1
|
Zhang Y, Simko AC, Okoro U, Sibert DJ, Moon JH, Liu B, Matin A. Commitment Complex Splicing Factors in Cancers of the Gastrointestinal Tract-An In Silico Study. Bioinform Biol Insights 2024; 18:11779322241287115. [PMID: 39421280 PMCID: PMC11483837 DOI: 10.1177/11779322241287115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 09/05/2024] [Indexed: 10/19/2024] Open
Abstract
The initial step in pre-mRNA splicing involves formation of a spliceosome commitment complex (CC) or E-complex by factors that serve to bind and mark the exon-intron boundaries that will undergo splicing. The CC component U1 snRNP assembles at the 5'-splice site (ss), whereas SF1, U2AF2, and U2AF1 define the 3'-ss of the intron. A PRP40 protein bridges U1 snRNP with factors at the 3'-ss. To determine how defects in CC components impact cancers, we analyzed human gastrointestinal (GI) cancer patient tissue and clinical data from cBioPortal. cBioPortal datasets were analyzed for CC factor alterations and patient outcomes in GI cancers (bowel, stomach, esophagus, pancreas, and liver). In addition, co-expression datasets were used to determine the splicing targets of the CC. Our analysis found that frequency of genetic changes was low (1%-13%), but when combined with changes in expression levels, there was an overall surprisingly high incidence of CC component (>30%) alterations in GI cancers. Colon cancer patients carrying BRAF driver gene mutations had high incidences of CC alterations (19%-61%), whereas patients with APC, KRAS, or TP53 gene mutations had low (<5%) incidences of CC alterations. Most significantly, patients with mutations in CC genes exhibited a consistent trend of favorable survival rates, indicating that mutations that impair or lower CC component expression favor patient survival. Conversely, patients with high CC expression had worse survival. Pathway analysis indicates that the CC regulates specific metabolic and tumor suppressor pathways. Metabolic pathways involved in cell survival, nutrition, biosynthesis, autophagy, cellular movement (invasion), or immune surveillance pathways correlated with CC factor upregulation, whereas tumor suppressor pathways, which regulate cell proliferation and apoptosis, were inversely correlated with CC factor upregulation. This study demonstrates the versatility of in silico analysis to determine molecular function of large macromolecular complexes such as the spliceosome CC. Furthermore, our analysis indicates that therapeutic lowering of CC levels in colon cancer patients may enhance patient survival.
Collapse
Affiliation(s)
- Yun Zhang
- Department of Pharmaceutical Sciences, Texas Southern University, Houston, TX, USA
| | | | - Uzondu Okoro
- Department of Pharmaceutical Sciences, Texas Southern University, Houston, TX, USA
| | - Deja Jamese Sibert
- Department of Biomedical Sciences, Mercer University School of Medicine, Macon, GA, USA
| | - Jin Hyung Moon
- Department of Biomedical Sciences, Mercer University School of Medicine, Macon, GA, USA
| | - Bin Liu
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Angabin Matin
- Department of Biomedical Sciences, Mercer University School of Medicine, Macon, GA, USA
| |
Collapse
|
2
|
Tan C, Sim D, Zhen Y, Tian H, Koh J, Roca X. PRPF40A induces inclusion of exons in GC-rich regions important for human myeloid cell differentiation. Nucleic Acids Res 2024; 52:8800-8814. [PMID: 38943321 PMCID: PMC11347146 DOI: 10.1093/nar/gkae557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 06/07/2024] [Accepted: 06/19/2024] [Indexed: 07/01/2024] Open
Abstract
We characterized the regulatory mechanisms and role in human myeloid cell survival and differentiation of PRPF40A, a splicing factor lacking a canonical RNA Binding Domain. Upon PRPF40A knockdown, HL-60 cells displayed increased cell death, decreased proliferation and slight differentiation phenotype with upregulation of immune activation genes. Suggestive of both redundant and specific functions, cell death but not proliferation was rescued by overexpression of its paralog PRPF40B. Transcriptomic analysis revealed the predominant role of PRPF40A as an activator of cassette exon inclusion of functionally relevant splicing events. Mechanistically, the exons exclusively upregulated by PRPF40A are flanked by short and GC-rich introns which tend to localize to nuclear speckles in the nucleus center. These PRPF40A regulatory features are shared with other splicing regulators such as SRRM2, SON, PCBP1/2, and to a lesser extent TRA2B and SRSF2, as a part of a functional network that regulates splicing partly via co-localization in the nucleus.
Collapse
Affiliation(s)
- Cheryl Weiqi Tan
- School of Biological Sciences, Nanyang Technological University, 637551 Singapore
| | - Donald Yuhui Sim
- School of Biological Sciences, Nanyang Technological University, 637551 Singapore
| | - Yashu Zhen
- School of Biological Sciences, Nanyang Technological University, 637551 Singapore
| | - Haobo Tian
- School of Biological Sciences, Nanyang Technological University, 637551 Singapore
| | - Jace Koh
- School of Biological Sciences, Nanyang Technological University, 637551 Singapore
| | - Xavier Roca
- School of Biological Sciences, Nanyang Technological University, 637551 Singapore
| |
Collapse
|
3
|
Martínez-Lumbreras S, Träger LK, Mulorz MM, Payr M, Dikaya V, Hipp C, König J, Sattler M. Intramolecular autoinhibition regulates the selectivity of PRPF40A tandem WW domains for proline-rich motifs. Nat Commun 2024; 15:3888. [PMID: 38719828 PMCID: PMC11079029 DOI: 10.1038/s41467-024-48004-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Accepted: 04/18/2024] [Indexed: 05/12/2024] Open
Abstract
PRPF40A plays an important role in the regulation of pre-mRNA splicing by mediating protein-protein interactions in the early steps of spliceosome assembly. By binding to proteins at the 5´ and 3´ splice sites, PRPF40A promotes spliceosome assembly by bridging the recognition of the splices. The PRPF40A WW domains are expected to recognize proline-rich sequences in SF1 and SF3A1 in the early spliceosome complexes E and A, respectively. Here, we combine NMR, SAXS and ITC to determine the structure of the PRPF40A tandem WW domains in solution and characterize the binding specificity and mechanism for proline-rich motifs recognition. Our structure of the PRPF40A WW tandem in complex with a high-affinity SF1 peptide reveals contributions of both WW domains, which also enables tryptophan sandwiching by two proline residues in the ligand. Unexpectedly, a proline-rich motif in the N-terminal region of PRPF40A mediates intramolecular interactions with the WW tandem. Using NMR, ITC, mutational analysis in vitro, and immunoprecipitation experiments in cells, we show that the intramolecular interaction acts as an autoinhibitory filter for proof-reading of high-affinity proline-rich motifs in bona fide PRPF40A binding partners. We propose that similar autoinhibitory mechanisms are present in most WW tandem-containing proteins to enhance binding selectivity and regulation of WW/proline-rich peptide interaction networks.
Collapse
Affiliation(s)
- Santiago Martínez-Lumbreras
- Institute of Structural Biology, Molecular Targets and Therapeutics Center, Helmholtz Munich, Ingolstädter Landstrasse 1, 85764, Neuherberg, Germany.
- TUM School of Natural Sciences, Department of Bioscience and Bavarian NMR Center, Technical University of Munich, Lichtenbergstrasse 4, 85748, Garching, Germany.
| | - Lena K Träger
- TUM School of Natural Sciences, Department of Bioscience and Bavarian NMR Center, Technical University of Munich, Lichtenbergstrasse 4, 85748, Garching, Germany
| | - Miriam M Mulorz
- Institute of Molecular Biology (IMB) gGmbH, Ackermannweg 4, 55128, Mainz, Germany
| | - Marco Payr
- TUM School of Natural Sciences, Department of Bioscience and Bavarian NMR Center, Technical University of Munich, Lichtenbergstrasse 4, 85748, Garching, Germany
| | - Varvara Dikaya
- TUM School of Natural Sciences, Department of Bioscience and Bavarian NMR Center, Technical University of Munich, Lichtenbergstrasse 4, 85748, Garching, Germany
| | - Clara Hipp
- Institute of Structural Biology, Molecular Targets and Therapeutics Center, Helmholtz Munich, Ingolstädter Landstrasse 1, 85764, Neuherberg, Germany
- TUM School of Natural Sciences, Department of Bioscience and Bavarian NMR Center, Technical University of Munich, Lichtenbergstrasse 4, 85748, Garching, Germany
| | - Julian König
- Institute of Molecular Biology (IMB) gGmbH, Ackermannweg 4, 55128, Mainz, Germany
| | - Michael Sattler
- Institute of Structural Biology, Molecular Targets and Therapeutics Center, Helmholtz Munich, Ingolstädter Landstrasse 1, 85764, Neuherberg, Germany.
- TUM School of Natural Sciences, Department of Bioscience and Bavarian NMR Center, Technical University of Munich, Lichtenbergstrasse 4, 85748, Garching, Germany.
| |
Collapse
|
4
|
Geisler MS, Kemp JP, Duronio RJ. Histone locus bodies: a paradigm for how nuclear biomolecular condensates control cell cycle regulated gene expression. Nucleus 2023; 14:2293604. [PMID: 38095604 PMCID: PMC10730174 DOI: 10.1080/19491034.2023.2293604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 12/07/2023] [Indexed: 12/18/2023] Open
Abstract
Histone locus bodies (HLBs) are biomolecular condensates that assemble at replication-dependent (RD) histone genes in animal cells. These genes produce unique mRNAs that are not polyadenylated and instead end in a conserved 3' stem loop critical for coordinated production of histone proteins during S phase of the cell cycle. Several evolutionarily conserved factors necessary for synthesis of RD histone mRNAs concentrate only in the HLB. Moreover, because HLBs are present throughout the cell cycle even though RD histone genes are only expressed during S phase, changes in HLB composition during cell cycle progression drive much of the cell cycle regulation of RD histone gene expression. Thus, HLBs provide a powerful opportunity to determine the cause-and-effect relationships between nuclear body formation and cell cycle regulated gene expression. In this review, we focus on progress during the last five years that has advanced our understanding of HLB biology.
Collapse
Affiliation(s)
- Mark S. Geisler
- Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, NC, USA
| | - James P. Kemp
- Integrative Program for Biological and Genome Sciences, University of North Carolina, Chapel Hill, NC, USA
| | - Robert J. Duronio
- Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, NC, USA
- Integrative Program for Biological and Genome Sciences, University of North Carolina, Chapel Hill, NC, USA
- Department of Biology, University of North Carolina, Chapel Hill, NC, USA
- Department of Genetics, University of North Carolina, Chapel Hill, NC, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, USA
| |
Collapse
|
5
|
Rogalska ME, Vivori C, Valcárcel J. Regulation of pre-mRNA splicing: roles in physiology and disease, and therapeutic prospects. Nat Rev Genet 2023; 24:251-269. [PMID: 36526860 DOI: 10.1038/s41576-022-00556-8] [Citation(s) in RCA: 83] [Impact Index Per Article: 41.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/10/2022] [Indexed: 12/23/2022]
Abstract
The removal of introns from mRNA precursors and its regulation by alternative splicing are key for eukaryotic gene expression and cellular function, as evidenced by the numerous pathologies induced or modified by splicing alterations. Major recent advances have been made in understanding the structures and functions of the splicing machinery, in the description and classification of physiological and pathological isoforms and in the development of the first therapies for genetic diseases based on modulation of splicing. Here, we review this progress and discuss important remaining challenges, including predicting splice sites from genomic sequences, understanding the variety of molecular mechanisms and logic of splicing regulation, and harnessing this knowledge for probing gene function and disease aetiology and for the design of novel therapeutic approaches.
Collapse
Affiliation(s)
- Malgorzata Ewa Rogalska
- Genome Biology Program, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Claudia Vivori
- Genome Biology Program, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
- Department of Medicine and Life Sciences, Universitat Pompeu Fabra (UPF), Barcelona, Spain
- The Francis Crick Institute, London, UK
| | - Juan Valcárcel
- Genome Biology Program, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain.
- Department of Medicine and Life Sciences, Universitat Pompeu Fabra (UPF), Barcelona, Spain.
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain.
| |
Collapse
|
6
|
Díaz Casas A, Cordoba JJ, Ferrer BJ, Balakrishnan S, Wurm JE, Pastrana‐Ríos B, Chazin WJ. Binding by calmodulin is coupled to transient unfolding of the third FF domain of Prp40A. Protein Sci 2023; 32:e4606. [PMID: 36810829 PMCID: PMC10022492 DOI: 10.1002/pro.4606] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 02/16/2023] [Accepted: 02/18/2023] [Indexed: 02/24/2023]
Abstract
Human pre-mRNA processing protein 40 homolog A (hPrp40A) is a splicing factor that interacts with the Huntington's disease protein huntingtin (Htt). Evidence has accumulated that both Htt and hPrp40A are modulated by the intracellular Ca2+ sensor calmodulin (CaM). Here we report characterization of the interaction of human CM with the third FF domain (FF3 ) of hPrp40A using calorimetric, fluorescence and structural approaches. Homology modeling, differential scanning calorimetry and small angle X-ray scattering (SAXS) data show FF3 forms a folded globular domain. CaM was found to bind FF3 in a Ca2+ -dependent manner with a 1:1 stoichiometry and a dissociation constant (Kd ) of 25 ± 3 μM at 25°C. NMR studies showed that both domains of CaM are engaged in binding and SAXS analysis of the FF3 -CaM complex revealed CaM occupies an extended configuration. Analysis of the FF3 sequence showed that the anchors for CaM binding must be buried in its hydrophobic core, suggesting that binding to CaM requires unfolding of FF3 . Trp anchors were proposed based on sequence analysis and confirmed by intrinsic Trp fluorescence of FF3 upon binding of CaM and substantial reductions in affinity for Trp-Ala FF3 mutants. The consensus model of the complex showed that binding to CaM binding occurs to an extended, non-globular state of the FF3 , consistent with coupling to transient unfolding of the domain. The implications of these results are discussed in the context of the complex interplay of Ca2+ signaling and Ca2+ sensor proteins in modulating Prp40A-Htt function.
Collapse
Affiliation(s)
- A. Díaz Casas
- Department of BiochemistryVanderbilt UniversityNashvilleTennesseeUSA
- Center for Structural BiologyVanderbilt UniversityNashvilleTennesseeUSA
- Present address:
Department of Natural SciencesPontifical Catholic University of Puerto RicoPoncePuerto RicoUSA
| | - J. J. Cordoba
- Department of BiochemistryVanderbilt UniversityNashvilleTennesseeUSA
- Center for Structural BiologyVanderbilt UniversityNashvilleTennesseeUSA
- Chemical and Physical Biology Graduate ProgramVanderbilt UniversityNashvilleTennesseeUSA
| | - B. J. Ferrer
- Department of BiochemistryVanderbilt UniversityNashvilleTennesseeUSA
- Center for Structural BiologyVanderbilt UniversityNashvilleTennesseeUSA
- Chemical and Physical Biology Graduate ProgramVanderbilt UniversityNashvilleTennesseeUSA
| | - S. Balakrishnan
- Department of BiochemistryVanderbilt UniversityNashvilleTennesseeUSA
- Center for Structural BiologyVanderbilt UniversityNashvilleTennesseeUSA
| | - J. E. Wurm
- Chemical and Physical Biology Graduate ProgramVanderbilt UniversityNashvilleTennesseeUSA
| | - B. Pastrana‐Ríos
- Department of ChemistryUniversity of Puerto Rico, Mayagüez CampusMayagüezPuerto RicoUSA
| | - W. J. Chazin
- Department of BiochemistryVanderbilt UniversityNashvilleTennesseeUSA
- Center for Structural BiologyVanderbilt UniversityNashvilleTennesseeUSA
- Chemical and Physical Biology Graduate ProgramVanderbilt UniversityNashvilleTennesseeUSA
- Department of ChemistryVanderbilt UniversityNashvilleTennesseeUSA
| |
Collapse
|
7
|
Choudhary B, Marx O, Norris AD. Spliceosomal component PRP-40 is a central regulator of microexon splicing. Cell Rep 2021; 36:109464. [PMID: 34348142 PMCID: PMC8378409 DOI: 10.1016/j.celrep.2021.109464] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 05/31/2021] [Accepted: 07/08/2021] [Indexed: 02/07/2023] Open
Abstract
Microexons (≤27 nt) play critical roles in nervous system development and function but create unique challenges for the splicing machinery. The mechanisms of microexon regulation are therefore of great interest. We performed a genetic screen for alternative splicing regulators in the C. elegans nervous system and identify PRP-40, a core component of the U1 snRNP. RNA-seq reveals that PRP-40 is required for inclusion of alternatively spliced, but not constitutively spliced, exons. PRP-40 is particularly required for inclusion of neuronal microexons, and our data indicate that PRP-40 is a central regulator of microexon splicing. Microexons can be relieved from PRP-40 dependence by artificially increasing exon size or reducing flanking intron size, indicating that PRP-40 is specifically required for microexons surrounded by conventionally sized introns. Knockdown of the orthologous PRPF40A in mouse neuroblastoma cells causes widespread dysregulation of microexons but not conventionally sized exons. PRP-40 regulation of neuronal microexons is therefore a widely conserved phenomenon.
Collapse
Affiliation(s)
- Bikash Choudhary
- Biological Sciences, Southern Methodist University, Dallas, TX 75275, USA
| | - Olivia Marx
- Biological Sciences, Southern Methodist University, Dallas, TX 75275, USA
| | - Adam D Norris
- Biological Sciences, Southern Methodist University, Dallas, TX 75275, USA.
| |
Collapse
|
8
|
Biology of the mRNA Splicing Machinery and Its Dysregulation in Cancer Providing Therapeutic Opportunities. Int J Mol Sci 2021; 22:ijms22105110. [PMID: 34065983 PMCID: PMC8150589 DOI: 10.3390/ijms22105110] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 05/07/2021] [Accepted: 05/07/2021] [Indexed: 12/13/2022] Open
Abstract
Dysregulation of messenger RNA (mRNA) processing—in particular mRNA splicing—is a hallmark of cancer. Compared to normal cells, cancer cells frequently present aberrant mRNA splicing, which promotes cancer progression and treatment resistance. This hallmark provides opportunities for developing new targeted cancer treatments. Splicing of precursor mRNA into mature mRNA is executed by a dynamic complex of proteins and small RNAs called the spliceosome. Spliceosomes are part of the supraspliceosome, a macromolecular structure where all co-transcriptional mRNA processing activities in the cell nucleus are coordinated. Here we review the biology of the mRNA splicing machinery in the context of other mRNA processing activities in the supraspliceosome and present current knowledge of its dysregulation in lung cancer. In addition, we review investigations to discover therapeutic targets in the spliceosome and give an overview of inhibitors and modulators of the mRNA splicing process identified so far. Together, this provides insight into the value of targeting the spliceosome as a possible new treatment for lung cancer.
Collapse
|
9
|
Yang J, Cao Y, Ma L. Co-Transcriptional RNA Processing in Plants: Exploring from the Perspective of Polyadenylation. Int J Mol Sci 2021; 22:ijms22073300. [PMID: 33804866 PMCID: PMC8037041 DOI: 10.3390/ijms22073300] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 03/09/2021] [Accepted: 03/19/2021] [Indexed: 12/13/2022] Open
Abstract
Most protein-coding genes in eukaryotes possess at least two poly(A) sites, and alternative polyadenylation is considered a contributing factor to transcriptomic and proteomic diversity. Following transcription, a nascent RNA usually undergoes capping, splicing, cleavage, and polyadenylation, resulting in a mature messenger RNA (mRNA); however, increasing evidence suggests that transcription and RNA processing are coupled. Plants, which must produce rapid responses to environmental changes because of their limited mobility, exhibit such coupling. In this review, we summarize recent advances in our understanding of the coupling of transcription with RNA processing in plants, and we describe the possible spatial environment and important proteins involved. Moreover, we describe how liquid–liquid phase separation, mediated by the C-terminal domain of RNA polymerase II and RNA processing factors with intrinsically disordered regions, enables efficient co-transcriptional mRNA processing in plants.
Collapse
|
10
|
Tognacca RS, Kubaczka MG, Servi L, Rodríguez FS, Godoy Herz MA, Petrillo E. Light in the transcription landscape: chromatin, RNA polymerase II and splicing throughout Arabidopsis thaliana's life cycle. Transcription 2020; 11:117-133. [PMID: 32748694 DOI: 10.1080/21541264.2020.1796473] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Plants have a high level of developmental plasticity that allows them to respond and adapt to changes in the environment. Among the environmental cues, light controls almost every aspect of A. thaliana's life cycle, including seed maturation, seed germination, seedling de-etiolation and flowering time. Light signals induce massive reprogramming of gene expression, producing changes in RNA polymerase II transcription, alternative splicing, and chromatin state. Since splicing reactions occur mainly while transcription takes place, the regulation of RNAPII transcription has repercussions in the splicing outcomes. This cotranscriptional nature allows a functional coupling between transcription and splicing, in which properties of the splicing reactions are affected by the transcriptional process. Chromatin landscapes influence both transcription and splicing. In this review, we highlight, summarize and discuss recent progress in the field to gain a comprehensive insight on the cross-regulation between chromatin state, RNAPII transcription and splicing decisions in plants, with a special focus on light-triggered responses. We also introduce several examples of transcription and splicing factors that could be acting as coupling factors in plants. Unravelling how these connected regulatory networks operate, can help in the design of better crops with higher productivity and tolerance.
Collapse
Affiliation(s)
- Rocío S Tognacca
- Departamento De Fisiología, Biología Molecular Y Celular, Facultad De Ciencias Exactas Y Naturales, Universidad De Buenos Aires , Buenos Aires, Argentina.,Instituto De Fisiología, Biología Molecular Y Neurociencias (IFIBYNE), CONICET-Universidad De Buenos Aires , Buenos Aires, Argentina
| | - M Guillermina Kubaczka
- Departamento De Fisiología, Biología Molecular Y Celular, Facultad De Ciencias Exactas Y Naturales, Universidad De Buenos Aires , Buenos Aires, Argentina.,Instituto De Fisiología, Biología Molecular Y Neurociencias (IFIBYNE), CONICET-Universidad De Buenos Aires , Buenos Aires, Argentina
| | - Lucas Servi
- Departamento De Fisiología, Biología Molecular Y Celular, Facultad De Ciencias Exactas Y Naturales, Universidad De Buenos Aires , Buenos Aires, Argentina.,Instituto De Fisiología, Biología Molecular Y Neurociencias (IFIBYNE), CONICET-Universidad De Buenos Aires , Buenos Aires, Argentina
| | - Florencia S Rodríguez
- Departamento De Fisiología, Biología Molecular Y Celular, Facultad De Ciencias Exactas Y Naturales, Universidad De Buenos Aires , Buenos Aires, Argentina.,Instituto De Fisiología, Biología Molecular Y Neurociencias (IFIBYNE), CONICET-Universidad De Buenos Aires , Buenos Aires, Argentina.,Departamento De Biodiversidad Y Biología Experimental, Facultad De Ciencias Exactas Y Naturales, Universidad De Buenos Aires , Buenos Aires, Argentina
| | - Micaela A Godoy Herz
- Departamento De Fisiología, Biología Molecular Y Celular, Facultad De Ciencias Exactas Y Naturales, Universidad De Buenos Aires , Buenos Aires, Argentina.,Instituto De Fisiología, Biología Molecular Y Neurociencias (IFIBYNE), CONICET-Universidad De Buenos Aires , Buenos Aires, Argentina
| | - Ezequiel Petrillo
- Departamento De Fisiología, Biología Molecular Y Celular, Facultad De Ciencias Exactas Y Naturales, Universidad De Buenos Aires , Buenos Aires, Argentina.,Instituto De Fisiología, Biología Molecular Y Neurociencias (IFIBYNE), CONICET-Universidad De Buenos Aires , Buenos Aires, Argentina
| |
Collapse
|
11
|
Qiu R, Zhang J, Xiang X. The splicing-factor Prp40 affects dynein-dynactin function in Aspergillus nidulans. Mol Biol Cell 2020; 31:1289-1301. [PMID: 32267207 PMCID: PMC7353152 DOI: 10.1091/mbc.e20-03-0166] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The multi-component cytoplasmic dynein transports cellular cargoes with the help of another multi-component complex dynactin, but we do not know enough about factors that may affect the assembly and functions of these proteins. From a genetic screen for mutations affecting early-endosome distribution in Aspergillus nidulans, we identified the prp40AL438* mutation in Prp40A, a homologue of Prp40, an essential RNA-splicing factor in the budding yeast. Prp40A is not essential for splicing, although it associates with the nuclear splicing machinery. The prp40AL438* mutant is much healthier than the ∆prp40A mutant, but both mutants exhibit similar defects in dynein-mediated early-endosome transport and nuclear distribution. In the prp40AL438* mutant, the frequency but not the speed of dynein-mediated early-endosome transport is decreased, which correlates with a decrease in the microtubule plus-end accumulations of dynein and dynactin. Within the dynactin complex, the actin-related protein Arp1 forms a mini-filament. In a pull-down assay, the amount of Arp1 pulled down with its pointed-end protein Arp11 is lowered in the prp40AL438* mutant. In addition, we found from published interactome data that a mammalian Prp40 homologue PRPF40A interacts with Arp1. Thus, Prp40 homologues may regulate the assembly or function of dynein–dynactin and their mechanisms deserve to be further studied.
Collapse
Affiliation(s)
- Rongde Qiu
- Department of Biochemistry and Molecular Biology, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD 20814
| | - Jun Zhang
- Department of Biochemistry and Molecular Biology, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD 20814
| | - Xin Xiang
- Department of Biochemistry and Molecular Biology, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD 20814
| |
Collapse
|
12
|
Prieto-Sánchez S, Moreno-Castro C, Hernández-Munain C, Suñé C. Drosophila Prp40 localizes to the histone locus body and regulates gene transcription and development. J Cell Sci 2020; 133:jcs.239509. [PMID: 32094262 DOI: 10.1242/jcs.239509] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 02/09/2020] [Indexed: 12/12/2022] Open
Abstract
In eukaryotes, a large amount of histones need to be synthesized during the S phase of the cell cycle to package newly synthesized DNA into chromatin. The transcription and 3' end processing of histone pre-mRNAs are controlled by the histone locus body (HLB), which is assembled on the shared promoter for H3 and H4 Here, we identified the Drosophila Prp40 pre-mRNA processing factor (dPrp40, annotated as CG3542) as a novel HLB component. We showed that dPrp40 is essential for Drosophila development, with functionally conserved activity in vertebrates and invertebrates. We observed that dPrp40 is fundamental in endocycling cells, highlighting a role for this factor in mediating replication efficiency in vivo The depletion of dPrp40 from fly cells inhibited the transcription, but not the 3' end processing, of histone mRNA in a H3- and H4-promoter-dependent manner. Our results establish that dPrp40 is an essential protein for Drosophila development that can localize to the HLB and might participate in histone mRNA biosynthesis.
Collapse
Affiliation(s)
- Silvia Prieto-Sánchez
- Department of Molecular Biology, Institute of Parasitology and Biomedicine "López-Neyra" (IPBLN-CSIC), PTS, 18016 Granada, Spain
| | - Cristina Moreno-Castro
- Department of Molecular Biology, Institute of Parasitology and Biomedicine "López-Neyra" (IPBLN-CSIC), PTS, 18016 Granada, Spain
| | - Cristina Hernández-Munain
- Department of Cell Biology and Immunology, Institute of Parasitology and Biomedicine "López-Neyra" (IPBLN-CSIC), PTS, 18016 Granada, Spain
| | - Carlos Suñé
- Department of Molecular Biology, Institute of Parasitology and Biomedicine "López-Neyra" (IPBLN-CSIC), PTS, 18016 Granada, Spain
| |
Collapse
|
13
|
Lorenzini PA, Chew RSE, Tan CW, Yong JY, Zhang F, Zheng J, Roca X. Human PRPF40B regulates hundreds of alternative splicing targets and represses a hypoxia expression signature. RNA (NEW YORK, N.Y.) 2019; 25:905-920. [PMID: 31088860 PMCID: PMC6633195 DOI: 10.1261/rna.069534.118] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Accepted: 04/22/2019] [Indexed: 06/09/2023]
Abstract
Altered splicing contributes to the pathogenesis of human blood disorders including myelodysplastic syndromes (MDS) and leukemias. Here we characterize the transcriptomic regulation of PRPF40B, which is a splicing factor mutated in a small fraction of MDS patients. We generated a full PRPF40B knockout (KO) in the K562 cell line by CRISPR/Cas9 technology and rescued its levels by transient overexpression of wild-type (WT), P383L or P540S MDS alleles. Using RNA sequencing, we identified hundreds of differentially expressed genes and alternative splicing (AS) events in the KO that are rescued by WT PRPF40B, with a majority also rescued by MDS alleles, pointing to mild effects of these mutations. Among the PRPF40B-regulated AS events, we found a net increase in exon inclusion in the KO, suggesting that this splicing factor primarily acts as a repressor. PRPF40B-regulated splicing events are likely cotranscriptional, affecting exons with A-rich downstream intronic motifs and weak splice sites especially for 5' splice sites, consistent with its PRP40 yeast ortholog being part of the U1 small nuclear ribonucleoprotein. Loss of PRPF40B in K562 induces a KLF1 transcriptional signature, with genes involved in iron metabolism and mainly hypoxia, including related pathways like cholesterol biosynthesis and Akt/MAPK signaling. A cancer database analysis revealed that PRPF40B is lowly expressed in acute myeloid leukemia, whereas its paralog PRPF40A expression is high as opposed to solid tumors. Furthermore, these factors negatively or positively correlated with hypoxia regulator HIF1A, respectively. Our data suggest a PRPF40B role in repressing hypoxia in myeloid cells, and that its low expression might contribute to leukemogenesis.
Collapse
Affiliation(s)
- Paolo Alberto Lorenzini
- School of Biological Sciences, Nanyang Technological University, 637551 Singapore, Singapore
- Nanyang Institute of Technology in Health and Medicine, Interdisciplinary Graduate School (IGS), Nanyang Technological University, 637551 Singapore, Singapore
| | - Resilind Su Ern Chew
- School of Biological Sciences, Nanyang Technological University, 637551 Singapore, Singapore
| | - Cheryl Weiqi Tan
- School of Biological Sciences, Nanyang Technological University, 637551 Singapore, Singapore
| | - Jing Yen Yong
- School of Biological Sciences, Nanyang Technological University, 637551 Singapore, Singapore
| | - Fan Zhang
- School of Computer Science and Engineering, Nanyang Technological University, 637551 Singapore, Singapore
| | - Jie Zheng
- School of Computer Science and Engineering, Nanyang Technological University, 637551 Singapore, Singapore
- School of Information Science and Technology, ShanghaiTech University, Pudong District, Shanghai 201210, China
| | - Xavier Roca
- School of Biological Sciences, Nanyang Technological University, 637551 Singapore, Singapore
| |
Collapse
|
14
|
Hernando CE, García Hourquet M, de Leone MJ, Careno D, Iserte J, Mora Garcia S, Yanovsky MJ. A Role for Pre-mRNA-PROCESSING PROTEIN 40C in the Control of Growth, Development, and Stress Tolerance in Arabidopsis thaliana. FRONTIERS IN PLANT SCIENCE 2019; 10:1019. [PMID: 31456814 PMCID: PMC6700278 DOI: 10.3389/fpls.2019.01019] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 07/22/2019] [Indexed: 05/08/2023]
Abstract
Because of their sessile nature, plants have adopted varied strategies for growing and reproducing in an ever-changing environment. Control of mRNA levels and pre-mRNA alternative splicing are key regulatory layers that contribute to adjust and synchronize plant growth and development with environmental changes. Transcription and alternative splicing are thought to be tightly linked and coordinated, at least in part, through a network of transcriptional and splicing regulatory factors that interact with the carboxyl-terminal domain (CTD) of the largest subunit of RNA polymerase II. One of the proteins that has been shown to play such a role in yeast and mammals is pre-mRNA-PROCESSING PROTEIN 40 (PRP40, also known as CA150, or TCERG1). In plants, members of the PRP40 family have been identified and shown to interact with the CTD of RNA Pol II, but their biological functions remain unknown. Here, we studied the role of AtPRP40C, in Arabidopsis thaliana growth, development and stress tolerance, as well as its impact on the global regulation of gene expression programs. We found that the prp40c knockout mutants display a late-flowering phenotype under long day conditions, associated with minor alterations in red light signaling. An RNA-seq based transcriptome analysis revealed differentially expressed genes related to biotic stress responses and also differentially expressed as well as differentially spliced genes associated with abiotic stress responses. Indeed, the characterization of stress responses in prp40c mutants revealed an increased sensitivity to salt stress and an enhanced tolerance to Pseudomonas syringae pv. maculicola (Psm) infections. This constitutes the most thorough analysis of the transcriptome of a prp40 mutant in any organism, as well as the first characterization of the molecular and physiological roles of a member of the PRP40 protein family in plants. Our results suggest that PRP40C is an important factor linking the regulation of gene expression programs to the modulation of plant growth, development, and stress responses.
Collapse
|
15
|
Sánchez-Hernández N, Prieto-Sánchez S, Moreno-Castro C, Muñoz-Cobo JP, El Yousfi Y, Boyero-Corral S, Suñé-Pou M, Hernández-Munain C, Suñé C. Targeting proteins to RNA transcription and processing sites within the nucleus. Int J Biochem Cell Biol 2017; 91:194-202. [DOI: 10.1016/j.biocel.2017.06.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Revised: 05/26/2017] [Accepted: 06/01/2017] [Indexed: 12/26/2022]
|
16
|
Abstract
Pre-mRNA processing protein 40 (Prp40) is a nuclear protein that has a role in pre-mRNA splicing. Prp40 possesses two leucine-rich nuclear export signals, but little is known about the function of Prp40 in the export process. Another protein that has a role in protein export is centrin, a member of the EF-hand superfamily of Ca2+-binding proteins. Prp40 was found to be a centrin target by yeast-two-hybrid screening using both Homo sapiens centrin 2 (Hscen2) and Chlamydomonas reinhardtii centrin (Crcen). We identified a centrin-binding site within H. sapiens Prp40 homolog A (HsPrp40A), which contains a hydrophobic triad W1L4L8 that is known to be important in the interaction with centrin. This centrin-binding site is highly conserved within the first nuclear export signal consensus sequence identified in Saccharomyces cerevisiae Prp40. Here, we examine the interaction of HsPrp40A peptide (HsPrp40Ap) with both Hscen2 and Crcen by isothermal titration calorimetry. We employed the thermodynamic parameterization to estimate the polar and apolar surface area of the interface. In addition, we have defined the molecular mechanism of thermally induced unfolding and dissociation of the Crcen-HsPrp40Ap complex using two-dimensional infrared correlation spectroscopy. These complementary techniques showed for the first time, to our knowledge, that HsPrp40Ap interacts with centrin in vitro, supporting a coupled functional role for these proteins in pre-mRNA splicing.
Collapse
|
17
|
Workflow for Genome-Wide Determination of Pre-mRNA Splicing Efficiency from Yeast RNA-seq Data. BIOMED RESEARCH INTERNATIONAL 2016; 2016:4783841. [PMID: 28050562 PMCID: PMC5168555 DOI: 10.1155/2016/4783841] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Accepted: 11/02/2016] [Indexed: 11/17/2022]
Abstract
Pre-mRNA splicing represents an important regulatory layer of eukaryotic gene expression. In the simple budding yeast Saccharomyces cerevisiae, about one-third of all mRNA molecules undergo splicing, and splicing efficiency is tightly regulated, for example, during meiotic differentiation. S. cerevisiae features a streamlined, evolutionarily highly conserved splicing machinery and serves as a favourite model for studies of various aspects of splicing. RNA-seq represents a robust, versatile, and affordable technique for transcriptome interrogation, which can also be used to study splicing efficiency. However, convenient bioinformatics tools for the analysis of splicing efficiency from yeast RNA-seq data are lacking. We present a complete workflow for the calculation of genome-wide splicing efficiency in S. cerevisiae using strand-specific RNA-seq data. Our pipeline takes sequencing reads in the FASTQ format and provides splicing efficiency values for the 5′ and 3′ splice junctions of each intron. The pipeline is based on up-to-date open-source software tools and requires very limited input from the user. We provide all relevant scripts in a ready-to-use form. We demonstrate the functionality of the workflow using RNA-seq datasets from three spliceosome mutants. The workflow should prove useful for studies of yeast splicing mutants or of regulated splicing, for example, under specific growth conditions.
Collapse
|
18
|
Obeng EA, Chappell RJ, Seiler M, Chen MC, Campagna DR, Schmidt PJ, Schneider RK, Lord AM, Wang L, Gambe RG, McConkey ME, Ali AM, Raza A, Yu L, Buonamici S, Smith PG, Mullally A, Wu CJ, Fleming MD, Ebert BL. Physiologic Expression of Sf3b1(K700E) Causes Impaired Erythropoiesis, Aberrant Splicing, and Sensitivity to Therapeutic Spliceosome Modulation. Cancer Cell 2016; 30:404-417. [PMID: 27622333 PMCID: PMC5023069 DOI: 10.1016/j.ccell.2016.08.006] [Citation(s) in RCA: 295] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Revised: 04/29/2016] [Accepted: 08/16/2016] [Indexed: 12/20/2022]
Abstract
More than 80% of patients with the refractory anemia with ring sideroblasts subtype of myelodysplastic syndrome (MDS) have mutations in Splicing Factor 3B, Subunit 1 (SF3B1). We generated a conditional knockin mouse model of the most common SF3B1 mutation, Sf3b1(K700E). Sf3b1(K700E) mice develop macrocytic anemia due to a terminal erythroid maturation defect, erythroid dysplasia, and long-term hematopoietic stem cell (LT-HSC) expansion. Sf3b1(K700E) myeloid progenitors and SF3B1-mutant MDS patient samples demonstrate aberrant 3' splice-site selection associated with increased nonsense-mediated decay. Tet2 loss cooperates with Sf3b1(K700E) to cause a more severe erythroid and LT-HSC phenotype. Furthermore, the spliceosome modulator, E7017, selectively kills SF3B1(K700E)-expressing cells. Thus, SF3B1(K700E) expression reflects the phenotype of the mutation in MDS and may be a therapeutic target in MDS.
Collapse
Affiliation(s)
- Esther A Obeng
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA 02115, USA; Division of Hematology/Oncology, Department of Medicine, Boston Children's Hospital, Boston, MA 02115, USA; Division of Hematology, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Ryan J Chappell
- Division of Hematology, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | | | - Michelle C Chen
- Division of Hematology, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Dean R Campagna
- Department of Pathology, Boston Children's Hospital, Boston, MA 02115, USA
| | - Paul J Schmidt
- Department of Pathology, Boston Children's Hospital, Boston, MA 02115, USA
| | - Rebekka K Schneider
- Division of Hematology, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Allegra M Lord
- Division of Hematology, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Lili Wang
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Rutendo G Gambe
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Marie E McConkey
- Division of Hematology, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Abdullah M Ali
- Division of Hematology/Oncology, Columbia University Medical Center, New York, NY 10027, USA
| | - Azra Raza
- Division of Hematology/Oncology, Columbia University Medical Center, New York, NY 10027, USA
| | - Lihua Yu
- H3 Biomedicine, Inc., Cambridge, MA 03129, USA
| | | | | | - Ann Mullally
- Division of Hematology, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Catherine J Wu
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Mark D Fleming
- Department of Pathology, Boston Children's Hospital, Boston, MA 02115, USA
| | - Benjamin L Ebert
- Division of Hematology, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.
| |
Collapse
|