1
|
Aygün N, Vuong C, Krupa O, Mory J, Le BD, Valone JM, Liang D, Shafie B, Zhang P, Salinda A, Wen C, Gandal MJ, Love MI, de la Torre-Ubieta L, Stein JL. Genetics of cell-type-specific post-transcriptional gene regulation during human neurogenesis. Am J Hum Genet 2024; 111:1877-1898. [PMID: 39168119 PMCID: PMC11393701 DOI: 10.1016/j.ajhg.2024.07.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/18/2024] [Accepted: 07/23/2024] [Indexed: 08/23/2024] Open
Abstract
The function of some genetic variants associated with brain-relevant traits has been explained through colocalization with expression quantitative trait loci (eQTL) conducted in bulk postmortem adult brain tissue. However, many brain-trait associated loci have unknown cellular or molecular function. These genetic variants may exert context-specific function on different molecular phenotypes including post-transcriptional changes. Here, we identified genetic regulation of RNA editing and alternative polyadenylation (APA) within a cell-type-specific population of human neural progenitors and neurons. More RNA editing and isoforms utilizing longer polyadenylation sequences were observed in neurons, likely due to higher expression of genes encoding the proteins mediating these post-transcriptional events. We also detected hundreds of cell-type-specific editing quantitative trait loci (edQTLs) and alternative polyadenylation QTLs (apaQTLs). We found colocalizations of a neuron edQTL in CCDC88A with educational attainment and a progenitor apaQTL in EP300 with schizophrenia, suggesting that genetically mediated post-transcriptional regulation during brain development leads to differences in brain function.
Collapse
Affiliation(s)
- Nil Aygün
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; UNC Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Celine Vuong
- Intellectual and Developmental Disabilities Research Center, Semel Institute, David Geffen School of Medicine University of California, Los Angeles, Los Angeles, CA 90095, USA; Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Psychiatry and Biobehavioral Sciences, Semel Institute, David Geffen School of Medicine University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Oleh Krupa
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; UNC Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Jessica Mory
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; UNC Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Brandon D Le
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; UNC Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Jordan M Valone
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; UNC Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Dan Liang
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; UNC Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Beck Shafie
- Intellectual and Developmental Disabilities Research Center, Semel Institute, David Geffen School of Medicine University of California, Los Angeles, Los Angeles, CA 90095, USA; Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Psychiatry and Biobehavioral Sciences, Semel Institute, David Geffen School of Medicine University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Pan Zhang
- Intellectual and Developmental Disabilities Research Center, Semel Institute, David Geffen School of Medicine University of California, Los Angeles, Los Angeles, CA 90095, USA; Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Psychiatry and Biobehavioral Sciences, Semel Institute, David Geffen School of Medicine University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Angelo Salinda
- Intellectual and Developmental Disabilities Research Center, Semel Institute, David Geffen School of Medicine University of California, Los Angeles, Los Angeles, CA 90095, USA; Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Psychiatry and Biobehavioral Sciences, Semel Institute, David Geffen School of Medicine University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Cindy Wen
- Intellectual and Developmental Disabilities Research Center, Semel Institute, David Geffen School of Medicine University of California, Los Angeles, Los Angeles, CA 90095, USA; Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Psychiatry and Biobehavioral Sciences, Semel Institute, David Geffen School of Medicine University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Michael J Gandal
- Intellectual and Developmental Disabilities Research Center, Semel Institute, David Geffen School of Medicine University of California, Los Angeles, Los Angeles, CA 90095, USA; Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Psychiatry and Biobehavioral Sciences, Semel Institute, David Geffen School of Medicine University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Michael I Love
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Luis de la Torre-Ubieta
- Intellectual and Developmental Disabilities Research Center, Semel Institute, David Geffen School of Medicine University of California, Los Angeles, Los Angeles, CA 90095, USA; Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Psychiatry and Biobehavioral Sciences, Semel Institute, David Geffen School of Medicine University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Jason L Stein
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; UNC Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| |
Collapse
|
2
|
Zawisza-Álvarez M, Peñuela-Melero J, Vegas E, Reverter F, Garcia-Fernàndez J, Herrera-Úbeda C. Exploring functional conservation in silico: a new machine learning approach to RNA-editing. Brief Bioinform 2024; 25:bbae332. [PMID: 38980372 PMCID: PMC11232462 DOI: 10.1093/bib/bbae332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 06/09/2024] [Accepted: 06/25/2024] [Indexed: 07/10/2024] Open
Abstract
Around 50 years ago, molecular biology opened the path to understand changes in forms, adaptations, complexity, or the basis of human diseases through myriads of reports on gene birth, gene duplication, gene expression regulation, and splicing regulation, among other relevant mechanisms behind gene function. Here, with the advent of big data and artificial intelligence (AI), we focus on an elusive and intriguing mechanism of gene function regulation, RNA editing, in which a single nucleotide from an RNA molecule is changed, with a remarkable impact in the increase of the complexity of the transcriptome and proteome. We present a new generation approach to assess the functional conservation of the RNA-editing targeting mechanism using two AI learning algorithms, random forest (RF) and bidirectional long short-term memory (biLSTM) neural networks with an attention layer. These algorithms, combined with RNA-editing data coming from databases and variant calling from same-individual RNA and DNA-seq experiments from different species, allowed us to predict RNA-editing events using both primary sequence and secondary structure. Then, we devised a method for assessing conservation or divergence in the molecular mechanisms of editing completely in silico: the cross-testing analysis. This novel method not only helps to understand the conservation of the editing mechanism through evolution but could set the basis for achieving a better understanding of the adenosine-targeting mechanism in other fields.
Collapse
Affiliation(s)
- Michał Zawisza-Álvarez
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona, Av. Digonal 643, 08028 Barcelona, Spain
- Institut de Biomedicina (IBUB), Universitat de Barcelona, Av. Diagonal 643, 08028 Barcelona, Spain
| | - Jesús Peñuela-Melero
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona, Av. Digonal 643, 08028 Barcelona, Spain
| | - Esteban Vegas
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona, Av. Digonal 643, 08028 Barcelona, Spain
- Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, Calle Sinesio Delgado 4, 28029 Madrid, Spain
| | - Ferran Reverter
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona, Av. Digonal 643, 08028 Barcelona, Spain
| | - Jordi Garcia-Fernàndez
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona, Av. Digonal 643, 08028 Barcelona, Spain
- Institut de Biomedicina (IBUB), Universitat de Barcelona, Av. Diagonal 643, 08028 Barcelona, Spain
| | - Carlos Herrera-Úbeda
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona, Av. Digonal 643, 08028 Barcelona, Spain
- Institut de Biomedicina (IBUB), Universitat de Barcelona, Av. Diagonal 643, 08028 Barcelona, Spain
| |
Collapse
|
3
|
Hong X, Wei Z, He L, Bu Q, Wu G, Chen G, He W, Deng Q, Huang S, Huang Y, Yu C, Luo X, Lin Y. High-throughput virtual screening to identify potential small molecule inhibitors of the Zα domain of the adenosine deaminases acting on RNA 1(ADAR1). Eur J Pharm Sci 2024; 193:106672. [PMID: 38103658 DOI: 10.1016/j.ejps.2023.106672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 12/07/2023] [Accepted: 12/11/2023] [Indexed: 12/19/2023]
Abstract
Changes in RNA editing are closely associated with diseases such as cancer, viral infections, and autoimmune disorders. Adenosine deaminase (ADAR1), which acts on RNA 1, plays a key role in adenosine to inosine editing and is a potential therapeutic target for these various diseases. The p150 subtype of ADAR1 is the only one that contains a Zα domain that binds to both Z-DNA and Z-RNA. The Zα domain modulates immune responses and may be suitable targets for antiviral therapy and cancer immunotherapy. In this study, we attempted to utilize molecular docking to identify potential inhibitors that bind to the ADAR1 Zα domain. The virtual docking method screened the potential activity of more than 100,000 compounds on the Zα domain of ADAR1 and filtered to obtain the highest scoring results.We identified 71 compounds promising to bind to ADAR1 and confirmed that two of them, lithospermic acid and Regaloside B, interacts with the ADAR1 Zα domain by surface plasmonic resonance technique. The molecular dynamics calculation of the complex of lithospermic acid and ADAR1 also showed that the binding effect of lithospermic acid to ADAR1 was stable.This study provides a new perspective for the search of ADAR1 inhibitors, and further studies on the anti-ADAR11 activity of these compounds have broad prospects.
Collapse
Affiliation(s)
- Xiaoshan Hong
- Department of gynecology, Guangdong Women and Children Medical Hospital, Guangzhou 511400, China
| | - Zhifu Wei
- Department of gynecology, The Affiliated Shunde Hospital of Jinan University, Foshan 528300, China
| | - Lulu He
- Department of gynecology, Guangdong Women and Children Medical Hospital, Guangzhou 511400, China
| | - Qiaowen Bu
- Department of gynecology, Guangdong Women and Children Medical Hospital, Guangzhou 511400, China
| | - Guosong Wu
- Baiyun Branch, Nanfang Hospital, Southern Medical University, Guangzhou 510006, China
| | - Guanqiao Chen
- Department of gynecology, Guangdong Women and Children Medical Hospital, Guangzhou 511400, China
| | - Wanshan He
- Department of gynecology, Guangdong Women and Children Medical Hospital, Guangzhou 511400, China
| | - Qiuhua Deng
- Baiyun Branch, Nanfang Hospital, Southern Medical University, Guangzhou 510006, China
| | - Shiqi Huang
- Baiyun Branch, Nanfang Hospital, Southern Medical University, Guangzhou 510006, China
| | - Yongmei Huang
- Baiyun Branch, Nanfang Hospital, Southern Medical University, Guangzhou 510006, China.
| | - Cai Yu
- College of Pharmacy, Jinan University, Guangzhou 511436, China.
| | - Xiping Luo
- Department of gynecology, Guangdong Women and Children Medical Hospital, Guangzhou 511400, China.
| | - Yu Lin
- Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou 510006, China; Baiyun Branch, Nanfang Hospital, Southern Medical University, Guangzhou 510006, China.
| |
Collapse
|
4
|
Liu W, Wu Y, Zhang T, Sun X, Guo D, Yang Z. The role of dsRNA A-to-I editing catalyzed by ADAR family enzymes in the pathogeneses. RNA Biol 2024; 21:52-69. [PMID: 39449182 DOI: 10.1080/15476286.2024.2414156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 09/29/2024] [Accepted: 10/01/2024] [Indexed: 10/26/2024] Open
Abstract
The process of adenosine deaminase (ADAR)-catalyzed double-stranded RNA (dsRNA) Adenosine-to-Inosine (A-to-I) editing is essential for the correction of pathogenic mutagenesis, as well as the regulation of gene expression and protein function in mammals. The significance of dsRNA A-to-I editing in disease development and occurrence is explored using inferential statistics and cluster analyses to investigate the enzymes involved in dsRNA editing that can catalyze editing sites across multiple biomarkers. This editing process, which occurs in coding or non-coding regions, has the potential to activate abnormal signalling pathways that contributes to disease pathogenesis. Notably, the ADAR family enzymes play a crucial role in initiating the editing process. ADAR1 is upregulated in most diseases as an oncogene during tumorigenesis, whereas ADAR2 typically acts as a tumour suppressor. Furthermore, this review also provides an overview of small molecular inhibitors that disrupt the expression of ADAR enzymes. These inhibitors not only counteract tumorigenicity but also alleviate autoimmune disorders, neurological neurodegenerative symptoms, and metabolic diseases associated with aberrant dsRNA A-to-I editing processes. In summary, this comprehensive review offers detailed insights into the involvement of dsRNA A-to-I editing in disease pathogenesis and highlights the potential therapeutic roles for related small molecular inhibitors. These scientific findings will undoubtedly contribute to the advancement of personalized medicine based on dsRNA A-to-I editing.
Collapse
Affiliation(s)
- Wanqing Liu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yufan Wu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Tong Zhang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiaobo Sun
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, China
- Key Laboratory of New Drug Discovery Based on Classic Chinese Medicine Prescription, Institue of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- NMPA Key Laboratory for Research and Evaluation of Pharmacovigilance, Beijing, China
| | - Dean Guo
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Research Center of TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- School of Pharmaceutical Sciences, University of Chinese Academy of Sciences, Beijing, China
- NMPA Key Laboratory for Quality Control of Traditional Chinese Medicine, Shanghai Institue of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Zizhao Yang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, China
- Key Laboratory of New Drug Discovery Based on Classic Chinese Medicine Prescription, Institue of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- NMPA Key Laboratory for Research and Evaluation of Pharmacovigilance, Beijing, China
- Department of General Surgery, Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
5
|
Aygün N, Krupa O, Mory J, Le B, Valone J, Liang D, Love MI, Stein JL. Genetics of cell-type-specific post-transcriptional gene regulation during human neurogenesis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.30.555019. [PMID: 37693528 PMCID: PMC10491258 DOI: 10.1101/2023.08.30.555019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
The function of some genetic variants associated with brain-relevant traits has been explained through colocalization with expression quantitative trait loci (eQTL) conducted in bulk post-mortem adult brain tissue. However, many brain-trait associated loci have unknown cellular or molecular function. These genetic variants may exert context-specific function on different molecular phenotypes including post-transcriptional changes. Here, we identified genetic regulation of RNA-editing and alternative polyadenylation (APA), within a cell-type-specific population of human neural progenitors and neurons. More RNA-editing and isoforms utilizing longer polyadenylation sequences were observed in neurons, likely due to higher expression of genes encoding the proteins mediating these post-transcriptional events. We also detected hundreds of cell-type-specific editing quantitative trait loci (edQTLs) and alternative polyadenylation QTLs (apaQTLs). We found colocalizations of a neuron edQTL in CCDC88A with educational attainment and a progenitor apaQTL in EP300 with schizophrenia, suggesting genetically mediated post-transcriptional regulation during brain development lead to differences in brain function.
Collapse
Affiliation(s)
- Nil Aygün
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- UNC Neuroscience Center University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Oleh Krupa
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- UNC Neuroscience Center University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Jessica Mory
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- UNC Neuroscience Center University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Brandon Le
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- UNC Neuroscience Center University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Jordan Valone
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- UNC Neuroscience Center University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Dan Liang
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- UNC Neuroscience Center University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Michael I. Love
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Jason L. Stein
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- UNC Neuroscience Center University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Lead contact
| |
Collapse
|
6
|
RNA modifications: importance in immune cell biology and related diseases. Signal Transduct Target Ther 2022; 7:334. [PMID: 36138023 PMCID: PMC9499983 DOI: 10.1038/s41392-022-01175-9] [Citation(s) in RCA: 92] [Impact Index Per Article: 46.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 08/23/2022] [Accepted: 08/31/2022] [Indexed: 11/16/2022] Open
Abstract
RNA modifications have become hot topics recently. By influencing RNA processes, including generation, transportation, function, and metabolization, they act as critical regulators of cell biology. The immune cell abnormality in human diseases is also a research focus and progressing rapidly these years. Studies have demonstrated that RNA modifications participate in the multiple biological processes of immune cells, including development, differentiation, activation, migration, and polarization, thereby modulating the immune responses and are involved in some immune related diseases. In this review, we present existing knowledge of the biological functions and underlying mechanisms of RNA modifications, including N6-methyladenosine (m6A), 5-methylcytosine (m5C), N1-methyladenosine (m1A), N7-methylguanosine (m7G), N4-acetylcytosine (ac4C), pseudouridine (Ψ), uridylation, and adenosine-to-inosine (A-to-I) RNA editing, and summarize their critical roles in immune cell biology. Via regulating the biological processes of immune cells, RNA modifications can participate in the pathogenesis of immune related diseases, such as cancers, infection, inflammatory and autoimmune diseases. We further highlight the challenges and future directions based on the existing knowledge. All in all, this review will provide helpful knowledge as well as novel ideas for the researchers in this area.
Collapse
|
7
|
Di Giorgio E, Xodo LE. Endogenous Retroviruses (ERVs): Does RLR (RIG-I-Like Receptors)-MAVS Pathway Directly Control Senescence and Aging as a Consequence of ERV De-Repression? Front Immunol 2022; 13:917998. [PMID: 35757716 PMCID: PMC9218063 DOI: 10.3389/fimmu.2022.917998] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 05/18/2022] [Indexed: 11/13/2022] Open
Abstract
Bi-directional transcription of Human Endogenous Retroviruses (hERVs) is a common feature of autoimmunity, neurodegeneration and cancer. Higher rates of cancer incidence, neurodegeneration and autoimmunity but a lower prevalence of autoimmune diseases characterize elderly people. Although the re-expression of hERVs is commonly observed in different cellular models of senescence as a result of the loss of their epigenetic transcriptional silencing, the hERVs modulation during aging is more complex, with a peak of activation in the sixties and a decline in the nineties. What is clearly accepted, instead, is the impact of the re-activation of dormant hERV on the maintenance of stemness and tissue self-renewing properties. An innate cellular immunity system, based on the RLR-MAVS circuit, controls the degradation of dsRNAs arising from the transcription of hERV elements, similarly to what happens for the accumulation of cytoplasmic DNA leading to the activation of cGAS/STING pathway. While agonists and inhibitors of the cGAS-STING pathway are considered promising immunomodulatory molecules, the effect of the RLR-MAVS pathway on innate immunity is still largely based on correlations and not on causality. Here we review the most recent evidence regarding the activation of MDA5-RIG1-MAVS pathway as a result of hERV de-repression during aging, immunosenescence, cancer and autoimmunity. We will also deal with the epigenetic mechanisms controlling hERV repression and with the strategies that can be adopted to modulate hERV expression in a therapeutic perspective. Finally, we will discuss if the RLR-MAVS signalling pathway actively modulates physiological and pathological conditions or if it is passively activated by them.
Collapse
Affiliation(s)
- Eros Di Giorgio
- Laboratory of Biochemistry, Department of Medicine, University of Udine, Udine, Italy
| | - Luigi E Xodo
- Laboratory of Biochemistry, Department of Medicine, University of Udine, Udine, Italy
| |
Collapse
|
8
|
Interplay between A-to-I Editing and Splicing of RNA: A Potential Point of Application for Cancer Therapy. Int J Mol Sci 2022; 23:ijms23095240. [PMID: 35563631 PMCID: PMC9105294 DOI: 10.3390/ijms23095240] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 05/05/2022] [Accepted: 05/06/2022] [Indexed: 11/17/2022] Open
Abstract
Adenosine-to-inosine RNA editing is a system of post-transcriptional modification widely distributed in metazoans which is catalyzed by ADAR enzymes and occurs mostly in double-stranded RNA (dsRNA) before splicing. This type of RNA editing changes the genetic code, as inosine generally pairs with cytosine in contrast to adenosine, and this expectably modulates RNA splicing. We review the interconnections between RNA editing and splicing in the context of human cancer. The editing of transcripts may have various effects on splicing, and resultant alternatively spliced isoforms may be either tumor-suppressive or oncogenic. Dysregulated RNA splicing in cancer often causes the release of excess amounts of dsRNA into cytosol, where specific dsRNA sensors provoke antiviral-like responses, including type I interferon signaling. These responses may arrest cell division, causing apoptosis and, externally, stimulate antitumor immunity. Thus, small-molecule spliceosome inhibitors have been shown to facilitate the antiviral-like signaling and are considered to be potential cancer therapies. In turn, a cytoplasmic isoform of ADAR can deaminate dsRNA in cytosol, thereby decreasing its levels and diminishing antitumor innate immunity. We propose that complete or partial inhibition of ADAR may enhance the proapoptotic and cytotoxic effects of splicing inhibitors and that it may be considered a promising addition to cancer therapies targeting RNA splicing.
Collapse
|
9
|
Leptidis S, Papakonstantinou E, Diakou KI, Pierouli K, Mitsis T, Dragoumani K, Bacopoulou F, Sanoudou D, Chrousos GP, Vlachakis D. Epitranscriptomics of cardiovascular diseases (Review). Int J Mol Med 2022; 49:9. [PMID: 34791505 PMCID: PMC8651226 DOI: 10.3892/ijmm.2021.5064] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 10/20/2021] [Indexed: 11/09/2022] Open
Abstract
RNA modifications have recently become the focus of attention due to their extensive regulatory effects in a vast array of cellular networks and signaling pathways. Just as epigenetics is responsible for the imprinting of environmental conditions on a genetic level, epitranscriptomics follows the same principle at the RNA level, but in a more dynamic and sensitive manner. Nevertheless, its impact in the field of cardiovascular disease (CVD) remains largely unexplored. CVD and its associated pathologies remain the leading cause of death in Western populations due to the limited regenerative capacity of the heart. As such, maintenance of cardiac homeostasis is paramount for its physiological function and its capacity to respond to environmental stimuli. In this context, epitranscriptomic modifications offer a novel and promising therapeutic avenue, based on the fine‑tuning of regulatory cascades, necessary for cardiac function. This review aimed to provide an overview of the most recent findings of key epitranscriptomic modifications in both coding and non‑coding RNAs. Additionally, the methods used for their detection and important associations with genetic variations in the context of CVD were summarized. Current knowledge on cardiac epitranscriptomics, albeit limited still, indicates that the impact of epitranscriptomic editing in the heart, in both physiological and pathological conditions, holds untapped potential for the development of novel targeted therapeutic approaches in a dynamic manner.
Collapse
Affiliation(s)
- Stefanos Leptidis
- Laboratory of Genetics, Department of Biotechnology, School of Applied Biology and Biotechnology, Agricultural University of Athens, 11855 Athens, Greece
| | - Eleni Papakonstantinou
- Laboratory of Genetics, Department of Biotechnology, School of Applied Biology and Biotechnology, Agricultural University of Athens, 11855 Athens, Greece
| | - Kalliopi Io Diakou
- Laboratory of Genetics, Department of Biotechnology, School of Applied Biology and Biotechnology, Agricultural University of Athens, 11855 Athens, Greece
| | - Katerina Pierouli
- Laboratory of Genetics, Department of Biotechnology, School of Applied Biology and Biotechnology, Agricultural University of Athens, 11855 Athens, Greece
| | - Thanasis Mitsis
- Laboratory of Genetics, Department of Biotechnology, School of Applied Biology and Biotechnology, Agricultural University of Athens, 11855 Athens, Greece
| | - Konstantina Dragoumani
- Laboratory of Genetics, Department of Biotechnology, School of Applied Biology and Biotechnology, Agricultural University of Athens, 11855 Athens, Greece
| | - Flora Bacopoulou
- Laboratory of Molecular Endocrinology, Center of Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece
- First Department of Pediatrics, Center for Adolescent Medicine and UNESCO Chair on Adolescent Health Care, Medical School, Aghia Sophia Children's Hospital, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Despina Sanoudou
- Fourth Department of Internal Medicine, Clinical Genomics and Pharmacogenomics Unit, Medical School, 'Attikon' Hospital, National and Kapodistrian University of Athens, 11527 Athens, Greece
- Molecular Biology Division, Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece
- Center for New Biotechnologies and Precision Medicine, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - George P. Chrousos
- Laboratory of Molecular Endocrinology, Center of Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece
- First Department of Pediatrics, Center for Adolescent Medicine and UNESCO Chair on Adolescent Health Care, Medical School, Aghia Sophia Children's Hospital, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Dimitrios Vlachakis
- Laboratory of Genetics, Department of Biotechnology, School of Applied Biology and Biotechnology, Agricultural University of Athens, 11855 Athens, Greece
- Laboratory of Molecular Endocrinology, Center of Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece
- First Department of Pediatrics, Center for Adolescent Medicine and UNESCO Chair on Adolescent Health Care, Medical School, Aghia Sophia Children's Hospital, National and Kapodistrian University of Athens, 11527 Athens, Greece
- School of Informatics, Faculty of Natural and Mathematical Sciences, King's College London, London WC2R 2LS, UK
| |
Collapse
|
10
|
Choudhry H. High-throughput screening to identify potential inhibitors of the Zα domain of the adenosine deaminase 1 (ADAR1). Saudi J Biol Sci 2021; 28:6297-6304. [PMID: 34759749 PMCID: PMC8568724 DOI: 10.1016/j.sjbs.2021.06.080] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 06/26/2021] [Accepted: 06/27/2021] [Indexed: 11/26/2022] Open
Abstract
Adenosine deaminases acting on RNA 1 (ADAR1) are enzymes involved in editing adenosine to inosine in the dsRNAs of cells associated with cancer development. The p150 isoform of ADAR1 is the only isoform containing the Zα domain that binds to both Z-DNA and Z-RNA. The Zα domain is suggested to modulate the immune response and could be a suitable target for antiviral treatment and cancer immunotherapy. In this study, we aimed to identify potential inhibitors for ADAR1 protein that bind the Zα domain using molecular docking and simulation tools. Virtual docking and molecular dynamics simulation approaches were used to screen the potential activity of 2115 FDA-approved compounds on the Zα domain of ADAR1 and filtered for to obtain the top-scoring hits. The top three compounds with the best XP Gscore—namely alendronate (−7.045), etidronate (−6.923), and zoledronate (−6.77)—were subjected to 50 ns simulations to characterize complex stability and identify the fundamental interactions that contribute to inhibition of the ADAR1 Zα domain. The three compounds were shown to interact with Lys169, Lys170, Asn173, and Tyr177 of the Zα domain-like helical backbone of Z-RNA. The study provides a comprehensive and novel insights of repurposes drugs for the inhibition of ADAR1 function.
Collapse
Affiliation(s)
- Hani Choudhry
- Department of Biochemistry, Faculty of Science, Cancer and Mutagenesis Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
11
|
Görücü Yilmaz S. Genome editing technologies: CRISPR, LEAPER, RESTORE, ARCUT, SATI, and RESCUE. EXCLI JOURNAL 2021; 20:19-45. [PMID: 33510590 PMCID: PMC7838830 DOI: 10.17179/excli2020-3070] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 12/10/2020] [Indexed: 12/16/2022]
Abstract
Genome editing technologies include techniques used for desired genetic modifications and allow the insertion, modification or deletion of specific DNA fragments. Recent advances in genome biology offer unprecedented promise for interdisciplinary collaboration and applications in gene editing. New genome editing technologies enable specific and efficient genome modifications. The sources that inspire these modifications and already exist in the genome are DNA degradation enzymes and DNA repair pathways. Six of these recent technologies are the clustered regularly interspaced short palindromic repeats (CRISPR), leveraging endogenous ADAR for programmable editing of RNA (LEAPER), recruiting endogenous ADAR to specific transcripts for oligonucleotide-mediated RNA editing (RESTORE), chemistry-based artificial restriction DNA cutter (ARCUT), single homology arm donor mediated intron-targeting integration (SATI), RNA editing for specific C-to-U exchange (RESCUE). These technologies are widely used from various biomedical researches to clinics, agriculture, and allow you to rearrange genomic sequences, create cell lines and animal models to solve human diseases. This review emphasizes the characteristics, superiority, limitations, also whether each technology can be used in different biological systems and the potential application of these systems in the treatment of several human diseases.
Collapse
Affiliation(s)
- Senay Görücü Yilmaz
- Department of Nutrition and Dietetics, Gaziantep University, Gaziantep, Turkey 27310
| |
Collapse
|
12
|
Werner A, Broeckling CD, Prasad A, Peebles CAM. A comprehensive time-course metabolite profiling of the model cyanobacterium Synechocystis sp. PCC 6803 under diurnal light:dark cycles. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2019; 99:379-388. [PMID: 30889309 DOI: 10.1111/tpj.14320] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 03/06/2019] [Accepted: 03/12/2019] [Indexed: 05/07/2023]
Abstract
Cyanobacteria are a model photoautotroph and a chassis for the sustainable production of fuels and chemicals. Knowledge of photoautotrophic metabolism in the natural environment of day/night cycles is lacking, yet has implications for improved yield from plants, algae and cyanobacteria. Here, a thorough approach to characterizing diverse metabolites-including carbohydrates, lipids, amino acids, pigments, cofactors, nucleic acids and polysaccharides-in the model cyanobacterium Synechocystis sp. PCC 6803 (S. 6803) under sinusoidal diurnal light:dark cycles was developed and applied. A custom photobioreactor and multi-platform mass spectrometry workflow enabled metabolite profiling every 30-120 min across a 24-h diurnal sinusoidal LD ('sinLD') cycle peaking at 1600 μmol photons m-2 sec-1 . We report widespread oscillations across the sinLD cycle with 90%, 94% and 40% of the identified polar/semi-polar, non-polar and polymeric metabolites displaying statistically significant oscillations, respectively. Microbial growth displayed distinct lag, biomass accumulation and cell division phases of growth. During the lag phase, amino acids and nucleic acids accumulated to high levels per cell followed by decreased levels during the biomass accumulation phase, presumably due to protein and DNA synthesis. Insoluble carbohydrates displayed sharp oscillations per cell at the day-to-night transition. Potential bottlenecks in central carbon metabolism are highlighted. Together, this report provides a comprehensive view of photosynthetic metabolite behavior with high temporal resolution, offering insight into the impact of growth synchronization to light cycles via circadian rhythms. Incorporation into computational modeling and metabolic engineering efforts promises to improve industrially relevant strain design.
Collapse
Affiliation(s)
- Allison Werner
- Cell and Molecular Biology Program, Colorado State University, 1005 Campus Delivery, Fort Collins, CO, 80523, USA
| | - Corey D Broeckling
- Proteomics and Metabolomics Facility, Colorado State University, 2021 Campus Delivery, Fort Collins, CO, 80523, USA
| | - Ashok Prasad
- Cell and Molecular Biology Program, Colorado State University, 1005 Campus Delivery, Fort Collins, CO, 80523, USA
- Department of Chemical and Biological Engineering, Colorado State University, 1370 Campus Delivery, Fort Collins, CO, 80523, USA
| | - Christie A M Peebles
- Cell and Molecular Biology Program, Colorado State University, 1005 Campus Delivery, Fort Collins, CO, 80523, USA
- Department of Chemical and Biological Engineering, Colorado State University, 1370 Campus Delivery, Fort Collins, CO, 80523, USA
| |
Collapse
|
13
|
Fukuda M, Umeno H, Nose K, Nishitarumizu A, Noguchi R, Nakagawa H. Construction of a guide-RNA for site-directed RNA mutagenesis utilising intracellular A-to-I RNA editing. Sci Rep 2017; 7:41478. [PMID: 28148949 PMCID: PMC5288656 DOI: 10.1038/srep41478] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Accepted: 12/20/2016] [Indexed: 01/24/2023] Open
Abstract
As an alternative to DNA mutagenesis, RNA mutagenesis can potentially become a powerful gene-regulation method for fundamental research and applied life sciences. Adenosine-to-inosine (A-to-I) RNA editing alters genetic information at the transcript level and is an important biological process that is commonly conserved in metazoans. Therefore, a versatile RNA-mutagenesis method can be achieved by utilising the intracellular RNA-editing mechanism. Here, we report novel guide RNAs capable of inducing A-to-I mutations by guiding the editing enzyme, human adenosine deaminase acting on RNA (ADAR). These guide RNAs successfully introduced A-to-I mutations into the target-site, which was determined by the reprogrammable antisense region. In ADAR2-over expressing cells, site-directed RNA editing could also be performed by simply introducing the guide RNA. Our guide RNA framework provides basic insights into establishing a generally applicable RNA-mutagenesis method.
Collapse
Affiliation(s)
- Masatora Fukuda
- Department of Chemistry, Faculty of Science, Fukuoka University, 8-19-1 Nanakuma, Jonan-ku, Fukuoka, Fukuoka 814-0180, Japan
| | - Hiromitsu Umeno
- Department of Chemistry, Faculty of Science, Fukuoka University, 8-19-1 Nanakuma, Jonan-ku, Fukuoka, Fukuoka 814-0180, Japan
| | - Kanako Nose
- Department of Chemistry, Faculty of Science, Fukuoka University, 8-19-1 Nanakuma, Jonan-ku, Fukuoka, Fukuoka 814-0180, Japan
| | - Azusa Nishitarumizu
- Department of Chemistry, Faculty of Science, Fukuoka University, 8-19-1 Nanakuma, Jonan-ku, Fukuoka, Fukuoka 814-0180, Japan
| | - Ryoma Noguchi
- Department of Chemistry, Faculty of Science, Fukuoka University, 8-19-1 Nanakuma, Jonan-ku, Fukuoka, Fukuoka 814-0180, Japan
| | - Hiroyuki Nakagawa
- Department of Earth System Science, Faculty of Science, Fukuoka University, 8-19-1 Nanakuma, Jonan-ku, Fukuoka, Fukuoka, 814-0180, Japan
| |
Collapse
|
14
|
Moreira S, Valach M, Aoulad-Aissa M, Otto C, Burger G. Novel modes of RNA editing in mitochondria. Nucleic Acids Res 2016; 44:4907-19. [PMID: 27001515 PMCID: PMC4889940 DOI: 10.1093/nar/gkw188] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Accepted: 03/10/2016] [Indexed: 11/20/2022] Open
Abstract
Gene structure and expression in diplonemid mitochondria are unparalleled. Genes are fragmented in pieces (modules) that are separately transcribed, followed by the joining of module transcripts to contiguous RNAs. Some instances of unique uridine insertion RNA editing at module boundaries were noted, but the extent and potential occurrence of other editing types remained unknown. Comparative analysis of deep transcriptome and genome data from Diplonema papillatum mitochondria reveals ∼220 post-transcriptional insertions of uridines, but no insertions of other nucleotides nor deletions. In addition, we detect in total 114 substitutions of cytosine by uridine and adenosine by inosine, amassed into unusually compact clusters. Inosines in transcripts were confirmed experimentally. This is the first report of adenosine-to-inosine editing of mRNAs and ribosomal RNAs in mitochondria. In mRNAs, editing causes mostly amino-acid additions and non-synonymous substitutions; in ribosomal RNAs, it permits formation of canonical secondary structures. Two extensively edited transcripts were compared across four diplonemids. The pattern of uridine-insertion editing is strictly conserved, whereas substitution editing has diverged dramatically, but still rendering diplonemid proteins more similar to other eukaryotic orthologs. We posit that RNA editing not only compensates but also sustains, or even accelerates, ultra-rapid evolution of genome structure and sequence in diplonemid mitochondria.
Collapse
Affiliation(s)
- Sandrine Moreira
- Department of Biochemistry and Robert-Cedergren Centre for Bioinformatics and Genomics; Université de Montréal, Montreal, H3C 3J7, Canada
| | - Matus Valach
- Department of Biochemistry and Robert-Cedergren Centre for Bioinformatics and Genomics; Université de Montréal, Montreal, H3C 3J7, Canada
| | - Mohamed Aoulad-Aissa
- Department of Biochemistry and Robert-Cedergren Centre for Bioinformatics and Genomics; Université de Montréal, Montreal, H3C 3J7, Canada
| | - Christian Otto
- Bioinformatics Group, Department of Computer Science, University of Leipzig, Leipzig, D-04109, Germany
| | - Gertraud Burger
- Department of Biochemistry and Robert-Cedergren Centre for Bioinformatics and Genomics; Université de Montréal, Montreal, H3C 3J7, Canada
| |
Collapse
|
15
|
Wang G, Wang H, Singh S, Zhou P, Yang S, Wang Y, Zhu Z, Zhang J, Chen A, Billiar T, Monga SP, Wang Q. ADAR1 Prevents Liver Injury from Inflammation and Suppresses Interferon Production in Hepatocytes. THE AMERICAN JOURNAL OF PATHOLOGY 2015; 185:3224-37. [PMID: 26453800 PMCID: PMC4729276 DOI: 10.1016/j.ajpath.2015.08.002] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Revised: 07/15/2015] [Accepted: 08/11/2015] [Indexed: 12/18/2022]
Abstract
Adenosine deaminase acting on RNA 1 (ADAR1) is an essential protein for embryonic liver development. ADAR1 loss is embryonically lethal because of severe liver damage. Although ADAR1 is required in adult livers to prevent liver cell death, as demonstrated by liver-specific conditional knockout (Alb-ADAR1(KO)) mice, the mechanism remains elusive. We systematically analyzed Alb-ADAR1(KO) mice for liver damage. Differentiation genes and inflammatory pathways were examined in hepatic tissues from Alb-ADAR1(KO) and littermate controls. Inducible ADAR1 KO mice were used to validate regulatory effects of ADAR1 on inflammatory cytokines. We found that Alb-ADAR1(KO) mice showed dramatic growth retardation and high mortality because of severe structural and functional damage to the liver, which showed overwhelming inflammation, cell death, fibrosis, fatty change, and compensatory regeneration. Simultaneously, Alb-ADAR1(KO) showed altered expression of key differentiation genes and significantly higher levels of hepatic inflammatory cytokines, especially type I interferons, which was also verified by inducible ADAR1 knockdown in primary hepatocyte cultures. We conclude that ADAR1 is an essential molecule for maintaining adult liver homeostasis and, in turn, morphological and functional integrity. It inhibits the production of type I interferons and other inflammatory cytokines. Our findings may provide novel insight in the pathogenesis of liver diseases caused by excessive inflammatory responses, including autoimmune hepatitis.
Collapse
Affiliation(s)
- Guoliang Wang
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania; Department of General Surgery, Union Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Hui Wang
- Department of Medical Genetics, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Sucha Singh
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Pei Zhou
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Shengyong Yang
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Yujuan Wang
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Zhaowei Zhu
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Jinxiang Zhang
- Department of General Surgery, Union Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Alex Chen
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania; Department of Cardiology, Center for Vascular Disease and Translational Medicine, Third Xiangya Hospital, Central South University, Changsha, China
| | - Timothy Billiar
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Satdarshan P Monga
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania.
| | - Qingde Wang
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania; Department of Cardiology, Center for Vascular Disease and Translational Medicine, Third Xiangya Hospital, Central South University, Changsha, China.
| |
Collapse
|
16
|
Deffit SN, Hundley HA. To edit or not to edit: regulation of ADAR editing specificity and efficiency. WILEY INTERDISCIPLINARY REVIEWS-RNA 2015; 7:113-27. [PMID: 26612708 DOI: 10.1002/wrna.1319] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Revised: 10/15/2015] [Accepted: 10/20/2015] [Indexed: 11/08/2022]
Abstract
Hundreds to millions of adenosine (A)-to-inosine (I) modifications are present in eukaryotic transcriptomes and play an essential role in the creation of proteomic and phenotypic diversity. As adenosine and inosine have different base-pairing properties, the functional consequences of these modifications or 'edits' include altering coding potential, splicing, and miRNA-mediated gene silencing of transcripts. However, rather than serving as a static control of gene expression, A-to-I editing provides a means to dynamically rewire the genetic code during development and in a cell-type specific manner. Interestingly, during normal development, in specific cells, and in both neuropathological diseases and cancers, the extent of RNA editing does not directly correlate with levels of the substrate mRNA or the adenosine deaminase that act on RNA (ADAR) editing enzymes, implying that cellular factors are required for spatiotemporal regulation of A-to-I editing. The factors that affect the specificity and extent of ADAR activity have been thoroughly dissected in vitro. Yet, we still lack a complete understanding of how specific ADAR family members can selectively deaminate certain adenosines while others cannot. Additionally, in the cellular environment, ADAR specificity and editing efficiency is likely to be influenced by cellular factors, which is currently an area of intense investigation. Data from many groups have suggested two main mechanisms for controlling A-to-I editing in the cell: (1) regulating ADAR accessibility to target RNAs and (2) protein-protein interactions that directly alter ADAR enzymatic activity. Recent studies suggest cis- and trans-acting RNA elements, heterodimerization and RNA-binding proteins play important roles in regulating RNA editing levels in vivo. WIREs RNA 2016, 7:113-127. doi: 10.1002/wrna.1319.
Collapse
Affiliation(s)
- Sarah N Deffit
- Medical Sciences Program, Indiana University, Bloomington, IN, USA
| | | |
Collapse
|
17
|
Kohn AB, Sanford RS, Yoshida MA, Moroz LL. Parallel Evolution and Lineage-Specific Expansion of RNA Editing in Ctenophores. Integr Comp Biol 2015; 55:1111-20. [PMID: 26089435 DOI: 10.1093/icb/icv065] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
RNA editing is a process of targeted alterations of nucleotides in all types of RNA molecules (e.g., rRNA, tRNA, mRNA, and miRNA). As a result, the transcriptional output differs from its genomic DNA template. RNA editing can be defined both by biochemical mechanisms and by enzymes that perform these reactions. There are high levels of RNA editing detected in the mammalian nervous system, suggesting that nervous systems use this mechanism to increase protein diversity, because the post-transcription modifications lead to new gene products with novel functions. By re-annotating the ctenophore genomes, we found that the number of predicted RNA-editing enzymes is comparable to the numbers in mammals, but much greater than in other non-bilaterian basal metazoans. However, the overall molecular diversity of RNA-editing enzymes in ctenophores is lower, suggesting a possible "compensation" by an expansion of the ADAT1-like subfamily in this lineage. In two genera of ctenophores, Pleurobrachia and Mnemiopsis, there are high levels of expression for RNA-editing enzymes in their aboral organs, the integrative center involved in control of locomotion and geotaxis. This finding supports the hypothesis that RNA editing is correlated with the complexity of tissues and behaviors. Smaller numbers of RNA-editing enzymes in Porifera and Placozoa also correlates with the primary absence of neural and muscular systems in these lineages. In ctenophores, the expansion of the RNA-editing machinery can also provide mechanisms that support the remarkable capacity for regeneration in these animals. In summary, despite their compact genomes, a wide variety of epigenomic mechanisms employed by ctenophores and other non-bilaterian basal metazoans can provide novel insights into the evolutionary origins of biological novelties.
Collapse
Affiliation(s)
- Andrea B Kohn
- *The Whitney Laboratory for Marine Bioscience, University of Florida, 9505 Ocean Shore Blvd, St Augustine, FL 32080, USA
| | - Rachel S Sanford
- *The Whitney Laboratory for Marine Bioscience, University of Florida, 9505 Ocean Shore Blvd, St Augustine, FL 32080, USA; Department of Neuroscience, University of Florida, Gainesville, FL 32611, USA
| | - Masa-aki Yoshida
- *The Whitney Laboratory for Marine Bioscience, University of Florida, 9505 Ocean Shore Blvd, St Augustine, FL 32080, USA; Research fellow of the Japan Society for the Promotion of Science; Center for Information Biology, National Institute of Genetics, 1111 Yata, Mishima, Shizuoka 411-8540, Japan
| | - Leonid L Moroz
- *The Whitney Laboratory for Marine Bioscience, University of Florida, 9505 Ocean Shore Blvd, St Augustine, FL 32080, USA; Department of Neuroscience, University of Florida, Gainesville, FL 32611, USA; McKnight Brain Institute, University of Florida, Gainesville, FL 32611, USA
| |
Collapse
|
18
|
Otani S, Ayata M, Takeuchi K, Takeda M, Shintaku H, Ogura H. Biased hypermutation occurred frequently in a gene inserted into the IC323 recombinant measles virus during its persistence in the brains of nude mice. Virology 2014; 462-463:91-7. [PMID: 24967743 DOI: 10.1016/j.virol.2014.05.035] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2014] [Revised: 03/03/2014] [Accepted: 05/19/2014] [Indexed: 01/01/2023]
Abstract
Measles virus (MV) is the causative agent of measles and its neurological complications, subacute sclerosing panencephalitis (SSPE) and measles inclusion body encephalitis (MIBE). Biased hypermutation in the M gene is a characteristic feature of SSPE and MIBE. To determine whether the M gene is the preferred target of hypermutation, an additional transcriptional unit containing a humanized Renilla reniformis green fluorescent protein (hrGFP) gene was introduced into the IC323 MV genome, and nude mice were inoculated intracerebrally with the virus. Biased hypermutation occurred in the M gene and also in the hrGFP gene when it was inserted between the leader and the N gene, but not between the H and L gene. These results indicate that biased hypermutation is usually found in a gene whose function is not essential for viral proliferation in the brain and that the location of a gene in the MV genome can affect its mutational frequency.
Collapse
Affiliation(s)
- Sanae Otani
- Department of Virology and Graduate School of Medicine, Osaka City University, 1-4-3 Asahimachi, Abeno-ku, Osaka 545-8585, Japan; Department of Pediatrics, Graduate School of Medicine, Osaka City University, Osaka, Japan
| | - Minoru Ayata
- Department of Virology and Graduate School of Medicine, Osaka City University, 1-4-3 Asahimachi, Abeno-ku, Osaka 545-8585, Japan.
| | - Kaoru Takeuchi
- Laboratory of Environmental Microbiology, Division of Biomedical Science, Faculty of Medicine, University of Tsukuba, Ibaraki, Japan
| | - Makoto Takeda
- Department of Virology 3, National Institute of Infectious Diseases, Tokyo, Japan
| | - Haruo Shintaku
- Department of Pediatrics, Graduate School of Medicine, Osaka City University, Osaka, Japan
| | - Hisashi Ogura
- Department of Virology and Graduate School of Medicine, Osaka City University, 1-4-3 Asahimachi, Abeno-ku, Osaka 545-8585, Japan
| |
Collapse
|
19
|
Eran A, Li JB, Vatalaro K, McCarthy J, Rahimov F, Collins C, Markianos K, Margulies DM, Brown EN, Calvo SE, Kohane IS, Kunkel LM. Comparative RNA editing in autistic and neurotypical cerebella. Mol Psychiatry 2013; 18:1041-8. [PMID: 22869036 PMCID: PMC3494744 DOI: 10.1038/mp.2012.118] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2012] [Revised: 06/29/2012] [Accepted: 06/29/2012] [Indexed: 01/03/2023]
Abstract
Adenosine-to-inosine (A-to-I) RNA editing is a neurodevelopmentally regulated epigenetic modification shown to modulate complex behavior in animals. Little is known about human A-to-I editing, but it is thought to constitute one of many molecular mechanisms connecting environmental stimuli and behavioral outputs. Thus, comprehensive exploration of A-to-I RNA editing in human brains may shed light on gene-environment interactions underlying complex behavior in health and disease. Synaptic function is a main target of A-to-I editing, which can selectively recode key amino acids in synaptic genes, directly altering synaptic strength and duration in response to environmental signals. Here, we performed a high-resolution survey of synaptic A-to-I RNA editing in a human population, and examined how it varies in autism, a neurodevelopmental disorder in which synaptic abnormalities are a common finding. Using ultra-deep (>1000 × ) sequencing, we quantified the levels of A-to-I editing of 10 synaptic genes in postmortem cerebella from 14 neurotypical and 11 autistic individuals. A high dynamic range of editing levels was detected across individuals and editing sites, from 99.6% to below detection limits. In most sites, the extreme ends of the population editing distributions were individuals with autism. Editing was correlated with isoform usage, clusters of correlated sites were identified, and differential editing patterns examined. Finally, a dysfunctional form of the editing enzyme adenosine deaminase acting on RNA B1 was found more commonly in postmortem cerebella from individuals with autism. These results provide a population-level, high-resolution view of A-to-I RNA editing in human cerebella and suggest that A-to-I editing of synaptic genes may be informative for assessing the epigenetic risk for autism.
Collapse
Affiliation(s)
- Alal Eran
- Harvard-MIT Division of Health Sciences and Technology, Cambridge, MA 02139, USA,Program in Genomics, Boston Children’s Hospital, Boston, MA 02115, USA
| | - Jin Billy Li
- Department of Genetics, Stanford University, Stanford, CA 94305, USA
| | - Kayla Vatalaro
- Program in Genomics, Boston Children’s Hospital, Boston, MA 02115, USA
| | - Jillian McCarthy
- Program in Genomics, Boston Children’s Hospital, Boston, MA 02115, USA
| | - Fedik Rahimov
- Program in Genomics, Boston Children’s Hospital, Boston, MA 02115, USA,Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Christin Collins
- Program in Genomics, Boston Children’s Hospital, Boston, MA 02115, USA,Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Kyriacos Markianos
- Program in Genomics, Boston Children’s Hospital, Boston, MA 02115, USA,Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - David M. Margulies
- Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA,Correlagen Diagnostics, Waltham, MA 02452, USA,Center for Biomedical Informatics, Harvard Medical School, Boston, MA 02115, USA
| | - Emery N. Brown
- Harvard-MIT Division of Health Sciences and Technology, Cambridge, MA 02139, USA,Neuroscience Statistics Research Laboratory, Department of Anesthesia and Critical Care, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA,Department of Brain and Cognitive Sciences, MIT, Cambridge, MA 02139, USA
| | - Sarah E. Calvo
- Broad Institute of Harvard and MIT, Cambridge, MA 02139, USA
| | - Isaac S. Kohane
- Harvard-MIT Division of Health Sciences and Technology, Cambridge, MA 02139, USA,Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA,Center for Biomedical Informatics, Harvard Medical School, Boston, MA 02115, USA,Correspondence: Louis Kunkel, Program in Genomics, Department of Genetics, Boston Children’s Hospital, 3 Blackfan Circle, CLS 15027.1, Boston, MA 02115, USA. Telephone: (617) 355-6279, fax: (617) 730-0253, , Isaac Kohane, Department of Pediatrics, Boston Children's Hospital, 300 Longwood Ave., Enders 144, Boston, MA 02115, USA. Telephone: (617) 919-2182, fax: (617) 730-0921,
| | - Louis M. Kunkel
- Program in Genomics, Boston Children’s Hospital, Boston, MA 02115, USA,Department of Genetics, Harvard Medical School, Boston, MA 02115, USA,Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA,The Manton Center for Orphan Disease Research, Boston, MA 02115, USA,Correspondence: Louis Kunkel, Program in Genomics, Department of Genetics, Boston Children’s Hospital, 3 Blackfan Circle, CLS 15027.1, Boston, MA 02115, USA. Telephone: (617) 355-6279, fax: (617) 730-0253, , Isaac Kohane, Department of Pediatrics, Boston Children's Hospital, 300 Longwood Ave., Enders 144, Boston, MA 02115, USA. Telephone: (617) 919-2182, fax: (617) 730-0921,
| |
Collapse
|
20
|
Sibbritt T, Patel HR, Preiss T. Mapping and significance of the mRNA methylome. WILEY INTERDISCIPLINARY REVIEWS-RNA 2013; 4:397-422. [PMID: 23681756 DOI: 10.1002/wrna.1166] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2013] [Revised: 03/20/2013] [Accepted: 03/22/2013] [Indexed: 12/25/2022]
Abstract
Internal methylation of eukaryotic mRNAs in the form of N6-methyladenosine (m(6)A) and 5-methylcytidine (m(5)C) has long been known to exist, but progress in understanding its role was hampered by difficulties in identifying individual sites. This was recently overcome by high-throughput sequencing-based methods that mapped thousands of sites for both modifications throughout mammalian transcriptomes, with most sites found in mRNAs. The topology of m(6)A in mouse and human revealed both conserved and variable sites as well as plasticity in response to extracellular cues. Within mRNAs, m(5)C and m(6)A sites were relatively depleted in coding sequences and enriched in untranslated regions, suggesting functional interactions with post-transcriptional gene control. Finer distribution analyses and preexisting literature point toward roles in the regulation of mRNA splicing, translation, or decay, through an interplay with RNA-binding proteins and microRNAs. The methyltransferase (MTase) METTL3 'writes' m(6)A marks on mRNA, whereas the demethylase FTO can 'erase' them. The RNA:m(5)C MTases NSUN2 and TRDMT1 have roles in tRNA methylation but they also act on mRNA. Proper functioning of these enzymes is important in development and there are clear links to human disease. For instance, a common variant of FTO is a risk allele for obesity carried by 1 billion people worldwide and mutations cause a lethal syndrome with growth retardation and brain deficits. NSUN2 is linked to cancer and stem cell biology and mutations cause intellectual disability. In this review, we summarize the advances, open questions, and intriguing possibilities in this emerging field that might be called RNA modomics or epitranscriptomics.
Collapse
Affiliation(s)
- Tennille Sibbritt
- Genome Biology Department, The John Curtin School of Medical Research, The Australian National University, Canberra, ACT, Australia
| | | | | |
Collapse
|
21
|
RNA editing and drug discovery for cancer therapy. ScientificWorldJournal 2013; 2013:804505. [PMID: 23737728 PMCID: PMC3655661 DOI: 10.1155/2013/804505] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2013] [Accepted: 04/08/2013] [Indexed: 12/26/2022] Open
Abstract
RNA editing is vital to provide the RNA and protein complexity to regulate the gene expression. Correct RNA editing maintains the cell function and organism development. Imbalance of the RNA editing machinery may lead to diseases and cancers. Recently, RNA editing has been recognized as a target for drug discovery although few studies targeting RNA editing for disease and cancer therapy were reported in the field of natural products. Therefore, RNA editing may be a potential target for therapeutic natural products. In this review, we provide a literature overview of the biological functions of RNA editing on gene expression, diseases, cancers, and drugs. The bioinformatics resources of RNA editing were also summarized.
Collapse
|
22
|
Abstract
Several studies have investigated RNA-DNA differences (RDD), presumably due to RNA editing, with conflicting results. We report a rigorous analysis of RDD in exonic regions in mice, taking into account critical biases in RNA-Seq analysis. Using deep-sequenced F1 reciprocal inbred mice, we mapped 40 million RNA-Seq reads per liver sample and 180 million reads per adipose sample. We found 7300 apparent hepatic RDDs using a multiple-site mapping procedure, compared with 293 RDD found using a unique-site mapping procedure. After filtering for repeat sequence, splice junction proximity, undirectional strand, and extremity read bias, 63 RDD remained. In adipose tissue unique-site mapping identified 1667 RDD, and after applying the same four filters, 188 RDDs remained. In both tissues, the filtering procedure increased the proportion of canonical (A-to-I and C-to-U) editing events. The genomic DNA of 12 RDD sites among the potential 63 hepatic RDD was tested by Sanger sequencing, three of which proved to be due to unreferenced SNPs. We validated seven liver RDD with Sequenom technology, including two noncanonical, Gm5424 C-to-I(G) and Pisd I(G)-to-A RDD. Differences in diet, sex, or genetic background had very modest effects on RDD occurrence. Only a small number of apparent RDD sites overlapped between liver and adipose, indicating a high degree of tissue specificity. Our findings underscore the importance of properly filtering for bias in RNA-Seq investigations, including the necessity of confirming the DNA sequence to eliminate unreferenced SNPs. Based on our results, we conclude that RNA editing is likely limited to hundreds of events in exonic RNA in liver and adipose.
Collapse
|
23
|
Picardi E, Gallo A, Galeano F, Tomaselli S, Pesole G. A novel computational strategy to identify A-to-I RNA editing sites by RNA-Seq data: de novo detection in human spinal cord tissue. PLoS One 2012; 7:e44184. [PMID: 22957051 PMCID: PMC3434223 DOI: 10.1371/journal.pone.0044184] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2012] [Accepted: 07/30/2012] [Indexed: 01/30/2023] Open
Abstract
RNA editing is a post-transcriptional process occurring in a wide range of organisms. In human brain, the A-to-I RNA editing, in which individual adenosine (A) bases in pre-mRNA are modified to yield inosine (I), is the most frequent event. Modulating gene expression, RNA editing is essential for cellular homeostasis. Indeed, its deregulation has been linked to several neurological and neurodegenerative diseases. To date, many RNA editing sites have been identified by next generation sequencing technologies employing massive transcriptome sequencing together with whole genome or exome sequencing. While genome and transcriptome reads are not always available for single individuals, RNA-Seq data are widespread through public databases and represent a relevant source of yet unexplored RNA editing sites. In this context, we propose a simple computational strategy to identify genomic positions enriched in novel hypothetical RNA editing events by means of a new two-steps mapping procedure requiring only RNA-Seq data and no a priori knowledge of RNA editing characteristics and genomic reads. We assessed the suitability of our procedure by confirming A-to-I candidates using conventional Sanger sequencing and performing RNA-Seq as well as whole exome sequencing of human spinal cord tissue from a single individual.
Collapse
Affiliation(s)
- Ernesto Picardi
- Dipartimento di Bioscienze, Biotecnologie e Scienze Farmacologiche, Università di Bari, Bari, Italy
- Istituto di Biomembrane e Bioenergetica, Consiglio Nazionale delle Ricerche, Bari, Italy
| | - Angela Gallo
- RNA Editing Laboratory, Oncohaematology Department, Ospedale Pediatrico “Bambino Gesù”, IRCCS, Rome, Italy
| | - Federica Galeano
- RNA Editing Laboratory, Oncohaematology Department, Ospedale Pediatrico “Bambino Gesù”, IRCCS, Rome, Italy
| | - Sara Tomaselli
- RNA Editing Laboratory, Oncohaematology Department, Ospedale Pediatrico “Bambino Gesù”, IRCCS, Rome, Italy
| | - Graziano Pesole
- Dipartimento di Bioscienze, Biotecnologie e Scienze Farmacologiche, Università di Bari, Bari, Italy
- Istituto di Biomembrane e Bioenergetica, Consiglio Nazionale delle Ricerche, Bari, Italy
- * E-mail:
| |
Collapse
|
24
|
Abstract
The term "RNA editing" encompasses a wide variety of mechanistically and phylogenetically unrelated processes that change the nucleotide sequence of an RNA species relative to that of the encoding DNA. Two general classes of editing, substitution and insertion/deletion, have been described, with all major types of cellular RNA (messenger, ribosomal, and transfer) undergoing editing in different organisms. In cases where RNA editing is required for function (e.g., to generate a translatable open reading frame in a mRNA), editing is an obligatory step in the pathway of genetic information expression. How, when, and why individual RNA editing systems originated are intriguing biochemical and evolutionary questions. Here I review briefly what is known about the biochemistry, genetics, and phylogenetics of several very different RNA editing systems, emphasizing what we can deduce about their origin and evolution from the molecular machinery involved. An evolutionary model, centered on the concept of "constructive neutral evolution", is able to account in a general way for the origin of RNA editing systems. The model posits that the biochemical elements of an RNA editing system must be in place before there is an actual need for editing, and that RNA editing systems are inherently mutagenic because they allow potentially deleterious or lethal mutations to persist at the genome level, whereas they would otherwise be purged by purifying selection.
Collapse
Affiliation(s)
- Michael W Gray
- Centre for Comparative Genomics and Evolutionary Bioinformatics, Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia B3M 4R2, Canada.
| |
Collapse
|
25
|
Abstract
Viral protein synthesis is completely dependent upon the translational machinery of the host cell. However, many RNA virus transcripts have marked structural differences from cellular mRNAs that preclude canonical translation initiation, such as the absence of a 5′ cap structure or the presence of highly structured 5′UTRs containing replication and/or packaging signals. Furthermore, whilst the great majority of cellular mRNAs are apparently monocistronic, RNA viruses must often express multiple proteins from their mRNAs. In addition, RNA viruses have very compact genomes and are under intense selective pressure to optimize usage of the available sequence space. Together, these features have driven the evolution of a plethora of non-canonical translational mechanisms in RNA viruses that help them to meet these challenges. Here, we review the mechanisms utilized by RNA viruses of eukaryotes, focusing on internal ribosome entry, leaky scanning, non-AUG initiation, ribosome shunting, reinitiation, ribosomal frameshifting and stop-codon readthrough. The review will highlight recently discovered examples of unusual translational strategies, besides revisiting some classical cases.
Collapse
Affiliation(s)
- Andrew E Firth
- Division of Virology, Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QP, UK
| | - Ian Brierley
- Division of Virology, Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QP, UK
| |
Collapse
|
26
|
Barraud P, Allain FHT. ADAR proteins: double-stranded RNA and Z-DNA binding domains. Curr Top Microbiol Immunol 2011; 353:35-60. [PMID: 21728134 DOI: 10.1007/82_2011_145] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Adenosine deaminases acting on RNA (ADAR) catalyze adenosine to inosine editing within double-stranded RNA (dsRNA) substrates. Inosine is read as a guanine by most cellular processes and therefore these changes create codons for a different amino acid, stop codons or even a new splice-site allowing protein diversity generated from a single gene. We review here the current structural and molecular knowledge on RNA editing by the ADAR family of protein. We focus especially on two types of nucleic acid binding domains present in ADARs, namely the dsRNA and Z-DNA binding domains.
Collapse
Affiliation(s)
- Pierre Barraud
- Institute of Molecular Biology and Biophysics, ETH Zurich, 8093 Zürich, Switzerland
| | | |
Collapse
|