1
|
Yin T, Han J, Cui Y, Shang D, Xiang H. Prospect of Gold Nanoparticles in Pancreatic Cancer. Pharmaceutics 2024; 16:806. [PMID: 38931925 PMCID: PMC11207630 DOI: 10.3390/pharmaceutics16060806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/13/2024] [Accepted: 02/23/2024] [Indexed: 06/28/2024] Open
Abstract
Pancreatic cancer (PC) is characterized by its notably poor prognosis and high mortality rate, underscoring the critical need for advancements in its diagnosis and therapy. Gold nanoparticles (AuNPs), with their distinctive physicochemical characteristics, demonstrate significant application potential in cancer therapy. For example, upon exposure to lasers of certain wavelengths, they facilitate localized heating, rendering them extremely effective in photothermal therapy. Additionally, their extensive surface area enables the conjugation of therapeutic agents or targeting molecules, increasing the accuracy of drug delivery systems. Moreover, AuNPs can serve as radiosensitizers, enhancing the efficacy of radiotherapy by boosting the radiation absorption in tumor cells. Here, we systematically reviewed the application and future directions of AuNPs in the diagnosis and treatment of PC. Although AuNPs have advantages in improving diagnostic and therapeutic efficacy, as well as minimizing damage to normal tissues, concerns about their potential toxicity and safety need to be comprehensively evaluated.
Collapse
Affiliation(s)
- Tianyi Yin
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China; (T.Y.); (J.H.)
- Clinical Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China;
| | - Jingrun Han
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China; (T.Y.); (J.H.)
- Clinical Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China;
| | - Yuying Cui
- Clinical Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China;
| | - Dong Shang
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China; (T.Y.); (J.H.)
- Clinical Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China;
- Institute of Integrative Medicine, Dalian Medical University, Dalian 116044, China
| | - Hong Xiang
- Clinical Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China;
| |
Collapse
|
2
|
Singh P, Mijakovic I. Harnessing barley grains for green synthesis of gold and silver nanoparticles with antibacterial potential. DISCOVER NANO 2024; 19:101. [PMID: 38862699 PMCID: PMC11166622 DOI: 10.1186/s11671-024-04042-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 05/30/2024] [Indexed: 06/13/2024]
Abstract
The continuous evolution and significance of green resources-based nanomaterials have spurred the exploration of sustainable sources for nanoparticle production. Green synthesis routes offer eco-friendly methodologies, ensuring nanoparticle stability and monodispersity, enhancing their efficiency for various applications. Notably, the thick biological corona layer surrounding nanoparticles (NPs) synthesized through green routes contributes to their unique properties. Consequently, there has been a surge in the development of NPs synthesis methods utilizing medicinal plants and diverse agricultural and waste resources. This study highlights the sustainable potential of barley grains for the synthesis of gold nanoparticles (Barley-AuNPs) and silver nanoparticles (Barley-AgNPs) as an environmentally friendly alternative, followed by NPs characterizations and their application against pathogenic bacteria: Escherichia coli UTI 89 and Pseudomonas aeruginosa PAO1. The rapid synthesis of Barley-AuNPs within 20 min and Barley-AgNPs within 30 min at 90 °C underscores the efficiency of barley as a green precursor. Characterization through advanced techniques, including SEM, TEM, EDS, AFM, DLS, FT-IR, MALDI-TOF, and sp-ICPMS, reveals the 20-25 nm size for Barley-AuNPs, while Barley-AgNPs demonstrate 2-10 nm size with spherical monodispersity. A notable contribution lies in the stability of these NPs over extended periods, attributed to a thick biological corona layer. This corona layer, which enhances stability, also influences the antimicrobial activity of Barley-AgNPs, presenting an intriguing trade-off. The antimicrobial investigations highlight the significant potential of Barley-AgNPs, with distinct minimum bactericidal concentrations (MBC) against P. aeruginosa and E. coli at 8 µg/mL. Overall, this research pioneers the use of barley grains for nanoparticle synthesis and unveils these nanoparticles' unique characteristics and potential antibacterial applications, contributing to the evolving landscape of sustainable nanotechnology.
Collapse
Affiliation(s)
- Priyanka Singh
- The Novo Nordisk Foundation, Center for Biosustainability, Technical University of Denmark, 2800, Kongens Lyngby, Denmark.
| | - Ivan Mijakovic
- The Novo Nordisk Foundation, Center for Biosustainability, Technical University of Denmark, 2800, Kongens Lyngby, Denmark.
- Systems and Synthetic Biology Division, Department of Biology and Biological Engineering, Chalmers University of Technology, 412 96, Gothenburg, Sweden.
| |
Collapse
|
3
|
Silvestri T, Grumetto L, Neri I, De Falco M, Graziano SF, Damiano S, Giaquinto D, Maruccio L, de Girolamo P, Villapiano F, Ciarcia R, Mayol L, Biondi M. Investigating the Effect of Surface Hydrophilicity on the Destiny of PLGA-Poloxamer Nanoparticles in an In Vivo Animal Model. Int J Mol Sci 2023; 24:14523. [PMID: 37833971 PMCID: PMC10572154 DOI: 10.3390/ijms241914523] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/17/2023] [Accepted: 09/17/2023] [Indexed: 10/15/2023] Open
Abstract
This study aimed to examine the impact of different surface properties of poly(lactic-co-glycolic) acid (PLGA) nanoparticles (P NPs) and PLGA-Poloxamer nanoparticles (PP NPs) on their in vivo biodistribution. For this purpose, NPs were formulated via nanoprecipitation and loaded with diphenylhexatriene (DPH), a fluorescent dye. The obtained NPs underwent comprehensive characterization, encompassing their morphology, technological attributes, DPH release rate, and thermodynamic properties. The produced NPs were then administered to wild-type mice via intraperitoneal injection, and, at scheduled time intervals, the animals were euthanized. Blood samples, as well as the liver, lungs, and kidneys, were extracted for histological examination and biodistribution analysis. The findings of this investigation revealed that the presence of poloxamers led to smaller NP sizes and induced partial crystallinity in the NPs. The biodistribution and histological results from in vivo experiments evidenced that both, P and PP NPs, exhibited comparable concentrations in the bloodstream, while P NPs could not be detected in the other organs examined. Conversely, PP NPs were primarily sequestered by the lungs and, to a lesser extent, by the kidneys. Future research endeavors will focus on investigating the behavior of drug-loaded NPs in pathological animal models.
Collapse
Affiliation(s)
- Teresa Silvestri
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari Aldo Moro, Via E. Orabona 4, 70125 Bari, Italy;
| | - Lucia Grumetto
- Department of Pharmacy, University of Naples Federico II, Via D. Montesano 49, 80131 Naples, Italy; (L.G.); (I.N.); (M.B.)
- National Institute of Biostructures and Biosystems (INBB), Viale delle Medaglie d’Oro 305, 00136 Rome, Italy
| | - Ilaria Neri
- Department of Pharmacy, University of Naples Federico II, Via D. Montesano 49, 80131 Naples, Italy; (L.G.); (I.N.); (M.B.)
- National Institute of Biostructures and Biosystems (INBB), Viale delle Medaglie d’Oro 305, 00136 Rome, Italy
| | - Maria De Falco
- National Institute of Biostructures and Biosystems (INBB), Viale delle Medaglie d’Oro 305, 00136 Rome, Italy
- Department of Biology, University Federico II of Naples, Via Cinthia 26, 80125 Naples, Italy;
| | - Sossio Fabio Graziano
- Department of Pharmacy, University of Naples Federico II, Via D. Montesano 49, 80131 Naples, Italy; (L.G.); (I.N.); (M.B.)
| | - Sara Damiano
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, Via Federico Delpino 1, 80137 Naples, Italy (D.G.); (L.M.)
| | - Daniela Giaquinto
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, Via Federico Delpino 1, 80137 Naples, Italy (D.G.); (L.M.)
| | - Lucianna Maruccio
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, Via Federico Delpino 1, 80137 Naples, Italy (D.G.); (L.M.)
| | - Paolo de Girolamo
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, Via Federico Delpino 1, 80137 Naples, Italy (D.G.); (L.M.)
| | - Fabrizio Villapiano
- Department of Pharmacy, University of Naples Federico II, Via D. Montesano 49, 80131 Naples, Italy; (L.G.); (I.N.); (M.B.)
| | - Roberto Ciarcia
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, Via Federico Delpino 1, 80137 Naples, Italy (D.G.); (L.M.)
| | - Laura Mayol
- Department of Advanced Biomedical Sciences, University of Naples Federico II, Via D. Montesano 49, 80131 Naples, Italy
- Interdisciplinary Research Centre on Biomaterials (CRIB), Piazzale Tecchio 80, 80125 Naples, Italy
| | - Marco Biondi
- Department of Pharmacy, University of Naples Federico II, Via D. Montesano 49, 80131 Naples, Italy; (L.G.); (I.N.); (M.B.)
- Interdisciplinary Research Centre on Biomaterials (CRIB), Piazzale Tecchio 80, 80125 Naples, Italy
| |
Collapse
|
4
|
Manuel LD, Vincely VD, Bayer CL, McPeak KM. Monodisperse Sub-100 nm Au Nanoshells for Low-Fluence Deep-Tissue Photoacoustic Imaging. NANO LETTERS 2023; 23:7334-7340. [PMID: 37540682 PMCID: PMC10450810 DOI: 10.1021/acs.nanolett.3c01696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 07/29/2023] [Indexed: 08/06/2023]
Abstract
Nanoparticles with high absorption cross sections will advance therapeutic and bioimaging nanomedicine technologies. While Au nanoshells have shown great promise in nanomedicine, state-of-the-art synthesis methods result in scattering-dominant particles, mitigating their efficacy in absorption-based techniques that leverage the photothermal effect, such as photoacoustic (PA) imaging. We introduce a highly reproducible synthesis route to monodisperse sub-100 nm Au nanoshells with an absorption-dominant optical response. Au nanoshells with 48 nm SiO2 cores and 7 nm Au shells show a 14-fold increase in their volumetric absorption coefficient compared to commercial Au nanoshells with dimensions commonly used in nanomedicine. PA imaging with Au nanoshell contrast agents showed a 50% improvement in imaging depth for sub-100 nm Au nanoshells compared with the smallest commercially available nanoshells in a turbid phantom. Furthermore, the high PA signal at low fluences, enabled by sub-100 nm nanoshells, will aid the deployment of low-cost, low-fluence light-emitting diodes for PA imaging.
Collapse
Affiliation(s)
- Luis D.
B. Manuel
- Gordon
and Mary Cain Department of Chemical Engineering, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - Vinoin Devpaul Vincely
- Department
of Biomedical Engineering, Tulane University, New Orleans, Louisiana 70118, United States
| | - Carolyn L. Bayer
- Department
of Biomedical Engineering, Tulane University, New Orleans, Louisiana 70118, United States
| | - Kevin M. McPeak
- Gordon
and Mary Cain Department of Chemical Engineering, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| |
Collapse
|
5
|
Hsu JC, Tang Z, Eremina OE, Sofias AM, Lammers T, Lovell JF, Zavaleta C, Cai W, Cormode DP. Nanomaterial-based contrast agents. NATURE REVIEWS. METHODS PRIMERS 2023; 3:30. [PMID: 38130699 PMCID: PMC10732545 DOI: 10.1038/s43586-023-00211-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 02/20/2023] [Indexed: 12/23/2023]
Abstract
Medical imaging, which empowers the detection of physiological and pathological processes within living subjects, has a vital role in both preclinical and clinical diagnostics. Contrast agents are often needed to accompany anatomical data with functional information or to provide phenotyping of the disease in question. Many newly emerging contrast agents are based on nanomaterials as their high payloads, unique physicochemical properties, improved sensitivity and multimodality capacity are highly desired for many advanced forms of bioimaging techniques and applications. Here, we review the developments in the field of nanomaterial-based contrast agents. We outline important nanomaterial design considerations and discuss the effect on their physicochemical attributes, contrast properties and biological behaviour. We also describe commonly used approaches for formulating, functionalizing and characterizing these nanomaterials. Key applications are highlighted by categorizing nanomaterials on the basis of their X-ray, magnetic, nuclear, optical and/or photoacoustic contrast properties. Finally, we offer our perspectives on current challenges and emerging research topics as well as expectations for future advancements in the field.
Collapse
Affiliation(s)
- Jessica C. Hsu
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, USA
- Departments of Radiology and Medical Physics, University of Wisconsin-Madison, Madison, WI, USA
| | - Zhongmin Tang
- Departments of Radiology and Medical Physics, University of Wisconsin-Madison, Madison, WI, USA
| | - Olga E. Eremina
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, USA
| | - Alexandros Marios Sofias
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
| | - Twan Lammers
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
| | - Jonathan F. Lovell
- Department of Biomedical Engineering, University at Buffalo, State University of New York, Buffalo, NY, USA
| | - Cristina Zavaleta
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, USA
| | - Weibo Cai
- Departments of Radiology and Medical Physics, University of Wisconsin-Madison, Madison, WI, USA
| | - David P. Cormode
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
6
|
Li YX, Wang N, Hasan MM, Pang HB. Co-administration of Transportan Peptide Enhances the Cellular Entry of Liposomes in the Bystander Manner Both In Vitro and In Vivo. Mol Pharm 2022; 19:4123-4134. [PMID: 36070496 DOI: 10.1021/acs.molpharmaceut.2c00537] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Liposomes have been widely used as a drug delivery vector. One way to further improve its therapeutic efficacy is to increase the cell entry efficiency. Covalent conjugation with cell-penetrating peptides (CPPs) and other types of ligands has been the mainstream strategy to tackle this issue. Although efficient, it requires additional chemical modifications on liposomes, which is undesirable for clinical translation. Our previous study showed that the transportan (TP) peptide, an amphiphilic CPP, was able to increase the cellular uptake of co-administered, but not covalently coupled, metallic nanoparticles (NPs). Termed bystander uptake, this process represents a simpler method to increase the cell entry of NPs without chemical modifications. Here, we extended our efforts to liposomes. Our results showed that co-administration with the TP peptide improved the internalization of liposome into a variety of cell lines in vitro. This effect was also observed in primary cells, ex vivo tumor slices, and in vivo tumor tissues. On the other hand, this peptide-assisted liposome internalization did not apply to cationic CPPs, which were the main inducers for bystander uptake in previous studies. We also found that TP-assisted bystander uptake of liposome is receptor dependent, and its activity is more sensitive to the inhibitors of the macropinocytosis pathway, underlining the potential cell entry mechanism. Overall, our study provides a simple strategy based on TP co-administration to increase the cell entry of liposomes, which may open up new avenues to apply TP peptides in nanotherapeutics.
Collapse
Affiliation(s)
- Yue-Xuan Li
- Department of Pharmaceutics, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Nianwu Wang
- Department of Pharmaceutics, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - M Mahadi Hasan
- Department of Pharmaceutics, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Hong-Bo Pang
- Department of Pharmaceutics, University of Minnesota, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
7
|
Lin J, Li H, Guo J, Xu Y, Li H, Yan J, Wang Y, Chen H, Yuan Z. Potential of fluorescent nanoprobe in diagnosis and treatment of Alzheimer's disease. Nanomedicine (Lond) 2022; 17:1191-1211. [PMID: 36154269 DOI: 10.2217/nnm-2022-0022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Alzheimer's disease (AD) is well known for its insidious nature, slow progression and high incidence as a neurodegenerative disease. In the past, diagnosis of AD mainly depended on analysis of a patient's cognitive ability and behavior. Without a unified standard for analysis methods, this is prone to produce incorrect diagnoses. Currently, definitive diagnosis mainly relies on histopathological examination. Because of the advantages of precision, noninvasiveness, low toxicity and high spatiotemporal resolution, fluorescent nanoprobes are suitable for the early diagnosis of AD. This review summarizes the research progress of different kinds of fluorescent nanoprobes for AD diagnosis and therapy in recent years and provides an outlook on the development prospects of fluorescent nanoprobes.
Collapse
Affiliation(s)
- Jingjing Lin
- Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, 639 Longmian Road, Jiangning District, Nanjing, 210009, China
| | - Hanhan Li
- Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, 639 Longmian Road, Jiangning District, Nanjing, 210009, China
| | - Jingxuan Guo
- Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, 639 Longmian Road, Jiangning District, Nanjing, 210009, China
| | - Yue Xu
- Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, 639 Longmian Road, Jiangning District, Nanjing, 210009, China
| | - Hua Li
- Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, 639 Longmian Road, Jiangning District, Nanjing, 210009, China
| | - Jun Yan
- Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, 639 Longmian Road, Jiangning District, Nanjing, 210009, China
| | - Yuxin Wang
- Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, 639 Longmian Road, Jiangning District, Nanjing, 210009, China
| | - Haiyan Chen
- Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, 639 Longmian Road, Jiangning District, Nanjing, 210009, China
| | - Zhenwei Yuan
- Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, 639 Longmian Road, Jiangning District, Nanjing, 210009, China
| |
Collapse
|
8
|
Venkatas J, Daniels A, Singh M. The Potential of Curcumin-Capped Nanoparticle Synthesis in Cancer Therapy: A Green Synthesis Approach. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:3201. [PMID: 36144994 PMCID: PMC9502936 DOI: 10.3390/nano12183201] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 09/05/2022] [Accepted: 09/09/2022] [Indexed: 06/16/2023]
Abstract
Cancer nanotherapeutics is an important field of research which utilizes nanomaterials as an approach to cancer therapy. Nano-mediated therapeutic delivery systems overcome the adverse side effects of traditional cancer treatment methods. Nanoparticles (NPs) are considered excellent tumor-targeting vehicles due to their compact and variable size, large surface area, ability to load several genes and drugs, and mediation of increased therapeutic payload uptake. Despite the rapid development of nanotechnology, there is growing concern regarding the possible long-term side effects of NPs on the environment and human health. Green chemistry using plant materials, such as curcumin, is a sustainable alternative to conventional reduction methods and confers dual reducing and capping properties. Curcumin is a bioactive compound isolated from the rhizome of the Curcuma longa plant, which exhibits various medicinal properties. Curcumin-capped NPs exhibit increased solubility, bioavailability, therapeutic indices, and antitumor properties. This review highlights the potential and antitumor properties of economical, simple, and eco-friendly curcumin-synthesized and capped NPs for the localized delivery of therapeutic genes and drugs to the cancer tumor microenvironment with fewer adverse side effects.
Collapse
|
9
|
β-Glucan-Functionalized Nanoparticles Down-Modulate the Proinflammatory Response of Mononuclear Phagocytes Challenged with Candida albicans. NANOMATERIALS 2022; 12:nano12142475. [PMID: 35889700 PMCID: PMC9317568 DOI: 10.3390/nano12142475] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 07/07/2022] [Accepted: 07/10/2022] [Indexed: 12/04/2022]
Abstract
Systemic fungal infections are associated with significant morbidity and mortality, and Candida albicans is the most common causative agent. Recognition of yeast cells by immune cell surface receptors can trigger phagocytosis of fungal pathogens and a pro-inflammatory response that may contribute to fungal elimination. Nevertheless, the elicited inflammatory response may be deleterious to the host by causing excessive tissue damage. We developed a nanoparticle-based approach to modulate the host deleterious inflammatory consequences of fungal infection by using β1,3-glucan-functionalized polystyrene (β-Glc-PS) nanoparticles. β-Glc-PS nanoparticles decreased the levels of the proinflammatory cytokines TNF-α, IL-6, IL-1β and IL-12p40 detected in in vitro culture supernatants of bone marrow-derived dendritic cells and macrophage challenged with C. albicans cells. Moreover, β-Glc-PS nanoparticles impaired the production of reactive oxygen species by bone marrow-derived dendritic cells incubated with C. albicans. This immunomodulatory effect was dependent on the nanoparticle size. Overall, β-Glc-PS nanoparticles reduced the proinflammatory response elicited by fungal cells in mononuclear phagocytes, setting the basis for a targeted therapy aimed at protecting the host by lowering the inflammatory cost of infection.
Collapse
|
10
|
Mellor RD, Uchegbu IF. Ultrasmall-in-Nano: Why Size Matters. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:2476. [PMID: 35889699 PMCID: PMC9317835 DOI: 10.3390/nano12142476] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/12/2022] [Accepted: 07/13/2022] [Indexed: 01/06/2023]
Abstract
Gold nanoparticles (AuNPs) are continuing to gain popularity in the field of nanotechnology. New methods are continuously being developed to tune the particles' physicochemical properties, resulting in control over their biological fate and applicability to in vivo diagnostics and therapy. This review focuses on the effects of varying particle size on optical properties, opsonization, cellular internalization, renal clearance, biodistribution, tumor accumulation, and toxicity. We review the common methods of synthesizing ultrasmall AuNPs, as well as the emerging constructs termed ultrasmall-in-nano-an approach which promises to provide the desirable properties from both ends of the AuNP size range. We review the various applications and outcomes of ultrasmall-in-nano constructs in vitro and in vivo.
Collapse
Affiliation(s)
| | - Ijeoma F. Uchegbu
- School of Pharmacy, University College London (UCL), 29–39 Brunswick Square, London WC1N 1AX, UK;
| |
Collapse
|
11
|
Takechi-Haraya Y, Ohgita T, Demizu Y, Saito H, Izutsu KI, Sakai-Kato K. Current Status and Challenges of Analytical Methods for Evaluation of Size and Surface Modification of Nanoparticle-Based Drug Formulations. AAPS PharmSciTech 2022; 23:150. [PMID: 35596094 PMCID: PMC9122548 DOI: 10.1208/s12249-022-02303-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 05/09/2022] [Indexed: 01/02/2023] Open
Abstract
The present review discusses the current status and difficulties of the analytical methods used to evaluate size and surface modifications of nanoparticle-based pharmaceutical products (NPs) such as liposomal drugs and new SARS-CoV-2 vaccines. We identified the challenges in the development of methods for (1) measurement of a wide range of solid-state NPs, (2) evaluation of the sizes of polydisperse NPs, and (3) measurement of non-spherical NPs. Although a few methods have been established to analyze surface modifications of NPs, the feasibility of their application to NPs is unknown. The present review also examined the trends in standardization required to validate the size and surface measurements of NPs. It was determined that there is a lack of available reference materials and it is difficult to select appropriate ones for modified NP surface characterization. Research and development are in progress on innovative surface-modified NP-based cancer and gene therapies targeting cells, tissues, and organs. Next-generation nanomedicine should compile studies on the practice and standardization of the measurement methods for NPs to design surface modifications and ensure the quality of NPs.
Collapse
Affiliation(s)
- Yuki Takechi-Haraya
- Division of Drugs, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki, 210-9501, Japan.
| | - Takashi Ohgita
- Department of Biophysical Chemistry, Kyoto Pharmaceutical University, 5 Misasagi-Nakauchi-cho, Yamashina-ku, Kyoto, 607-8414, Japan
| | - Yosuke Demizu
- Division of Organic Chemistry, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki, 210-9501, Japan
| | - Hiroyuki Saito
- Department of Biophysical Chemistry, Kyoto Pharmaceutical University, 5 Misasagi-Nakauchi-cho, Yamashina-ku, Kyoto, 607-8414, Japan
| | - Ken-Ichi Izutsu
- Division of Drugs, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki, 210-9501, Japan
| | - Kumiko Sakai-Kato
- School of Pharmacy, Kitasato University, Shirokane 5-9-1, Minato-ku, Tokyo, 108-8641, Japan.
| |
Collapse
|
12
|
Sitia G, Fiordaliso F, Violatto MB, Alarcon JF, Talamini L, Corbelli A, Ferreira LM, Tran NL, Chakraborty I, Salmona M, Parak WJ, Diomede L, Bigini P. Food-Grade Titanium Dioxide Induces Toxicity in the Nematode Caenorhabditis elegans and Acute Hepatic and Pulmonary Responses in Mice. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:1669. [PMID: 35630890 PMCID: PMC9147568 DOI: 10.3390/nano12101669] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 05/05/2022] [Accepted: 05/10/2022] [Indexed: 02/04/2023]
Abstract
Food-grade titanium dioxide (E171) contains variable percentages of titanium dioxide (TiO2) nanoparticles (NPs), posing concerns for its potential effects on human and animal health. Despite many studies, the actual relationship between the physicochemical properties of E171 NPs and their interaction with biological targets is still far from clear. We evaluated the impact of acute E171 administration on invertebrate and vertebrate animals. In the nematode, Caenorhabditis elegans, the administration of up to 1.0 mg/mL of E171 did not affect the worm's viability and lifespan, but significantly impaired its pharyngeal function, reproduction, and development. We also investigated whether the intravenous administration of E171 in mice (at the dose of 6 mg/kg/body weight) could result in an acute over-absorption of filter organs. A significant increase of hepatic titanium concentration and the formation of microgranulomas were observed. Interstitial inflammation and parenchymal modification were found in the lungs, coupled with titanium accumulation. This was probably due to the propensity of TiO2 NPs to agglomerate, as demonstrated by transmission electron microscopy experiments showing that the incubation of E171 with serum promoted the formation of compact clusters. Overall, these data emphasize the actual risk for human and animal exposure to E171.
Collapse
Affiliation(s)
- Giovanni Sitia
- Experimental Hepatology Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Via Olgettina 58, 20132 Milano, Italy; (G.S.); (L.M.F.); (N.L.T.)
| | - Fabio Fiordaliso
- Department of Molecular Biochemistry and Pharmacology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, 20156 Milano, Italy; (F.F.); (M.B.V.); (J.F.A.); (L.T.); (A.C.); (M.S.)
| | - Martina B. Violatto
- Department of Molecular Biochemistry and Pharmacology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, 20156 Milano, Italy; (F.F.); (M.B.V.); (J.F.A.); (L.T.); (A.C.); (M.S.)
| | - Jennifer Fernandez Alarcon
- Department of Molecular Biochemistry and Pharmacology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, 20156 Milano, Italy; (F.F.); (M.B.V.); (J.F.A.); (L.T.); (A.C.); (M.S.)
| | - Laura Talamini
- Department of Molecular Biochemistry and Pharmacology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, 20156 Milano, Italy; (F.F.); (M.B.V.); (J.F.A.); (L.T.); (A.C.); (M.S.)
| | - Alessandro Corbelli
- Department of Molecular Biochemistry and Pharmacology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, 20156 Milano, Italy; (F.F.); (M.B.V.); (J.F.A.); (L.T.); (A.C.); (M.S.)
| | - Lorena Maria Ferreira
- Experimental Hepatology Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Via Olgettina 58, 20132 Milano, Italy; (G.S.); (L.M.F.); (N.L.T.)
| | - Ngoc Lan Tran
- Experimental Hepatology Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Via Olgettina 58, 20132 Milano, Italy; (G.S.); (L.M.F.); (N.L.T.)
| | - Indranath Chakraborty
- Center for Hybrid Nanostructures (CHyN), Hamburg University, Luruper Chaussee 149, 22607 Hamburg, Germany; (I.C.); (W.J.P.)
| | - Mario Salmona
- Department of Molecular Biochemistry and Pharmacology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, 20156 Milano, Italy; (F.F.); (M.B.V.); (J.F.A.); (L.T.); (A.C.); (M.S.)
| | - Wolfgang J. Parak
- Center for Hybrid Nanostructures (CHyN), Hamburg University, Luruper Chaussee 149, 22607 Hamburg, Germany; (I.C.); (W.J.P.)
| | - Luisa Diomede
- Department of Molecular Biochemistry and Pharmacology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, 20156 Milano, Italy; (F.F.); (M.B.V.); (J.F.A.); (L.T.); (A.C.); (M.S.)
| | - Paolo Bigini
- Department of Molecular Biochemistry and Pharmacology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, 20156 Milano, Italy; (F.F.); (M.B.V.); (J.F.A.); (L.T.); (A.C.); (M.S.)
| |
Collapse
|
13
|
Heptamethine Cyanine-Loaded Nanomaterials for Cancer Immuno-Photothermal/Photodynamic Therapy: A Review. Pharmaceutics 2022; 14:pharmaceutics14051015. [PMID: 35631600 PMCID: PMC9144181 DOI: 10.3390/pharmaceutics14051015] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 05/03/2022] [Accepted: 05/05/2022] [Indexed: 11/25/2022] Open
Abstract
The development of strategies capable of eliminating metastasized cancer cells and preventing tumor recurrence is an exciting and extremely important area of research. In this regard, therapeutic approaches that explore the synergies between nanomaterial-mediated phototherapies and immunostimulants/immune checkpoint inhibitors have been yielding remarkable results in pre-clinical cancer models. These nanomaterials can accumulate in tumors and trigger, after irradiation of the primary tumor with near infrared light, a localized temperature increase and/or reactive oxygen species. These effects caused damage in cancer cells at the primary site and can also (i) relieve tumor hypoxia, (ii) release tumor-associated antigens and danger-associated molecular patterns, and (iii) induced a pro-inflammatory response. Such events will then synergize with the activity of immunostimulants and immune checkpoint inhibitors, paving the way for strong T cell responses against metastasized cancer cells and the creation of immune memory. Among the different nanomaterials aimed for cancer immuno-phototherapy, those incorporating near infrared-absorbing heptamethine cyanines (Indocyanine Green, IR775, IR780, IR797, IR820) have been showing promising results due to their multifunctionality, safety, and straightforward formulation. In this review, combined approaches based on phototherapies mediated by heptamethine cyanine-loaded nanomaterials and immunostimulants/immune checkpoint inhibitor actions are analyzed, focusing on their ability to modulate the action of the different immune system cells, eliminate metastasized cancer cells, and prevent tumor recurrence.
Collapse
|
14
|
Novel Green Approaches for the Preparation of Gold Nanoparticles and Their Promising Potential in Oncology. Processes (Basel) 2022. [DOI: 10.3390/pr10020426] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The difficulty of achieving targeted drug delivery following administration of currently marketed anticancer therapeutics is a still a concern. Metallic nanoparticles (NPs) developed through nanotechnology breakthroughs appear to be promising in this regard. Research studies pertaining to gold NPs have indicated their promising applicability in cancer diagnosis, drug delivery and therapy. These NPs have also recently paved the path for precise drug delivery and site-specific targeting. Our review paper thus highlights the scope and impact of biogenetically generated gold nanoparticles (NPs) in cancer therapy. In a critical, constructive, and methodical manner, we compare the advantages offered by gold NPs over other metal NPs. Moreover, we also focus on novel ‘greener’ strategies that have been recently explored for the preparation of gold NPs and shed light on the disadvantages of conventional NP synthesis routes. Future prospects pertaining to the use of gold NPs in oncotherapy and domains that require further investigation are also addressed.
Collapse
|
15
|
Sloan-Dennison S, Laing S, Graham D, Faulds K. From Raman to SESORRS: moving deeper into cancer detection and treatment monitoring. Chem Commun (Camb) 2021; 57:12436-12451. [PMID: 34734952 PMCID: PMC8609625 DOI: 10.1039/d1cc04805h] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Raman spectroscopy is a non-invasive technique that allows specific chemical information to be obtained from various types of sample. The detailed molecular information that is present in Raman spectra permits monitoring of biochemical changes that occur in diseases, such as cancer, and can be used for the early detection and diagnosis of the disease, for monitoring treatment, and to distinguish between cancerous and non-cancerous biological samples. Several techniques have been developed to enhance the capabilities of Raman spectroscopy by improving detection sensitivity, reducing imaging times and increasing the potential applicability for in vivo analysis. The different Raman techniques each have their own advantages that can accommodate the alternative detection formats, allowing the techniques to be applied in several ways for the detection and diagnosis of cancer. This feature article discusses the various forms of Raman spectroscopy, how they have been applied for cancer detection, and the adaptation of the techniques towards their use for in vivo cancer detection and in clinical diagnostics. Despite the advances in Raman spectroscopy, the clinical application of the technique is still limited and certain challenges must be overcome to enable clinical translation. We provide an outlook on the future of the techniques in this area and what we believe is required to allow the potential of Raman spectroscopy to be achieved for clinical cancer diagnostics.
Collapse
Affiliation(s)
- Sian Sloan-Dennison
- Department of Pure and Applied Chemistry, Technology and Innovation Centre, University of Strathclyde, 99 George Street, Glasgow, G1 1RD, UK.
| | - Stacey Laing
- Department of Pure and Applied Chemistry, Technology and Innovation Centre, University of Strathclyde, 99 George Street, Glasgow, G1 1RD, UK.
| | - Duncan Graham
- Department of Pure and Applied Chemistry, Technology and Innovation Centre, University of Strathclyde, 99 George Street, Glasgow, G1 1RD, UK.
| | - Karen Faulds
- Department of Pure and Applied Chemistry, Technology and Innovation Centre, University of Strathclyde, 99 George Street, Glasgow, G1 1RD, UK.
| |
Collapse
|
16
|
Sidebottom RB, Allison JC, Aulwes EF, Broder BA, Freeman MS, Magnelind PE, Mariam FG, Merrill FE, Neukirch LP, Schurman T, Sinnis J, Tang Z, Tupa D, Tybo JL, Wilde CH, Espy M. Contrast-enhanced proton radiographic sensitivity limits for tumor detection. J Med Imaging (Bellingham) 2021; 8:053501. [PMID: 34708145 DOI: 10.1117/1.jmi.8.5.053501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 10/11/2021] [Indexed: 11/14/2022] Open
Abstract
Purpose: Proton radiography may guide proton therapy cancer treatments with beam's-eye-view anatomical images and a proton-based estimation of proton stopping power. However, without contrast enhancement, proton radiography will not be able to distinguish tumor from tissue. To provide this contrast, functionalized, high- Z nanoparticles that specifically target a tumor could be injected into a patient before imaging. We conducted this study to understand the ability of gold, as a high- Z , biologically compatible tracer, to differentiate tumors from surrounding tissue. Approach: Acrylic and gold phantoms simulate a tumor tagged with gold nanoparticles (AuNPs). Calculations correlate a given thickness of gold to levels of tumor AuNP uptake reported in the literature. An identity, × 3 , and × 7 proton magnifying lens acquired lens-refocused proton radiographs at the 800-MeV LANSCE proton beam. The effects of gold in the phantoms, in terms of percent density change, were observed as changes in measured transmission. Variable areal densities of acrylic modeled the thickness of the human body. Results: A 1 - μ m -thick gold strip was discernible within 1 cm of acrylic, an areal density change of 0.2%. Behind 20 cm of acrylic, a 40 - μ m gold strip was visible. A 1-cm-diameter tumor tagged with 1 × 10 5 50-nm AuNPs per cell has an amount of contrast agent embedded within it that is equivalent to a 65 - μ m thickness of gold, an areal density change of 0.63% in a tissue thickness of 20 cm, which is expected to be visible in a typical proton radiograph. Conclusions: We indicate that AuNP-enhanced proton radiography might be a feasible technology to provide image-guidance to proton therapy, potentially reducing off-target effects and sparing nearby tissue. These data can be used to develop treatment plans and clinical applications can be derived from the simulations.
Collapse
Affiliation(s)
| | - Jason C Allison
- Los Alamos National Laboratory, Los Alamos, New Mexico, United States
| | - Ethan F Aulwes
- Los Alamos National Laboratory, Los Alamos, New Mexico, United States
| | - Brittany A Broder
- Los Alamos National Laboratory, Los Alamos, New Mexico, United States
| | - Matthew S Freeman
- Los Alamos National Laboratory, Los Alamos, New Mexico, United States
| | - Per E Magnelind
- Los Alamos National Laboratory, Los Alamos, New Mexico, United States
| | - Fesseha G Mariam
- Los Alamos National Laboratory, Los Alamos, New Mexico, United States
| | - Frank E Merrill
- Los Alamos National Laboratory, Los Alamos, New Mexico, United States
| | - Levi P Neukirch
- Los Alamos National Laboratory, Los Alamos, New Mexico, United States
| | - Tamsen Schurman
- Los Alamos National Laboratory, Los Alamos, New Mexico, United States
| | - James Sinnis
- Los Alamos National Laboratory, Los Alamos, New Mexico, United States
| | - Zhaowen Tang
- Los Alamos National Laboratory, Los Alamos, New Mexico, United States
| | - Dale Tupa
- Los Alamos National Laboratory, Los Alamos, New Mexico, United States
| | - Joshua L Tybo
- Los Alamos National Laboratory, Los Alamos, New Mexico, United States
| | - Carl H Wilde
- Los Alamos National Laboratory, Los Alamos, New Mexico, United States
| | - Michelle Espy
- Los Alamos National Laboratory, Los Alamos, New Mexico, United States
| |
Collapse
|
17
|
Gonzalez-Pastor R, Hernandez Y, Gimeno M, de Martino A, Man YS, Hallden G, Quintanilla M, de la Fuente JM, Martin-Duque P. Coating an adenovirus with functionalized gold nanoparticles favors uptake, intracellular trafficking and anti-cancer therapeutic efficacy. Acta Biomater 2021; 134:593-604. [PMID: 34325075 DOI: 10.1016/j.actbio.2021.07.047] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 07/14/2021] [Accepted: 07/21/2021] [Indexed: 12/12/2022]
Abstract
Adenoviral (Ad) vectors have proven to be important tools for gene and cell therapy, although some issues still need to be addressed, such as undesired interactions with blood components and off-target sequestration that ultimately hamper efficacy. In the past years, several organic and inorganic materials have been developed to reduce immunogenicity and improve biodistribution of Ad vectors. Here we investigated the influence of the functionalization of 14 nm PEGylated gold nanoparticles (AuNPs) with quaternary ammonium groups and an arginine-glycine-aspartic acid (RGD)-motif on the uptake and biodistribution of Ad vectors. We report the formation of Ad@AuNPs complexes that promote cell attachment and uptake, independently of the presence of the coxsackievirus and adenovirus receptor (CAR) and αvβ3 and αvβ5 integrins, significantly improving transduction without limiting Ad bioactivity. Besides, the presence of the RGD peptide favors tumor targeting and decreases Ad sequestration in the liver. Additionally, tumor delivery of a coated Ad vector expressing the human sodium iodide symporter (hNIS) by mesenchymal stem cells induces increased accumulation of radioactive iodine (131I) and tumor volume reduction compared to naked Ad-hNIS, highlighting the promising potential of our coating formulation in cancer gene therapy. STATEMENT OF SIGNIFICANCE: Modification of adenoviral vectors with lipids and polymers can reduce interactions with blood components and increase tumor accumulation; however, increased toxicity and reduced transduction efficiency were indicated. Coating with gold nanoparticles has proven to be a successful strategy for increasing the efficiency of transduction of receptor-defective cell lines. Here we explore the contribution of cell surface receptors on the mechanisms of entry of Ad vectors coated with gold nanoparticles in cell lines with varying degrees of resistance to infection. The enhancement of the anti-tumoral effect shown in this work provides new evidence for the potential of our formulation.
Collapse
|
18
|
Development of theranostic dual-layered Au-liposome for effective tumor targeting and photothermal therapy. J Nanobiotechnology 2021; 19:262. [PMID: 34481489 PMCID: PMC8418714 DOI: 10.1186/s12951-021-01010-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Accepted: 08/23/2021] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Photothermal therapy (PTT) is an emerging anti-cancer therapeutic strategy that generates hyperthermia to ablate cancer cells under laser irradiation. Gold (Au) coated liposome (AL) was reported as an effective PTT agent with good biocompatibility and excretory property. However, exposed Au components on liposomes can cause instability in vivo and difficulty in further functionalization. RESULTS Herein, we developed a theranostic dual-layered nanomaterial by adding liposomal layer to AL (LAL), followed by attaching polyethylene glycol (PEG) and radiolabeling. Functionalization with PEG improves the in vivo stability of LAL, and radioisotope labeling enables in vivo imaging of LAL. Functionalized LAL is stable in physiological conditions, and 64Cu labeled LAL (64Cu-LAL) shows a sufficient blood circulation property and an effective tumor targeting ability of 16.4%ID g-1 from in vivo positron emission tomography (PET) imaging. Also, intravenously injected LAL shows higher tumor targeting, temperature elevation in vivo, and better PTT effect in orthotopic breast cancer mouse model compared to AL. The tumor growth inhibition rate of LAL was 3.9-fold higher than AL. CONCLUSION Based on these high stability, in vivo imaging ability, and tumor targeting efficiency, LAL could be a promising theranostic PTT agent.
Collapse
|
19
|
Mellor RD, Schätzlein AG, Uchegbu IF. Development of Bio-Functionalized, Raman Responsive, and Potentially Excretable Gold Nanoclusters. NANOMATERIALS 2021; 11:nano11092181. [PMID: 34578495 PMCID: PMC8471107 DOI: 10.3390/nano11092181] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 08/19/2021] [Accepted: 08/24/2021] [Indexed: 12/15/2022]
Abstract
Gold nanoparticles (AuNPs) are used experimentally for non-invasive in vivo Raman monitoring because they show a strong absorbance in the phototherapeutic window (650–850 nm), a feature that is accompanied by a particle size in excess of 100 nm. However, these AuNPs cannot be used clinically because they are likely to persist in mammalian systems and resist excretion. In this work, clustered ultrasmall (sub-5 nm) AuNP constructs for in vivo Raman diagnostic monitoring, which are also suitable for mammalian excretion, were synthesized and characterized. Sub-5 nm octadecyl amine (ODA)-coated AuNPs were clustered using a labile dithiol linker: ethylene glycol bis-mercaptoacetate (EGBMA). Upon clustering via a controlled reaction and finally coating with a polymeric amphiphile, a strong absorbance in the phototherapeutic window was demonstrated, thus showing the potential suitability of the construct for non-invasive in vivo detection and monitoring. The clusters, when labelled with a biphenyl-4-thiol (BPT) Raman tag, were shown to elicit a specific Raman response in plasma and to disaggregate back to sub-5 nm particles under physiological conditions (37 °C, 0.8 mM glutathione, pH 7.4). These data demonstrate the potential of these new AuNP clusters (Raman NanoTheranostics—RaNT) for in vivo applications while being in the excretable size window.
Collapse
|
20
|
Ibrahim N, Jamaluddin ND, Tan LL, Mohd Yusof NY. A Review on the Development of Gold and Silver Nanoparticles-Based Biosensor as a Detection Strategy of Emerging and Pathogenic RNA Virus. SENSORS (BASEL, SWITZERLAND) 2021; 21:5114. [PMID: 34372350 PMCID: PMC8346961 DOI: 10.3390/s21155114] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 07/25/2021] [Accepted: 07/26/2021] [Indexed: 12/19/2022]
Abstract
The emergence of highly pathogenic and deadly human coronaviruses, namely SARS-CoV and MERS-CoV within the past two decades and currently SARS-CoV-2, have resulted in millions of human death across the world. In addition, other human viral diseases, such as mosquito borne-viral diseases and blood-borne viruses, also contribute to a higher risk of death in severe cases. To date, there is no specific drug or medicine available to cure these human viral diseases. Therefore, the early and rapid detection without compromising the test accuracy is required in order to provide a suitable treatment for the containment of the diseases. Recently, nanomaterials-based biosensors have attracted enormous interest due to their biological activities and unique sensing properties, which enable the detection of analytes such as nucleic acid (DNA or RNA), aptamers, and proteins in clinical samples. In addition, the advances of nanotechnologies also enable the development of miniaturized detection systems for point-of-care (POC) biosensors, which could be a new strategy for detecting human viral diseases. The detection of virus-specific genes by using single-stranded DNA (ssDNA) probes has become a particular interest due to their higher sensitivity and specificity compared to immunological methods based on antibody or antigen for early diagnosis of viral infection. Hence, this review has been developed to provide an overview of the current development of nanoparticles-based biosensors that target pathogenic RNA viruses, toward a robust and effective detection strategy of the existing or newly emerging human viral diseases such as SARS-CoV-2. This review emphasizes the nanoparticles-based biosensors developed using noble metals such as gold (Au) and silver (Ag) by virtue of their powerful characteristics as a signal amplifier or enhancer in the detection of nucleic acid. In addition, this review provides a broad knowledge with respect to several analytical methods involved in the development of nanoparticles-based biosensors for the detection of viral nucleic acid using both optical and electrochemical techniques.
Collapse
Affiliation(s)
- Nadiah Ibrahim
- Southeast Asia Disaster Prevention Research Initiative (SEADPRI), Institute for Environment and Development (LESTARI), Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia; (N.I.); (N.D.J.)
| | - Nur Diyana Jamaluddin
- Southeast Asia Disaster Prevention Research Initiative (SEADPRI), Institute for Environment and Development (LESTARI), Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia; (N.I.); (N.D.J.)
| | - Ling Ling Tan
- Southeast Asia Disaster Prevention Research Initiative (SEADPRI), Institute for Environment and Development (LESTARI), Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia; (N.I.); (N.D.J.)
| | - Nurul Yuziana Mohd Yusof
- Department of Earth Sciences and Environment, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia;
| |
Collapse
|
21
|
Nannuri SH, Nikam AN, Pandey A, Mutalik S, George SD. Subcellular imaging and diagnosis of cancer using engineered nanoparticles. Curr Pharm Des 2021; 28:690-710. [PMID: 34036909 DOI: 10.2174/1381612827666210525154131] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 04/13/2021] [Indexed: 11/22/2022]
Abstract
The advances in the synthesis of nanoparticles with engineered properties are reported to have profound applications in oncological disease detection via optical and multimodal imaging and therapy. Among various nanoparticle-assisted imaging techniques, engineered fluorescent nanoparticles show great promise from high contrast images and localized therapeutic applications. Of all the fluorescent nanoparticles available, the gold nanoparticles, carbon dots, and upconversion nanoparticles are emerging recently as the most promising candidates for diagnosis, treatment, and cancer monitoring. This review addresses the recent progress in engineering the properties of these emerging nanoparticles and their application for cancer diagnosis and therapy. In addition, the potential of these particles for subcellular imaging is also reviewed here.
Collapse
Affiliation(s)
- Shivanand H Nannuri
- Department of Atomic and Molecular Physics, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Ajinkya N Nikam
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka State, India
| | - Abhijeet Pandey
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka State, India
| | - Srinivas Mutalik
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka State, India
| | - Sajan D George
- Department of Atomic and Molecular Physics, Manipal Academy of Higher Education, Manipal, Karnataka, India
| |
Collapse
|
22
|
Wang Y, Li M, Luo T, Jiao M, Jin S, Dou P, Zuo F, Wu C, Han C, Li J, Xu K, Zheng S. Development of FL/MR dual-modal Au nanobipyramids for targeted cancer imaging and photothermal therapy. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 127:112190. [PMID: 34225846 DOI: 10.1016/j.msec.2021.112190] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 04/15/2021] [Accepted: 05/13/2021] [Indexed: 01/07/2023]
Abstract
Multifunctional nanodrugs have emerged as an effective platform to integrate multiple imaging and therapeutic functions for tremendous biomedical applications. However, the development of a simple potent theranostic nanoplatform is still an intractable challenge. Herein, a novel theranostic nanoplatform was developed by coupling prepared Au nanobipyramids with Gd2O3, Au nanoclusters and denatured bovine serum albumin (AuNBP-Gd2O3/Au-dBSA) for FL/MR dual-modal imaging guided photothermal therapy. AS1411 aptamers were conjugated to enhance its targetability towards breast cancer. The AS1411-AuNBP-Gd2O3/Au-dBSA suspension could be readily heated above 40 °C at a low concentration (2 mg/L) and NIR density (1 W/cm2). The AS1411-AuNBP-Gd2O3/Au-dBSA revealed a fluorescence quantum yield of 4.2% and higher longitudinal relaxivity rate of 6.75 mM-1 s-1 compared to Gd-DTPA of 4.45 mM-1 s-1. As a result, the AS1411-AuNBP-Gd2O3/Au-dBSA functions as a multimodal nanoprobe of photothermal, fluorescence and MR imaging for specific tumor diagnosis and guidance of therapy, which was validated via in vitro and in vivo tests. Moreover, AS1411-AuNBP-Gd2O3/Au-dBSA nanoparticles indicated excellent photothermal anticancer effect more than 95% in both in vitro and in vivo tests. Besides, the low toxicity of AS1411-AuNBP-Gd2O3/Au-dBSA nanocomposites was further confirmed in vitro and in vivo. Thus, these results demonstrated the AS1411-AuNBP-Gd2O3/Au-dBSA nanocomposites as a rational design of multifunctional nanoplatform to enable multimodal imaging guided photothermal therapy.
Collapse
Affiliation(s)
- Yong Wang
- School of Medical Imaging, Xuzhou Medical University, Xuzhou 221006, China; Department of Radiology, Affiliated Hospital of Xuzhou Medical University, Xuzhou 221004, China; Institute of Medical Imaging and Digital Medicine, Xuzhou Medical University, Xuzhou 221004, People's Republic of China
| | - Mengshuang Li
- School of Medical Imaging, Xuzhou Medical University, Xuzhou 221006, China
| | - Tao Luo
- School of Medical Imaging, Xuzhou Medical University, Xuzhou 221006, China
| | - Min Jiao
- School of Medical Imaging, Xuzhou Medical University, Xuzhou 221006, China
| | - Shang Jin
- School of Medical Imaging, Xuzhou Medical University, Xuzhou 221006, China
| | - Peipei Dou
- School of Medical Imaging, Xuzhou Medical University, Xuzhou 221006, China
| | - Fengmei Zuo
- School of Medical Imaging, Xuzhou Medical University, Xuzhou 221006, China
| | - Changyu Wu
- School of Medical Imaging, Xuzhou Medical University, Xuzhou 221006, China; Department of Radiology, Affiliated Hospital of Xuzhou Medical University, Xuzhou 221004, China; Institute of Medical Imaging and Digital Medicine, Xuzhou Medical University, Xuzhou 221004, People's Republic of China
| | - Cuiping Han
- School of Medical Imaging, Xuzhou Medical University, Xuzhou 221006, China; Department of Radiology, Affiliated Hospital of Xuzhou Medical University, Xuzhou 221004, China; Institute of Medical Imaging and Digital Medicine, Xuzhou Medical University, Xuzhou 221004, People's Republic of China
| | - Jingjing Li
- School of Medical Imaging, Xuzhou Medical University, Xuzhou 221006, China; Department of Radiology, Affiliated Hospital of Xuzhou Medical University, Xuzhou 221004, China; Institute of Medical Imaging and Digital Medicine, Xuzhou Medical University, Xuzhou 221004, People's Republic of China
| | - Kai Xu
- School of Medical Imaging, Xuzhou Medical University, Xuzhou 221006, China; Department of Radiology, Affiliated Hospital of Xuzhou Medical University, Xuzhou 221004, China; Institute of Medical Imaging and Digital Medicine, Xuzhou Medical University, Xuzhou 221004, People's Republic of China.
| | - Shaohui Zheng
- School of Medical Imaging, Xuzhou Medical University, Xuzhou 221006, China; Department of Radiology, Affiliated Hospital of Xuzhou Medical University, Xuzhou 221004, China; Institute of Medical Imaging and Digital Medicine, Xuzhou Medical University, Xuzhou 221004, People's Republic of China.
| |
Collapse
|
23
|
Huang Y, Wang J, Jiang K, Chung EJ. Improving kidney targeting: The influence of nanoparticle physicochemical properties on kidney interactions. J Control Release 2021; 334:127-137. [PMID: 33892054 DOI: 10.1016/j.jconrel.2021.04.016] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 04/15/2021] [Accepted: 04/16/2021] [Indexed: 12/23/2022]
Abstract
Kidney-targeted nanoparticles have become of recent interest due to their potential to deliver drugs directly to diseased tissue, decrease off-target adverse effects, and increase overall tolerability to patients with chronic kidney disease that require lifelong drug exposure. Given the physicochemical properties of nanoparticles can drastically affect their ability to extravasate past cellular and biological barriers and access the kidneys, we surveyed the literature from the past decade and analyzed how nanoparticle size, charge, shape, and material density affects passage and interaction with the kidneys. Specifically, we found that nanoparticle size impacted the mechanism of nanoparticle entry into the kidneys such as glomerular filtration or tubular secretion. In addition, we found charge, aspect ratio, and material density influences nanoparticle renal retention and provide insights for designing nanoparticles for passive kidney targeting. Finally, we conclude by highlighting active targeting strategies that bolster kidney retention and discuss the clinical status of nanomedicine for kidney diseases.
Collapse
Affiliation(s)
- Yi Huang
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, USA
| | - Jonathan Wang
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, USA
| | - Kairui Jiang
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, USA
| | - Eun Ji Chung
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, USA; Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, CA, USA; Department of Medicine, Division of Nephrology and Hypertension, University of Southern California, Los Angeles, CA, USA; Department of Surgery, Division of Vascular Surgery and Endovascular Therapy, University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
24
|
Terracciano R, Zhang A, Butler EB, Demarchi D, Hafner JH, Grattoni A, Filgueira CS. Effects of Surface Protein Adsorption on the Distribution and Retention of Intratumorally Administered Gold Nanoparticles. Pharmaceutics 2021; 13:216. [PMID: 33562434 PMCID: PMC7914653 DOI: 10.3390/pharmaceutics13020216] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/26/2021] [Accepted: 01/29/2021] [Indexed: 11/17/2022] Open
Abstract
The heterogeneous distribution of delivery or treatment modalities within the tumor mass is a crucial limiting factor for a vast range of theranostic applications. Understanding the interactions between a nanomaterial and the tumor microenvironment will help to overcome challenges associated with tumor heterogeneity, as well as the clinical translation of nanotheranostic materials. This study aims to evaluate the influence of protein surface adsorption on gold nanoparticle (GNP) biodistribution using high-resolution computed tomography (CT) preclinical imaging in C57BL/6 mice harboring Lewis lung carcinoma (LLC) tumors. LLC provides a valuable model for study due to its highly heterogenous nature, which makes drug delivery to the tumor challenging. By controlling the adsorption of proteins on the GNP surface, we hypothesize that we can influence the intratumoral distribution pattern and particle retention. We performed an in vitro study to evaluate the uptake of GNPs by LLC cells and an in vivo study to assess and quantify the GNP biodistribution by injecting concentrated GNPs citrate-stabilized or passivated with bovine serum albumin (BSA) intratumorally into LLC solid tumors. Quantitative CT and inductively coupled plasma optical emission spectrometry (ICP-OES) results both confirm the presence of particles in the tumor 9 days post-injection (n = 8 mice/group). A significant difference is highlighted between citrate-GNP and BSA-GNP groups (** p < 0.005, Tukey's multiple comparisons test), confirming that the protein corona of GNPs modifies intratumoral distribution and retention of the particles. In conclusion, our investigations show that the surface passivation of GNPs influences the mechanism of cellular uptake and intratumoral distribution in vivo, highlighting the spatial heterogeneity of the solid tumor.
Collapse
Affiliation(s)
- Rossana Terracciano
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX 77030, USA; (R.T.); (A.G.)
- Department of Electronics, Politecnico di Torino, 10129 Torino, Italy;
| | - Aobo Zhang
- Department of Physics & Astronomy, Rice University, Houston, TX 77005, USA; (A.Z.); (J.H.H.)
| | - E. Brian Butler
- Department of Radiation Oncology, Houston Methodist Research Institute, Houston, TX 77030, USA;
| | - Danilo Demarchi
- Department of Electronics, Politecnico di Torino, 10129 Torino, Italy;
| | - Jason H. Hafner
- Department of Physics & Astronomy, Rice University, Houston, TX 77005, USA; (A.Z.); (J.H.H.)
- Department of Chemistry, Rice University, Houston, TX 77005, USA
| | - Alessandro Grattoni
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX 77030, USA; (R.T.); (A.G.)
- Department of Radiation Oncology, Houston Methodist Research Institute, Houston, TX 77030, USA;
- Department of Surgery, Houston Methodist Research Institute, Houston, TX 77030, USA
| | - Carly S. Filgueira
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX 77030, USA; (R.T.); (A.G.)
- Department of Cardiovascular Surgery, Houston Methodist Research Institute, Houston, TX 77030, USA
| |
Collapse
|
25
|
Cassano R, Cuconato M, Calviello G, Serini S, Trombino S. Recent Advances in Nanotechnology for the Treatment of Melanoma. Molecules 2021; 26:785. [PMID: 33546290 PMCID: PMC7913377 DOI: 10.3390/molecules26040785] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/29/2021] [Accepted: 01/29/2021] [Indexed: 12/13/2022] Open
Abstract
Melanoma is one of the most aggressive forms of skin cancer, with few possibilities for therapeutic approaches, due to its multi-drug resistance and, consequently, low survival rate for patients. Conventional therapies for treatment melanoma include radiotherapy, chemotherapy, targeted therapy, and immunotherapy, which have various side effects. For this reason, in recent years, pharmaceutical and biomedical research has focused on new sito-specific alternative therapeutic strategies. In this regard, nanotechnology offers numerous benefits which could improve the life expectancy of melanoma patients with very low adverse effects. This review aims to examine the latest advances in nanotechnology as an innovative strategy for treating melanoma. In particular, the use of different types of nanoparticles, such as vesicles, polymers, metal-based, carbon nanotubes, dendrimers, solid lipid, microneedles, and their combination with immunotherapies and vaccines will be discussed.
Collapse
Affiliation(s)
- Roberta Cassano
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Arcavacata di Rende, 87036 Cosenza, Italy; (R.C.); (M.C.)
| | - Massimo Cuconato
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Arcavacata di Rende, 87036 Cosenza, Italy; (R.C.); (M.C.)
| | - Gabriella Calviello
- Department of Translational Medicine and Surgery, Section of General Pathology, School of Medicine and Surgery, Università Cattolica del Sacro Cuore, Largo F. Vito, 00168 Rome, Italy; (G.C.); (S.S.)
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo F. Vito, 00168 Rome, Italy
| | - Simona Serini
- Department of Translational Medicine and Surgery, Section of General Pathology, School of Medicine and Surgery, Università Cattolica del Sacro Cuore, Largo F. Vito, 00168 Rome, Italy; (G.C.); (S.S.)
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo F. Vito, 00168 Rome, Italy
| | - Sonia Trombino
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Arcavacata di Rende, 87036 Cosenza, Italy; (R.C.); (M.C.)
| |
Collapse
|
26
|
Li B, Chu F, Lu Q, Wang Y, Lane LA. Alternating stealth polymer coatings between administrations minimizes toxic and antibody immune responses towards nanomedicine treatment regimens. Acta Biomater 2021; 121:527-540. [PMID: 33285326 DOI: 10.1016/j.actbio.2020.11.047] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 11/25/2020] [Accepted: 11/27/2020] [Indexed: 02/08/2023]
Abstract
In efforts to achieve minimal systemic toxicity and high tumor delivery efficiencies in cancer therapy, various nanomedicine formulations having stealth polymer coatings have been developed for minimizing immune cell uptake and off-target macrophage phagocyte system (MPS) organ accumulation. Despite an initial reduction in immune cell uptake, stealth nanoparticles still initiate an antibody immune response. This response acts on subsequent administrations in treatment regimens resulting in accelerated blood clearance of particles into MPS organs, particularly the liver, where they are retained for prolonged periods. Consequently, doses after the first administration in treatment regimens have diminished tumor accumulation and increased MPS toxicity. Here, we present a strategy reducing antibody responses to each dose in a treatment regimen by alternating between polyethylene-glycol and polymethyloxazoline polymers as the nanoparticle coating between administrations. In a weekly dosing regimen, we find that the first dose of particles having either coating display similar favorable pharmacokinetics and biodistributions, thus allowing the polymers to be used interchangeably. However, when maintaining the same coating in subsequent administrations, we find that particles are in circulation at the height of the antibody immune response resulting in 50-60% decreases of circulation half-lives and tumor accumulation along with 50% increases in liver accumulation. By alternating the polymers used in the nanoparticle coating between administrations, we find each dose maintains favorable in vivo behaviors at the height of the antibody immune response to the previous administration. Furthermore, our strategy increases the clearance of particles uptaken by macrophages and hepatocytes, resulting in marked decreases in hepatotoxicity.
Collapse
|
27
|
Li YX, Pang HB. Macropinocytosis as a cell entry route for peptide-functionalized and bystander nanoparticles. J Control Release 2021; 329:1222-1230. [PMID: 33622520 PMCID: PMC7905157 DOI: 10.1016/j.jconrel.2020.10.049] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 10/20/2020] [Accepted: 10/22/2020] [Indexed: 01/12/2023]
Abstract
Endocytic pathways provide the primary route for therapeutic and diagnostic nanoparticles (NPs) to enter cells and subcellular compartments. A better understanding of these cell entry processes will not only aid in nanomaterial applications but also broaden our knowledge of cell biology. Among the endocytic routes, macropinocytosis has unique characteristics for engulfing NPs and other large cargo, yet its molecular machinery and involvement in NP uptake are far less characterized relative to other pathways. In this review, we summarize the current knowledge on the macropinocytic machinery, and its involvement in NP internalization. Particularly, we differentiate ligand (specifically peptide)-functionalized and unfunctionalized NPs (bystander NPs). While most of previous research focused on ligand-functionalized NPs, we showcase here a synergistic effect between these two NP types during their cell entry through receptor-mediated macropinocytosis. The regulation of NP uptake efficiency by extracellular amino acids is also highlighted in the context of interconnections between macropinocytosis and metabolic signaling. These discussions may fuel future research interests in improving NP internalization through this pathway, and open a new avenue to study the interplay among endocytosis, metabolism and nanomedicine.
Collapse
Affiliation(s)
- Yue-Xuan Li
- Department of Pharmaceutics, University of Minnesota, Minneapolis, MN, USA
| | - Hong-Bo Pang
- Department of Pharmaceutics, University of Minnesota, Minneapolis, MN, USA.
| |
Collapse
|
28
|
Cheng H, Tsao H, Chiang C, Chen S. Advances in Magnetic Nanoparticle-Mediated Cancer Immune-Theranostics. Adv Healthc Mater 2021; 10:e2001451. [PMID: 33135398 DOI: 10.1002/adhm.202001451] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 10/12/2020] [Indexed: 12/13/2022]
Abstract
Cancer immunotherapy is a cutting-edge strategy that eliminates cancer cells by amplifying the host's immune system. However, the low response rate and risks of inducing systemic toxicity have raised uncertainty in the treatment. Magnetic nanoparticles (MNPs) as a versatile theranostic tool can be used to target delivery of multiple immunotherapeutics and monitor cell/tissue responses. These capabilities enable the real-time characterization of the factors that contribute to immunoactivity so that future treatments can be optimized. The magnetic properties of MNPs further allow the implementation of magnetic navigation and magnetic hyperthermia for boosting the efficacy of immunotherapy. The multimodal approach opens an avenue to induce robust immune responses, minimize safety issues, and monitor immune activities simultaneously. Thus, the object of this review is to provide an overview of the burgeoning fields and to highlight novel technologies for next-generation immunotherapy. The review further correlates the properties of MNPs with the latest treatment strategies to explore the crosstalk between magnetic nanomaterials and the immune system. This comprehensive review of MNP-derived immunotherapy covers the obstacles and opportunities for future development and clinical translation.
Collapse
Affiliation(s)
- Hung‐Wei Cheng
- Department of Materials Science and Engineering National Chiao Tung University Hsinchu 30010 Taiwan
| | - Hsin‐Yi Tsao
- Department of Materials Science and Engineering National Chiao Tung University Hsinchu 30010 Taiwan
| | - Chih‐Sheng Chiang
- Cell Therapy Center China Medical University Hospital Taichung 40421 Taiwan
| | - San‐Yuan Chen
- Department of Materials Science and Engineering National Chiao Tung University Hsinchu 30010 Taiwan
- Frontier Research Centre on Fundamental and Applied Sciences of Matters National Tsing Hua University Hsinchu 30013 Taiwan
- School of Dentistry College of Dental Medicine Kaohsiung Medical University Kaohsiung 807378 Taiwan
- Graduate Institute of Biomedical Science China Medical University Taichung 40421 Taiwan
| |
Collapse
|
29
|
Chen Y, Yang J, Fu S, Wu J. Gold Nanoparticles as Radiosensitizers in Cancer Radiotherapy. Int J Nanomedicine 2020; 15:9407-9430. [PMID: 33262595 PMCID: PMC7699443 DOI: 10.2147/ijn.s272902] [Citation(s) in RCA: 114] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 10/22/2020] [Indexed: 12/19/2022] Open
Abstract
The rapid development of nanotechnology offers a variety of potential therapeutic strategies for cancer treatment. High atomic element nanomaterials are often utilized as radiosensitizers due to their unique photoelectric decay characteristics. Among them, gold nanoparticles (GNPs) are one of the most widely investigated and are considered to be an ideal radiosensitizers for radiotherapy due to their high X-ray absorption and unique physicochemical properties. Over the last few decades, multi-disciplinary studies have focused on the design and optimization of GNPs to achieve greater dosing capability and higher therapeutic effects and highlight potential mechanisms for radiosensitization of GNPs. Although the radiosensitizing potential of GNPs has been widely recognized, its clinical translation still faces many challenges. This review analyses the different roles of GNPs as radiosensitizers in cancer radiotherapy and summarizes recent advances. In addition, the underlying mechanisms of GNP radiosensitization, including physical, chemical and biological mechanisms are discussed, which may provide new directions for the optimization and clinical transformation of next-generation GNPs.
Collapse
Affiliation(s)
- Yao Chen
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan Province, People's Republic of China
| | - Juan Yang
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan Province, People's Republic of China
| | - Shaozhi Fu
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan Province, People's Republic of China
| | - Jingbo Wu
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan Province, People's Republic of China.,Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Luzhou, Sichuan Province, People's Republic of China
| |
Collapse
|
30
|
Chen TY, Chen MR, Liu SW, Lin JY, Yang YT, Huang HY, Chen JK, Yang CS, Lin KMC. Assessment of Polyethylene Glycol-Coated Gold Nanoparticle Toxicity and Inflammation In Vivo Using NF-κB Reporter Mice. Int J Mol Sci 2020; 21:ijms21218158. [PMID: 33142808 PMCID: PMC7662512 DOI: 10.3390/ijms21218158] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Revised: 10/23/2020] [Accepted: 10/27/2020] [Indexed: 12/13/2022] Open
Abstract
Polyethylene glycol (PEG) coating of gold nanoparticles (AuNPs) improves AuNP distribution via blood circulation. The use of PEG-coated AuNPs was shown to result in acute injuries to the liver, kidney, and spleen, but long-term toxicity has not been well studied. In this study, we investigated reporter induction for up to 90 days in NF-κB transgenic reporter mice following intravenous injection of PEG-coated AuNPs. The results of different doses (1 and 4 μg AuNPs per gram of body weight), particle sizes (13 nm and 30 nm), and PEG surfaces (methoxyl- or carboxymethyl-PEG 5 kDa) were compared. The data showed up to 7-fold NF-κB reporter induction in mouse liver from 3 h to 7 d post PEG-AuNP injection compared to saline-injected control mice, and gradual reduction to a level similar to control by 90 days. Agglomerates of PEG-AuNPs were detected in liver Kupffer cells, but neither gross pathological abnormality in liver sections nor increased activity of liver enzymes were found at 90 days. Injection of PEG-AuNPs led to an increase in collagen in liver sections and elevated total serum cholesterol, although still within the normal range, suggesting that inflammation resulted in mild fibrosis and affected hepatic function. Administrating PEG-AuNPs inevitably results in nanoparticles entrapped in the liver; thus, further investigation is required to fully assess the long-term impacts by PEG-AuNPs on liver health.
Collapse
Affiliation(s)
- Tzu-Yin Chen
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, Zhunan, Miaoli 35053, Taiwan; (T.-Y.C.); (M.-R.C.); (S.-W.L.); (J.-Y.L.); (Y.-T.Y.); (H.-Y.H.); (J.-K.C.); (C.-S.Y.)
| | - Mei-Ru Chen
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, Zhunan, Miaoli 35053, Taiwan; (T.-Y.C.); (M.-R.C.); (S.-W.L.); (J.-Y.L.); (Y.-T.Y.); (H.-Y.H.); (J.-K.C.); (C.-S.Y.)
| | - Shan-Wen Liu
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, Zhunan, Miaoli 35053, Taiwan; (T.-Y.C.); (M.-R.C.); (S.-W.L.); (J.-Y.L.); (Y.-T.Y.); (H.-Y.H.); (J.-K.C.); (C.-S.Y.)
- Institute of Population Health, National Health Research Institutes, Zhunan, Miaoli 35053, Taiwan
| | - Jin-Yan Lin
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, Zhunan, Miaoli 35053, Taiwan; (T.-Y.C.); (M.-R.C.); (S.-W.L.); (J.-Y.L.); (Y.-T.Y.); (H.-Y.H.); (J.-K.C.); (C.-S.Y.)
| | - Ya-Ting Yang
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, Zhunan, Miaoli 35053, Taiwan; (T.-Y.C.); (M.-R.C.); (S.-W.L.); (J.-Y.L.); (Y.-T.Y.); (H.-Y.H.); (J.-K.C.); (C.-S.Y.)
| | - Hsin-Ying Huang
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, Zhunan, Miaoli 35053, Taiwan; (T.-Y.C.); (M.-R.C.); (S.-W.L.); (J.-Y.L.); (Y.-T.Y.); (H.-Y.H.); (J.-K.C.); (C.-S.Y.)
| | - Jen-Kun Chen
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, Zhunan, Miaoli 35053, Taiwan; (T.-Y.C.); (M.-R.C.); (S.-W.L.); (J.-Y.L.); (Y.-T.Y.); (H.-Y.H.); (J.-K.C.); (C.-S.Y.)
| | - Chung-Shi Yang
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, Zhunan, Miaoli 35053, Taiwan; (T.-Y.C.); (M.-R.C.); (S.-W.L.); (J.-Y.L.); (Y.-T.Y.); (H.-Y.H.); (J.-K.C.); (C.-S.Y.)
| | - Kurt Ming-Chao Lin
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, Zhunan, Miaoli 35053, Taiwan; (T.-Y.C.); (M.-R.C.); (S.-W.L.); (J.-Y.L.); (Y.-T.Y.); (H.-Y.H.); (J.-K.C.); (C.-S.Y.)
- Correspondence: ; Tel.: +886-37206166-37118
| |
Collapse
|
31
|
Beyond gold nanoparticles cytotoxicity: Potential to impair metastasis hallmarks. Eur J Pharm Biopharm 2020; 157:221-232. [PMID: 33130338 DOI: 10.1016/j.ejpb.2020.10.019] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 10/19/2020] [Accepted: 10/25/2020] [Indexed: 01/10/2023]
Abstract
Gold nanoparticle (AuNP)-based systems have been extensively investigated as diagnostic and therapeutic agents due to their tunable properties and easy surface functionalization. Upon cell uptake, AuNPs present an inherent cell impairment potential based on organelle and macromolecules damage, leading to cell death. Such cytotoxicity is concentration-dependent and completely undesirable, especially if unspecific. However, under non-cytotoxic concentrations, internalized AuNPs could potentially weaken cells and act as antitumor agents. Therefore, this study aimed to investigate the antitumor effect of ultrasmall AuNPs (~3 nm) stabilized by the anionic polysaccharide gum arabic (GA-AuNPs). Other than intrinsic cytotoxicity, the focus was downregulation of cancer hallmarks of aggressive tumors, using a highly metastatic model of melanoma. We first demonstrated that GA-AuNPs showed excellent stability under biological environment. Non-cytotoxic concentrations to seven different cell lines, including tumorigenic and non-tumorigenic cells, were determined by standard 2D in vitro assays. Gold concentrations ≤ 2.4 mg L-1 (16.5 nM AuNPs) were non-cytotoxic and therefore chosen for further analyses. Cells exposed to GA-AuNPs were uptaken by melanoma cells through endocytic processes. Next we described remarkable biological properties using non-cytotoxic concentrations of this nanomaterial. Invasion through an extracellular matrix barrier as well as 3D growth capacity (anchorage-independent colony formation and spheroids growth) were negatively affected by 2.4 mg L-1 GA-AuNPs. Additionally, exposed spheroids showed morphological changes, suggesting that GA-AuNPs could penetrate into the preformed tumor and affect its integrity. All together these results demonstrate that side effects, such as cytotoxicity, can be avoided by choosing the right concentration, nevertheless, preserving desirable effects such as modulation of key tumor cell malignancy features.
Collapse
|
32
|
Bhattacharjee S, Brayden DJ. Addressing the challenges to increase the efficiency of translating nanomedicine formulations to patients. Expert Opin Drug Discov 2020; 16:235-254. [PMID: 33108229 DOI: 10.1080/17460441.2021.1826434] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Nanotechnology is in a growth phase for drug delivery and medical imaging. Nanomaterials with unique properties present opportunities for encapsulation of therapeutics and imaging agents, along with conjugation to ligands for targeting. Favorable chemistry of nanomaterials can create formulations that address critical challenges for therapeutics, such as insolubility and a low capacity to cross the blood-brain-barrier (BBB) and intestinal wall. AREAS COVERED The authors investigate challenges faced during translation of nanomedicines while suggesting reasons as to why some nanoformulations have under-performed in clinical trials. They assess physiological barriers such as the BBB and gut mucus that nanomedicines must overcome to deliver cargos. They also provide an overview with examples of how nanomedicines can be designed to improve localization and site-specific delivery (e.g., encapsulation, bioconjugation, and triggered-release). EXPERT OPINION There are examples where nanomedicines have demonstrated improved efficacy of payload in humans; however, most of the advantages conferred were in improved pharmacokinetics and reduced toxicity. Problematic data show susceptibility of nanoformulations against natural protective mechanisms present in the body, including distribution impediment by physiological barriers and activation of the reticuloendothelial system. Further initiatives should address current challenges while expanding the scope of nanomedicine into advanced biomedical imaging and antibiotic delivery.
Collapse
Affiliation(s)
- Sourav Bhattacharjee
- School of Veterinary Medicine, University College Dublin (UCD), Belfield, Dublin, Ireland
| | - David J Brayden
- School of Veterinary Medicine, University College Dublin (UCD), Belfield, Dublin, Ireland.,Conway Institute of Biomolecular and Biomedical Research, University College Dublin (UCD), Belfield, Dublin, Ireland
| |
Collapse
|
33
|
Etemadi H, Plieger PG. Magnetic Fluid Hyperthermia Based on Magnetic Nanoparticles: Physical Characteristics, Historical Perspective, Clinical Trials, Technological Challenges, and Recent Advances. ADVANCED THERAPEUTICS 2020. [DOI: 10.1002/adtp.202000061] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Hossein Etemadi
- School of Fundamental Sciences Massey University Palmerston North 4474 New Zealand
| | - Paul G. Plieger
- School of Fundamental Sciences Massey University Palmerston North 4474 New Zealand
| |
Collapse
|
34
|
Lara-Velazquez M, Alkharboosh R, Norton ES, Ramirez-Loera C, Freeman WD, Guerrero-Cazares H, Forte AJ, Quiñones-Hinojosa A, Sarabia-Estrada R. Chitosan-Based Non-viral Gene and Drug Delivery Systems for Brain Cancer. Front Neurol 2020; 11:740. [PMID: 32849207 PMCID: PMC7406673 DOI: 10.3389/fneur.2020.00740] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 06/16/2020] [Indexed: 12/17/2022] Open
Abstract
Central nervous system (CNS) tumors are a leading source of morbidity and mortality worldwide. Today, different strategies have been developed to allow targeted and controlled drug delivery into the brain. Gene therapy is a system based on the modification of patient's cells through the introduction of genetic material to exert a specific action. Administration of the foreign genetic material can be done through viral-mediated delivery or non-viral delivery via physical or mechanical systems. For brain cancer specifically, gene therapy can overcome the actual challenge of blood brain barrier penetration, the main reason for therapeutic failure. Chitosan (CS), a natural based biodegradable polymer obtained from the exoskeleton of crustaceans such as crab, shrimp, and lobster, has been used as a delivery vehicle in several non-viral modification strategies. This cationic polysaccharide is highly suitable for gene delivery mainly due to its chemical properties, its non-toxic nature, its capacity to protect nucleic acids through the formation of complexes with the genetic material, and its ease of degradation in organic environments. Recent evidence supports the use of CS as an alternative gene delivery system for cancer treatment. This review will describe multiple studies highlighting the advantages and challenges of CS-based delivery structures for the treatment of brain tumors. Furthermore, this review will provide insight on the translational potential of various CS based-strategies in current clinical cancer studies. Specifically, CS-based nanostructures including nanocapsules, nanospheres, solid-gel formulations, and nanoemulsions, also microshperes and micelles will be evaluated.
Collapse
Affiliation(s)
- Montserrat Lara-Velazquez
- Mayo Clinic Florida, Department of Neurosurgery, Jacksonville, FL, United States
- Plan of Combined Studies in Medicine (PECEM), UNAM, Mexico City, Mexico
| | - Rawan Alkharboosh
- Mayo Clinic Florida, Department of Neurosurgery, Jacksonville, FL, United States
- Neuroscience Graduate Program, Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Rochester, MN, United States
- Regenerative Sciences Training Program, Center for Regenerative Medicine, Mayo Clinic, Rochester, MN, United States
| | - Emily S. Norton
- Mayo Clinic Florida, Department of Neurosurgery, Jacksonville, FL, United States
- Neuroscience Graduate Program, Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Rochester, MN, United States
- Regenerative Sciences Training Program, Center for Regenerative Medicine, Mayo Clinic, Rochester, MN, United States
| | | | - William D. Freeman
- Mayo Clinic Florida, Department of Neurosurgery, Jacksonville, FL, United States
| | | | - Antonio J. Forte
- Mayo Clinic Florida, Department of Neurosurgery, Jacksonville, FL, United States
- Division of Plastic Surgery and Robert D. and Patricia E. Kern Center for the Science of Health Care Delivery, Mayo Clinic, Jacksonville, FL, United States
| | | | | |
Collapse
|
35
|
Niu L, Shi M, Feng Y, Sun X, Wang Y, Cheng Z, Li M. The Interactions of Quantum Dot-Labeled Silk Fibroin Micro/Nanoparticles with Cells. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E3372. [PMID: 32751473 PMCID: PMC7436185 DOI: 10.3390/ma13153372] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 07/25/2020] [Accepted: 07/27/2020] [Indexed: 11/16/2022]
Abstract
When silk fibroin particles are used for controlled drug delivery, particle size plays a key role in the location of the carrier on the cells as well as the transport pathway, utilization efficiency, and therapeutic effect of the drugs. In this study, the interactions of different-sized silk fibroin particles and cell lines were investigated. Silk fibroin microparticles with dry size of 1.9 ± 0.4 μm (2.7 ± 0.3 μm in wet state) and silk fibroin nanoparticles with dry size of 51.5 ± 11.0 nm (174.8 ± 12.5 nm in wet state) were prepared by salting-out method and high-voltage electrospray method, respectively. CdSe/ZnS quantum dots were coupled to the surface of the micro/nanoparticles. Photostability observations indicated that the fluorescence stability of the quantum dots was much higher than that of fluorescein isothiocyanate. In vitro, microparticles and nanoparticles were co-cultured with human umbilical vein endothelial cells EA.hy 926 and cervical cancer cells HeLa, respectively. The fluorescence test and cell viability showed that the EA.hy926 cells tended to be adhered to the microparticle surfaces and the cell proliferation was significantly promoted, while the nanoparticles were more likely to be internalized in HeLa cells and the cell proliferation was notably inhibited. Our findings might provide useful information concerning effective drug delivery that microparticles may be preferred if the drugs need to be delivered to normal cell surface, while nanoparticles may be preferred if the drugs need to be transmitted in tumor cells.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Mingzhong Li
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, No. 199 Ren’ai Road, Industrial Park, Suzhou 215123, China; (L.N.); (M.S.); (Y.F.); (X.S.); (Y.W.); (Z.C.)
| |
Collapse
|
36
|
Shear Stress-Dependent Targeting Efficiency Using Self-Assembled Gelatin-Oleic Nanoparticles in a Biomimetic Microfluidic System. Pharmaceutics 2020; 12:pharmaceutics12060555. [PMID: 32560107 PMCID: PMC7356760 DOI: 10.3390/pharmaceutics12060555] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 06/10/2020] [Accepted: 06/11/2020] [Indexed: 11/16/2022] Open
Abstract
Cellular properties and microenvironments, as well as the characteristics of nanoparticles (NPs), affect the cellular uptake and cytotoxic effects of drug-loaded NPs. Since there is fluid flow in the human blood system, fluid flow also affects the drug delivery efficiency of NPs. This study aimed to evaluate the cellular behaviors of drug-loaded soft NPs on A549 cancer cells under different levels of shear stress (0.5, 5, and 50 dynes/cm2) in the biomimetic microfluidic system. The soft self-assembled NPs were formed by the gelatin-oleic conjugate (GOC). The poorly water-soluble coumarin-6 or paclitaxel (PTX) were used as model markers for encapsulation within self-assembled NPs (C-GONs or PTX-GONs, respectively). The cellular uptake of C-GONs was found to be improved with shear-stress dependence. The inhibitory concentration (IC50) of PTX-GONs at 0.5, 5, and 50 dynes/cm2 was 0.106 µg/mL, 0.108 µg/mL, and 0.091 µg/mL, respectively, as compared to 0.138 µg/mL in a static condition. The cell killing efficiency of PTX-GONs was increased in the highest shear stress of 50 dynes/cm2 in the static condition, and other levels of shear stress in dynamic conditions.
Collapse
|
37
|
Konefał A, Lniak W, Rostocka J, Orlef A, Sokół M, Kasperczyk J, Jarząbek P, Wrońska A, Rusiecka K. Influence of a shape of gold nanoparticles on the dose enhancement in the wide range of gold mass concentration for high-energy X-ray beams from a medical linac. Rep Pract Oncol Radiother 2020; 25:579-585. [PMID: 32494232 DOI: 10.1016/j.rpor.2020.05.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 04/07/2020] [Accepted: 05/13/2020] [Indexed: 01/18/2023] Open
Abstract
Aim This work is focused on the Monte Carlo microdosimetric calculations taking into account the influence of the AuNPs' shape, size and mass concentration on the radiation dose enhancement for the high-energy 6 MV and 18 MV X-ray therapeutic beams from a medical linac. Background Due to a high atomic number and the photoelectric effect, gold nanoparticles can significantly enhance doses of ionizing radiation. However, this enhancement depends upon several parameters, such as, inter alia, nanoparticles' shape etc. Method The simulated system was composed of the therapeutic beam, a water phantom with the target volume (with and without AuNPs) located at the depth of the maximum dose, i.e. at 1.5 cm for the 6 MV beam and at 3.5 cm for the 18 MV one. In the study the GEANT4 code was used because it makes it possible to get a very short step of simulation which is required in case of simulating the radiation interactions with nanostructures. Results The dependence between the dose increase and the mass concentration of gold was determined and described by a simple mathematical formula for three different shapes of gold nanoparticles - two nanorods of different sizes and a flat 2D structure. The dose increase with the saturation occurring with the increasing mass concentration of gold was observed. Conclusions It was found that relatively large cylindrical gold nanoparticles can limit the increase of the dose absorbed in the target volume much more than the large 2D gold nanostructure.
Collapse
Affiliation(s)
- Adam Konefał
- Institute of Physics, University of Silesia in Katowice, Katowice, Poland
| | - Wioletta Lniak
- Institute of Physics, University of Silesia in Katowice, Katowice, Poland
| | - Justyna Rostocka
- Institute of Physics, University of Silesia in Katowice, Katowice, Poland
| | - Andrzej Orlef
- Maria Sklodowska-Curie National Research Institute of Oncology, Gliwice Branch, Department of Medical Physics, Gliwice, Poland
| | - Maria Sokół
- Maria Sklodowska-Curie National Research Institute of Oncology, Gliwice Branch, Department of Medical Physics, Gliwice, Poland
| | - Janusz Kasperczyk
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, Zabrze, Poland
| | - Paulina Jarząbek
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, Zabrze, Poland
| | - Aleksandra Wrońska
- Marian Smoluchowski Institute of Physics, Jagiellonian University, Kraków, Poland
| | - Katarzyna Rusiecka
- Marian Smoluchowski Institute of Physics, Jagiellonian University, Kraków, Poland
| |
Collapse
|
38
|
Fan M, Jiang M. Core-shell nanotherapeutics with leukocyte membrane camouflage for biomedical applications. J Drug Target 2020; 28:873-881. [DOI: 10.1080/1061186x.2020.1757102] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Mingliang Fan
- School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Minxing Jiang
- Department of Pediatrics, Maternity and Child Health Care of Zaozhuang, Zaozhuang, China
| |
Collapse
|
39
|
Recent advances of smart acid‐responsive gold nanoparticles in tumor therapy. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2020; 12:e1619. [DOI: 10.1002/wnan.1619] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Revised: 01/17/2020] [Accepted: 01/21/2020] [Indexed: 12/14/2022]
|
40
|
Beiu C, Giurcaneanu C, Grumezescu AM, Holban AM, Popa LG, Mihai MM. Nanosystems for Improved Targeted Therapies in Melanoma. J Clin Med 2020; 9:jcm9020318. [PMID: 31979325 PMCID: PMC7073828 DOI: 10.3390/jcm9020318] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 01/11/2020] [Accepted: 01/20/2020] [Indexed: 02/06/2023] Open
Abstract
Melanoma is one of the most aggressive forms of skin cancer, with limited therapeutic options. Since its incidence has been rapidly rising in recent years, the study of new targeted therapeutic strategies has increased. The implication of nanoscience in the development of alternative targeted therapies for melanoma has multiple benefits and could significantly improve the outcome of melanoma patients. In this paper, we review the most recent progress in the field of targeted therapies, emphasizing the impact of nanoscale materials on the targeting and controlled release of anti-tumor drugs. The applications of nanomedicine in the management of melanoma are extensive and refer to sentinel lymph node mapping, chemotherapy, and RNA interference; each of these applications harboring the potential to develop efficient and personalized diagnostic techniques and therapies. Further research, especially in clinical trials, is needed to establish whether fighting melanoma on the nanoscale level represents the key to reaching a critical inflection point in mankind’s battle with metastatic melanoma.
Collapse
Affiliation(s)
- Cristina Beiu
- Department of Oncologic Dermatology-“Elias” Emergency University Hospital, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (C.B.); (C.G.); (L.G.P.)
| | - Calin Giurcaneanu
- Department of Oncologic Dermatology-“Elias” Emergency University Hospital, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (C.B.); (C.G.); (L.G.P.)
| | - Alexandru Mihai Grumezescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 1–7 Polizu Street, 011061 Bucharest, Romania;
| | - Alina Maria Holban
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 1–7 Polizu Street, 011061 Bucharest, Romania;
- Department of Microbiology and Immunology, Faculty of Biology, University of Bucharest, 030018 Bucharest, Romania
- Correspondence: ; Tel.: +40-721-600-737
| | - Liliana Gabriela Popa
- Department of Oncologic Dermatology-“Elias” Emergency University Hospital, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (C.B.); (C.G.); (L.G.P.)
| | - Mara Mădălina Mihai
- Department of Oncologic Dermatology-“Elias” Emergency University Hospital, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (C.B.); (C.G.); (L.G.P.)
| |
Collapse
|
41
|
Li B, Lane LA. Probing the biological obstacles of nanomedicine with gold nanoparticles. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2019; 11:e1542. [PMID: 30084539 PMCID: PMC6585966 DOI: 10.1002/wnan.1542] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 07/09/2018] [Accepted: 07/10/2018] [Indexed: 12/11/2022]
Abstract
Despite massive growth in nanomedicine research to date, the field still lacks fundamental understanding of how certain physical and chemical features of a nanoparticle affect its ability to overcome biological obstacles in vivo and reach its intended target. To gain fundamental understanding of how physical and chemical parameters affect the biological outcomes of administered nanoparticles, model systems that can systematically manipulate a single parameter with minimal influence on others are needed. Gold nanoparticles are particularly good model systems in this case as one can synthetically control the physical dimensions and surface chemistry of the particles independently and with great precision. Additionally, the chemical and physical properties of gold allow particles to be detected and quantified in tissues and cells with high sensitivity. Through systematic biological studies using gold nanoparticles, insights toward rationally designed nanomedicine for in vivo imaging and therapy can be obtained. This article is categorized under: Nanotechnology Approaches to Biology > Nanoscale Systems in Biology.
Collapse
Affiliation(s)
- Bin Li
- Department of Biomedical Engineering, College of Engineering and Applied SciencesNanjing UniversityNanjingJiangsuChina
| | - Lucas A. Lane
- Department of Biomedical Engineering, College of Engineering and Applied SciencesNanjing UniversityNanjingJiangsuChina
| |
Collapse
|
42
|
Li B, Wang Y, He J. Gold Nanorods-Based Smart Nanoplatforms for Synergic Thermotherapy and Chemotherapy of Tumor Metastasis. ACS APPLIED MATERIALS & INTERFACES 2019; 11:7800-7811. [PMID: 30720270 DOI: 10.1021/acsami.8b21784] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
The combination therapy of photothermal therapy and chemotherapy as a promising strategy has drawn extensive attention by overcoming the limitations of conventional treatments in tumor therapy. Gold nanorods-based nanoplatforms were herein designed by integrating doxorubicin (DOX)- and polydopamine-coated gold nanorods (GNRs@PDA) for tumor metastasis inhibition and multifunctional drug delivery. The GNRs@PDA-poly(ethylene glycol) (PEG)-DOX nanocomplex showed robust stability and excellent near-infrared (NIR) photothermal conversion efficiency under laser irradiation. The release of loaded DOX from GNRs@PDA-PEG-DOX nanocomposites was improved in tumor microenvironments. Furthermore, the PDA-functionalized GNR nanocomposites were expected to be potential photoacoustic imaging agents for imaging-guided tumor therapy. Upon NIR laser irradiation, the efficiency of tumor inhibition of GNRs@PDA-PEG-DOX is greater than that of the other group in vitro and in vivo, which was confirmed by immunohistochemistry staining, demonstrating a promising strategy for suppression of tumor metastasis and low long-term systemic toxicity. These results illustrated a promising strategy of tailor-made GNRs@PDA-PEG-DOX nanoplatforms for ablation of tumor and suppression of tumor metastasis in clinical application.
Collapse
Affiliation(s)
- Bin Li
- Department of Biomedical Engineering, College of Engineering and Applied Sciences , Nanjing University , Nanjing , Jiangsu Province 210093 , China
| | - Yiqing Wang
- Department of Biomedical Engineering, College of Engineering and Applied Sciences , Nanjing University , Nanjing , Jiangsu Province 210093 , China
| | - Jian He
- Department of Radiology, Nanjing Drum Tower Hospital , The Affiliated Hospital of Nanjing University Medical School , No. 321 Zhongshan Road , Nanjing 210008 , China
| |
Collapse
|
43
|
Hale SJM, Perrins RD, Garcı A CE, Pace A, Peral U, Patel KR, Robinson A, Williams P, Ding Y, Saito G, Rodriguez MÁ, Perera I, Barrientos A, Conlon K, Damment S, Porter J, Coulter T. DM1 Loaded Ultrasmall Gold Nanoparticles Display Significant Efficacy and Improved Tolerability in Murine Models of Hepatocellular Carcinoma. Bioconjug Chem 2019; 30:703-713. [PMID: 30582799 DOI: 10.1021/acs.bioconjchem.8b00873] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Hepatocellular carcinoma (HCC) is the sixth most common cancer worldwide with poor prognosis and limited options for treatment. Life expectancy after diagnosis is short; the currently available treatments are not well tolerated and have limited clinical benefit. There is a clear unmet clinical need for the development of new treatments. In this study, ultrasmall, 2 nm gold core nanoparticles (MidaCore) conjugated with the potent maytansine analogue DM1 (MTC-100038) were assessed as a systemic nanomedicine for the treatment of hepatocellular carcinoma. The platform improved overall tolerability of DM1, permitting ∼3-fold higher levels of drug to be administered compared to free drug. Dose for dose, MTC-100038 also facilitated delivery of ∼2.0-fold higher ( p = 0.039) levels of DM1 to the tumor compared to free DM1. MTC-100038 produced significant efficacy (tumor growth index ∼102%; p = <0.0001), in several murine xenograft models of HCC, and was superior to both free DM1 and the current standard of care, sorafenib. Furthermore, MTC-100038 displayed potent (nM) in vitro activity in various HCC primary patient derived cell lines and across various other different cancer cell types. These data demonstrate the potential of MidaCore nanoparticles to enhance tumor delivery of cytotoxic drugs and indicate MTC-100038 is worthy of further investigation as a potential treatment for HCC and other cancer types.
Collapse
Affiliation(s)
- Sarah J M Hale
- Midatech Pharma Plc , 65 Park Drive, Innovation Drive , Milton , Abingdon OX14 4RQ , United Kingdom
| | - Richard D Perrins
- Midatech Pharma Plc , 65 Park Drive, Innovation Drive , Milton , Abingdon OX14 4RQ , United Kingdom
| | | | - Alessandro Pace
- Midatech Pharma Plc , 65 Park Drive, Innovation Drive , Milton , Abingdon OX14 4RQ , United Kingdom
| | - Usoa Peral
- Midatech Pharma Espana , Parque Tecnológico Ibaizabal Bidea, 800-2a plta , 48160 , Derio , Bizakaia , Spain
| | - Ketan R Patel
- Midatech Pharma Plc , 65 Park Drive, Innovation Drive , Milton , Abingdon OX14 4RQ , United Kingdom
| | - Angela Robinson
- Midatech Pharma Plc , 65 Park Drive, Innovation Drive , Milton , Abingdon OX14 4RQ , United Kingdom
| | - Phil Williams
- Midatech Pharma Plc , 65 Park Drive, Innovation Drive , Milton , Abingdon OX14 4RQ , United Kingdom
| | - Yao Ding
- Midatech Pharma Plc , 65 Park Drive, Innovation Drive , Milton , Abingdon OX14 4RQ , United Kingdom
| | - Gabriele Saito
- Midatech Pharma Plc , 65 Park Drive, Innovation Drive , Milton , Abingdon OX14 4RQ , United Kingdom
| | - Miguel Ángel Rodriguez
- Midatech Pharma Espana , Parque Tecnológico Ibaizabal Bidea, 800-2a plta , 48160 , Derio , Bizakaia , Spain
| | - Ibon Perera
- Midatech Pharma Espana , Parque Tecnológico Ibaizabal Bidea, 800-2a plta , 48160 , Derio , Bizakaia , Spain
| | - Africa Barrientos
- Midatech Pharma Espana , Parque Tecnológico Ibaizabal Bidea, 800-2a plta , 48160 , Derio , Bizakaia , Spain
| | - Kelly Conlon
- Midatech Pharma Plc , 65 Park Drive, Innovation Drive , Milton , Abingdon OX14 4RQ , United Kingdom
| | - Steve Damment
- Midatech Pharma Plc , 65 Park Drive, Innovation Drive , Milton , Abingdon OX14 4RQ , United Kingdom
| | - John Porter
- Midatech Pharma Plc , 65 Park Drive, Innovation Drive , Milton , Abingdon OX14 4RQ , United Kingdom
| | - Tom Coulter
- Midatech Pharma Plc , 65 Park Drive, Innovation Drive , Milton , Abingdon OX14 4RQ , United Kingdom
| |
Collapse
|