1
|
Shahrtash SA, Ghnim ZS, Ghaheri M, Adabi J, Hassanzadeh MA, Yasamineh S, Afkhami H, Kheirkhah AH, Gholizadeh O, Moghadam HZ. Recent Advances in the Role of Different Nanoparticles in the Various Biosensors for the Detection of the Chikungunya Virus. Mol Biotechnol 2025; 67:54-79. [PMID: 38393630 DOI: 10.1007/s12033-024-01052-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 12/29/2023] [Indexed: 02/25/2024]
Abstract
Humans contract the Chikungunya virus (CHIKV), an alphavirus transmitted by mosquitoes that induces acute and chronic musculoskeletal discomfort and fever. Millions of cases of the disease have been attributed to CHIKV in the Indian Ocean region since 2004, and the virus has since spread to Europe, the Middle East, and the Pacific. The exponential proliferation of CHIKV in recent times underscores the critical nature of implementing preventative measures and exploring potential control strategies. The principal laboratory test employed to diagnose infection in serum samples collected over six days after the onset of symptoms is the detection of CHIKV or viral RNA. Although two commercially available real-time reverse transcription-polymerase chain reaction products exist, data on their validity are limited. A diagnostic instrument that is rapid, sensitive, specific, and cost-effective is, therefore an absolute necessity, particularly in developing nations. Biosensors have demonstrated considerable potential in the realm of pathogen detection. The rapid and sensitive detection of viruses has been facilitated by the development of numerous types of biosensors, including affinity-based nano-biosensors, graphene affinity-based biosensors, optical nano-biosensors, surface Plasmon Resonance-based optical nano-biosensors, and electrochemical nano-biosensors. Furthermore, the utilization of nanomaterials for signal extension, including but not limited to gold and silver nanoparticles, quantum dots, and iron oxide NPs, has enhanced the precision and sensitivity of biosensors. The developed innovative diagnostic method is time-efficient, precise, and economical; it can be implemented as a point-of-care device. The technique may be implemented in diagnostic laboratories and hospitals to identify patients infected with CHIKV. Throughout this article, we have examined a multitude of CHIKV nano-biosensors and their respective properties. Following a discussion of representative nanotechnologies for biosensors, numerous NPs-assisted CHIKV nano-biosensors are summarized in this article. As a result, we anticipate that this review will furnish a significant foundation for advancing innovative CHIKV nano-biosensors.
Collapse
Affiliation(s)
| | | | - Mohammad Ghaheri
- Student Research Committee, Alborz University of Medical Sciences, Karaj, Iran
| | - Javid Adabi
- Chemical Engineering Department, Amirkabir University of Technology, Tehran, Iran
| | | | - Saman Yasamineh
- Young Researchers and Elite Club, Tabriz Branch, Islamic Azad University, Tabriz, Iran
| | - Hamed Afkhami
- Department of Medical Microbiology, Faculty of Medicine, Shahed University of Medical Science, Tehran, Iran
| | - Amir Hossein Kheirkhah
- Department of Tissue Engineering and Applied Cell Science, School of Medicine, Qom University of Medical Sciences, Qom, Iran
| | - Omid Gholizadeh
- Young Researchers and Elite Club, Tabriz Branch, Islamic Azad University, Tabriz, Iran.
- Azad Researcher, Virology and Biotechnology, Tehran, Iran.
| | - Hesam Zendehdel Moghadam
- Research Center of Tropical and Infectious Diseases, Kerman University of Medical Sciences, Kerman, Iran.
| |
Collapse
|
2
|
Hu PP, Zheng LL, Zhan L, Huang CZ. Imaging of Viral Genomic RNA Replication with Nanoprobes. Methods Mol Biol 2025; 2875:145-153. [PMID: 39535646 DOI: 10.1007/978-1-0716-4248-1_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Viruses are a great threat to human life and health. Different viruses have its unique mechanism to efficiently infect cells, and the entry process and the nucleic acid replication using cell machine are two critical processes related to the fate of virus progeny. Real-time and long-term imaging techniques can be used to thoroughly investigate the viral infection events. This chapter will present the labeling of viral genomic RNA (gRNA) replication by developing new nanoprobes, one-donor-two-acceptors one, for example, in which the synergistic coupling of multiple energy transfer strategy, so as that the journey of viruses in live cells could be monitored and imaged in real time. Methods of labeling as well as that used for fluorescent and dark field scattering imaging are outlined.
Collapse
Affiliation(s)
- Ping Ping Hu
- Chongqing Key Laboratory for Pharmaceutical Metabolism Research, College of Pharmacy, Chongqing Medical University, Chongqing, China
- Key Laboratory of Biomedical Analytics, Chongqing Science and Technology Bureau, College of Pharmaceutical Sciences, Southwest University, Chongqing, China
| | - Lin Ling Zheng
- Biomedical Analysis Center, Army Medical University, Chongqing, China
| | - Lei Zhan
- Key Laboratory of Biomedical Analytics, Chongqing Science and Technology Bureau, College of Pharmaceutical Sciences, Southwest University, Chongqing, China
| | - Cheng Zhi Huang
- Key Laboratory of Biomedical Analytics, Chongqing Science and Technology Bureau, College of Pharmaceutical Sciences, Southwest University, Chongqing, China
| |
Collapse
|
3
|
Sun X, Tian T, Lian Y, Cui Z. Current Advances in Viral Nanoparticles for Biomedicine. ACS NANO 2024; 18:33827-33863. [PMID: 39648920 DOI: 10.1021/acsnano.4c13146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2024]
Abstract
Viral nanoparticles (VNPs) have emerged as crucial tools in the field of biomedicine. Leveraging their biological and physicochemical properties, VNPs exhibit significant advantages in the prevention, diagnosis, and treatment of human diseases. Through techniques such as chemical bioconjugation, infusion, genetic engineering, and encapsulation, these VNPs have been endowed with multifunctional capabilities, including the display of functional peptides or proteins, encapsulation of therapeutic drugs or inorganic particles, integration with imaging agents, and conjugation with bioactive molecules. This review provides an in-depth analysis of VNPs in biomedicine, elucidating their diverse types, distinctive features, production methods, and complex design principles behind multifunctional VNPs. It highlights recent innovative research and various applications, covering their roles in imaging, drug delivery, therapeutics, gene delivery, vaccines, immunotherapy, and tissue regeneration. Additionally, the review provides an assessment of their safety and biocompatibility and discusses challenges and future opportunities in the field, underscoring the vast potential and evolving nature of VNP research.
Collapse
Affiliation(s)
- Xianxun Sun
- School of Life Sciences, Jianghan University, Wuhan 430056, China
| | - Tao Tian
- School of Life Sciences, Jianghan University, Wuhan 430056, China
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, China
| | - Yindong Lian
- School of Life Sciences, Jianghan University, Wuhan 430056, China
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, China
| | - Zongqiang Cui
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, China
| |
Collapse
|
4
|
Sun X, Lian Y, Tian T, Cui Z. Virus-like particle encapsulation of functional proteins: advances and applications. Theranostics 2024; 14:7604-7622. [PMID: 39659581 PMCID: PMC11626933 DOI: 10.7150/thno.103127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 10/24/2024] [Indexed: 12/12/2024] Open
Abstract
Proteins face several challenges in biomedicine, including issues with antibody production, degradation by proteases, rapid clearance by the kidneys, and short half-lives. To address these problems, various nano delivery systems have been developed, with virus-like particles (VLPs) emerging as a leading solution. VLPs, which are self-assembled protein complexes, offer effective encapsulation and transport of proteins. They provide enhanced stability, extended circulation time, preserved biological activity, improved targeting for therapies or imaging, and reduced side effects due to minimized systemic exposure. This review explores various methods for encapsulating proteins within VLPs. It assesses the benefits and limitations of each method and their applications in imaging, therapeutic enzyme delivery, vaccines, immunotherapy, nanoreactors, and biosensors. Future advancements in VLPs will depend on improving packaging methods, controlling protein loading, optimizing assembly techniques, and enhancing capsid design. The review also discusses current challenges and proposes solutions to advance the use of VLPs in various applications.
Collapse
Affiliation(s)
- Xianxun Sun
- School of Life Sciences, Jianghan University, Wuhan 430056, China
| | - Yindong Lian
- School of Life Sciences, Jianghan University, Wuhan 430056, China
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, China
| | - Tao Tian
- School of Life Sciences, Jianghan University, Wuhan 430056, China
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, China
| | - Zongqiang Cui
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, China
| |
Collapse
|
5
|
Sun X, Lian Y, Tian T, Cui Z. Advancements in Functional Nanomaterials Inspired by Viral Particles. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2402980. [PMID: 39058214 DOI: 10.1002/smll.202402980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 06/27/2024] [Indexed: 07/28/2024]
Abstract
Virus-like particles (VLPs) are nanostructures composed of one or more structural proteins, exhibiting stable and symmetrical structures. Their precise compositions and dimensions provide versatile opportunities for modifications, enhancing their functionality. Consequently, VLP-based nanomaterials have gained widespread adoption across diverse domains. This review focuses on three key aspects: the mechanisms of viral capsid protein self-assembly into VLPs, design methods for constructing multifunctional VLPs, and strategies for synthesizing multidimensional nanomaterials using VLPs. It provides a comprehensive overview of the advancements in virus-inspired functional nanomaterials, encompassing VLP assembly, functionalization, and the synthesis of multidimensional nanomaterials. Additionally, this review explores future directions, opportunities, and challenges in the field of VLP-based nanomaterials, aiming to shed light on potential advancements and prospects in this exciting area of research.
Collapse
Affiliation(s)
- Xianxun Sun
- College of Life Science, Jiang Han University, Wuhan, 430056, China
| | - Yindong Lian
- College of Life Science, Jiang Han University, Wuhan, 430056, China
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Tao Tian
- College of Life Science, Jiang Han University, Wuhan, 430056, China
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Zongqiang Cui
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, China
| |
Collapse
|
6
|
Huang S, Huang G. The utilization of quantum dot labeling as a burgeoning technique in the field of biological imaging. RSC Adv 2024; 14:20884-20897. [PMID: 38957578 PMCID: PMC11217725 DOI: 10.1039/d4ra04402a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Accepted: 06/27/2024] [Indexed: 07/04/2024] Open
Abstract
Quantum dots (QDs), with their unique optical and physical properties, have revolutionized the field of biological imaging, providing researchers with tools to explore cellular processes and molecular interactions in unprecedented detail. This review explores the diverse properties of QDs, emphasizing their application in biological imaging and addressing both their advantages and challenges. We discuss the developments in QD technology that have facilitated their integration into bioimaging, highlighting the role of surface modifications in enhancing their biocompatibility and functionality. The varied applications of QDs in both in vitro and in vivo imaging settings are examined, showcasing their capacity to deliver brighter, more stable, and multiplexed imaging solutions compared to traditional fluorescent dyes. Furthermore, we delve into the challenges associated with QD use, particularly concerns regarding their potential toxicity and long-term effects on biological systems, and explore ongoing research aimed at mitigating these issues. Finally, we discuss future directions in QD technology, anticipating advancements that will further solidify their role in biological imaging and open up new avenues for scientific exploration.
Collapse
Affiliation(s)
- Shiyu Huang
- School of Chemistry and Chemical Engineering, Southwest University Chongqing 400700 China
- Key Laboratory of Carbohydrate Science and Engineering, Chongqing Normal University Chongqing 401331 China
| | - Gangliang Huang
- Key Laboratory of Carbohydrate Science and Engineering, Chongqing Normal University Chongqing 401331 China
| |
Collapse
|
7
|
Gu Y, Lozach PY. Illuminating bunyavirus entry into host cells with fluorescence. Mol Microbiol 2024; 121:671-678. [PMID: 37700704 DOI: 10.1111/mmi.15165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 09/02/2023] [Accepted: 09/04/2023] [Indexed: 09/14/2023]
Abstract
Bunyavirales constitute the largest order of enveloped RNA viruses, many members of which cause severe diseases in humans and domestic animals. In recent decades, innovative fluorescence-based methods have paved the way to visualize and track single fluorescent bunyaviral particles in fixed and live cells. This technological breakthrough has enabled imaging of the early stages of infection and the quantification of every step in the bunyavirus cell entry process. Here, we describe the latest procedures for rendering bunyaviral particles fluorescent and discuss the advantages and disadvantages of each approach in light of the most recent advances in fluorescence detection and monitoring of bunyavirus entry. In this mini-review, we also illustrate how fluorescent viral particles are a powerful tool for deciphering the cellular entry process of bunyaviruses, the vast majority of which have not yet been analyzed.
Collapse
Affiliation(s)
- Yu Gu
- Université Claude Bernard Lyon 1, INRAE, EPHE, IVPC UMR754, Team iWays, Lyon, France
| | - Pierre-Yves Lozach
- Université Claude Bernard Lyon 1, INRAE, EPHE, IVPC UMR754, Team iWays, Lyon, France
| |
Collapse
|
8
|
Shirazi MMA, Saedi TA, Moghaddam ZS, Nemati M, Shiri R, Negahdari B, Goradel NH. Nanotechnology and nano-sized tools: Newer approaches to circumvent oncolytic adenovirus limitations. Pharmacol Ther 2024; 256:108611. [PMID: 38387653 DOI: 10.1016/j.pharmthera.2024.108611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 01/03/2024] [Accepted: 02/14/2024] [Indexed: 02/24/2024]
Abstract
Oncolytic adenoviruses (OAds), engineered Ads preferentially infect and lyse tumor cells, have attracted remarkable attention as immunotherapy weapons for the treatment of various malignancies. Despite hopeful successes in preclinical investigations and translation into clinical phases, they face some challenges that thwart their therapeutic effectiveness, including low infectivity of cancer cells, liver sequestration, pre-existing neutralizing antibodies, physical barriers to the spread of Ads, and immunosuppressive TME. Nanotechnology and nano-sized tools provide several advantages to overcome these limitations of OAds. Nano-sized tools could improve the therapeutic efficacy of OAds by enhancing infectivity and cellular uptake, targeting and protecting from pre-existing immune responses, masking and preventing liver tropism, and co-delivery with other therapeutic agents. Herein, we reviewed the constructs of various OAds and their application in clinical trials, as well as the limitations they have faced. Furthermore, we emphasized the potential applications of nanotechnology to solve the constraints of OAds to improve their anti-tumor activities.
Collapse
Affiliation(s)
| | - Tayebeh Azam Saedi
- Department of Genetics, Faculty of Science, Islamic Azad University, Tonekabon Branch, Tonekabon, Iran
| | - Zahra Samadi Moghaddam
- Department of Medical Biotechnology, Maragheh University of Medical Sciences, Maragheh, Iran
| | - Mahnaz Nemati
- Amir Oncology Hospital, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Reza Shiri
- Department of Basic Sciences, Maragheh University of Medical Sciences, Maragheh, Iran
| | - Babak Negahdari
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Nasser Hashemi Goradel
- Department of Medical Biotechnology, Maragheh University of Medical Sciences, Maragheh, Iran; Arthropod-Borne Diseases Research Centre, Ardabil University of Medical Sciences, Ardabil, Iran.
| |
Collapse
|
9
|
Mabrouk SM, Inc M, Rashed AS, Akgül A. Similarity analysis of bioconvection of unsteady nonhomogeneous hybrid nanofluids influenced by motile microorganisms. J Biol Phys 2024; 50:119-148. [PMID: 38261235 PMCID: PMC10864241 DOI: 10.1007/s10867-023-09651-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Accepted: 11/22/2023] [Indexed: 01/24/2024] Open
Abstract
Motile bacteria in hybrid nanofluids cause bioconvection. Bacillus cereus, Pseudomonas viscosa, Bacillus brevis, Salmonella typhimurium, and Pseudomonas fluorescens were used to evaluate their effect and dispersion in the hybrid nanofluid. Using similarity analysis, a two-phase model for mixed bioconvection magnetohydrodynamic flow was developed using hybrid nanoparticles of Al2O3 and Cu (Cu-Al2O3/water). The parametric investigation, covering the magnetic parameter, permeability coefficient, nanoparticle shape factor, temperature ratio, radiation parameter, nanoparticle fraction ratio, Brownian parameter, thermophoresis parameter, motile bacteria diffusivity, chemotaxis parameter, and Nusselt, Reynold, Prandtl, Sherwood numbers, as well as the number of motile microorganisms', showed significant outcomes. Velocity and shear stresses are sensitive to M, Pr, and [Formula: see text]. Magnetic, radiation, and chemotaxis factors impact bacterial density. The hybrid nanofluid velocity decreases when the magnetic parameter, M, Prandtl number Pr increases, while it increases with the increasing of porosity coefficient, [Formula: see text], and the hybrid nanoparticle ratio Nf. The temperature distribution decreases with the increasing of Prandtl number and Nf. Increasing temperature differential and bacterium diffusivity increases bacterial aggregation.
Collapse
Affiliation(s)
- Samah Mohamed Mabrouk
- Department of Physics and Engineering Mathematics, Faculty of Engineering, Zagazig University, Zagazig, Egypt
| | - Mustafa Inc
- Department of Mathematics, Firat University, Elazig, Turkey.
- Department of Medical Research, China Medical University, Taichung, Taiwan.
| | - Ahmed Saad Rashed
- Department of Physics and Engineering Mathematics, Faculty of Engineering, Zagazig University, Zagazig, Egypt
- Faculty of Engineering, Delta University for Science and Technology, Gamasa, Egypt
| | - Ali Akgül
- Department of Mathematics, Art and Science Faculty, Siirt University, 56100, Siirt, Turkey.
- Department of Electronics and Communication Engineering, Saveetha School of Engineering, SIMATS, Chennai, Tamilnadu, India.
| |
Collapse
|
10
|
Huang Y, Guo X, Wu Y, Chen X, Feng L, Xie N, Shen G. Nanotechnology's frontier in combatting infectious and inflammatory diseases: prevention and treatment. Signal Transduct Target Ther 2024; 9:34. [PMID: 38378653 PMCID: PMC10879169 DOI: 10.1038/s41392-024-01745-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 12/27/2023] [Accepted: 01/11/2024] [Indexed: 02/22/2024] Open
Abstract
Inflammation-associated diseases encompass a range of infectious diseases and non-infectious inflammatory diseases, which continuously pose one of the most serious threats to human health, attributed to factors such as the emergence of new pathogens, increasing drug resistance, changes in living environments and lifestyles, and the aging population. Despite rapid advancements in mechanistic research and drug development for these diseases, current treatments often have limited efficacy and notable side effects, necessitating the development of more effective and targeted anti-inflammatory therapies. In recent years, the rapid development of nanotechnology has provided crucial technological support for the prevention, treatment, and detection of inflammation-associated diseases. Various types of nanoparticles (NPs) play significant roles, serving as vaccine vehicles to enhance immunogenicity and as drug carriers to improve targeting and bioavailability. NPs can also directly combat pathogens and inflammation. In addition, nanotechnology has facilitated the development of biosensors for pathogen detection and imaging techniques for inflammatory diseases. This review categorizes and characterizes different types of NPs, summarizes their applications in the prevention, treatment, and detection of infectious and inflammatory diseases. It also discusses the challenges associated with clinical translation in this field and explores the latest developments and prospects. In conclusion, nanotechnology opens up new possibilities for the comprehensive management of infectious and inflammatory diseases.
Collapse
Affiliation(s)
- Yujing Huang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Xiaohan Guo
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Yi Wu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Xingyu Chen
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Lixiang Feng
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Na Xie
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China.
| | - Guobo Shen
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China.
| |
Collapse
|
11
|
Kiarashi M, Mahamed P, Ghotbi N, Tadayonfard A, Nasiri K, Kazemi P, Badkoobeh A, Yasamineh S, Joudaki A. Spotlight on therapeutic efficiency of green synthesis metals and their oxide nanoparticles in periodontitis. J Nanobiotechnology 2024; 22:21. [PMID: 38183090 PMCID: PMC10770920 DOI: 10.1186/s12951-023-02284-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Accepted: 12/19/2023] [Indexed: 01/07/2024] Open
Abstract
Periodontitis, one of the most prevalent dental diseases, causes the loss of bone and gum tissue that hold teeth in place. Several bacteria, commonly present in clinically healthy oral cavities, may induce and perpetuate periodontitis when their concentration rises in the gingival sulcus. Antibacterial effect against various Gram-negative and Gram-positive bacteria, including pathogenic and drug-resistant ones, has been shown for several distinct transient metal and metal oxide NPs. Therefore, NPs may be used in biomedicine to treat periodontal problems and in nanotechnology to inhibit the development of microorganisms. Instead of using harmful chemicals or energy-intensive machinery, biosynthesis of metal and metal oxide nanoparticles (NPs) has been suggested. To produce metal and metal oxide NPs, the ideal technique is "Green" synthesis because of its low toxicity and safety for human health and the environment. Gold NPs (AuNPs) appear to be less toxic to mammalian cells than other nanometals because their antibacterial activity is not dependent on reactive oxygen species (ROS). AgNPs also possess chemical stability, catalytic activity, and superior electrical and thermal conductivity, to name a few of their other advantageous characteristics. It was observed that zinc oxide (ZnO) NPs and copper (Cu) NPs exhibited discernible inhibitory effects against gram-positive and gram-negative bacterial strains, respectively. ZnO NPs demonstrated bactericidal activity against the microorganisms responsible for periodontitis. Medications containing magnetic NPs are highly effective against multidrug-resistant bacterial and fungal infections. The titanium dioxide (TiO2) NPs are implicated in elevating salivary peroxidase activity in individuals diagnosed with chronic periodontitis. Furthermore, specific metallic NPs have the potential to enhance the antimicrobial efficacy of periodontitis treatments when combined. Therefore, these NPs, as well as their oxide NPs, are only some of the metals and metal oxides that have been synthesized in environmentally friendly ways and shown to have therapeutic benefits against periodontitis.
Collapse
Affiliation(s)
- Mohammad Kiarashi
- College of Dentistry, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Parham Mahamed
- Student Research Committee, Alborz University of Medical Sciences, Karaj, Iran
| | - Nader Ghotbi
- General Dentist, Isfahan Azad University, School of Dentistry, Isfahan, Iran
| | - Azadeh Tadayonfard
- Maxillofacial prosthetics fellow, Postgraduate department of prosthodontics, Dental Faculty,Tehran University of Medical Sciences, Tehran, Iran
| | - Kamyar Nasiri
- Department of Dentistry, Islamic Azad University of Medical Sciences, Tehran, Iran
| | - Parisa Kazemi
- Faculty of Dentistry, Ilam University of Medical Sciences, Ilam, Iran
| | - Ashkan Badkoobeh
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Qom University of Medical Sciences, Qom, Iran
| | - Saman Yasamineh
- Azad Researchers, Viro-Biotech, Tehran, Iran.
- Young Researchers and Elite Club, Tabriz Branch, Islamic Azad University, Tabriz, Iran.
| | - Ali Joudaki
- Department of Oral and Maxillofacial Surgery, Lorestan University of Medical Sciences, Khorram Abad, Lorestan, Iran.
| |
Collapse
|
12
|
Jin L, Mao Z. Living virus-based nanohybrids for biomedical applications. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2024; 16:e1923. [PMID: 37619605 DOI: 10.1002/wnan.1923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 07/26/2023] [Accepted: 07/27/2023] [Indexed: 08/26/2023]
Abstract
Living viruses characterized by distinctive biological functions including specific targeting, gene invasion, immune modulation, and so forth have been receiving intensive attention from researchers worldwide owing to their promising potential for producing numerous theranostic modalities against diverse pathological conditions. Nevertheless, concerns during applications, such as rapid immune clearance, altering immune activation modes, insufficient gene transduction efficiency, and so forth, highlight the crucial issues of excessive therapeutic doses and the associated biosafety risks. To address these concerns, synthetic nanomaterials featuring unique physical/chemical properties are frequently exploited as efficient drug delivery vehicles or treatments in biomedical domains. By constant endeavor, researchers nowadays can create adaptable living virus-based nanohybrids (LVN) that not only overcome the limitations of virotherapy, but also combine the benefits of natural substances and nanotechnology to produce novel and promising therapeutic and diagnostic agents. In this review, we discuss the fundamental physiochemical properties of the viruses, and briefly outline the basic construction methodologies of LVN. We then emphasize their distinct diagnostic and therapeutic performances for various diseases. Furthermore, we survey the foreseeable challenges and future perspectives in this interdisciplinary area to offer insights. This article is categorized under: Biology-Inspired Nanomaterials > Protein and Virus-Based Structures Therapeutic Approaches and Drug Discovery > Emerging Technologies.
Collapse
Affiliation(s)
- Lulu Jin
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, China
| | - Zhengwei Mao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, China
| |
Collapse
|
13
|
Malik S, Muhammad K, Waheed Y. Emerging Applications of Nanotechnology in Healthcare and Medicine. Molecules 2023; 28:6624. [PMID: 37764400 PMCID: PMC10536529 DOI: 10.3390/molecules28186624] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 09/05/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023] Open
Abstract
Knowing the beneficial aspects of nanomedicine, scientists are trying to harness the applications of nanotechnology in diagnosis, treatment, and prevention of diseases. There are also potential uses in designing medical tools and processes for the new generation of medical scientists. The main objective for conducting this research review is to gather the widespread aspects of nanomedicine under one heading and to highlight standard research practices in the medical field. Comprehensive research has been conducted to incorporate the latest data related to nanotechnology in medicine and therapeutics derived from acknowledged scientific platforms. Nanotechnology is used to conduct sensitive medical procedures. Nanotechnology is showing successful and beneficial uses in the fields of diagnostics, disease treatment, regenerative medicine, gene therapy, dentistry, oncology, aesthetics industry, drug delivery, and therapeutics. A thorough association of and cooperation between physicians, clinicians, researchers, and technologies will bring forward a future where there is a more calculated, outlined, and technically programed field of nanomedicine. Advances are being made to overcome challenges associated with the application of nanotechnology in the medical field due to the pathophysiological basis of diseases. This review highlights the multipronged aspects of nanomedicine and how nanotechnology is proving beneficial for the health industry. There is a need to minimize the health, environmental, and ethical concerns linked to nanotechnology.
Collapse
Affiliation(s)
- Shiza Malik
- Bridging Health Foundation, Rawalpindi 46000, Pakistan
| | - Khalid Muhammad
- Department of Biology, College of Science, UAE University, Al Ain 15551, United Arab Emirates
| | - Yasir Waheed
- Office of Research, Innovation and Commercialization, Shaheed Zulfiqar Ali Bhutto Medical University, Islamabad 44000, Pakistan
- Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, Byblos 1401, Lebanon
| |
Collapse
|
14
|
Li M, Singh R, Wang Y, Marques C, Zhang B, Kumar S. Advances in Novel Nanomaterial-Based Optical Fiber Biosensors-A Review. BIOSENSORS 2022; 12:bios12100843. [PMID: 36290980 PMCID: PMC9599727 DOI: 10.3390/bios12100843] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 09/30/2022] [Accepted: 10/04/2022] [Indexed: 05/24/2023]
Abstract
This article presents a concise summary of current advancements in novel nanomaterial-based optical fiber biosensors. The beneficial optical and biological properties of nanomaterials, such as nanoparticle size-dependent signal amplification, plasmon resonance, and charge-transfer capabilities, are widely used in biosensing applications. Due to the biocompatibility and bioreceptor combination, the nanomaterials enhance the sensitivity, limit of detection, specificity, and response time of sensing probes, as well as the signal-to-noise ratio of fiber optic biosensing platforms. This has established a practical method for improving the performance of fiber optic biosensors. With the aforementioned outstanding nanomaterial properties, the development of fiber optic biosensors has been efficiently promoted. This paper reviews the application of numerous novel nanomaterials in the field of optical fiber biosensing and provides a brief explanation of the fiber sensing mechanism.
Collapse
Affiliation(s)
- Muyang Li
- Shandong Key Laboratory of Optical Communication Science and Technology, School of Physics Science and Information Technology, Liaocheng University, Liaocheng 252059, China
| | - Ragini Singh
- College of Agronomy, Liaocheng University, Liaocheng 252059, China
| | - Yiran Wang
- Shandong Key Laboratory of Optical Communication Science and Technology, School of Physics Science and Information Technology, Liaocheng University, Liaocheng 252059, China
| | - Carlos Marques
- Department of Physics & I3N, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Bingyuan Zhang
- Shandong Key Laboratory of Optical Communication Science and Technology, School of Physics Science and Information Technology, Liaocheng University, Liaocheng 252059, China
| | - Santosh Kumar
- Shandong Key Laboratory of Optical Communication Science and Technology, School of Physics Science and Information Technology, Liaocheng University, Liaocheng 252059, China
| |
Collapse
|
15
|
Abdalhamed AM, Naser SM, Mohamed AH, Zeedan GSG. Development of gold nanoparticles-lateral flow test as a novel field diagnostic assay for detecting foot-and-mouth disease and lumpy skin disease viruses. IRANIAN JOURNAL OF MICROBIOLOGY 2022; 14:574-586. [PMID: 36721504 PMCID: PMC9867639 DOI: 10.18502/ijm.v14i4.10245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Background and Objectives Rapid diagnosis is a cornerstone for controlling and preventing viral disease outbreaks. The present study is aimed to develop a rapid field diagnostic test based on gold nanoparticles for the detection of lumpy skin diseases (LSD), and foot and mouth diseases (FMD) in animals with high sensitivity and specificity. Materials and Methods FMD and LSD vaccines were used as a source of viruses' antigens for preparing monoclonal antibodies and conjugated with gold nanoparticles that characterized using various techniques such as UV-visible spectrometry, and transmission electron microscopy (TEM). Monoclonal antibodies (mAbs) for each serotype produced in experimental rats and used to capture antibodies for FMDV and/or LSDV. ELISA was used to screen 469 milk samples and 1165 serum samples from naturally infected cattle, buffaloes, sheep, and goats for validation of the lateral flow test (LFT). LSDV DNA was extracted from 117 blood and skin biopsy samples collected from naturally infected cattle during the 2019 outbreak. Results The specificity and sensitivity of GNP-LFT were evaluated and compared to Ag-ELISA, Western blot tests (WB), and PCR. A total of 95 FMDV positives out of 469 (20.25%) milk samples and 268 FMDV positives out of 1165 (23.3%) serum samples from natural infected cattle, buffaloes, sheep, and goats examined by ELISA to valid GNPS-LFT Viral LSDV DNA was detected in 60/117 (51.5%) and 31/60 (52.9%). While the GNPS-LFT assay results were 49/117 (41.9%) and 29/60 (48.3%) blood and skin biopsy samples, respectively. The diagnostic sensitivity and specificity of the GNP-LFT test were 72% and 82%, respectively. All vesicular fluid and epithelium samples collected from infected animals were identified as positive by the GNP-LFT and Ag-ELISA. Ag-ELISA, on the other hand, was 90% and 100%. While the developed GNP-LFT used LSDV polyclonal antibodies were similar to ELISA and IgG-WB with a sensitivity of 72.8% and a specificity of 88.8%, respectively. Conclusion The GNPS-LFT is a novel immunoassay based on mono or polyclonal antibodies conjugated with gold nanoparticles that provides an accurate, rapid, specific, and sensitive tool for field rapid diagnosis of FMDV and LSDV.
Collapse
Affiliation(s)
- Abeer Mostafa Abdalhamed
- Department of Parasitology and Animals Diseases (Infectious Diseases), National Research Centre, Dokki, Giza, Egypt
| | - Soad Mohammed Naser
- Clinical Pathology Research Unit, Department of Parasitology and Animals Diseases, National Research Centre, Dokki, Giza, Egypt
| | - Ayman Hamady Mohamed
- Biotechnology Unit, Department of Biotechnology, Cell Biology Research and Food Hygiene, Animal Health Institute, Dokki, Giza, Egypt
| | - Gamil Sayed Gamil Zeedan
- Department of Parasitology and Animals Diseases (Infectious Diseases), National Research Centre, Dokki, Giza, Egypt,Corresponding author: Gamil Sayed Gamil Zeedan, Ph.D, Department of Parasitology and Animals Diseases, (Infectious Diseases), National Research Centre, Dokki, Giza, Egypt. Tel: +201145535240 Fax: +20233370931
| |
Collapse
|
16
|
Abbas G, Yu J, Li G. Novel and Alternative Therapeutic Strategies for Controlling Avian Viral Infectious Diseases: Focus on Infectious Bronchitis and Avian Influenza. Front Vet Sci 2022; 9:933274. [PMID: 35937298 PMCID: PMC9353128 DOI: 10.3389/fvets.2022.933274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 06/08/2022] [Indexed: 11/13/2022] Open
Abstract
The growth of poultry farming has enabled higher spread of infectious diseases and their pathogens among different kinds of birds, such as avian infectious bronchitis virus (IBV) and avian influenza virus (AIV). IBV and AIV are a potential source of poultry mortality and economic losses. Furthermore, some pathogens have the ability to cause zoonotic diseases and impart human health problems. Antiviral treatments that are used often lead to virus resistance along with the problems of side effects, recurrence, and latency of viruses. Though target hosts are being vaccinated, the constant emergence and re-emergence of strains of these viruses cause disease outbreaks. The pharmaceutical industry is gradually focusing on plant extracts to develop novel herbal drugs to have proper antiviral capabilities. Natural therapeutic agents developed from herbs, essential oils (EO), and distillation processes deliver a rich source of amalgams to discover and produce new antiviral drugs. The mechanisms involved have elaborated how these natural therapeutics agents play a major role during virus entry and replication in the host and cause inhibition of viral pathogenesis. Nanotechnology is one of the advanced techniques that can be very useful in diagnosing and controlling infectious diseases in poultry. In general, this review covers the issue of the poultry industry situation, current infectious diseases, mainly IB and AI control measures and, in addition, the setup of novel therapeutics using plant extracts and the use of nanotechnology information that may help to control these diseases.
Collapse
|
17
|
Parkinson’s Disease and SARS-CoV-2 Infection: Particularities of Molecular and Cellular Mechanisms Regarding Pathogenesis and Treatment. Biomedicines 2022; 10:biomedicines10051000. [PMID: 35625737 PMCID: PMC9138688 DOI: 10.3390/biomedicines10051000] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 04/19/2022] [Accepted: 04/22/2022] [Indexed: 02/01/2023] Open
Abstract
Accumulating data suggest that chronic neuroinflammation-mediated neurodegeneration is a significant contributing factor for progressive neuronal and glial cell death in age-related neurodegenerative pathology. Furthermore, it could be encountered as long-term consequences in some viral infections, including post-COVID-19 Parkinsonism-related chronic sequelae. The current systematic review is focused on a recent question aroused during the pandemic’s successive waves: are there post-SARS-CoV-2 immune-mediated reactions responsible for promoting neurodegeneration? Does the host’s dysregulated immune counter-offensive contribute to the pathogenesis of neurodegenerative diseases, emerging as Parkinson’s disease, in a complex interrelation between genetic and epigenetic risk factors? A synthetic and systematic literature review was accomplished based on the ”Preferred Reporting Items for Systematic Principles Reviews and Meta-Analyses” (PRISMA) methodology, including registration on the specific online platform: International prospective register of systematic reviews—PROSPERO, no. 312183. Initially, 1894 articles were detected. After fulfilling the five steps of the selection methodology, 104 papers were selected for this synthetic review. Documentation was enhanced with a supplementary 47 bibliographic resources identified in the literature within a non-standardized search connected to the subject. As a final step of the PRISMA method, we have fulfilled a Population-Intervention-Comparison-Outcome-Time (PICOT)/Population-Intervention-Comparison-Outcome-Study type (PICOS)—based metanalysis of clinical trials identified as connected to our search, targeting the outcomes of rehabilitative kinesitherapeutic interventions compared to clinical approaches lacking such kind of treatment. Accordingly, we identified 10 clinical trials related to our article. The multi/interdisciplinary conventional therapy of Parkinson’s disease and non-conventional multitarget approach to an integrative treatment was briefly analyzed. This article synthesizes the current findings on the pathogenic interference between the dysregulated complex mechanisms involved in aging, neuroinflammation, and neurodegeneration, focusing on Parkinson’s disease and the acute and chronic repercussions of COVID-19. Time will tell whether COVID-19 neuroinflammatory events could trigger long-term neurodegenerative effects and contribute to the worsening and/or explosion of new cases of PD. The extent of the interrelated neuropathogenic phenomenon remains obscure, so further clinical observations and prospective longitudinal cohort studies are needed.
Collapse
|
18
|
Songca SP. Applications of Nanozymology in the Detection and Identification of Viral, Bacterial and Fungal Pathogens. Int J Mol Sci 2022; 23:4638. [PMID: 35563029 PMCID: PMC9100627 DOI: 10.3390/ijms23094638] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 02/12/2022] [Accepted: 02/21/2022] [Indexed: 02/05/2023] Open
Abstract
Nanozymes are synthetic nanoparticulate materials that mimic the biological activities of enzymes by virtue of their surface chemistry. Enzymes catalyze biological reactions with a very high degree of specificity. Examples include the horseradish peroxidase, lactate, glucose, and cholesterol oxidases. For this reason, many industrial uses of enzymes outside their natural environments have been developed. Similar to enzymes, many industrial applications of nanozymes have been developed and used. Unlike the enzymes, however, nanozymes are cost-effectively prepared, purified, stored, and reproducibly and repeatedly used for long periods of time. The detection and identification of pathogens is among some of the reported applications of nanozymes. Three of the methodologic milestones in the evolution of pathogen detection and identification include the incubation and growth, immunoassays and the polymerase chain reaction (PCR) strategies. Although advances in the history of pathogen detection and identification have given rise to novel methods and devices, these are still short of the response speed, accuracy and cost required for point-of-care use. Debuting recently, nanozymology offers significant improvements in the six methodological indicators that are proposed as being key in this review, including simplicity, sensitivity, speed of response, cost, reliability, and durability of the immunoassays and PCR strategies. This review will focus on the applications of nanozymes in the detection and identification of pathogens in samples obtained from foods, natural, and clinical sources. It will highlight the impact of nanozymes in the enzyme-linked immunosorbent and PCR strategies by discussing the mechanistic improvements and the role of the design and architecture of the nanozyme nanoconjugates. Because of their contribution to world health burden, the three most important pathogens that will be considered include viruses, bacteria and fungi. Although not quite seen as pathogens, the review will also consider the detection of cancer cells and helminth parasites. The review leaves very little doubt that nanozymology has introduced remarkable advances in enzyme-linked immunosorbent assays and PCR strategies for detecting these five classes of pathogens. However, a gap still exists in the application of nanozymes to detect and identify fungal pathogens directly, although indirect strategies in which nanozymes are used have been reported. From a mechanistic point of view, the nanozyme technology transfer to laboratory research methods in PCR and enzyme-linked immunosorbent assay studies, and the point-of-care devices such as electronic biosensors and lateral flow detection strips, that is currently taking place, is most likely to give rise to no small revolution in each of the six methodological indicators for pathogen detection and identification. While the evidence of widespread research reports, clinical trials and point-of-care device patents support this view, the gaps that still exist point to a need for more basic research studies to be conducted on the applications of nanozymology in pathogen detection and identification. The multidisciplinary nature of the research on the application of nanozymes in the detection and identification of pathogens requires chemists and physicists for the design, fabrication, and characterization of nanozymes; microbiologists for the design, testing and analysis of the methodologies, and clinicians or clinical researchers for the evaluation of the methodologies and devices in the clinic. Many reports have also implicated required skills in mathematical modelling, and electronic engineering. While the review will conclude with a synopsis of the impact of nanozymology on the detection and identification of viruses, bacteria, fungi, cancer cells, and helminths, it will also point out opportunities that exist in basic research as well as opportunities for innovation aimed at novel laboratory methodologies and devices. In this regard there is no doubt that there are numerous unexplored research areas in the application of nanozymes for the detection of pathogens. For example, most research on the applications of nanozymes for the detection and identification of fungi is so far limited only to the detection of mycotoxins and other chemical compounds associated with fungal infection. Therefore, there is scope for exploration of the application of nanozymes in the direct detection of fungi in foods, especially in the agricultural production thereof. Many fungal species found in seeds severely compromise their use by inactivating the germination thereof. Fungi also produce mycotoxins that can severely compromise the health of humans if consumed.
Collapse
Affiliation(s)
- Sandile Phinda Songca
- School of Chemistry and Physics, College of Agriculture Engineering and Science, University of KwaZulu-Natal, Durban 4041, South Africa
| |
Collapse
|
19
|
Paluszkiewicz P, Martuszewski A, Zaręba N, Wala K, Banasik M, Kepinska M. The Application of Nanoparticles in Diagnosis and Treatment of Kidney Diseases. Int J Mol Sci 2021; 23:ijms23010131. [PMID: 35008556 PMCID: PMC8745391 DOI: 10.3390/ijms23010131] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 12/16/2021] [Accepted: 12/21/2021] [Indexed: 12/12/2022] Open
Abstract
Nanomedicine is currently showing great promise for new methods of diagnosing and treating many diseases, particularly in kidney disease and transplantation. The unique properties of nanoparticles arise from the diversity of size effects, used to design targeted nanoparticles for specific cells or tissues, taking renal clearance and tubular secretion mechanisms into account. The design of surface particles on nanoparticles offers a wide range of possibilities, among which antibodies play an important role. Nanoparticles find applications in encapsulated drug delivery systems containing immunosuppressants and other drugs, in imaging, gene therapies and many other branches of medicine. They have the potential to revolutionize kidney transplantation by reducing and preventing ischemia-reperfusion injury, more efficiently delivering drugs to the graft site while avoiding systemic effects, accurately localizing and visualising the diseased site and enabling continuous monitoring of graft function. So far, there are known nanoparticles with no toxic effects on human tissue, although further studies are still needed to confirm their safety.
Collapse
Affiliation(s)
- Patrycja Paluszkiewicz
- Department of Emergency Medical Service, Wroclaw Medical University, Bartla 5, 50-367 Wroclaw, Poland;
| | - Adrian Martuszewski
- Department of Population Health, Division of Environmental Health and Occupational Medicine, Wroclaw Medical University, Mikulicza-Radeckiego 7, 50-368 Wroclaw, Poland;
| | - Natalia Zaręba
- Department of Pharmaceutical Biochemistry, Division of Biomedical and Environmental Analysis, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211a, 50-556 Wrocław, Poland;
| | - Kamila Wala
- Faculty of Medicine, Wroclaw Medical University, Pasteura 1, 50-367 Wroclaw, Poland;
| | - Mirosław Banasik
- Department of Nephrology and Transplantation Medicine, Wroclaw Medical University, Borowska 213, 50-556 Wroclaw, Poland
- Correspondence: (M.B.); (M.K.); Tel.: +48-71-733-2500 (M.B.); +48-71-784-0171 (M.K.)
| | - Marta Kepinska
- Department of Pharmaceutical Biochemistry, Division of Biomedical and Environmental Analysis, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211a, 50-556 Wrocław, Poland;
- Correspondence: (M.B.); (M.K.); Tel.: +48-71-733-2500 (M.B.); +48-71-784-0171 (M.K.)
| |
Collapse
|
20
|
Sher M, Faheem A, Asghar W, Cinti S. Nano-engineered screen-printed electrodes: A dynamic tool for detection of viruses. Trends Analyt Chem 2021; 143:116374. [PMID: 34177011 PMCID: PMC8215883 DOI: 10.1016/j.trac.2021.116374] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
There is a growing interest in the development of portable, cost-effective, and easy-to-use biosensors for the rapid detection of diseases caused by infectious viruses: COVID-19 pandemic has highlighted the central role of diagnostics in response to global outbreaks. Among all the existing technologies, screen-printed electrodes (SPEs) represent a valuable technology for the detection of various viral pathogens. During the last five years, various nanomaterials have been utilized to modify SPEs to achieve convincing effects on the analytical performances of portable SPE-based diagnostics. Herein we would like to provide the readers a comprehensive investigation about the recent combination of SPEs and various nanomaterials for detecting viral pathogens. Manufacturing methods and features advances are critically discussed in the context of early-stage detection of diseases caused by HIV-1, HBV, HCV, Zika, Dengue, and Sars-CoV-2. A detailed table is reported to easily guide readers toward the "right" choice depending on the virus of interest.
Collapse
Affiliation(s)
- Mazhar Sher
- Asghar-Lab, Micro and Nanotechnology in Medicine, College of Engineering and Computer Science, Boca Raton, FL 33431, USA
- Department of Computer & Electrical Engineering and Computer Science, Florida Atlantic University, Boca Raton, FL 33431, USA
| | - Aroosha Faheem
- State Key Laboratory of Agricultural Microbiology, College of Life Sciences and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Waseem Asghar
- Asghar-Lab, Micro and Nanotechnology in Medicine, College of Engineering and Computer Science, Boca Raton, FL 33431, USA
- Department of Computer & Electrical Engineering and Computer Science, Florida Atlantic University, Boca Raton, FL 33431, USA
- Department of Biological Sciences (Courtesy Appointment), Florida Atlantic University, Boca Raton, FL 33431, USA
| | - Stefano Cinti
- Department of Pharmacy, University of Naples "Federico II", Via D. Montesano 49, 80131, Naples, Italy
- BAT Center-Interuniversity Center for Studies on Bioinspired Agro-Environmental Technology, University of Napoli "Federico II", 80055 Naples, Italy
| |
Collapse
|