1
|
Corley E, Patlola SR, Laighneach A, Corvin A, McManus R, Kenyon M, Kelly JP, Mckernan DP, King S, Hallahan B, Mcdonald C, Morris DW, Donohoe G. Genetic and inflammatory effects on childhood trauma and cognitive functioning in patients with schizophrenia and healthy participants. Brain Behav Immun 2024; 115:26-37. [PMID: 37748567 DOI: 10.1016/j.bbi.2023.09.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 09/12/2023] [Accepted: 09/13/2023] [Indexed: 09/27/2023] Open
Abstract
Recent studies have reported a negative association between exposure to childhood trauma, including physical neglect, and cognitive functioning in patients with schizophrenia. Childhood trauma has been found to influence immune functioning, which may contribute to the risk of schizophrenia and cognitive symptoms of the disorder. In this study, we aimed to test the hypothesis that physical neglect is associated with cognitive ability, and that this association is mediated by a combined latent measure of inflammatory response, and moderated by higher genetic risk for schizophrenia. The study included 279 Irish participants, comprising 102 patients and 177 healthy participants. Structural equation modelling was used to perform mediation and moderation analyses. Inflammatory response was measured via basal plasma levels of IL-6, TNF-α, and CRP, and cognitive performance was assessed across three domains: full-scale IQ, logical memory, and the emotion recognition task. Genetic variation for schizophrenia was estimated using a genome-wide polygenic score based on genome-wide association study summary statistics. The results showed that inflammatory response mediated the association between physical neglect and all measures of cognitive functioning, and explained considerably more variance than any of the inflammatory markers alone. Furthermore, genetic risk for schizophrenia was observed to moderate the direct pathway between physical neglect and measures of non-social cognitive functioning in both patient and healthy participants. However, genetic risk did not moderate the mediated pathway associated with inflammatory response. Therefore, we conclude that the mediating role of inflammatory response and the moderating role of higher genetic risk may independently influence the association between adverse early life experiences and cognitive function in patients and healthy participants.
Collapse
Affiliation(s)
- Emma Corley
- School of Psychology, University of Galway, Ireland; Centre for Neuroimaging, Cognition, and Genomics (NICOG), University of Galway, Ireland
| | - Saahithh Redddi Patlola
- Centre for Neuroimaging, Cognition, and Genomics (NICOG), University of Galway, Ireland; Pharmacology & Therapeutics and Galway Neuroscience Centre, University of Galway, Ireland
| | - Aodán Laighneach
- Centre for Neuroimaging, Cognition, and Genomics (NICOG), University of Galway, Ireland; School of Biological and Chemical Sciences, University of Galway, Ireland
| | - Aiden Corvin
- Neuropsychiatric Genetics Research Group, Department of Psychiatry, Institute of Molecular Medicine, Trinity College Dublin, Ireland
| | - Ross McManus
- Neuropsychiatric Genetics Research Group, Department of Psychiatry, Institute of Molecular Medicine, Trinity College Dublin, Ireland
| | - Marcus Kenyon
- Neuropsychiatric Genetics Research Group, Department of Psychiatry, Institute of Molecular Medicine, Trinity College Dublin, Ireland
| | - John P Kelly
- Pharmacology & Therapeutics and Galway Neuroscience Centre, University of Galway, Ireland
| | - Declan P Mckernan
- Pharmacology & Therapeutics and Galway Neuroscience Centre, University of Galway, Ireland
| | - Sinead King
- School of Psychology, University of Galway, Ireland; Centre for Neuroimaging, Cognition, and Genomics (NICOG), University of Galway, Ireland
| | - Brian Hallahan
- Department of Psychiatry, Clinical Science Institute, University of Galway, Ireland
| | - Colm Mcdonald
- Department of Psychiatry, Clinical Science Institute, University of Galway, Ireland
| | - Derek W Morris
- Centre for Neuroimaging, Cognition, and Genomics (NICOG), University of Galway, Ireland; School of Biological and Chemical Sciences, University of Galway, Ireland
| | - Gary Donohoe
- School of Psychology, University of Galway, Ireland; Centre for Neuroimaging, Cognition, and Genomics (NICOG), University of Galway, Ireland.
| |
Collapse
|
2
|
Abstract
Psychosocial disability affects a number of individuals with psychosis and often begins years before the formal onset of disorder. This suggests that for many, their psychosocial disability is enduring, and targeted interventions are therefore needed earlier in their developmental trajectories to ensure that psychosocial disability does not become entrenched. Poor psychosocial functioning also affects individuals with a range of different emerging mental health problems, putting these young people at risk of long-term social marginalisation and economic disadvantage; all of which are known risk factors for the development of psychosis. Identification of the markers of poor psychosocial functioning will help to inform effective treatments. This editorial will discern the early trajectories and markers of poor psychosocial outcome in psychosis, and highlight which individuals are most at risk of having a poor outcome. This editorial will also discuss whether early interventions are currently being targeted appropriately and will propose how intervention and preventative strategies can be implemented, to restore psychosocial trajectories in a way that enables young people to maximise their life chances.
Collapse
|
3
|
Katagiri N, Pantelis C, Nemoto T, Tsujino N, Saito J, Hori M, Yamaguchi T, Funatogawa T, Mizuno M. Longitudinal changes in striatum and sub-threshold positive symptoms in individuals with an 'at risk mental state' (ARMS). Psychiatry Res Neuroimaging 2019; 285:25-30. [PMID: 30716687 DOI: 10.1016/j.pscychresns.2019.01.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 12/23/2018] [Accepted: 01/26/2019] [Indexed: 10/27/2022]
Abstract
Recent studies have revealed that several psychotic symptom changes observed in the 'at risk mental state' (ARMS) are associated with changes in the striatum. We investigated if structural changes in the striatum are associated with recovery of sub-threshold psychotic symptoms in subjects with an ARMS who did not develop psychosis (ARMS-N). Sixteen healthy controls and 42 subjects with an ARMS participated in this study. Striatal volumes (caudate, putamen, and nucleus accumbens) were analyzed using MRI. The sub-threshold psychotic symptoms of the subjects with an ARMS were measured using the SOPS. Imaging and symptoms were reevaluated after 52 weeks. Significant right putamen volume reduction was observed at the follow-up in ARMS-N subjects. Improvement in sub-threshold positive symptoms significantly correlated with an increase in volume in the right accumbens at follow up. No relationship was found for negative symptoms. From these findings, the association between improvement in sub-threshold positive symptoms and an increase in the volume of the right accumbens may suggest that changes in the accumbens, which is a major site for dopamine innervation, are associated with symptom recovery. These findings may point to neurobiological resilience that may be associated with lower transition to psychosis.
Collapse
Affiliation(s)
- Naoyuki Katagiri
- Department of Neuropsychiatry, School of Medicine, Toho University, 6-11-1 Omori-nishi, Ota-ku, 143-8541, Tokyo, Japan.
| | - Christos Pantelis
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne & Melbourne Health, Carlton South, Victoria, Australia; Centre for Neural Engineering, Department of Electrical and Electronic Engineering, University of Melbourne, Carlton South, Victoritoka, Australia
| | - Takahiro Nemoto
- Department of Neuropsychiatry, School of Medicine, Toho University, 6-11-1 Omori-nishi, Ota-ku, 143-8541, Tokyo, Japan
| | - Naohisa Tsujino
- Department of Neuropsychiatry, School of Medicine, Toho University, 6-11-1 Omori-nishi, Ota-ku, 143-8541, Tokyo, Japan; Saiseikai Yokohamashi Tobu Hospital Psychiatry, Yokohama-City, Kanagawa, Japan
| | - Junichi Saito
- Department of Neuropsychiatry, School of Medicine, Toho University, 6-11-1 Omori-nishi, Ota-ku, 143-8541, Tokyo, Japan; Saiseikai Yokohamashi Tobu Hospital Psychiatry, Yokohama-City, Kanagawa, Japan
| | - Masaaki Hori
- Department of Radiology, Juntendo University School of Medicine, Bunkyo-ku, Tokyo, Japan
| | - Taiju Yamaguchi
- Department of Neuropsychiatry, School of Medicine, Toho University, 6-11-1 Omori-nishi, Ota-ku, 143-8541, Tokyo, Japan
| | - Tomoyuki Funatogawa
- Department of Neuropsychiatry, School of Medicine, Toho University, 6-11-1 Omori-nishi, Ota-ku, 143-8541, Tokyo, Japan
| | - Masafumi Mizuno
- Department of Neuropsychiatry, School of Medicine, Toho University, 6-11-1 Omori-nishi, Ota-ku, 143-8541, Tokyo, Japan
| |
Collapse
|
4
|
Modinos G, Egerton A, McLaughlin A, McMullen K, Kumari V, Lythgoe DJ, Barker GJ, Aleman A, Williams SCR. Neuroanatomical changes in people with high schizotypy: relationship to glutamate levels. Psychol Med 2018; 48:1880-1889. [PMID: 29198207 PMCID: PMC5884418 DOI: 10.1017/s0033291717003403] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
BACKGROUND Cortical glutamatergic dysfunction is thought to be fundamental for psychosis development, and may lead to structural degeneration through excitotoxicity. Glutamate levels have been related to gray matter volume (GMV) alterations in people at ultra-high risk of psychosis, and we previously reported GMV changes in individuals with high schizotypy (HS), which refers to the expression of schizophrenia-like characteristics in healthy people. This study sought to examine whether GMV changes in HS subjects are related to glutamate levels. METHODS We selected 22 healthy subjects with HS and 23 healthy subjects with low schizotypy (LS) based on their rating on a self-report questionnaire for psychotic-like experiences. Glutamate levels were measured in the bilateral anterior cingulate cortex (ACC) using proton magnetic resonance spectroscopy, and GMV was assessed using voxel-based morphometry. RESULTS Subjects with HS showed GMV decreases in the rolandic operculum/superior temporal gyrus (pFWE = 0.045). Significant increases in GMV were also detected in HS, in the precuneus (pFWE = 0.043), thereby replicating our previous finding in a separate cohort, as well as in the ACC (pFWE = 0.041). While the HS and LS groups did not differ in ACC glutamate levels, in HS subjects ACC glutamate was negatively correlated with ACC GMV (pFWE = 0.026). Such association was absent in LS. CONCLUSIONS Our study shows that GMV findings in schizotypy are related to glutamate levels, supporting the hypothesis that glutamatergic function may lead to structural changes associated with the expression of psychotic-like experiences.
Collapse
Affiliation(s)
- Gemma Modinos
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, UK
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, UK
| | - Alice Egerton
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, UK
| | - Anna McLaughlin
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, UK
| | - Katrina McMullen
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, UK
| | - Veena Kumari
- Department of Psychology, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, UK
| | - David J Lythgoe
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, UK
| | - Gareth J Barker
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, UK
| | - André Aleman
- University of Groningen, Department of Neuroscience, University Medical Centre Groningen, The Netherlands
| | - Steve CR Williams
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, UK
| |
Collapse
|
5
|
Modinos G, Egerton A, McMullen K, McLaughlin A, Kumari V, Barker GJ, Williams SCR, Zelaya F. Increased resting perfusion of the hippocampus in high positive schizotypy: A pseudocontinuous arterial spin labeling study. Hum Brain Mapp 2018; 39:4055-4064. [PMID: 29885018 PMCID: PMC6174983 DOI: 10.1002/hbm.24231] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 05/08/2018] [Accepted: 05/15/2018] [Indexed: 12/16/2022] Open
Abstract
Arterial spin labeling (ASL) provides absolute quantification of resting tissue cerebral blood flow (CBF) as an entirely noninvasive approach with good reproducibility. As a result of neurovascular coupling, ASL provides a useful marker of resting neuronal activity. Recent ASL studies in individuals at clinical high risk of psychosis (CHR) have reported increased resting hippocampal perfusion compared with healthy controls. Schizotypy refers to the presence of subclinical psychotic-like experiences in healthy individuals and represents a robust framework to study neurobiological mechanisms involved in the extended psychosis phenotype while avoiding potentially confounding effects of antipsychotic medications or disease comorbidity. Here we applied pseudo-continuous ASL to examine differences in resting CBF in 21 subjects with high positive schizotypy (HS) relative to 22 subjects with low positive schizotypy (LS), as determined by the Oxford and Liverpool Inventory of Feelings and Experiences. Based on preclinical evidence that hippocampal hyperactivity leads to increased activity in mesostriatal dopamine projections, CBF in hippocampus, midbrain, and striatum was assessed. Participants with HS showed higher CBF of the right hippocampus compared to those with LS (p = .031, family-wise error corrected). No differences were detected in the striatum or midbrain. The association between increased hippocampal CBF and HS supports the notion that hippocampal hyperactivity might be a central characteristic of the extended psychosis phenotype, while hyperactivity in subcortical dopamine pathways may only emerge at a higher intensity of psychotic experiences.
Collapse
Affiliation(s)
- Gemma Modinos
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, United Kingdom.,Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, United Kingdom
| | - Alice Egerton
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, United Kingdom
| | - Katrina McMullen
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, United Kingdom
| | - Anna McLaughlin
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, United Kingdom
| | - Veena Kumari
- Department of Psychology, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, United Kingdom.,Centre for Cognitive Neuroscience, College of Health and Life Sciences, Brunel University London, London, United Kingdom
| | - Gareth J Barker
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, United Kingdom
| | - Steve C R Williams
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, United Kingdom
| | - Fernando Zelaya
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, United Kingdom
| |
Collapse
|
6
|
Katagiri N, Pantelis C, Nemoto T, Tsujino N, Saito J, Hori M, Yamaguchi T, Funatogawa T, Mizuno M. Symptom recovery and relationship to structure of corpus callosum in individuals with an 'at risk mental state'. Psychiatry Res Neuroimaging 2018; 272:1-6. [PMID: 29232635 DOI: 10.1016/j.pscychresns.2017.11.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 11/09/2017] [Accepted: 11/22/2017] [Indexed: 01/14/2023]
Abstract
Previous studies have revealed that changes in sub-threshold psychotic symptoms observed in individuals with an 'at risk mental state' (ARMS) are associated with biological changes in the corpus callosum (CC). To elucidate the biological background for resilience against transition to psychosis, we investigated the relationship between CC structural changes and recovery of sub-threshold psychotic symptom in subjects with ARMS who did not develop psychosis (ARMS-N). Sixteen healthy controls and 42 ARMS (37 ARMS-N) subjects participated this study. The volumes of five sub-regions of the CC were analyzed using MRI. The sub-threshold psychotic symptoms of the ARMS were measured using the Scale of Prodromal Symptoms (SOPS). Imaging and symptoms were re-administered in the ARMS group 52 weeks later. Significant baseline volume differences in the mid-posterior CC, central CC and mid-anterior CC were found between the controls and the ARMS-N subjects. These findings suggest that biological abnormalities are present in a so-called "false-positive" group of individuals. For the ARMS-N subjects, improvement in negative symptoms significantly correlated with an increase in the volume of the central CC at follow-up. This finding may suggest that a neurobiological 'resilience' is associated with symptom recovery.
Collapse
Affiliation(s)
- Naoyuki Katagiri
- Department of Neuropsychiatry, School of Medicine, Toho University, Tokyo, Japan.
| | - Christos Pantelis
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne & Melbourne Health, South Carlton, Victoria, Australia; Centre for Neural Engineering, Department of Electrical and Electronic Engineering, University of Melbourne, Carlton South, Victoria, Australia
| | - Takahiro Nemoto
- Department of Neuropsychiatry, School of Medicine, Toho University, Tokyo, Japan
| | - Naohisa Tsujino
- Department of Neuropsychiatry, School of Medicine, Toho University, Tokyo, Japan
| | - Junichi Saito
- Department of Neuropsychiatry, School of Medicine, Toho University, Tokyo, Japan
| | - Masaaki Hori
- Department of Radiology, Juntendo University School of Medicine, Tokyo, Japan
| | - Taiju Yamaguchi
- Department of Neuropsychiatry, School of Medicine, Toho University, Tokyo, Japan
| | - Tomoyuki Funatogawa
- Department of Neuropsychiatry, School of Medicine, Toho University, Tokyo, Japan
| | - Masafumi Mizuno
- Department of Neuropsychiatry, School of Medicine, Toho University, Tokyo, Japan
| |
Collapse
|
7
|
Bartholomeusz CF, Cropley VL, Wannan C, Di Biase M, McGorry PD, Pantelis C. Structural neuroimaging across early-stage psychosis: Aberrations in neurobiological trajectories and implications for the staging model. Aust N Z J Psychiatry 2017; 51:455-476. [PMID: 27733710 DOI: 10.1177/0004867416670522] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
OBJECTIVE This review critically examines the structural neuroimaging evidence in psychotic illness, with a focus on longitudinal imaging across the first-episode psychosis and ultra-high-risk of psychosis illness stages. METHODS A thorough search of the literature involving specifically longitudinal neuroimaging in early illness stages of psychosis was conducted. The evidence supporting abnormalities in brain morphology and altered neurodevelopmental trajectories is discussed in the context of a clinical staging model. RESULTS In general, grey matter (and, to a lesser extent, white matter) declines across multiple frontal, temporal (especially superior regions), insular and parietal regions during the first episode of psychosis, which has a steeper trajectory than that of age-matched healthy counterparts. Although the ultra-high-risk of psychosis literature is considerably mixed, evidence indicates that certain volumetric structural aberrations predate psychotic illness onset (e.g. prefrontal cortex thinning), while other abnormalities present in ultra-high-risk of psychosis populations are potentially non-psychosis-specific (e.g. hippocampal volume reductions). CONCLUSION We highlight the advantages of longitudinal designs, discuss the implications such studies have on clinical staging and provide directions for future research.
Collapse
Affiliation(s)
- Cali F Bartholomeusz
- 1 Orygen, The National Centre of Excellence in Youth Mental Health, Parkville, VIC, Australia
- 2 Centre for Youth Mental Health, The University of Melbourne, Parkville, VIC, Australia
- 3 Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne and Melbourne Health, Carlton South, VIC, Australia
| | - Vanessa L Cropley
- 3 Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne and Melbourne Health, Carlton South, VIC, Australia
| | - Cassandra Wannan
- 1 Orygen, The National Centre of Excellence in Youth Mental Health, Parkville, VIC, Australia
- 2 Centre for Youth Mental Health, The University of Melbourne, Parkville, VIC, Australia
- 3 Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne and Melbourne Health, Carlton South, VIC, Australia
| | - Maria Di Biase
- 3 Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne and Melbourne Health, Carlton South, VIC, Australia
| | - Patrick D McGorry
- 1 Orygen, The National Centre of Excellence in Youth Mental Health, Parkville, VIC, Australia
- 2 Centre for Youth Mental Health, The University of Melbourne, Parkville, VIC, Australia
| | - Christos Pantelis
- 3 Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne and Melbourne Health, Carlton South, VIC, Australia
- 4 Centre for Neural Engineering, Department of Electrical and Electronic Engineering, The University of Melbourne, Carlton South, VIC, Australia
| |
Collapse
|
8
|
Smith LB, Lenz AS, Strohmer D. Differential Prediction of Resilience Among Individuals With and Without a History of Abuse. COUNSELING AND VALUES 2017. [DOI: 10.1002/cvj.12052] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Laura Bailey Smith
- Counseling, Educational Psychology and Research; University of Memphis
- Now at School of Professional Counseling; Lindsey Wilson College
| | - A. Stephen Lenz
- Department of Counseling and Educational Psychology; Texas A&M University-Corpus Christi
| | - Douglas Strohmer
- Counseling, Educational Psychology and Research; University of Memphis
| |
Collapse
|
9
|
Corticolimbic hyper-response to emotion and glutamatergic function in people with high schizotypy: a multimodal fMRI-MRS study. Transl Psychiatry 2017; 7:e1083. [PMID: 28375210 PMCID: PMC5416694 DOI: 10.1038/tp.2017.53] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2016] [Revised: 12/15/2016] [Accepted: 02/01/2017] [Indexed: 02/05/2023] Open
Abstract
Animal models and human neuroimaging studies suggest that altered levels of glutamatergic metabolites within a corticolimbic circuit have a major role in the pathophysiology of schizophrenia. Rodent models propose that prefrontal glutamate dysfunction could lead to amygdala hyper-response to environmental stress and underlie hippocampal overdrive in schizophrenia. Here we determine whether changes in brain glutamate are present in individuals with high schizotypy (HS), which refers to the presence of schizophrenia-like characteristics in healthy individuals, and whether glutamate levels are related to altered corticolimbic response to emotion. Twenty-one healthy HS subjects and 22 healthy subjects with low schizotypy (LS) were selected based on their Oxford and Liverpool Inventory of Feelings and Experiences rating. Glutamate levels were measured in the anterior cingulate cortex (ACC) using proton magnetic resonance spectroscopy, followed by a functional magnetic resonance imaging (fMRI) scan to measure corticolimbic response during emotional processing. fMRI results and fMRI × glutamate interactions were considered significant after voxel-wise P<0.05 family-wise error correction. While viewing emotional pictures, HS individuals showed greater activation than did subjects with LS in the caudate, and marginally in the ACC, hippocampus, medial prefrontal cortex (MPFC) and putamen. Although no between-group differences were found in glutamate concentrations, within the HS group ACC glutamate was negatively correlated with striatal activation (left: z=4.30, P=0.004 and right: z=4.12 P=0.008 caudate; left putamen: z=3.89, P=0.018) and marginally with MPFC (z=3.55, P=0.052) and amygdala (left: z=2.88, P=0.062; right: z=2.79, P=0.079), correlations that were not present in LS subjects. These findings provide, to our knowledge, the first evidence that brain glutamate levels are associated with hyper-responsivity in brain regions thought to be critical in the pathophysiology of psychosis.
Collapse
|
10
|
Liberg B, Rahm C, Panayiotou A, Pantelis C. Brain change trajectories that differentiate the major psychoses. Eur J Clin Invest 2016; 46:658-74. [PMID: 27208657 DOI: 10.1111/eci.12641] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2015] [Accepted: 05/18/2016] [Indexed: 12/17/2022]
Abstract
BACKGROUND Bipolar disorder and schizophrenia are highly heritable, often chronic and debilitating psychotic disorders that can be difficult to differentiate clinically. Their brain phenotypes appear to overlap in both cross-sectional and longitudinal structural neuroimaging studies, with some evidence to suggest areas of differentiation with differing trajectories. The aim of this review was to investigate the notion that longitudinal trajectories of alterations in brain structure could differentiate the two disorders. DESIGN Narrative review. We searched MEDLINE and Web of Science databases in May 2016 for studies that used structural magnetic resonance imaging to investigate longitudinal between-group differences in bipolar disorder and schizophrenia. Ten studies met inclusion criteria, namely longitudinal structural magnetic resonance studies comparing bipolar disorder (or affective psychosis) and schizophrenia within the same study. RESULTS Our review of these studies implicates illness-specific trajectories of morphological change in total grey matter volume, and in regions of the frontal, temporal and cingulate cortices. The findings in schizophrenia suggest a trajectory involving progressive grey matter loss confined to fronto-temporal cortical regions. Preliminary findings identify a similar but less severely impacted trajectory in a number of regions in bipolar disorder, however, bipolar disorder is also characterized by differential involvement across cingulate subregions. CONCLUSION The small number of available studies must be interpreted with caution but provide initial evidence supporting the notion that bipolar disorder and schizophrenia have differential longitudinal trajectories that are influenced by brain maturation.
Collapse
Affiliation(s)
- Benny Liberg
- Department of Psychiatry, Melbourne Neuropsychiatry Centre, University of Melbourne and Melbourne Health, Carlton South, Vic., Australia.,Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Christoffer Rahm
- Department of Psychiatry, Melbourne Neuropsychiatry Centre, University of Melbourne and Melbourne Health, Carlton South, Vic., Australia.,Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden.,Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Anita Panayiotou
- Department of Psychiatry, Melbourne Neuropsychiatry Centre, University of Melbourne and Melbourne Health, Carlton South, Vic., Australia.,Western Centre for Health Research & Education, Sunshine Hospital, University of Melbourne, St Albans, Vic., Australia.,Sunshine Hospital, Western Health, St Albans, Vic., Australia
| | - Christos Pantelis
- Department of Psychiatry, Melbourne Neuropsychiatry Centre, University of Melbourne and Melbourne Health, Carlton South, Vic., Australia.,Western Centre for Health Research & Education, Sunshine Hospital, University of Melbourne, St Albans, Vic., Australia.,Florey Institute for Neuroscience and Mental Health, Parkville, Vic., Australia.,Department of Electrical and Electronic Engineering, Centre for Neural Engineering, University of Melbourne, Parkville, Vic., Australia
| |
Collapse
|
11
|
Cropley VL, Lin A, Nelson B, Reniers RLEP, Yung AR, Bartholomeusz CF, Klauser P, Velakoulis D, McGorry P, Wood SJ, Pantelis C. Baseline grey matter volume of non-transitioned "ultra high risk" for psychosis individuals with and without attenuated psychotic symptoms at long-term follow-up. Schizophr Res 2016; 173:152-158. [PMID: 26032566 DOI: 10.1016/j.schres.2015.05.014] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Revised: 05/04/2015] [Accepted: 05/07/2015] [Indexed: 10/23/2022]
Abstract
INTRODUCTION Two thirds of individuals identified as ultra-high risk (UHR) for psychosis do not transition to psychosis over the medium to long-term (non-transition; UHR-NT). Nevertheless, many of these individuals have persistent attenuated psychotic symptoms (APS). The current study examined whether there were differences in baseline grey matter volume (i.e. at initial identification as UHR) in UHR-NT individuals whom had APS compared to those without APS (No-APS) at medium to long-term follow-up. METHODS Participants were help-seeking individuals who were identified as being at UHR for psychosis between 2 and 12years previously (mean=7.5). The sample consisted of 109 participants who underwent a Magnetic Resonance Imaging scan at baseline and who had not been observed to develop a psychotic disorder over the follow-up period (UHR-NT). Using voxel-based morphometry, baseline grey matter volume (GMV) was compared between participants with (N=30) and without (N=79) APS at follow-up. RESULTS At baseline, the APS and No-APS groups were clinically indistinguishable. At follow-up, the APS group had significantly worse symptoms and impaired functioning. Individuals with APS had reduced baseline GMV in frontal, temporal, posterior and cingulate regions compared to those without APS at follow-up. Reduced GMV was associated with more severe positive, negative and depressive symptoms and lower global functioning in the combined UHR-NT cohort. These associations were independent of later APS outcome. DISCUSSION This study found that differences in regional GMV are discernible at an early stage of UHR and may be specific to individuals who have APS and psychopathology at follow-up. Our findings suggest that lower GMV at baseline may confer neurobiological risk for later APS and/or increased psychopathology while the absence of these structural abnormalities might be protective.
Collapse
Affiliation(s)
- Vanessa L Cropley
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne and Melbourne Health, Carlton South, Victoria 3053, Australia; Department of Psychiatry, The University of Melbourne, Parkville, Victoria 3052, Australia.
| | - Ashleigh Lin
- Telethon Kids Institute, The University of Western Australia, Perth, Western Australia 6008, Australia
| | - Barnaby Nelson
- Orygen, The National Centre of Excellence in Youth Mental Health, The University of Melbourne and Melbourne Health, Parkville, Victoria 3052, Australia
| | - Renate L E P Reniers
- School of Psychology,-University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Alison R Yung
- Institute of Brain, Behaviour and Mental Health, University of Manchester, Manchester M13 9PL, United Kingdom
| | - Cali F Bartholomeusz
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne and Melbourne Health, Carlton South, Victoria 3053, Australia; Department of Psychiatry, The University of Melbourne, Parkville, Victoria 3052, Australia; Orygen, The National Centre of Excellence in Youth Mental Health, The University of Melbourne and Melbourne Health, Parkville, Victoria 3052, Australia
| | - Paul Klauser
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne and Melbourne Health, Carlton South, Victoria 3053, Australia; Monash Clinical and Imaging Neuroscience, Monash University, Clayton, Victoria, Australia
| | - Dennis Velakoulis
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne and Melbourne Health, Carlton South, Victoria 3053, Australia; Department of Psychiatry, The University of Melbourne, Parkville, Victoria 3052, Australia
| | - Patrick McGorry
- Orygen, The National Centre of Excellence in Youth Mental Health, The University of Melbourne and Melbourne Health, Parkville, Victoria 3052, Australia
| | - Stephen J Wood
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne and Melbourne Health, Carlton South, Victoria 3053, Australia; School of Psychology,-University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Christos Pantelis
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne and Melbourne Health, Carlton South, Victoria 3053, Australia; Department of Psychiatry, The University of Melbourne, Parkville, Victoria 3052, Australia
| |
Collapse
|
12
|
Bartholomeusz CF, Ganella EP, Labuschagne I, Bousman C, Pantelis C. Effects of oxytocin and genetic variants on brain and behaviour: Implications for treatment in schizophrenia. Schizophr Res 2015; 168:614-27. [PMID: 26123171 DOI: 10.1016/j.schres.2015.06.007] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Revised: 05/25/2015] [Accepted: 06/07/2015] [Indexed: 12/13/2022]
Abstract
Impairments in social cognition and poor social functioning are core features of schizophrenia-spectrum disorders. In recent years, there has been a move towards developing new treatment strategies that specifically target social cognitive and social behavioural deficits. Oxytocin (OXT) is one such strategy that has gained increasing attention. There is a strong rationale for studying OXT in psychosis, from both an evolutionary perspective and neurodevelopmental-cognitive model of schizophrenia. Thus, the aim of this review was to critique and examine the observational and clinical oxytocin trial literature in schizophrenia-spectrum disorders. A handful of clinical trials suggest that OXT treatment may be beneficial for remediating social cognitive impairments, psychiatric symptoms, and improving social outcomes. However, inconsistencies exist in this literature, which may be explained by individual differences in the underlying neural response to OXT treatment and/or variation in the oxytocin and oxytocin receptor genes. Therefore, we additionally reviewed the evidence for structural and functional neural intermediate phenotypes in humans that link genetic variants to social behaviour/thinking, and discuss the implications of such interactions in the context of dysfunctional brain networks in schizophrenia. Factors that pose challenges for future OXT clinical research include the impact of age, sex, and ancestry, task-specific effects, bioavailability and pharmacokinetics, as well as neurotransmitter and drug interactions. While initial findings from OXT single dose/clinical trial studies are promising, more interdisciplinary research in both healthy and psychiatric populations is needed before determining whether OXT is a viable treatment option/adjunct for addressing poor illness outcomes in psychotic disorders.
Collapse
Affiliation(s)
- Cali F Bartholomeusz
- Orygen, The National Centre of Excellence in Youth Mental Health and the Centre for Youth Mental Health, The University of Melbourne, Parkville, Victoria, Australia; Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne & Melbourne Health, Carlton South, Victoria, Australia.
| | - Eleni P Ganella
- Orygen, The National Centre of Excellence in Youth Mental Health and the Centre for Youth Mental Health, The University of Melbourne, Parkville, Victoria, Australia; Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne & Melbourne Health, Carlton South, Victoria, Australia
| | - Izelle Labuschagne
- School of Psychology, Australian Catholic University, Fitzroy, Victoria, Australia
| | - Chad Bousman
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne & Melbourne Health, Carlton South, Victoria, Australia; Florey Institute for Neuroscience and Mental Health, Parkville, Victoria, Australia
| | - Christos Pantelis
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne & Melbourne Health, Carlton South, Victoria, Australia; Florey Institute for Neuroscience and Mental Health, Parkville, Victoria, Australia
| |
Collapse
|
13
|
Cognitive intervention in early psychosis — preserving abilities versus remediating deficits. Curr Opin Behav Sci 2015. [DOI: 10.1016/j.cobeha.2015.02.008] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
14
|
Wang Y, Yan C, Yin DZ, Fan MX, Cheung EFC, Pantelis C, Chan RCK. Neurobiological changes of schizotypy: evidence from both volume-based morphometric analysis and resting-state functional connectivity. Schizophr Bull 2015; 41 Suppl 2:S444-54. [PMID: 25533270 PMCID: PMC4373629 DOI: 10.1093/schbul/sbu178] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The current study sought to examine the underlying brain changes in individuals with high schizotypy by integrating networks derived from brain structural and functional imaging. Individuals with high schizotypy (n = 35) and low schizotypy (n = 34) controls were screened using the Schizotypal Personality Questionnaire and underwent brain structural and resting-state functional magnetic resonance imaging on a 3T scanner. Voxel-based morphometric analysis and graph theory-based functional network analysis were conducted. Individuals with high schizotypy showed reduced gray matter (GM) density in the insula and the dorsolateral prefrontal gyrus. The graph theoretical analysis showed that individuals with high schizotypy showed similar global properties in their functional networks as low schizotypy individuals. Several hubs of the functional network were identified in both groups, including the insula, the lingual gyrus, the postcentral gyrus, and the rolandic operculum. More hubs in the frontal lobe and fewer hubs in the occipital lobe were identified in individuals with high schizotypy. By comparing the functional connectivity between clusters with abnormal GM density and the whole brain, individuals with high schizotypy showed weaker functional connectivity between the left insula and the putamen, but stronger connectivity between the cerebellum and the medial frontal gyrus. Taken together, our findings suggest that individuals with high schizotypy present changes in terms of GM and resting-state functional connectivity, especially in the frontal lobe.
Collapse
Affiliation(s)
- Yi Wang
- Neuropsychology and Applied Cognitive Neuroscience Laboratory, Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China;,These authors contributed equally to the study
| | - Chao Yan
- Shanghai Key Laboratory of Brain Functional Genomics (MOE & STCSM), School of Psychology and Cognitive Science, East China Normal University, Shanghai, China;,These authors contributed equally to the study
| | - Da-zhi Yin
- Shanghai Key Laboratory of MRI, East China Normal University, Shanghai, China
| | - Ming-xia Fan
- Shanghai Key Laboratory of MRI, East China Normal University, Shanghai, China
| | - Eric F. C. Cheung
- Castle Peak Hospital, Hong Kong Special Administrative Region, China
| | - Christos Pantelis
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, University of Melbourne and Melbourne Health, Melbourne, Australia
| | - Raymond C. K. Chan
- Neuropsychology and Applied Cognitive Neuroscience Laboratory, Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China;,Magnetic Resonance Imaging Centre, Institute of Psychology, Chinese Academy of Sciences, Beijing, China,*To whom correspondence should be addressed; Raymond Chan, Institute of Psychology, Chinese Academy of Sciences, 16 Lincui Road, Beijing 100101, China; tel/fax: (86)-10-64877349; e-mail:
| |
Collapse
|
15
|
Katagiri N, Pantelis C, Nemoto T, Zalesky A, Hori M, Shimoji K, Saito J, Ito S, Dwyer DB, Fukunaga I, Morita K, Tsujino N, Yamaguchi T, Shiraga N, Aoki S, Mizuno M. A longitudinal study investigating sub-threshold symptoms and white matter changes in individuals with an 'at risk mental state' (ARMS). Schizophr Res 2015; 162:7-13. [PMID: 25638727 DOI: 10.1016/j.schres.2015.01.002] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Revised: 12/20/2014] [Accepted: 01/02/2015] [Indexed: 01/02/2023]
Abstract
BACKGROUND Evidence supports disruption in white matter (WM) connectivity in established schizophrenia, however, it is unclear when these abnormalities occur during the course of illness and if they are progressive. Here we investigated whether WM abnormalities predate illness onset by examining a group of individuals with an 'at risk mental state' (ARMS) and assess whether there is evidence of progressive change. We hypothesized that WM abnormalities are associated with symptom change. METHODS Sixteen healthy controls and 41 ARMS subjects at baseline underwent Diffusion Tensor Imaging (DTI). Sub-threshold positive symptoms were measured using the Scale of Prodromal Symptoms (SOPS). Imaging and symptoms were re-administered in the ARMS group after one year (52weeks). Fractional anisotropy (FA) value differences between ARMS and control groups at baseline were localized using the method of Tract-Based Spatial Statistics (TBSS). RESULTS At baseline, FA was significantly reduced in a sub-region of the corpus callosum (CC) in the ARMS group as a whole compared to controls. This reduction was also found in the 34 individuals who did not transition (ARMS-N) during the one-year follow-up. However, the ARMS-N group showed a significant improvement in sub-threshold positive symptoms at follow-up, which was correlated with an increase in FA in the same CC region (r=-0.664, p<0.001). DISCUSSION There was a significant FA reduction in the CC in individuals at high risk for psychosis regardless of transition status at one year. This suggests that WM abnormalities in the CC may represent a biological vulnerability to psychosis. Improvement in sub-threshold positive symptoms was associated with improvement in measures of WM integrity in the CC. This may suggest that neurobiological 'resilience' is associated with improved outcomes, although this notion requires future study.
Collapse
Affiliation(s)
- Naoyuki Katagiri
- Department of Neuropsychiatry, Toho University School of Medicine, Tokyo, Japan; Melbourne Neuropsychiatry Centre, Department of Psychiatry, University of Melbourne and Melbourne Health, Parkville, Melbourne, Australia
| | - Christos Pantelis
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, University of Melbourne and Melbourne Health, Parkville, Melbourne, Australia
| | - Takahiro Nemoto
- Department of Neuropsychiatry, Toho University School of Medicine, Tokyo, Japan.
| | - Andrew Zalesky
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, University of Melbourne and Melbourne Health, Parkville, Melbourne, Australia; Melbourne School of Engineering, The University of Melbourne, Melbourne, Australia
| | - Masaaki Hori
- Department of Radiology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Keigo Shimoji
- Department of Radiology, Juntendo University Graduate School of Medicine, Tokyo, Japan; Department of Diagnostic Radiology, Tokyo Metropolitan Geriatric Hospital, Tokyo, Japan
| | - Junichi Saito
- Department of Neuropsychiatry, Toho University School of Medicine, Tokyo, Japan
| | - Shinya Ito
- Department of Social Medicine, Toho University School of Medicine, Tokyo, Japan
| | - Dominic B Dwyer
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, University of Melbourne and Melbourne Health, Parkville, Melbourne, Australia
| | - Issei Fukunaga
- Department of Radiology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Keiko Morita
- Department of Neuropsychiatry, Toho University School of Medicine, Tokyo, Japan
| | - Naohisa Tsujino
- Department of Neuropsychiatry, Toho University School of Medicine, Tokyo, Japan
| | - Taiju Yamaguchi
- Department of Neuropsychiatry, Toho University School of Medicine, Tokyo, Japan
| | - Nobuyuki Shiraga
- Department of Radiology, Toho University School of Medicine, Tokyo, Japan
| | - Shigeki Aoki
- Department of Radiology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Masafumi Mizuno
- Department of Neuropsychiatry, Toho University School of Medicine, Tokyo, Japan
| |
Collapse
|
16
|
Cropley VL, Pantelis C. Using longitudinal imaging to map the 'relapse signature' of schizophrenia and other psychoses. Epidemiol Psychiatr Sci 2014; 23:219-25. [PMID: 24849668 PMCID: PMC6998274 DOI: 10.1017/s2045796014000341] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Brain imaging studies in schizophrenia have typically involved single assessment and cross-sectional designs, while longitudinal studies rarely incorporate more than two time points. While informative, these studies do not adequately capture potential trajectories of neurobiological change, particularly in the context of a changing clinical picture. We propose that the analysis of brain trajectories using multiple time points may inform our understanding of the illness and the effect of treatment. This paper makes the case for frequent serial neuroimaging across the course of schizophrenia psychoses and its application to active illness epsiodes to provide a detailed examination of psychosis relapse and remission.
Collapse
Affiliation(s)
- V. L. Cropley
- Department of Psychiatry, Melbourne Neuropsychiatry Centre, University of Melbourne and Melbourne Health, Melbourne, Australia
| | - C. Pantelis
- Department of Psychiatry, Melbourne Neuropsychiatry Centre, University of Melbourne and Melbourne Health, Melbourne, Australia
| |
Collapse
|