation en Site Osseux (BIOS), SFR CAP Santé (FED 4231), Université de Reims Champagne Ardenne, 51100 Reims, France; UFR d'Odontologie, Université de Reims Champagne Ardenne, 51100 Reims, France.
| |
Collapse
|
40
|
Dhandapani R, Sethuraman S, Subramanian A. Nanohybrids – cancer theranostics for tiny tumor clusters. J Control Release 2019; 299:21-30. [DOI: 10.1016/j.jconrel.2019.02.027] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 02/19/2019] [Accepted: 02/19/2019] [Indexed: 02/07/2023]
|
41
|
Di Foggia M, Prati C, Gandolfi MG, Taddei P. An in vitro study on dentin demineralization and remineralization: Collagen rearrangements and influence on the enucleated phase. J Inorg Biochem 2019; 193:84-93. [PMID: 30685550 DOI: 10.1016/j.jinorgbio.2019.01.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 12/24/2018] [Accepted: 01/10/2019] [Indexed: 01/17/2023]
Abstract
Dentin remineralization is of clinical relevance in the therapy of caries and dentin hypersensitivity. This study is aimed at gaining more insights on a molecular scale, through IR spectroscopy, into dentin demineralization and remineralization. The dentin demineralization by ethylenediaminetetraacetic acid, EDTA (17%, 2 h) significantly altered the secondary structure distribution of collagen, upon loss of interaction with calcium ions. To investigate dentin remineralization, previously demineralized human dentin slices were soaked in Dulbecco's Phosphate Buffered Saline (DPBS) or Hank's Balanced Salt Solution HBSS, in close contact with three commercial cements used as sustained releasing sources of Ca2+ and OH- ions (i.e. calcium hydroxide- and calcium silicate-based cements). IR spectroscopy showed the occurrence of remineralization under these conditions. Collagen did not lose its ability to chelate Ca2+, and these interactions allowed collagen to rearrange into a conformation similar to that of sound dentin. This process appeared slower in HBSS than DPBS, as also shown by the lower degree of maturation of the inorganic phase enucleated in the former medium (amorphous calcium phosphate versus B-type carbonated apatite). Collagen appeared to act as a spatial constraint to crystal deposition, affecting crystallinity and carbonate content of the enucleated phase. Remineralization was found to strongly depend on the calcium releasing ability of the cements. The fast formation of a rough apatite biocoating may represent a favorable clinical condition in the context of mineralized tissue regeneration.
Collapse
Affiliation(s)
- Michele Di Foggia
- Biochemistry Unit, Department of Biomedical and Neuromotor Sciences, University of Bologna, Via Belmeloro 8/2, 40126 Bologna, Italy
| | - Carlo Prati
- Endodontic Clinical Section, Unit of Odontostomatological Sciences, Department of Biomedical and Neuromotor Sciences, University of Bologna, Via San Vitale 59, 40136 Bologna, Italy
| | - Maria Giovanna Gandolfi
- Laboratory of Biomaterials and Oral Pathology, Unit of Odontostomatological Sciences, Department of Biomedical and Neuromotor Sciences, University of Bologna, Via San Vitale 59, 40136 Bologna, Italy
| | - Paola Taddei
- Biochemistry Unit, Department of Biomedical and Neuromotor Sciences, University of Bologna, Via Belmeloro 8/2, 40126 Bologna, Italy.
| |
Collapse
|
42
|
Shen M, Lin M, Zhu M, Zhang W, Lu D, Liu H, Deng J, Que K, Zhang X. MV-mimicking micelles loaded with PEG-serine-ACP nanoparticles to achieve biomimetic intra/extra fibrillar mineralization of collagen in vitro. Biochim Biophys Acta Gen Subj 2019; 1863:167-181. [DOI: 10.1016/j.bbagen.2018.10.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 10/06/2018] [Accepted: 10/09/2018] [Indexed: 12/20/2022]
|
43
|
Abstract
The mechanism (s) that drive the organization of bone mineral throughout the bone extracellular matrix remain unclear. The long-standing theory implicates the organic matrix, namely specific non-collagenous proteins and/or collagen fibrils, while a recent theory proposes a self-assembly mechanism. Applying a combination of spectroscopic and microscopic techniques in wet and dry conditions to bone-like hydroxyapatite nanoparticles that were used as a proxy for bone mineral, we confirm that mature bone mineral particles have the capacity to self-assemble into organized structures. A large quantity of water is present at the surface of bone mineral due to the presence of a hydrophilic, amorphous surface layer that coats bone mineral nanoparticles. These water molecules must not only be strongly bound to the surface of bone mineral in the form of a rigid hydration shell, but they must also be trapped within the amorphous surface layer. Cohesive forces between these water molecules present at the mineral–mineral interface not only hold the mature bone mineral particles together, but also promote their oriented stacking. This intrinsic ability of mature bone mineral particles to organize themselves without recourse to the organic matrix forms the foundation for the development of the next generation of orthopedic biomaterials.
Collapse
|
44
|
Fielder M, Nair AK. Effects of hydration and mineralization on the deformation mechanisms of collagen fibrils in bone at the nanoscale. Biomech Model Mechanobiol 2018; 18:57-68. [PMID: 30088113 DOI: 10.1007/s10237-018-1067-y] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Accepted: 07/30/2018] [Indexed: 12/25/2022]
Abstract
Bone is a biomaterial with a structural load-bearing function. Investigating the biomechanics of bone at the nanoscale is important in application to tissue engineering, the development of bioinspired materials, and for characterizing factors such as age, trauma, or disease. At the nanoscale, bone is composed of fibrils that are primarily a composite of collagen, apatite crystals (mineral), and water. Though several studies have been done characterizing the mechanics of fibrils, the effects of variation and distribution of water and mineral content in fibril gap and overlap regions are unexplored. We investigate how the deformation mechanisms of collagen fibrils change as a function of mineral and water content. We use molecular dynamics to study the mechanics of collagen fibrils of 0 wt%, 20 wt%, and 40 wt% mineralization and 0 wt%, 2 wt%, and 4 wt% hydration under applied tensile stresses. We observe that the stress-strain behavior becomes more nonlinear with an increase in hydration, and an increase in mineral content for hydrated fibrils under tensile stress reduces the nonlinear stress versus strain behavior caused by hydration. The Young's modulus of both non-mineralized and mineralized fibrils decreases as the water content increases. As the water content increases, the gap/overlap ratio increases by approximately 40% for the non-mineralized cases and 16% for the highly mineralized cases. Our results indicate that variations in mineral and water content change the distribution of water in collagen fibrils and that the water distribution changes the deformation of gap and overlap regions under tensile loading.
Collapse
Affiliation(s)
- Marco Fielder
- Multiscale Materials Modeling Lab, Department of Mechanical Engineering, University of Arkansas, Fayetteville, AR, USA
| | - Arun K Nair
- Multiscale Materials Modeling Lab, Department of Mechanical Engineering, University of Arkansas, Fayetteville, AR, USA. .,Institute for Nanoscience and Engineering, University of Arkansas, 731 W. Dickson Street, Fayetteville, AR, USA.
| |
Collapse
|
45
|
Inspired by Nature: Antioxidants and Nanotechnology. Antioxidants (Basel) 2018; 7:antiox7080101. [PMID: 30060602 PMCID: PMC6115953 DOI: 10.3390/antiox7080101] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Accepted: 07/25/2018] [Indexed: 11/16/2022] Open
|
46
|
Qi Y, Ye Z, Fok A, Holmes BN, Espanol M, Ginebra MP, Aparicio C. Effects of Molecular Weight and Concentration of Poly(Acrylic Acid) on Biomimetic Mineralization of Collagen. ACS Biomater Sci Eng 2018; 4:2758-2766. [PMID: 30581990 DOI: 10.1021/acsbiomaterials.8b00512] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Inspired by nature, poly(acrylic acid) (PAA) and other polyelectrolytes have been used as noncollagenous proteins (NCPs) surrogates for biomimetic intrafibrillar mineralization of collagen fibrils and thus, to model the ultrastructure of bone, to study the mechanism of bone mineralization and, more scarcely to fabricate scaffolds for hard tissue engineering. The objective of this study was to systematically investigate the effect of the molecular weight (MW) and the concentration of PAA on the rate and pattern of biomineralization of collagen matrices. Densified type I collagen films were mineralized in supersaturated PAA-stabilized amorphous calcium-phosphate (PAA-ACP) solutions containing increasing MW (2 kDa, 50 kDA, 450 kDa) and concentrations (10, 25, 50 mg/L) of PAA up to 7 days. The stability and physical properties of collagen-free PAA-ACP solutions were also investigated. In our system, lowering PAA MW and increasing PAA concentration resulted in solutions with increasing stability. Over stable PAA-ACP solutions that fully inhibited mineralization of the collagen matrices were achieved using PAA 2k-50. Conversely, unstable solutions were obtained using high PAA MW at low concentrations. Nucleation and growth of significant amount of extrafibrillar minerals on the collagen fibrils was obtained using these solutions. In a wide range of combined MW and concentration of PAA we obtained intrafibrillar mineralization of collagen with hydroxyapatite crystals aligned parallel to the collagen fibril as in natural tissues. Intrafibrillar mineralization was correlated with PAA-ACP stability and growth of the PAA-ACP particles in solution. Our results support using PAA to surrogate NCPs function as selective inhibitors or promoters of biological mineralization and provide parameters to manufacture new biomimetic scaffolds and constructs for bone and dentin tissue engineering.
Collapse
Affiliation(s)
- Yipin Qi
- Department of Operative Dentistry and Endodontics, Guanghua School of Stomatology, Hospital of Stomatology, Guangdong Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou 510000, China
| | - Zhou Ye
- MDRCBB, Minnesota Dental Research Center for Biomaterials and Biomechanics, University of Minnesota, 16-212 Moos Tower, 515 Delaware St. SE, Minneapolis, MN, USA
| | - Alex Fok
- MDRCBB, Minnesota Dental Research Center for Biomaterials and Biomechanics, University of Minnesota, 16-212 Moos Tower, 515 Delaware St. SE, Minneapolis, MN, USA
| | - Brian N Holmes
- MDRCBB, Minnesota Dental Research Center for Biomaterials and Biomechanics, University of Minnesota, 16-212 Moos Tower, 515 Delaware St. SE, Minneapolis, MN, USA
| | - Monsterrat Espanol
- Biomaterials, Biomechanics and Tissue Engineering Group, Department of Materials Science and Metallurgical Engineering, Universitat Politècnica de Catalunya (UPC), Av. Eduard Maristany 10-14, 08019 Barcelona, Spain.,Barcelona Research Center in Multiscale Science and Engineering, Universitat Politècnica de Catalunya, Av. Eduard Maristany 10-14, 08019 Barcelona, Spain
| | - Maria-Pau Ginebra
- Biomaterials, Biomechanics and Tissue Engineering Group, Department of Materials Science and Metallurgical Engineering, Universitat Politècnica de Catalunya (UPC), Av. Eduard Maristany 10-14, 08019 Barcelona, Spain.,Barcelona Research Center in Multiscale Science and Engineering, Universitat Politècnica de Catalunya, Av. Eduard Maristany 10-14, 08019 Barcelona, Spain.,Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute of Science and Technology, C/Baldiri Reixac 10-12, 08028, Barcelona, Spain
| | - Conrado Aparicio
- MDRCBB, Minnesota Dental Research Center for Biomaterials and Biomechanics, University of Minnesota, 16-212 Moos Tower, 515 Delaware St. SE, Minneapolis, MN, USA
| |
Collapse
|
47
|
|
48
|
Liebi M, Georgiadis M, Kohlbrecher J, Holler M, Raabe J, Usov I, Menzel A, Schneider P, Bunk O, Guizar-Sicairos M. Small-angle X-ray scattering tensor tomography: model of the three-dimensional reciprocal-space map, reconstruction algorithm and angular sampling requirements. Acta Crystallogr A Found Adv 2018; 74:12-24. [PMID: 29269594 PMCID: PMC5740453 DOI: 10.1107/s205327331701614x] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Accepted: 11/08/2017] [Indexed: 11/10/2022] Open
Abstract
Small-angle X-ray scattering tensor tomography, which allows reconstruction of the local three-dimensional reciprocal-space map within a three-dimensional sample as introduced by Liebi et al. [Nature (2015), 527, 349-352], is described in more detail with regard to the mathematical framework and the optimization algorithm. For the case of trabecular bone samples from vertebrae it is shown that the model of the three-dimensional reciprocal-space map using spherical harmonics can adequately describe the measured data. The method enables the determination of nanostructure orientation and degree of orientation as demonstrated previously in a single momentum transfer q range. This article presents a reconstruction of the complete reciprocal-space map for the case of bone over extended ranges of q. In addition, it is shown that uniform angular sampling and advanced regularization strategies help to reduce the amount of data required.
Collapse
Affiliation(s)
- Marianne Liebi
- Paul Scherrer Institut, 5232 Villigen PSI, Switzerland
- MAX IV Laboratory, Lund University, 221-00 Lund, Sweden
- Department of Physics, Chalmers University of Technology, 41296 Gothenburg, Sweden
| | - Marios Georgiadis
- Institute for Biomedical Engineering, ETH and University Zurich, 8093 Zurich, Switzerland
| | | | - Mirko Holler
- Paul Scherrer Institut, 5232 Villigen PSI, Switzerland
| | - Jörg Raabe
- Paul Scherrer Institut, 5232 Villigen PSI, Switzerland
| | - Ivan Usov
- Paul Scherrer Institut, 5232 Villigen PSI, Switzerland
| | | | - Philipp Schneider
- Bioengineering Science Research Group, Faculty of Engineering and the Environment, University of Southampton, Southampton SO17 1BJ, England
| | - Oliver Bunk
- Paul Scherrer Institut, 5232 Villigen PSI, Switzerland
| | | |
Collapse
|
49
|
Guo J, Li C, Ling S, Huang W, Chen Y, Kaplan DL. Multiscale design and synthesis of biomimetic gradient protein/biosilica composites for interfacial tissue engineering. Biomaterials 2017; 145:44-55. [PMID: 28843732 PMCID: PMC5610098 DOI: 10.1016/j.biomaterials.2017.08.025] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 07/16/2017] [Accepted: 08/14/2017] [Indexed: 01/13/2023]
Abstract
Continuous gradients present at tissue interfaces such as osteochondral systems, reflect complex tissue functions and involve changes in extracellular matrix compositions, cell types and mechanical properties. New and versatile biomaterial strategies are needed to create suitable biomimetic engineered grafts for interfacial tissue engineering. Silk protein-based composites, coupled with selective peptides with mineralization domains, were utilized to mimic the soft-to-hard transition in osteochondral interfaces. The gradient composites supported tunable mineralization and mechanical properties corresponding to the spatial concentration gradient of the mineralization domains (R5 peptide). The composite system exhibited continuous transitions in terms of composition, structure and mechanical properties, as well as cytocompatibility and biodegradability. The gradient silicified silk/R5 composites promoted and regulated osteogenic differentiation of human mesenchymal stem cells in an osteoinductive environment in vitro. The cells differentiated along the composites in a manner consistent with the R5-gradient profile. This novel biomimetic gradient biomaterial design offers a useful approach to meet a broad range of needs in regenerative medicine.
Collapse
Affiliation(s)
- Jin Guo
- Department of Chemical and Biological Engineering, Tufts University, 4 Colby Street, Medford, MA 02155, USA; Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, MA 02155, USA
| | - Chunmei Li
- Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, MA 02155, USA
| | - Shengjie Ling
- Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, MA 02155, USA; Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Wenwen Huang
- Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, MA 02155, USA
| | - Ying Chen
- Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, MA 02155, USA
| | - David L Kaplan
- Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, MA 02155, USA.
| |
Collapse
|
50
|
Georgiadis M, Müller R, Schneider P. Techniques to assess bone ultrastructure organization: orientation and arrangement of mineralized collagen fibrils. J R Soc Interface 2017; 13:rsif.2016.0088. [PMID: 27335222 DOI: 10.1098/rsif.2016.0088] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Accepted: 05/18/2016] [Indexed: 12/13/2022] Open
Abstract
Bone's remarkable mechanical properties are a result of its hierarchical structure. The mineralized collagen fibrils, made up of collagen fibrils and crystal platelets, are bone's building blocks at an ultrastructural level. The organization of bone's ultrastructure with respect to the orientation and arrangement of mineralized collagen fibrils has been the matter of numerous studies based on a variety of imaging techniques in the past decades. These techniques either exploit physical principles, such as polarization, diffraction or scattering to examine bone ultrastructure orientation and arrangement, or directly image the fibrils at the sub-micrometre scale. They make use of diverse probes such as visible light, X-rays and electrons at different scales, from centimetres down to nanometres. They allow imaging of bone sections or surfaces in two dimensions or investigating bone tissue truly in three dimensions, in vivo or ex vivo, and sometimes in combination with in situ mechanical experiments. The purpose of this review is to summarize and discuss this broad range of imaging techniques and the different modalities of their use, in order to discuss their advantages and limitations for the assessment of bone ultrastructure organization with respect to the orientation and arrangement of mineralized collagen fibrils.
Collapse
Affiliation(s)
| | - Ralph Müller
- Institute for Biomechanics, ETH Zurich, Zurich, Switzerland
| | - Philipp Schneider
- Institute for Biomechanics, ETH Zurich, Zurich, Switzerland Bioengineering Science Research Group, Faculty of Engineering and the Environment, University of Southampton, Southampton, UK
| |
Collapse
|