1
|
Kumar M, Kulkarni P, Liu S, Chemuturi N, Shah DK. Nanoparticle biodistribution coefficients: A quantitative approach for understanding the tissue distribution of nanoparticles. Adv Drug Deliv Rev 2023; 194:114708. [PMID: 36682420 DOI: 10.1016/j.addr.2023.114708] [Citation(s) in RCA: 54] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 12/26/2022] [Accepted: 01/17/2023] [Indexed: 01/22/2023]
Abstract
The objective of this manuscript is to provide quantitative insights into the tissue distribution of nanoparticles. Published pharmacokinetics of nanoparticles in plasma, tumor and 13 different tissues of mice were collected from literature. A total of 2018 datasets were analyzed and biodistribution of graphene oxide, lipid, polymeric, silica, iron oxide and gold nanoparticles in different tissues was quantitatively characterized using Nanoparticle Biodistribution Coefficients (NBC). It was observed that typically after intravenous administration most of the nanoparticles are accumulated in the liver (NBC = 17.56 %ID/g) and spleen (NBC = 12.1 %ID/g), while other tissues received less than 5 %ID/g. NBC values for kidney, lungs, heart, bones, brain, stomach, intestine, pancreas, skin, muscle and tumor were found to be 3.1 %ID/g, 2.8 %ID/g, 1.8 %ID/g, 0.9 %ID/g, 0.3 %ID/g, 1.2 %ID/g, 1.8 %ID/g, 1.2 %ID/g, 1.0 %ID/g, 0.6 %ID/g and 3.4 %ID/g, respectively. Significant variability in nanoparticle distribution was observed in certain organs such as liver, spleen and lungs. A large fraction of this variability could be explained by accounting for the differences in nanoparticle physicochemical properties such as size and material. A critical overview of published nanoparticle physiologically-based pharmacokinetic (PBPK) models is provided, and limitations in our current knowledge about in vitro and in vivo pharmacokinetics of nanoparticles that restrict the development of robust PBPK models is also discussed. It is hypothesized that robust quantitative assessment of whole-body pharmacokinetics of nanoparticles and development of mathematical models that can predict their disposition can improve the probability of successful clinical translation of these modalities.
Collapse
Affiliation(s)
- Mokshada Kumar
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, The State University of New York at Buffalo, United States
| | - Priyanka Kulkarni
- Drug Metabolism and Pharmacokinetics, R&D, Takeda Pharmaceuticals, Cambridge, MA, United States
| | - Shufang Liu
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, The State University of New York at Buffalo, United States
| | - Nagendra Chemuturi
- Drug Metabolism and Pharmacokinetics, R&D, Takeda Pharmaceuticals, Cambridge, MA, United States.
| | - Dhaval K Shah
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, The State University of New York at Buffalo, United States.
| |
Collapse
|
2
|
Nguyen NHA, Falagan-Lotsch P. Mechanistic Insights into the Biological Effects of Engineered Nanomaterials: A Focus on Gold Nanoparticles. Int J Mol Sci 2023; 24:4109. [PMID: 36835521 PMCID: PMC9963226 DOI: 10.3390/ijms24044109] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 02/10/2023] [Accepted: 02/16/2023] [Indexed: 02/22/2023] Open
Abstract
Nanotechnology has great potential to significantly advance the biomedical field for the benefit of human health. However, the limited understanding of nano-bio interactions leading to unknowns about the potential adverse health effects of engineered nanomaterials and to the poor efficacy of nanomedicines has hindered their use and commercialization. This is well evidenced considering gold nanoparticles, one of the most promising nanomaterials for biomedical applications. Thus, a fundamental understanding of nano-bio interactions is of interest to nanotoxicology and nanomedicine, enabling the development of safe-by-design nanomaterials and improving the efficacy of nanomedicines. In this review, we introduce the advanced approaches currently applied in nano-bio interaction studies-omics and systems toxicology-to provide insights into the biological effects of nanomaterials at the molecular level. We highlight the use of omics and systems toxicology studies focusing on the assessment of the mechanisms underlying the in vitro biological responses to gold nanoparticles. First, the great potential of gold-based nanoplatforms to improve healthcare along with the main challenges for their clinical translation are presented. We then discuss the current limitations in the translation of omics data to support risk assessment of engineered nanomaterials.
Collapse
Affiliation(s)
- Nhung H. A. Nguyen
- Institute for Nanomaterials, Advanced Technologies and Innovation, Technical University of Liberec (TUL), Studentsk. 2, 46117 Liberec, Czech Republic
| | - Priscila Falagan-Lotsch
- Department of Biological Sciences, College of Sciences and Mathematics, Auburn University, Auburn, AL 36849, USA
| |
Collapse
|
3
|
Overview of Adverse Outcome Pathways and Current Applications on Nanomaterials. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1357:415-439. [DOI: 10.1007/978-3-030-88071-2_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
4
|
Cao J, Bhatnagar S, Wang J, Qi X, Prabha S, Panyam J. Cancer stem cells and strategies for targeted drug delivery. Drug Deliv Transl Res 2021; 11:1779-1805. [PMID: 33095384 PMCID: PMC8062588 DOI: 10.1007/s13346-020-00863-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/01/2020] [Indexed: 12/23/2022]
Abstract
Cancer stem cells (CSCs) are a small proportion of cancer cells with high tumorigenic activity, self-renewal ability, and multilineage differentiation potential. Standard anti-tumor therapies including conventional chemotherapy, radiation therapy, and molecularly targeted therapies are not effective against CSCs, and often lead to enrichment of CSCs that can result in tumor relapse. Therefore, it is hypothesized that targeting CSCs is key to increasing the efficacy of cancer therapies. In this review, CSC properties including CSC markers, their role in tumor growth, invasiveness, metastasis, and drug resistance, as well as CSC microenvironment are discussed. Further, CSC-targeted strategies including the use of targeted drug delivery systems are examined.
Collapse
Affiliation(s)
- Jin Cao
- School of Pharmacy, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
- College of Pharmacy, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Shubhmita Bhatnagar
- College of Pharmacy, University of Minnesota, Minneapolis, MN, 55455, USA
- School of Pharmacy, Temple University, Philadelphia, PA, 19140, USA
| | - Jiawei Wang
- College of Pharmacy, University of Minnesota, Minneapolis, MN, 55455, USA
- College of Pharmacy, University of Texas at Austin, Austin, TX, 78712, USA
| | - Xueyong Qi
- School of Pharmacy, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Swayam Prabha
- College of Pharmacy, University of Minnesota, Minneapolis, MN, 55455, USA
- Cancer Research & Molecular Biology and Department of Pharmacology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, 19140, USA
| | - Jayanth Panyam
- College of Pharmacy, University of Minnesota, Minneapolis, MN, 55455, USA.
- School of Pharmacy, Temple University, Philadelphia, PA, 19140, USA.
| |
Collapse
|
5
|
Bayoumy AB, Crouwel F, Chanda N, Florin THJ, Buiter HJC, Mulder CJJ, de Boer NKH. Advances in Thiopurine Drug Delivery: The Current State-of-the-Art. Eur J Drug Metab Pharmacokinet 2021; 46:743-758. [PMID: 34487330 PMCID: PMC8599251 DOI: 10.1007/s13318-021-00716-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/22/2021] [Indexed: 02/07/2023]
Abstract
Thiopurines (mercaptopurine, azathioprine and thioguanine) are well-established maintenance treatments for a wide range of diseases such as leukemia, inflammatory bowel disease (IBD), systemic lupus erythematosus (SLE) and other inflammatory and autoimmune diseases in general. Worldwide, millions of patients are treated with thiopurines. The use of thiopurines has been limited because of off-target effects such as myelotoxicity and hepatotoxicity. Therefore, seeking methods to enhance target-based thiopurine-based treatment is relevant, combined with pharmacogenetic testing. Controlled-release formulations for thiopurines have been clinically tested and have shown promising outcomes in inflammatory bowel disease. Latest developments in nano-formulations for thiopurines have shown encouraging pre-clinical results, but further research and development are needed. This review provides an overview of novel drug delivery strategies for thiopurines, reviewing modified release formulations and with a focus on nano-based formulations.
Collapse
Affiliation(s)
- Ahmed B Bayoumy
- Faculty of Medicine, Amsterdam UMC, Location Academic Medical Centre, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands.
| | - Femke Crouwel
- Department of Gastroenterology and Hepatology, AGEM Research Institute, Amsterdam University Medical Center, Location Vrije Universiteit Medical Center, Amsterdam, The Netherlands
| | - Nripen Chanda
- Micro System Technology Laboratory, CSIR, Central Mechanical Engineering Research Institute, Durgapur, India
| | - Timothy H J Florin
- Inflammatory Bowel Diseases Group, Mater Research Institute, University of Queensland, Translational Research Institute, Woolloongabba, QLD, Australia
| | - Hans J C Buiter
- Department of Radiology and Nuclear Medicine, Amsterdam University Medical Center, Location Vrije Universiteit Medical Center, Amsterdam, The Netherlands
| | - Chris J J Mulder
- Department of Gastroenterology and Hepatology, AGEM Research Institute, Amsterdam University Medical Center, Location Vrije Universiteit Medical Center, Amsterdam, The Netherlands
| | - Nanne K H de Boer
- Department of Gastroenterology and Hepatology, AGEM Research Institute, Amsterdam University Medical Center, Location Vrije Universiteit Medical Center, Amsterdam, The Netherlands
| |
Collapse
|
6
|
Dissecting the Inorganic Nanoparticle-Driven Interferences on Adhesome Dynamics. JOURNAL OF NANOTHERANOSTICS 2021. [DOI: 10.3390/jnt2030011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Inorganic nanoparticles have emerged as an attractive theranostic tool applied to different pathologies such as cancer. However, the increment in inorganic nanoparticle application in biomedicine has prompted the scientific community to assess their potential toxicities, often preventing them from entering clinical settings. Cytoskeleton network and the related adhesomes nest are present in most cellular processes such as proliferation, migration, and cell death. The nanoparticle treatment can interfere with the cytoskeleton and adhesome dynamics, thus inflicting cellular damage. Therefore, it is crucial dissecting the molecular mechanisms involved in nanoparticle cytotoxicity. This review will briefly address the main characteristics of different adhesion structures and focus on the most relevant effects of inorganic nanoparticles with biomedical potential on cellular adhesome dynamics. Besides, the review put into perspective the use of inorganic nanoparticles for cytoskeleton targeting or study as a versatile tool. The dissection of the molecular mechanisms involved in the nanoparticle-driven interference of adhesome dynamics will facilitate the future development of nanotheranostics targeting cytoskeleton and adhesomes to tackle several diseases, such as cancer.
Collapse
|
7
|
Application of smart nanoparticles as a potential platform for effective colorectal cancer therapy. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.213949] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
8
|
Bakhtari A, Nazari S, Alaee S, Kargar-Abarghouei E, Mesbah F, Mirzaei E, Molaei MJ. Effects of Dextran-Coated Superparamagnetic Iron Oxide Nanoparticles on Mouse Embryo Development, Antioxidant Enzymes and Apoptosis Genes Expression, and Ultrastructure of Sperm, Oocytes and Granulosa Cells. INTERNATIONAL JOURNAL OF FERTILITY & STERILITY 2020; 14:161-170. [PMID: 33098381 PMCID: PMC7604700 DOI: 10.22074/ijfs.2020.6167] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Accepted: 02/24/2020] [Indexed: 11/04/2022]
Abstract
Background Although application of superparamagnetic iron oxide nanoparticles (SPIONs) in industry and medicine has increased, their potential toxicity in reproductive cells remains a controversial issue. This study was undertaken to address the response of sperm, oocyte, and resultant blastocyst to dextran-coated SPIONs (D-SPIONs) treatment during murine in vitro fertilization (IVF). Materials and Methods In this experimental study, murine mature oocytes were randomly divided into three groups: control, and low- and high-dose groups in which fertilization medium was mixed with 0, 50 and 250 μg/ml of DSPIONs, respectively. Sperm and/or cumulus oocyte complexes (COCs) were cultured for 4 h in this medium for electron microscopic analysis of sperm and COCs, and assessment of developmental competence and genes expression of Gpx1, Sod1, catalase, Bcl2l1 and Bax in the resultant blastocysts. Results Ultrastructural study of sperm, oocyte, and granulosa showed destructed mitochondria and membranes in spermatozoa, vacuolated mitochondria and distorted cristae in oocytes, and disrupted nuclei and disorganized cell membranes in granulosa in a dose-dependent manner. Data showed that cleavage and blastocyst rates in the 250 μg/ml of D-SPIONs were significantly lower than in the control group (P<0.05). Gene expression of GPx1, Sod1, catalase, Bcl2l1 and Bax in resultant blastocysts of the high-dose group and catalase and Bax in resultant blastocysts of the low-dose group, was higher than the controls. Conclusion There is considerable concern regarding D-SPIONs toxic effects on IVF, and mitochondrial and cell membrane damage in mouse spermatozoa and oocytes, which may be related to oxidative stress and apoptotic events.
Collapse
Affiliation(s)
- Azizollah Bakhtari
- Department of Reproductive Biology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Saeedeh Nazari
- Department of Reproductive Biology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Sanaz Alaee
- Department of Reproductive Biology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran. Electronic Address:
| | - Elias Kargar-Abarghouei
- Department of Anatomy, Faculty of Medicine, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Fakhroddin Mesbah
- Department of Anatomical Sciences, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Esmaeil Mirzaei
- Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Jafar Molaei
- Faculty of Chemical and Materials Engineering, Shahrood University of Technology, Shahrood, Iran
| |
Collapse
|
9
|
Kad A, Pundir A, Arya SK, Bhardwaj N, Khatri M. An Elucidative Review to Analytically Sieve the Viability of Nanomedicine Market. J Pharm Innov 2020; 17:249-265. [PMID: 32983280 PMCID: PMC7502307 DOI: 10.1007/s12247-020-09495-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/08/2020] [Indexed: 12/19/2022]
Abstract
The advent of the twenty-first century marked a paradigm shift in the healthcare sector with coming of automated, sensitive, targeted medicines and technologies having diagnostic, prophylactic and therapeutic effects. Nanomedicines also attained wide acclamation in their initial years, but the transformation from being the proof of concept to successfully marketed products seems very daunting. Although the reason for this may be attributed to slow but incremental character of many present-day technologies, the review asserts that there are other significant facets that may purvey a thorough explanation of this scenario. The article elaborately discusses the hurdles hindering clinical translation of nanomedicines including scale-up challenges, in vitro in vivo cascade of toxicology assays, along with unrefined manufacturing guidelines, inadequate regulatory approvals, competitive conventional market, etc., leading to hesitant investments by pharmaceutical giants. The paper also explores the economic viability of nanobiotechnology sector through an empirical investigation of the revenue data of various pharmaceutical industries manufacturing nano-based drugs, which indicates minor commercial importance of these medicines. We also laid down a comprehensive set of recommendations to smoothen the translational pathway of nanomedicines from an idea to reality, efface the consumer distrust and push boundaries for development and launching of safe, efficient and commercially successful products. Graphical abstract.
Collapse
Affiliation(s)
- Anaida Kad
- Department of Biotechnology, University Institute of Engineering and Technology, Panjab University, Sector-25, Chandigarh, 160014 India
| | - Archit Pundir
- Department of Biotechnology, University Institute of Engineering and Technology, Panjab University, Sector-25, Chandigarh, 160014 India
| | - Shailendra Kumar Arya
- Department of Biotechnology, University Institute of Engineering and Technology, Panjab University, Sector-25, Chandigarh, 160014 India
| | - Neha Bhardwaj
- Department of Biotechnology, University Institute of Engineering and Technology, Panjab University, Sector-25, Chandigarh, 160014 India
| | - Madhu Khatri
- Department of Biotechnology, University Institute of Engineering and Technology, Panjab University, Sector-25, Chandigarh, 160014 India
- Wellcome Trust/DBT IA Early Career Fellow, Panjab University, Chandigarh, 160014 India
| |
Collapse
|
10
|
Joo JI, Choi M, Jang SH, Choi S, Park SM, Shin D, Cho KH. Realizing Cancer Precision Medicine by Integrating Systems Biology and Nanomaterial Engineering. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1906783. [PMID: 32253807 DOI: 10.1002/adma.201906783] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 12/19/2019] [Indexed: 06/11/2023]
Abstract
Many clinical trials for cancer precision medicine have yielded unsatisfactory results due to challenges such as drug resistance and low efficacy. Drug resistance is often caused by the complex compensatory regulation within the biomolecular network in a cancer cell. Recently, systems biological studies have modeled and simulated such complex networks to unravel the hidden mechanisms of drug resistance and identify promising new drug targets or combinatorial or sequential treatments for overcoming resistance to anticancer drugs. However, many of the identified targets or treatments present major difficulties for drug development and clinical application. Nanocarriers represent a path forward for developing therapies with these "undruggable" targets or those that require precise combinatorial or sequential application, for which conventional drug delivery mechanisms are unsuitable. Conversely, a challenge in nanomedicine has been low efficacy due to heterogeneity of cancers in patients. This problem can also be resolved through systems biological approaches by identifying personalized targets for individual patients or promoting the drug responses. Therefore, integration of systems biology and nanomaterial engineering will enable the clinical application of cancer precision medicine to overcome both drug resistance of conventional treatments and low efficacy of nanomedicine due to patient heterogeneity.
Collapse
Affiliation(s)
- Jae Il Joo
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Minsoo Choi
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Seong-Hoon Jang
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Sea Choi
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Sang-Min Park
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Dongkwan Shin
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Kwang-Hyun Cho
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| |
Collapse
|
11
|
Pesaraklou A, Matin MM. Cerium oxide nanoparticles and their importance in cell signaling pathways for predicting cellular behavior. Nanomedicine (Lond) 2020; 15:1709-1718. [PMID: 32664817 DOI: 10.2217/nnm-2020-0104] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Cerium oxide nanoparticles (CeO2-NPs) have prolifically attracted immense interest of researchers due to their prominent anti-oxidant nature. However, these characteristics are accompanied by some ambiguities in other studies reporting their oxidant and toxic properties. In this regard previous literature has pointed to the importance of the NPs morphology and environmental conditions as well as biomolecules that induce a different response by initiating a cascade of activities. Therefore, due to the fact that signaling proteins are key mediators in cellular responses, the cognizance of the CeO2-NP-targeted signaling pathways could facilitate predicting the cellular behavior and thus more efficient applications of these NPs for clinical purposes. Consequently, a comprehensive review is necessary in this field, to clarify the impacts of CeO2-NPs on various signaling pathways.
Collapse
Affiliation(s)
- Atefeh Pesaraklou
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, 9177948974, Iran
| | - Maryam M Matin
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, 9177948974, Iran.,Novel Diagnostics & Therapeutics Research Group, Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, 9177948974, Iran.,Stem Cells & Regenerative Medicine Research Group, Academic Center for Education, Culture & Research (ACECR), Khorasan Razavi Branch, Mashhad, 9177949367, Iran
| |
Collapse
|
12
|
Halappanavar S, van den Brule S, Nymark P, Gaté L, Seidel C, Valentino S, Zhernovkov V, Høgh Danielsen P, De Vizcaya A, Wolff H, Stöger T, Boyadziev A, Poulsen SS, Sørli JB, Vogel U. Adverse outcome pathways as a tool for the design of testing strategies to support the safety assessment of emerging advanced materials at the nanoscale. Part Fibre Toxicol 2020; 17:16. [PMID: 32450889 PMCID: PMC7249325 DOI: 10.1186/s12989-020-00344-4] [Citation(s) in RCA: 125] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 04/02/2020] [Indexed: 12/11/2022] Open
Abstract
Toxicity testing and regulation of advanced materials at the nanoscale, i.e. nanosafety, is challenged by the growing number of nanomaterials and their property variants requiring assessment for potential human health impacts. The existing animal-reliant toxicity testing tools are onerous in terms of time and resources and are less and less in line with the international effort to reduce animal experiments. Thus, there is a need for faster, cheaper, sensitive and effective animal alternatives that are supported by mechanistic evidence. More importantly, there is an urgency for developing alternative testing strategies that help justify the strategic prioritization of testing or targeting the most apparent adverse outcomes, selection of specific endpoints and assays and identifying nanomaterials of high concern. The Adverse Outcome Pathway (AOP) framework is a systematic process that uses the available mechanistic information concerning a toxicological response and describes causal or mechanistic linkages between a molecular initiating event, a series of intermediate key events and the adverse outcome. The AOP framework provides pragmatic insights to promote the development of alternative testing strategies. This review will detail a brief overview of the AOP framework and its application to nanotoxicology, tools for developing AOPs and the role of toxicogenomics, and summarize various AOPs of relevance to inhalation toxicity of nanomaterials that are currently under various stages of development. The review also presents a network of AOPs derived from connecting all AOPs, which shows that several adverse outcomes induced by nanomaterials originate from a molecular initiating event that describes the interaction of nanomaterials with lung cells and involve similar intermediate key events. Finally, using the example of an established AOP for lung fibrosis, the review will discuss various in vitro tests available for assessing lung fibrosis and how the information can be used to support a tiered testing strategy for lung fibrosis. The AOPs and AOP network enable deeper understanding of mechanisms involved in inhalation toxicity of nanomaterials and provide a strategy for the development of alternative test methods for hazard and risk assessment of nanomaterials.
Collapse
Affiliation(s)
- Sabina Halappanavar
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, Ontario, Canada.
| | - Sybille van den Brule
- Louvain centre for Toxicology and Applied Pharmacology, Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain, Brussels, Belgium
| | - Penny Nymark
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
- Department of Toxicology, Misvik Biology, Turku, Finland
| | - Laurent Gaté
- Institut National de Recherche et de Sécurité, Vandoeuvre-lès-Nancy, France
| | - Carole Seidel
- Institut National de Recherche et de Sécurité, Vandoeuvre-lès-Nancy, France
| | - Sarah Valentino
- Institut National de Recherche et de Sécurité, Vandoeuvre-lès-Nancy, France
| | - Vadim Zhernovkov
- Systems Biology Ireland, University College Dublin, Dublin 4, Ireland
| | | | - Andrea De Vizcaya
- Departamento de Toxicologia, CINVESTAV-IPN, Ciudad de México, Mexico
- Sabbatical leave at Environmental Health Science and Research Bureau, Health Canada, Ottawa, Canada
| | - Henrik Wolff
- Finnish Institute of Occupational Health, Helsinki, Finland
| | - Tobias Stöger
- Research Center for Environmental Health (GmbH), Neuherberg, Germany
- German Center for Lung Research (DZL), Giessen, Germany
- Institute of Lung Biology and Disease, Comprehensive Pneumology Center, Helmholtz Zentrum München - German, Oberschleißheim, Germany
| | - Andrey Boyadziev
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, Ontario, Canada
| | - Sarah Søs Poulsen
- National Research Centre for the Working Environment, Copenhagen Ø, Denmark
| | | | - Ulla Vogel
- National Research Centre for the Working Environment, Copenhagen Ø, Denmark.
- DTU Health Tech, Technical University of Denmark, Kgs. Lyngby, Denmark.
| |
Collapse
|
13
|
Ha MK, Kwon SJ, Choi JS, Nguyen NT, Song J, Lee Y, Kim YE, Shin I, Nam JW, Yoon TH. Mass Cytometry and Single-Cell RNA-seq Profiling of the Heterogeneity in Human Peripheral Blood Mononuclear Cells Interacting with Silver Nanoparticles. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e1907674. [PMID: 32163679 DOI: 10.1002/smll.201907674] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 02/17/2020] [Accepted: 02/18/2020] [Indexed: 06/10/2023]
Abstract
Understanding the interactions between nanoparticles (NPs) and human immune cells is necessary for justifying their utilization in consumer products and biomedical applications. However, conventional assays may be insufficient in describing the complexity and heterogeneity of cell-NP interactions. Herein, mass cytometry and single-cell RNA-sequencing (scRNA-seq) are complementarily used to investigate the heterogeneous interactions between silver nanoparticles (AgNPs) and primary immune cells. Mass cytometry reveals the heterogeneous biodistribution of the positively charged polyethylenimine-coated AgNPs in various cell types and finds that monocytes and B cells have higher association with the AgNPs than other populations. scRNA-seq data of these two cell types demonstrate that each type has distinct responses to AgNP treatment: NRF2-mediated oxidative stress is confined to B cells, whereas monocytes show Fcγ-mediated phagocytosis. Besides the between-population heterogeneity, analysis of single-cell dose-response relationships further reveals within-population diversity for the B cells and naïve CD4+ T cells. Distinct subsets having different levels of cellular responses with respect to their cellular AgNP doses are found. This study demonstrates that the complementary use of mass cytometry and scRNA-seq is helpful for gaining in-depth knowledge on the heterogeneous interactions between immune cells and NPs and can be incorporated into future toxicity assessments of nanomaterials.
Collapse
Affiliation(s)
- My Kieu Ha
- Center for Next Generation Cytometry, Hanyang University, Seoul, 04763, Republic of Korea
- Department of Chemistry, College of Natural Sciences, Hanyang University, Seoul, 04763, Republic of Korea
| | - Sook Jin Kwon
- Center for Next Generation Cytometry, Hanyang University, Seoul, 04763, Republic of Korea
- Institute of Next Generation Material Design, Hanyang University, Seoul, 04763, Republic of Korea
| | - Jang-Sik Choi
- Center for Next Generation Cytometry, Hanyang University, Seoul, 04763, Republic of Korea
- Institute of Next Generation Material Design, Hanyang University, Seoul, 04763, Republic of Korea
| | - Nguyen Thanh Nguyen
- Center for Next Generation Cytometry, Hanyang University, Seoul, 04763, Republic of Korea
- Department of Chemistry, College of Natural Sciences, Hanyang University, Seoul, 04763, Republic of Korea
| | - Jaewoo Song
- Department of Laboratory Medicine, College of Medicine, Yonsei University, Seoul, 03722, Republic of Korea
| | - Yangsoon Lee
- Department of Laboratory Medicine, College of Medicine, Hanyang University, Seoul, 04763, Republic of Korea
| | - Young-Eun Kim
- Department of Laboratory Medicine, College of Medicine, Hanyang University, Seoul, 04763, Republic of Korea
| | - Incheol Shin
- Department of Life Science, College of Natural Sciences, Hanyang University, Seoul, 04763, Republic of Korea
| | - Jin-Wu Nam
- Department of Life Science, College of Natural Sciences, Hanyang University, Seoul, 04763, Republic of Korea
| | - Tae Hyun Yoon
- Center for Next Generation Cytometry, Hanyang University, Seoul, 04763, Republic of Korea
- Department of Chemistry, College of Natural Sciences, Hanyang University, Seoul, 04763, Republic of Korea
- Institute of Next Generation Material Design, Hanyang University, Seoul, 04763, Republic of Korea
| |
Collapse
|
14
|
Boyadzhiev A, Trevithick-Sutton C, Wu D, Decan N, Bazin M, Shah GM, Halappanavar S. Enhanced Dark-Field Hyperspectral Imaging and Spectral Angle Mapping for Nanomaterial Detection in Consumer Care Products and in Skin Following Dermal Exposure. Chem Res Toxicol 2020; 33:1266-1278. [DOI: 10.1021/acs.chemrestox.0c00090] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Andrey Boyadzhiev
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, Canada
| | | | - Dongmei Wu
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, Canada
| | | | - Marc Bazin
- Laboratory for Skin Cancer Research, CHU de Quebec Laval University (CHUL), Quebec City, Canada
| | - Girish M. Shah
- Laboratory for Skin Cancer Research, CHU de Quebec Laval University (CHUL), Quebec City, Canada
| | - Sabina Halappanavar
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, Canada
| |
Collapse
|
15
|
Nymark P, Bakker M, Dekkers S, Franken R, Fransman W, García-Bilbao A, Greco D, Gulumian M, Hadrup N, Halappanavar S, Hongisto V, Hougaard KS, Jensen KA, Kohonen P, Koivisto AJ, Dal Maso M, Oosterwijk T, Poikkimäki M, Rodriguez-Llopis I, Stierum R, Sørli JB, Grafström R. Toward Rigorous Materials Production: New Approach Methodologies Have Extensive Potential to Improve Current Safety Assessment Practices. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e1904749. [PMID: 31913582 DOI: 10.1002/smll.201904749] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 12/09/2019] [Indexed: 06/10/2023]
Abstract
Advanced material development, including at the nanoscale, comprises costly and complex challenges coupled to ensuring human and environmental safety. Governmental agencies regulating safety have announced interest toward acceptance of safety data generated under the collective term New Approach Methodologies (NAMs), as such technologies/approaches offer marked potential to progress the integration of safety testing measures during innovation from idea to product launch of nanomaterials. Divided in overall eight main categories, searchable databases for grouping and read across purposes, exposure assessment and modeling, in silico modeling of physicochemical structure and hazard data, in vitro high-throughput and high-content screening assays, dose-response assessments and modeling, analyses of biological processes and toxicity pathways, kinetics and dose extrapolation, consideration of relevant exposure levels and biomarker endpoints typify such useful NAMs. Their application generally agrees with articulated stakeholder needs for improvement of safety testing procedures. They further fit for inclusion and add value in nanomaterials risk assessment tools. Overall 37 of 50 evaluated NAMs and tiered workflows applying NAMs are recommended for considering safer-by-design innovation, including guidance to the selection of specific NAMs in the eight categories. An innovation funnel enriched with safety methods is ultimately proposed under the central aim of promoting rigorous nanomaterials innovation.
Collapse
Affiliation(s)
- Penny Nymark
- Karolinska Institutet, Institute of Environmental Medicine, Nobels väg 13, 171 77, Stockholm, Sweden
- Department of Toxicology, Misvik Biology, Karjakatu 35 B, 20520, Turku, Finland
| | - Martine Bakker
- National Institute for Public Health and the Environment, RIVM, P.O. Box 1, 3720 BA, Bilthoven, The Netherlands
| | - Susan Dekkers
- National Institute for Public Health and the Environment, RIVM, P.O. Box 1, 3720 BA, Bilthoven, The Netherlands
| | - Remy Franken
- Netherlands Organisation for Applied Scientific Research, TNO, P.O. Box 96800, NL-2509 JE, The Hague, The Netherlands
| | - Wouter Fransman
- Netherlands Organisation for Applied Scientific Research, TNO, P.O. Box 96800, NL-2509 JE, The Hague, The Netherlands
| | - Amaia García-Bilbao
- GAIKER Technology Centre, Parque Tecnológico, Ed. 202, 48170, Zamudio, Bizkaia, Spain
| | - Dario Greco
- Faculty of Medicine and Health Technology, Tampere University, Korkeakoulunkatu 6, 33720, Tampere, Finland
- Institute of Biotechnology, University of Helsinki, P.O. Box 56, FI-00014, Helsinki, Finland
| | - Mary Gulumian
- National Institute for Occupational Health, 25 Hospital St, Constitution Hill, 2000, Johannesburg, South Africa
- Haematology and Molecular Medicine Department, University of the Witwatersrand, 7 York Road, Parktown, 2193, Johannesburg, South Africa
| | - Niels Hadrup
- National Research Center for the Work Environment, Lersø Parkallé 105, 2100, Copenhagen, Denmark
| | - Sabina Halappanavar
- Environmental Health Science and Research Bureau, Health Canada, 50 Colombine Driveway, Ottawa, ON, K1A 0K9, Canada
| | - Vesa Hongisto
- Department of Toxicology, Misvik Biology, Karjakatu 35 B, 20520, Turku, Finland
| | - Karin Sørig Hougaard
- National Research Center for the Work Environment, Lersø Parkallé 105, 2100, Copenhagen, Denmark
| | - Keld Alstrup Jensen
- National Research Center for the Work Environment, Lersø Parkallé 105, 2100, Copenhagen, Denmark
| | - Pekka Kohonen
- Karolinska Institutet, Institute of Environmental Medicine, Nobels väg 13, 171 77, Stockholm, Sweden
- Department of Toxicology, Misvik Biology, Karjakatu 35 B, 20520, Turku, Finland
| | - Antti Joonas Koivisto
- National Research Center for the Work Environment, Lersø Parkallé 105, 2100, Copenhagen, Denmark
| | - Miikka Dal Maso
- Aerosol Physics Laboratory, Physics Unit, Tampere University, Korkeakoulunkatu 6, 33720, Tampere, Finland
| | - Thies Oosterwijk
- Netherlands Organisation for Applied Scientific Research, TNO, P.O. Box 96800, NL-2509 JE, The Hague, The Netherlands
| | - Mikko Poikkimäki
- Aerosol Physics Laboratory, Physics Unit, Tampere University, Korkeakoulunkatu 6, 33720, Tampere, Finland
| | | | - Rob Stierum
- Netherlands Organisation for Applied Scientific Research, TNO, P.O. Box 96800, NL-2509 JE, The Hague, The Netherlands
| | - Jorid Birkelund Sørli
- National Research Center for the Work Environment, Lersø Parkallé 105, 2100, Copenhagen, Denmark
| | - Roland Grafström
- Karolinska Institutet, Institute of Environmental Medicine, Nobels väg 13, 171 77, Stockholm, Sweden
- Department of Toxicology, Misvik Biology, Karjakatu 35 B, 20520, Turku, Finland
| |
Collapse
|
16
|
Nanobiotechnology: Paving the Way to Personalized Medicine. Nanobiomedicine (Rij) 2020. [DOI: 10.1007/978-981-32-9898-9_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
|
17
|
Pasut G. Grand Challenges in Nano-Based Drug Delivery. FRONTIERS IN MEDICAL TECHNOLOGY 2019; 1:1. [PMID: 35047870 PMCID: PMC8757891 DOI: 10.3389/fmedt.2019.00001] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 11/20/2019] [Indexed: 12/19/2022] Open
Affiliation(s)
- Gianfranco Pasut
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Padua, Italy
| |
Collapse
|
18
|
Takke A, Shende P. Nanotherapeutic silibinin: An insight of phytomedicine in healthcare reformation. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2019; 21:102057. [PMID: 31340181 DOI: 10.1016/j.nano.2019.102057] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 06/03/2019] [Accepted: 07/01/2019] [Indexed: 12/16/2022]
Abstract
Most of the herbal origin drugs possess water insoluble active constituents which lower the bioavailability and increase systemic clearance after administration of repeated or higher dose of drug. Silymarin is extracted from the seeds and fruits of milk thistle plant Silybum marianum which consists of main biologically active component as silibinin. However, the clinical applications of silibinin show some limitations due to low aqueous solubility, poor penetration into the epithelial cells of intestine, high metabolism and rapid systemic elimination. But nanotechnology-based drug delivery system explores great potential for phytochemicals to enhance the aqueous solubility and bioavailability of BCS class II and IV drugs, improve stability and modify the pharmacological activity. This review focuses on the therapeutic properties of silibinin and discusses the benefits, challenges and applications of silibinin nanoformulations. Such nanotherapeutic system as a regular medicine will be an attractive approach to reduce the adverse events and toxicities of current therapies.
Collapse
Affiliation(s)
- Anjali Takke
- Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, Mumbai, India
| | - Pravin Shende
- Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, Mumbai, India.
| |
Collapse
|
19
|
Liao J, Jia Y, Wu Y, Shi K, Yang D, Li P, Qian Z. Physical‐, chemical‐, and biological‐responsive nanomedicine for cancer therapy. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2019; 12:e1581. [PMID: 31429208 DOI: 10.1002/wnan.1581] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Revised: 07/03/2019] [Accepted: 07/17/2019] [Indexed: 02/05/2023]
Affiliation(s)
- Jinfeng Liao
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Centre for Biotherapy, West China Hospital Sichuan University Chengdu P.R. China
- State Key Laboratory of Oral Diseases, National Clinical Research Centre for Oral Diseases, West China Hospital of Stomatology Sichuan University Chengdu P.R. China
- Department of Applied Biology and Chemical Technology Hong Kong Polytechnic University Kowloon Hong Kong
| | - Yanpeng Jia
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Centre for Biotherapy, West China Hospital Sichuan University Chengdu P.R. China
| | - Yongzhi Wu
- State Key Laboratory of Oral Diseases, National Clinical Research Centre for Oral Diseases, West China Hospital of Stomatology Sichuan University Chengdu P.R. China
| | - Kun Shi
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Centre for Biotherapy, West China Hospital Sichuan University Chengdu P.R. China
| | - Dawei Yang
- State Key Laboratory of Oral Diseases, National Clinical Research Centre for Oral Diseases, West China Hospital of Stomatology Sichuan University Chengdu P.R. China
| | - Pei Li
- Department of Applied Biology and Chemical Technology Hong Kong Polytechnic University Kowloon Hong Kong
| | - Zhiyong Qian
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Centre for Biotherapy, West China Hospital Sichuan University Chengdu P.R. China
| |
Collapse
|
20
|
Zingg R, Fischer M. The consolidation of nanomedicine. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2019; 11:e1569. [PMID: 31240855 PMCID: PMC6852524 DOI: 10.1002/wnan.1569] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 04/10/2019] [Accepted: 05/23/2019] [Indexed: 12/17/2022]
Abstract
Over the past two decades, nanomedicine has grown steadily, however, without inducing a palpable shift in the diagnosis and treatment of diseases so far. While this may simply be a consequence of the slow, incremental nature that characterizes many modern technologies, this article posits that there is another set of significant factors harboring explanatory power. Uncertainties concerning safety, regulatory, and ethical requirements may have prompted innovators to stay close to the known and approved, eventually at the cost of innovating in unexplored alleys. Network analysis of all nanomedicine patents in the United States reveals that nanomedicine has indeed rather consolidated than expanded. We detail a set of recommendations that would reduce the uncertainty prevailing in nanomedicine and could contribute to pushing new boundaries. This article is categorized under: Toxicology and Regulatory Issues in Nanomedicine > Regulatory and Policy Issues in Nanomedicine.
Collapse
Affiliation(s)
- Raphael Zingg
- Institute for Advanced Study, Waseda University, Tokyo, Japan.,Center for Law & Economics, ETH Zurich Zurich
| | - Marius Fischer
- Max Planck Institute for Innovation and Competition, Munich, Germany
| |
Collapse
|
21
|
Stuttgen V, Giffney HE, Anandan A, Alabdali A, Twarog C, Belhout SA, O Loughlin M, Podhorska L, Delaney C, Geoghegan N, Mc-Fadden J, Alhadhrami NA, Fleming A, Phadke S, Yadav R, Fattah S, McCartney F, Alsharif SA, McCaul J, Singh K, Erikandath S, O Meara F, Wychowaniec JK, Cutrona MB, MacMaster G, Reynolds AL, Gaines S, Hogg B, Farrelly M, D Alton M, Coulahan P, Bhattacharjee S. The UCD nanosafety workshop (03 December 2018): towards developing a consensus on safe handling of nanomaterials within the Irish university labs and beyond - a report. Nanotoxicology 2019; 13:717-732. [PMID: 31111769 DOI: 10.1080/17435390.2019.1621402] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Careful handling of the nanomaterials (NMs) in research labs is crucial to ensure a safe working environment. As the largest university in Ireland, University College Dublin (UCD) has invested significant resources to update researchers working with NMs. Due to sizes often <100 nm, the NMs including nanoparticles, harbor unprecedented materialistic properties, for example, enhanced reactivity, conductivity, fluorescence, etc. which albeit conferring the NMs an edge over bulk materials regarding the applied aspects; depending on the dose, also render them to be toxic. Thus, a set of regulatory guidelines have emerged regarding safe handling of the NMs within occupational set-ups. Unfortunately, the current regulations based on the toxic chemicals and carcinogens are often confusing, lack clarity, and difficult to apply for the NMs. As a research-intensive university, a diverse range of research activities occur within the UCD labs, and it is difficult, at times impossible, for the UCD Safety, Insurance, Operational Risk & Compliance (SIRC) office to develop a set of common guidelines and cater throughout all its labs conducting research with the NMs. Hence, a necessity for dialog and exchange of ideas was felt across the UCD which encouraged the researchers including early stage researchers (e.g. PhDs, Postdocs) from multiple schools to participate in a workshop held on the 03 December 2018. The workshop tried to follow a pragmatic approach, where apart from discussing both the in vitro and in vivo scenarios, practical cases simulating situations faced frequently in the labs were discussed. This report summarizes the findings made during the workshop by this emerging critical mass in UCD.
Collapse
Affiliation(s)
- Vivien Stuttgen
- a School of Veterinary Medicine , University College Dublin (UCD) , Belfield , Dublin , Ireland
| | - Hugh E Giffney
- a School of Veterinary Medicine , University College Dublin (UCD) , Belfield , Dublin , Ireland
| | - Ayana Anandan
- b School of Biology and Environmental Science (SBES) , University College Dublin (UCD) , Belfield , Dublin , Ireland
| | - Anwar Alabdali
- a School of Veterinary Medicine , University College Dublin (UCD) , Belfield , Dublin , Ireland
| | - Caroline Twarog
- a School of Veterinary Medicine , University College Dublin (UCD) , Belfield , Dublin , Ireland
| | - Samir A Belhout
- c School of Chemistry , University College Dublin (UCD) , Belfield , Dublin , Ireland
| | - Mark O Loughlin
- c School of Chemistry , University College Dublin (UCD) , Belfield , Dublin , Ireland
| | - Lucia Podhorska
- c School of Chemistry , University College Dublin (UCD) , Belfield , Dublin , Ireland
| | - Colm Delaney
- c School of Chemistry , University College Dublin (UCD) , Belfield , Dublin , Ireland
| | - Niamh Geoghegan
- c School of Chemistry , University College Dublin (UCD) , Belfield , Dublin , Ireland
| | - Jessica Mc-Fadden
- c School of Chemistry , University College Dublin (UCD) , Belfield , Dublin , Ireland
| | - Nahlah A Alhadhrami
- c School of Chemistry , University College Dublin (UCD) , Belfield , Dublin , Ireland
| | - Aisling Fleming
- c School of Chemistry , University College Dublin (UCD) , Belfield , Dublin , Ireland
| | - Shreyas Phadke
- c School of Chemistry , University College Dublin (UCD) , Belfield , Dublin , Ireland
| | - Ravi Yadav
- a School of Veterinary Medicine , University College Dublin (UCD) , Belfield , Dublin , Ireland
| | - Sarinj Fattah
- a School of Veterinary Medicine , University College Dublin (UCD) , Belfield , Dublin , Ireland
| | - Fiona McCartney
- a School of Veterinary Medicine , University College Dublin (UCD) , Belfield , Dublin , Ireland
| | - Shada Ali Alsharif
- d School of Physics , University College Dublin (UCD) , Belfield , Dublin , Ireland
| | - Jasmin McCaul
- e School of Biomolecular and Biomedical Science (SBBS) , University College Dublin (UCD) , Belfield , Dublin , Ireland
| | - Krutika Singh
- c School of Chemistry , University College Dublin (UCD) , Belfield , Dublin , Ireland
| | - Sumesh Erikandath
- d School of Physics , University College Dublin (UCD) , Belfield , Dublin , Ireland
| | - Fergal O Meara
- e School of Biomolecular and Biomedical Science (SBBS) , University College Dublin (UCD) , Belfield , Dublin , Ireland
| | - Jacek K Wychowaniec
- c School of Chemistry , University College Dublin (UCD) , Belfield , Dublin , Ireland
| | - Meritxell B Cutrona
- b School of Biology and Environmental Science (SBES) , University College Dublin (UCD) , Belfield , Dublin , Ireland
| | - Gwyneth MacMaster
- b School of Biology and Environmental Science (SBES) , University College Dublin (UCD) , Belfield , Dublin , Ireland
| | - Alison L Reynolds
- a School of Veterinary Medicine , University College Dublin (UCD) , Belfield , Dublin , Ireland
| | - Susan Gaines
- a School of Veterinary Medicine , University College Dublin (UCD) , Belfield , Dublin , Ireland
| | - Bridget Hogg
- a School of Veterinary Medicine , University College Dublin (UCD) , Belfield , Dublin , Ireland
| | - Marc Farrelly
- a School of Veterinary Medicine , University College Dublin (UCD) , Belfield , Dublin , Ireland
| | - Mark D Alton
- f Biomedical Facilities , University College Dublin (UCD) , Belfield , Dublin , Ireland
| | - Peter Coulahan
- g Safety, Insurance, Operational Risk & Compliance (SIRC) Office , University College Dublin (UCD) , Belfield , Dublin , Ireland
| | - Sourav Bhattacharjee
- a School of Veterinary Medicine , University College Dublin (UCD) , Belfield , Dublin , Ireland
| |
Collapse
|
22
|
Singh S, Hussain A, Shakeel F, Ahsan MJ, Alshehri S, Webster TJ, Lal UR. Recent insights on nanomedicine for augmented infection control. Int J Nanomedicine 2019; 14:2301-2325. [PMID: 31114188 PMCID: PMC6497429 DOI: 10.2147/ijn.s170280] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Antimicrobial agents have been widely investigated for protecting against microbial infections in modern health. Drug-related limitations, poor bioavailability, toxicity to mammalian cells, and frequent bacteria drug resistance are major challenges faced when exploited in nanomedicine forms. Specific attention has been paid to control nanomaterial-based infection against numerous challenging pathogens in addition to improved drug delivery, targeting, and pharmacokinetic (PK) profiles, and thus, efficient antimicrobials have been fabricated using diverse components (metals, metal oxides, synthetic and semisynthetic polymers, natural or biodegradable polymers, etc). The present review covers several nanocarriers delivered through various routes of administration, highlighting major findings to control microbial infection as compared to using the free drug. Results over the past decade support the consistent development of various nanomedicines capable of improving biological significance and therapeutic benefits against an array of microbial strains. Depending on the intended application of nanomedicine, infection control will be challenged by various factors such as weighing the risk-benefits in healthcare settings, nanomaterial-induced (eco)toxicological hazards, frequent development of antibiotic resistance, scarcity of in vivo toxicity data, and a poor understanding of microbial interactions with nanomedicine at the molecular level. This review summarizes well-established informative data for nanomaterials used for infection control and safety concerns of nanomedicines to healthcare sectors followed by the significance of a unique "safe-by-design" approach.
Collapse
Affiliation(s)
- Sima Singh
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Ranchi 835215, Jharkhand, India
| | - Afzal Hussain
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Ranchi 835215, Jharkhand, India
| | - Faiyaz Shakeel
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mohamed Jawed Ahsan
- Department of Pharmaceutical Chemistry, Maharishi Arvind College of Pharmacy, Jaipur, Rajasthan, 302023, India
| | - Sultan Alshehri
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Thomas J Webster
- Department of Chemical Engineering, Northeastern University, Boston, MA 02115, USA,
| | - Uma Ranjan Lal
- School of Pharmaceutical Sciences, Shoolini University, Solan 173229, Himacahal Pradesh, India
| |
Collapse
|
23
|
Saqi M, Lysenko A, Guo YK, Tsunoda T, Auffray C. Navigating the disease landscape: knowledge representations for contextualizing molecular signatures. Brief Bioinform 2019; 20:609-623. [PMID: 29684165 PMCID: PMC6556902 DOI: 10.1093/bib/bby025] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Revised: 02/05/2018] [Indexed: 12/14/2022] Open
Abstract
Large amounts of data emerging from experiments in molecular medicine are leading to the identification of molecular signatures associated with disease subtypes. The contextualization of these patterns is important for obtaining mechanistic insight into the aberrant processes associated with a disease, and this typically involves the integration of multiple heterogeneous types of data. In this review, we discuss knowledge representations that can be useful to explore the biological context of molecular signatures, in particular three main approaches, namely, pathway mapping approaches, molecular network centric approaches and approaches that represent biological statements as knowledge graphs. We discuss the utility of each of these paradigms, illustrate how they can be leveraged with selected practical examples and identify ongoing challenges for this field of research.
Collapse
Affiliation(s)
- Mansoor Saqi
- Mansoor Saqi Data Science Institute, Imperial College London, UK
| | - Artem Lysenko
- Artem Lysenko Laboratory for Medical Science Mathematics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Yi-Ke Guo
- Yi-Ke Guo Data Science Institute, Imperial College London, UK
| | - Tatsuhiko Tsunoda
- Tatsuhiko Tsunoda Laboratory for Medical Science Mathematics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan CREST, JST, Tokyo, Japan Department of Medical Science Mathematics, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
| | - Charles Auffray
- Charles Auffray European Institute for Systems Biology and Medicine, Lyon, France
| |
Collapse
|
24
|
|
25
|
Modrzynska J, Berthing T, Ravn-Haren G, Kling K, Mortensen A, Rasmussen RR, Larsen EH, Saber AT, Vogel U, Loeschner K. In vivo-induced size transformation of cerium oxide nanoparticles in both lung and liver does not affect long-term hepatic accumulation following pulmonary exposure. PLoS One 2018; 13:e0202477. [PMID: 30125308 PMCID: PMC6101382 DOI: 10.1371/journal.pone.0202477] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Accepted: 08/04/2018] [Indexed: 02/07/2023] Open
Abstract
Recent findings show that cerium oxide (CeO2) nanoparticles may undergo in vivo-induced size transformation with the formation of smaller particles that could result in a higher translocation following pulmonary exposure compared to virtually insoluble particles, like titanium dioxide (TiO2). Therefore, we compared liver deposition of CeO2 and TiO2 nanoparticles of similar primary sizes 1, 28 or 180 days after intratracheal instillation of 162 μg of NPs in female C57BL/6 mice. Mice exposed to 162 μg CeO2 or TiO2 nanoparticles by intravenous injection or oral gavage were included as reference groups to assess the amount of NPs that reach the liver bypassing the lungs and the translocation of NPs from the gastrointestinal tract to the liver, respectively. Pulmonary deposited CeO2 nanoparticles were detected in the liver 28 and 180 days post-exposure and TiO2 nanoparticles 180 days post-exposure as determined by darkfield imaging and by the quantification of Ce and Ti mass concentration by inductively coupled plasma-mass spectrometry (ICP-MS). Ce and Ti concentrations increased over time and 180 days post-exposure the translocation to the liver was 2.87 ± 3.37% and 1.24 ± 1.98% of the initial pulmonary dose, respectively. Single particle ICP-MS showed that the size of CeO2 nanoparticles in both lung and liver tissue decreased over time. No nanoparticles were detected in the liver following oral gavage. Our results suggest that pulmonary deposited CeO2 and TiO2 nanoparticles translocate to the liver with similar calculated translocation rates despite their different chemical composition and shape. The observed particle size distributions of CeO2 nanoparticles indicate in vivo processing over time both in lung and liver. The fact that no particles were detected in the liver following oral exposure showed that direct translocation of nanoparticles from lung to the systemic circulation was the most important route of translocation for pulmonary deposited particles.
Collapse
Affiliation(s)
- Justyna Modrzynska
- National Food Institute, Technical University of Denmark, Kongens Lyngby, Denmark
- The National Research Centre for the Working Environment, Copenhagen, Denmark
| | - Trine Berthing
- The National Research Centre for the Working Environment, Copenhagen, Denmark
| | - Gitte Ravn-Haren
- National Food Institute, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Kirsten Kling
- The National Research Centre for the Working Environment, Copenhagen, Denmark
| | - Alicja Mortensen
- The National Research Centre for the Working Environment, Copenhagen, Denmark
| | - Rie R. Rasmussen
- National Food Institute, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Erik H. Larsen
- National Food Institute, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Anne T. Saber
- The National Research Centre for the Working Environment, Copenhagen, Denmark
| | - Ulla Vogel
- The National Research Centre for the Working Environment, Copenhagen, Denmark
- Department of Micro- and Nanotechnology, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Katrin Loeschner
- National Food Institute, Technical University of Denmark, Kongens Lyngby, Denmark
| |
Collapse
|