1
|
Lobato-Fernandez C, Gimeno M, San Martín A, Anorbe A, Rubio A, Ferrer-Bonsoms JA. A Systematic Identification of RNA-Binding Proteins (RBPs) Driving Aberrant Splicing in Cancer. Biomedicines 2024; 12:2592. [PMID: 39595158 PMCID: PMC11591948 DOI: 10.3390/biomedicines12112592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 11/07/2024] [Accepted: 11/08/2024] [Indexed: 11/28/2024] Open
Abstract
BACKGROUND Alternative Splicing (AS) is a post-transcriptional process that allows a single RNA to produce different mRNA variants and, in some cases, multiple proteins. Various processes, many yet to be discovered, regulate AS. This study focuses on regulation by RNA-binding proteins (RBPs), which are not only crucial for splicing regulation but also linked to cancer prognosis and are emerging as therapeutic targets for cancer treatment. CLIP-seq experiments help identify where RBPs bind on nascent transcripts, potentially revealing changes in splicing status that suggest causal relationships. Selecting specific RBPs for CLIP-seq experiments is often driven by a priori hypotheses. RESULTS We developed an algorithm to detect RBPs likely related to splicing changes between conditions by integrating several CLIP-seq databases and a differential splicing detection algorithm. This work refines a previous study by improving splicing event prediction, testing different enrichment statistics, and performing additional validation experiments. The new method provides more accurate predictions and is included in the Bioconductor package EventPointer 3.14. We tested the algorithm in four experiments involving knockdowns of seven different RBPs. The algorithm accurately assessed the statistical significance of these RBPs using only splicing alterations. Additionally, we applied the algorithm to study sixteen cancer types from The Cancer Genome Atlas (TCGA) and three from TARGET. We identified relationships between RBPs and various cancer types, including alterations in CREBBP and MBNL2 in adenocarcinomas of the lung, liver, prostate, rectum, stomach, and colon. Some of these findings are validated in the literature, while others are novel. CONCLUSIONS The developed algorithm enhances the ability to predict and understand RBP-related splicing changes, offering more accurate predictions and novel insights into cancer-related splicing alterations. This work highlights the potential of RBPs as therapeutic targets and contributes to the broader understanding of their roles in cancer biology.
Collapse
Affiliation(s)
| | | | | | | | - Angel Rubio
- Departamento de Ingeniería Biomédica y Ciencias, TECNUN, Universidad de Navarra, 20009 San Sebastián, Spain; (C.L.-F.)
| | - Juan A. Ferrer-Bonsoms
- Departamento de Ingeniería Biomédica y Ciencias, TECNUN, Universidad de Navarra, 20009 San Sebastián, Spain; (C.L.-F.)
| |
Collapse
|
2
|
Rzepnikowska W, Kaminska J, Kochański A. The molecular mechanisms that underlie IGHMBP2-related diseases. Neuropathol Appl Neurobiol 2024; 50:e13005. [PMID: 39119929 DOI: 10.1111/nan.13005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 07/18/2024] [Accepted: 07/20/2024] [Indexed: 08/10/2024]
Abstract
Immunoglobulin Mu-binding protein 2 (IGHMBP2) pathogenic variants result in the fatal, neurodegenerative disease spinal muscular atrophy with respiratory distress type 1 (SMARD1) and the milder, Charcot-Marie-Tooth (CMT) type 2S (CMT2S) neuropathy. More than 20 years after the link between IGHMBP2 and SMARD1 was revealed, and 10 years after the discovery of the association between IGHMBP2 and CMT2S, the pathogenic mechanism of these diseases is still not well defined. The discovery that IGHMBP2 functions as an RNA/DNA helicase was an important step, but it did not reveal the pathogenic mechanism. Helicases are enzymes that use ATP hydrolysis to catalyse the separation of nucleic acid strands. They are involved in numerous cellular processes, including DNA repair and transcription; RNA splicing, transport, editing and degradation; ribosome biogenesis; translation; telomere maintenance; and homologous recombination. IGHMBP2 appears to be a multifunctional factor involved in several cellular processes that regulate gene expression. It is difficult to determine which processes, when dysregulated, lead to pathology. Here, we summarise our current knowledge of the clinical presentation of IGHMBP2-related diseases. We also overview the available models, including yeast, mice and cells, which are used to study the function of IGHMBP2 and the pathogenesis of the related diseases. Further, we discuss the structure of the IGHMBP2 protein and its postulated roles in cellular functioning. Finally, we present potential anomalies that may result in the neurodegeneration observed in IGHMBP2-related disease and highlight the most prominent ones.
Collapse
Affiliation(s)
- Weronika Rzepnikowska
- Neuromuscular Unit, Mossakowski Medical Research Institute Polish Academy of Sciences, Warsaw, 02-106, Poland
| | - Joanna Kaminska
- Institute of Biochemistry and Biophysics Polish Academy of Sciences, Warsaw, 02-106, Poland
| | - Andrzej Kochański
- Neuromuscular Unit, Mossakowski Medical Research Institute Polish Academy of Sciences, Warsaw, 02-106, Poland
| |
Collapse
|
3
|
Smart A, Gilmer O, Caliskan N. Translation Inhibition Mediated by Interferon-Stimulated Genes during Viral Infections. Viruses 2024; 16:1097. [PMID: 39066259 PMCID: PMC11281336 DOI: 10.3390/v16071097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 07/04/2024] [Accepted: 07/04/2024] [Indexed: 07/28/2024] Open
Abstract
Viruses often pose a significant threat to the host through the exploitation of cellular machineries for their own benefit. In the context of immune responses, myriad host factors are deployed to target viral RNAs and inhibit viral protein translation, ultimately hampering viral replication. Understanding how "non-self" RNAs interact with the host translation machinery and trigger immune responses would help in the development of treatment strategies for viral infections. In this review, we explore how interferon-stimulated gene products interact with viral RNA and the translation machinery in order to induce either global or targeted translation inhibition.
Collapse
Affiliation(s)
- Alexandria Smart
- Helmholtz Institute for RNA-Based Infection Research, Helmholtz Centre for Infection Research (HIRI-HZI), Josef-Schneider-Strasse 2, 97080 Würzburg, Germany; (A.S.); (O.G.)
| | - Orian Gilmer
- Helmholtz Institute for RNA-Based Infection Research, Helmholtz Centre for Infection Research (HIRI-HZI), Josef-Schneider-Strasse 2, 97080 Würzburg, Germany; (A.S.); (O.G.)
| | - Neva Caliskan
- Helmholtz Institute for RNA-Based Infection Research, Helmholtz Centre for Infection Research (HIRI-HZI), Josef-Schneider-Strasse 2, 97080 Würzburg, Germany; (A.S.); (O.G.)
- Regensburg Center for Biochemistry (RCB), University of Regensburg, 93053 Regensburg, Germany
| |
Collapse
|
4
|
Skerrett-Byrne DA, Stanger SJ, Trigg NA, Anderson AL, Sipilä P, Bernstein IR, Lord T, Schjenken JE, Murray HC, Verrills NM, Dun MD, Pang TY, Nixon B. Phosphoproteomic analysis of the adaption of epididymal epithelial cells to corticosterone challenge. Andrology 2024; 12:1038-1057. [PMID: 38576152 DOI: 10.1111/andr.13636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 02/29/2024] [Accepted: 03/08/2024] [Indexed: 04/06/2024]
Abstract
BACKGROUND The epididymis has long been of interest owing to its role in promoting the functional maturation of the male germline. More recent evidence has also implicated the epididymis as an important sensory tissue responsible for remodeling of the sperm epigenome, both under physiological conditions and in response to diverse forms of environmental stress. Despite this knowledge, the intricacies of the molecular pathways involved in regulating the adaptation of epididymal tissue to paternal stressors remains to be fully resolved. OBJECTIVE The overall objective of this study was to investigate the direct impact of corticosterone challenge on a tractable epididymal epithelial cell line (i.e., mECap18 cells), in terms of driving adaptation of the cellular proteome and phosphoproteome signaling networks. MATERIALS AND METHODS The newly developed phosphoproteomic platform EasyPhos coupled with sequencing via an Orbitrap Exploris 480 mass spectrometer, was applied to survey global changes in the mECap18 cell (phospho)proteome resulting from sub-chronic (10-day) corticosterone challenge. RESULTS The imposed corticosterone exposure regimen elicited relatively subtle modifications of the global mECap18 proteome (i.e., only 73 out of 4171 [∼1.8%] proteins displayed altered abundance). By contrast, ∼15% of the mECap18 phosphoproteome was substantially altered following corticosterone challenge. In silico analysis of the corresponding parent proteins revealed an activation of pathways linked to DNA damage repair and oxidative stress responses as well as a reciprocal inhibition of pathways associated with organismal death. Corticosterone challenge also induced the phosphorylation of several proteins linked to the biogenesis of microRNAs. Accordingly, orthogonal validation strategies confirmed an increase in DNA damage, which was ameliorated upon selective kinase inhibition, and an altered abundance profile of a subset of microRNAs in corticosterone-treated cells. CONCLUSIONS Together, these data confirm that epididymal epithelial cells are reactive to corticosterone challenge, and that their response is tightly coupled to the opposing action of cellular kinases and phosphatases.
Collapse
Affiliation(s)
- David A Skerrett-Byrne
- Priority Research Centre for Reproductive Science, School of Environmental and Life Sciences, College of Engineering, Science and Environment, The University of Newcastle, Callaghan, NSW, Australia
- Infertility and Reproduction Research Program, Hunter Medical Research Institute, New Lambton Heights, New Lambton, NSW, Australia
| | - Simone J Stanger
- Priority Research Centre for Reproductive Science, School of Environmental and Life Sciences, College of Engineering, Science and Environment, The University of Newcastle, Callaghan, NSW, Australia
- Infertility and Reproduction Research Program, Hunter Medical Research Institute, New Lambton Heights, New Lambton, NSW, Australia
| | - Natalie A Trigg
- Priority Research Centre for Reproductive Science, School of Environmental and Life Sciences, College of Engineering, Science and Environment, The University of Newcastle, Callaghan, NSW, Australia
- Infertility and Reproduction Research Program, Hunter Medical Research Institute, New Lambton Heights, New Lambton, NSW, Australia
| | - Amanda L Anderson
- Priority Research Centre for Reproductive Science, School of Environmental and Life Sciences, College of Engineering, Science and Environment, The University of Newcastle, Callaghan, NSW, Australia
- Infertility and Reproduction Research Program, Hunter Medical Research Institute, New Lambton Heights, New Lambton, NSW, Australia
| | - Petra Sipilä
- Institute of Biomedicine, Research Centre for Integrative Physiology and Pharmacology, and Turku Center for Disease Modeling, University of Turku, Turku, Finland
| | - Ilana R Bernstein
- Priority Research Centre for Reproductive Science, School of Environmental and Life Sciences, College of Engineering, Science and Environment, The University of Newcastle, Callaghan, NSW, Australia
- Infertility and Reproduction Research Program, Hunter Medical Research Institute, New Lambton Heights, New Lambton, NSW, Australia
| | - Tessa Lord
- Priority Research Centre for Reproductive Science, School of Environmental and Life Sciences, College of Engineering, Science and Environment, The University of Newcastle, Callaghan, NSW, Australia
- Infertility and Reproduction Research Program, Hunter Medical Research Institute, New Lambton Heights, New Lambton, NSW, Australia
| | - John E Schjenken
- Priority Research Centre for Reproductive Science, School of Environmental and Life Sciences, College of Engineering, Science and Environment, The University of Newcastle, Callaghan, NSW, Australia
- Infertility and Reproduction Research Program, Hunter Medical Research Institute, New Lambton Heights, New Lambton, NSW, Australia
| | - Heather C Murray
- School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, NSW, Australia
- Precision Medicine Research Program, Hunter Medical Research Institute, New Lambton Heights, New Lambton, NSW, Australia
| | - Nicole M Verrills
- School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, NSW, Australia
- Precision Medicine Research Program, Hunter Medical Research Institute, New Lambton Heights, New Lambton, NSW, Australia
| | - Matthew D Dun
- School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, NSW, Australia
- Precision Medicine Research Program, Hunter Medical Research Institute, New Lambton Heights, New Lambton, NSW, Australia
| | - Terence Y Pang
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, VIC, Australia
- Department of Anatomy and Neuroscience, University of Melbourne, Melbourne, VIC, Australia
| | - Brett Nixon
- Priority Research Centre for Reproductive Science, School of Environmental and Life Sciences, College of Engineering, Science and Environment, The University of Newcastle, Callaghan, NSW, Australia
- Infertility and Reproduction Research Program, Hunter Medical Research Institute, New Lambton Heights, New Lambton, NSW, Australia
| |
Collapse
|
5
|
Li M. Innate immune response against vector-borne bunyavirus infection and viral countermeasures. Front Cell Infect Microbiol 2024; 14:1365221. [PMID: 38711929 PMCID: PMC11070517 DOI: 10.3389/fcimb.2024.1365221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 03/29/2024] [Indexed: 05/08/2024] Open
Abstract
Bunyaviruses are a large group of important viral pathogens that cause significant diseases in humans and animals worldwide. Bunyaviruses are enveloped, single-stranded, negative-sense RNA viruses that infect a wide range of hosts. Upon entry into host cells, the components of viruses are recognized by host innate immune system, leading to the activation of downstream signaling cascades to induce interferons (IFNs) and other proinflammatory cytokines. IFNs bind to their receptors and upregulate the expression of hundreds of interferon-stimulated genes (ISGs). Many ISGs have antiviral activities and confer an antiviral state to host cells. For efficient replication and spread, viruses have evolved different strategies to antagonize IFN-mediated restriction. Here, we discuss recent advances in our understanding of the interactions between bunyaviruses and host innate immune response.
Collapse
Affiliation(s)
- Minghua Li
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, United States
- Center for Biodefense and Emerging Infectious Diseases, University of Texas Medical Branch, Galveston, TX, United States
- Center for Tropical Diseases, University of Texas Medical Branch, Galveston, TX, United States
- Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX, United States
| |
Collapse
|
6
|
Mueller F, Witteveldt J, Macias S. Antiviral Defence Mechanisms during Early Mammalian Development. Viruses 2024; 16:173. [PMID: 38399949 PMCID: PMC10891733 DOI: 10.3390/v16020173] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/11/2024] [Accepted: 01/20/2024] [Indexed: 02/25/2024] Open
Abstract
The type-I interferon (IFN) response constitutes the major innate immune pathway against viruses in mammals. Despite its critical importance for antiviral defence, this pathway is inactive during early embryonic development. There seems to be an incompatibility between the IFN response and pluripotency, the ability of embryonic cells to develop into any cell type of an adult organism. Instead, pluripotent cells employ alternative ways to defend against viruses that are typically associated with safeguard mechanisms against transposable elements. The absence of an inducible IFN response in pluripotent cells and the constitutive activation of the alternative antiviral pathways have led to the hypothesis that embryonic cells are highly resistant to viruses. However, some findings challenge this interpretation. We have performed a meta-analysis that suggests that the susceptibility of pluripotent cells to viruses is directly correlated with the presence of receptors or co-receptors for viral adhesion and entry. These results challenge the current view of pluripotent cells as intrinsically resistant to infections and raise the fundamental question of why these cells have sacrificed the major antiviral defence pathway if this renders them susceptible to viruses.
Collapse
Affiliation(s)
- Felix Mueller
- Institute of Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, King’s Buildings, Charlotte Auerbach Road, Edinburgh EH9 3FL, UK; (F.M.); (J.W.)
- Centre for Virus Research, MRC-University of Glasgow, Garscube Campus, 464 Bearsden Road, Glasgow G61 1QH, UK
| | - Jeroen Witteveldt
- Institute of Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, King’s Buildings, Charlotte Auerbach Road, Edinburgh EH9 3FL, UK; (F.M.); (J.W.)
| | - Sara Macias
- Institute of Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, King’s Buildings, Charlotte Auerbach Road, Edinburgh EH9 3FL, UK; (F.M.); (J.W.)
| |
Collapse
|
7
|
Wardman R, Keles M, Pachkiv I, Hemanna S, Grein S, Schwarz J, Stein F, Ola R, Dobreva G, Hentze MW, Heineke J. RNA-Binding Proteins Regulate Post-Transcriptional Responses to TGF-β to Coordinate Function and Mesenchymal Activation of Murine Endothelial Cells. Arterioscler Thromb Vasc Biol 2023; 43:1967-1989. [PMID: 37650327 PMCID: PMC10521797 DOI: 10.1161/atvbaha.123.319925] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 08/18/2023] [Indexed: 09/01/2023]
Abstract
BACKGROUND Endothelial cells (ECs) are primed to respond to various signaling cues. For example, TGF (transforming growth factor)-β has major effects on EC function and phenotype by driving ECs towards a more mesenchymal state (ie, triggering endothelial to mesenchymal activation), a dynamic process associated with cardiovascular diseases. Although transcriptional regulation triggered by TGF-β in ECs is well characterized, post-transcriptional regulatory mechanisms induced by TGF-β remain largely unknown. METHODS Using RNA interactome capture, we identified global TGF-β driven changes in RNA-binding proteins in ECs. We investigated specific changes in the RNA-binding patterns of hnRNP H1 (heterogeneous nuclear ribonucleoprotein H1) and Csde1 (cold shock domain containing E1) using RNA immunoprecipitation and overlapped this with RNA-sequencing data after knockdown of either protein for functional insight. Using a modified proximity ligation assay, we visualized the specific interactions between hnRNP H1 and Csde1 and target RNAs in situ both in vitro and in mouse heart sections. RESULTS Characterization of TGF-β-regulated RBPs (RNA-binding proteins) revealed hnRNP H1 and Csde1 as key regulators of the cellular response to TGF-β at the post-transcriptional level, with loss of either protein-promoting mesenchymal activation in ECs. We found that TGF-β drives an increase in binding of hnRNP H1 to its target RNAs, offsetting mesenchymal activation, but a decrease in Csde1 RNA-binding, facilitating this process. Both, hnRNP H1 and Csde1, dynamically bind and regulate specific subsets of mRNAs related to mesenchymal activation and endothelial function. CONCLUSIONS Together, we show that RBPs play a key role in the endothelial response to TGF-β stimulation at the post-transcriptional level and that the RBPs hnRNP H1 and Csde1 serve to maintain EC function and counteract mesenchymal activation. We propose that TGF-β profoundly modifies RNA-protein interaction entailing feedback and feed-forward control at the post-transcriptional level, to fine-tune mesenchymal activation in ECs.
Collapse
Affiliation(s)
- Rhys Wardman
- Department of Cardiovascular Physiology (R.W., M.K., I.P., S.H., S.G., J.H.), European Center for Angioscience (ECAS), Medical Faculty Mannheim of Heidelberg University, Germany
- German Center for Cardiovascular Research (DZHK), partner site Heidelberg/Mannheim (R.W., M.K., S.H., S.G., G.D., J.H.)
| | - Merve Keles
- Department of Cardiovascular Physiology (R.W., M.K., I.P., S.H., S.G., J.H.), European Center for Angioscience (ECAS), Medical Faculty Mannheim of Heidelberg University, Germany
- German Center for Cardiovascular Research (DZHK), partner site Heidelberg/Mannheim (R.W., M.K., S.H., S.G., G.D., J.H.)
| | - Ihor Pachkiv
- Department of Cardiovascular Physiology (R.W., M.K., I.P., S.H., S.G., J.H.), European Center for Angioscience (ECAS), Medical Faculty Mannheim of Heidelberg University, Germany
| | - Shruthi Hemanna
- Department of Cardiovascular Physiology (R.W., M.K., I.P., S.H., S.G., J.H.), European Center for Angioscience (ECAS), Medical Faculty Mannheim of Heidelberg University, Germany
- German Center for Cardiovascular Research (DZHK), partner site Heidelberg/Mannheim (R.W., M.K., S.H., S.G., G.D., J.H.)
| | - Steve Grein
- Department of Cardiovascular Physiology (R.W., M.K., I.P., S.H., S.G., J.H.), European Center for Angioscience (ECAS), Medical Faculty Mannheim of Heidelberg University, Germany
- German Center for Cardiovascular Research (DZHK), partner site Heidelberg/Mannheim (R.W., M.K., S.H., S.G., G.D., J.H.)
| | - Jennifer Schwarz
- Proteomics Core Facility, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany (J.S., F.S.)
| | - Frank Stein
- Proteomics Core Facility, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany (J.S., F.S.)
| | - Roxana Ola
- Cardiovascular Pharmacology (R.O.), European Center for Angioscience (ECAS), Medical Faculty Mannheim of Heidelberg University, Germany
| | - Gergana Dobreva
- Cardiovascular Genomics and Epigenomics (G.D.), European Center for Angioscience (ECAS), Medical Faculty Mannheim of Heidelberg University, Germany
- German Center for Cardiovascular Research (DZHK), partner site Heidelberg/Mannheim (R.W., M.K., S.H., S.G., G.D., J.H.)
| | - Matthias W. Hentze
- European Molecular Biology Laboratory (EMBL), Heidelberg, Germany (M.W.H.)
| | - Joerg Heineke
- Department of Cardiovascular Physiology (R.W., M.K., I.P., S.H., S.G., J.H.), European Center for Angioscience (ECAS), Medical Faculty Mannheim of Heidelberg University, Germany
- German Center for Cardiovascular Research (DZHK), partner site Heidelberg/Mannheim (R.W., M.K., S.H., S.G., G.D., J.H.)
| |
Collapse
|
8
|
Bohnsack KE, Yi S, Venus S, Jankowsky E, Bohnsack MT. Cellular functions of eukaryotic RNA helicases and their links to human diseases. Nat Rev Mol Cell Biol 2023; 24:749-769. [PMID: 37474727 DOI: 10.1038/s41580-023-00628-5] [Citation(s) in RCA: 60] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/13/2023] [Indexed: 07/22/2023]
Abstract
RNA helicases are highly conserved proteins that use nucleoside triphosphates to bind or remodel RNA, RNA-protein complexes or both. RNA helicases are classified into the DEAD-box, DEAH/RHA, Ski2-like, Upf1-like and RIG-I families, and are the largest class of enzymes active in eukaryotic RNA metabolism - virtually all aspects of gene expression and its regulation involve RNA helicases. Mutation and dysregulation of these enzymes have been linked to a multitude of diseases, including cancer and neurological disorders. In this Review, we discuss the regulation and functional mechanisms of RNA helicases and their roles in eukaryotic RNA metabolism, including in transcription regulation, pre-mRNA splicing, ribosome assembly, translation and RNA decay. We highlight intriguing models that link helicase structure, mechanisms of function (such as local strand unwinding, translocation, winching, RNA clamping and displacing RNA-binding proteins) and biological roles, including emerging connections between RNA helicases and cellular condensates formed through liquid-liquid phase separation. We also discuss associations of RNA helicases with human diseases and recent efforts towards the design of small-molecule inhibitors of these pivotal regulators of eukaryotic gene expression.
Collapse
Affiliation(s)
- Katherine E Bohnsack
- Department of Molecular Biology, University Medical Center Göttingen, Göttingen, Germany.
| | - Soon Yi
- Center for RNA Science and Therapeutics, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
- Department of Biochemistry, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Sarah Venus
- Center for RNA Science and Therapeutics, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
- Department of Biochemistry, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Eckhard Jankowsky
- Center for RNA Science and Therapeutics, School of Medicine, Case Western Reserve University, Cleveland, OH, USA.
- Department of Biochemistry, School of Medicine, Case Western Reserve University, Cleveland, OH, USA.
- Case Comprehensive Cancer Center, School of Medicine, Case Western Reserve University, Cleveland, OH, USA.
- Moderna, Cambridge, MA, USA.
| | - Markus T Bohnsack
- Department of Molecular Biology, University Medical Center Göttingen, Göttingen, Germany.
- Göttingen Centre for Molecular Biosciences, University of Göttingen, Göttingen, Germany.
- Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany.
| |
Collapse
|
9
|
Luo J, Yao Z, Ye C, Liu Y. Genome-wide analysis of RNA-binding protein co-expression with alternative splicing events in acute respiratory distress syndrome following hematopoietic stem cell transplantation. Medicine (Baltimore) 2023; 102:e34599. [PMID: 37565892 PMCID: PMC10419425 DOI: 10.1097/md.0000000000034599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Accepted: 07/13/2023] [Indexed: 08/12/2023] Open
Abstract
Patients undergoing allogeneic hematopoietic stem cell transplantation (HSCT) are at an increased risk of developing severe acute respiratory distress syndrome (ARDS), which is characterized by peripheral bilateral patchy lung involvement. The regulatory network of RNA-binding protein (RBP)-alternative splicing (AS) in ARDS following HSCT has not been investigated. We hypothesize that RBP-AS plays a regulatory role during HSCT-ARDS. The published ARDS transcriptome data after HSCT (GSE84439) were downloaded, and the transcriptome data of 13 mRNAs were obtained by sequencing the peripheral blood of 5 HSCT-ARDS patients and 8 ARDS patients through high-throughput sequencing technology. Systematic analysis of downloaded data was performed to obtain differentially expressed RBPs, and the differentially alternative spliced pre-mRNAs in HSCT-ARDS and control groups were used to explore the global gene RBP-AS regulatory network. A total of 1769 differentially expressed genes and 4714 regulated alternative splicing events were identified in peripheral blood from HSCT-ARDS, of which 254 genes had both differential expression and differential AS. In addition, 128 RBPs were identified, of which HDGF, PCBP2, RIOK3, CISD2, and TRIM21, DDX58, MOV10 showed significantly increased or decreased expression in the HSCT-ARDS. RBPs with decreased expression had antiviral activity, while those with increased expression were involved in ROS, fibrosis, and negative viral resistance. The RBP-RASE-RASG regulatory network is constructed. It is related to the dysregulation of antiviral immunomodulation, imbalance in ROS homeostasis and pro-pulmonary fibrosis, which are involved in the development of HSCT-ARDS.
Collapse
Affiliation(s)
- Jinghua Luo
- Department of Pediatrics, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, P. R. China
| | - Zhenhua Yao
- Department of Pediatrics, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, P. R. China
- The Second Clinical College of Nanchang University, Nanchang, Jiangxi, P. R. China
| | - Chunfeng Ye
- Department of Pediatrics, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, P. R. China
| | - Yanling Liu
- Department of Pediatrics, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, P. R. China
| |
Collapse
|
10
|
Goodier JL, Wan H, Soares AO, Sanchez L, Selser JM, Pereira GC, Karma S, García-Pérez JL, Kazazian HH, García Cañadas MM. ZCCHC3 is a stress granule zinc knuckle protein that strongly suppresses LINE-1 retrotransposition. PLoS Genet 2023; 19:e1010795. [PMID: 37405998 DOI: 10.1371/journal.pgen.1010795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 05/23/2023] [Indexed: 07/07/2023] Open
Abstract
Retrotransposons have generated about half of the human genome and LINE-1s (L1s) are the only autonomously active retrotransposons. The cell has evolved an arsenal of defense mechanisms to protect against retrotransposition with factors we are only beginning to understand. In this study, we investigate Zinc Finger CCHC-Type Containing 3 (ZCCHC3), a gag-like zinc knuckle protein recently reported to function in the innate immune response to infecting viruses. We show that ZCCHC3 also severely restricts human retrotransposons and associates with the L1 ORF1p ribonucleoprotein particle. We identify ZCCHC3 as a bona fide stress granule protein, and its association with LINE-1 is further supported by colocalization with L1 ORF1 protein in stress granules, dense cytoplasmic aggregations of proteins and RNAs that contain stalled translation pre-initiation complexes and form when the cell is under stress. Our work also draws links between ZCCHC3 and the anti-viral and retrotransposon restriction factors Mov10 RISC Complex RNA Helicase (MOV10) and Zinc Finger CCCH-Type, Antiviral 1 (ZC3HAV1, also called ZAP). Furthermore, collective evidence from subcellular localization, co-immunoprecipitation, and velocity gradient centrifugation connects ZCCHC3 with the RNA exosome, a multi-subunit ribonuclease complex capable of degrading various species of RNA molecules and that has previously been linked with retrotransposon control.
Collapse
Affiliation(s)
- John L Goodier
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Han Wan
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Alisha O Soares
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Laura Sanchez
- GENYO, Centre for Genomics and Oncological Research: Pfizer, University of Granada, Andalusian Regional Government, Granada, Spain
| | - John Michael Selser
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Gavin C Pereira
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Sadik Karma
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Jose Luis García-Pérez
- GENYO, Centre for Genomics and Oncological Research: Pfizer, University of Granada, Andalusian Regional Government, Granada, Spain
| | - Haig H Kazazian
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Marta M García Cañadas
- GENYO, Centre for Genomics and Oncological Research: Pfizer, University of Granada, Andalusian Regional Government, Granada, Spain
| |
Collapse
|
11
|
Melo-Silva CR, Knudson CJ, Tang L, Kafle S, Springer LE, Choi J, Snyder CM, Wang Y, Kim SV, Sigal LJ. Multiple and Consecutive Genome Editing Using i-GONAD and Breeding Enrichment Facilitates the Production of Genetically Modified Mice. Cells 2023; 12:1343. [PMID: 37174743 PMCID: PMC10177031 DOI: 10.3390/cells12091343] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/03/2023] [Accepted: 05/04/2023] [Indexed: 05/15/2023] Open
Abstract
Genetically modified (GM) mice are essential tools in biomedical research. Traditional methods for generating GM mice are expensive and require specialized personnel and equipment. The use of clustered regularly interspaced short palindromic repeats (CRISPR) coupled with improved-Genome editing via Oviductal Nucleic Acids Delivery (i-GONAD) has highly increased the feasibility of producing GM mice in research laboratories. However, genetic modification in inbred mouse strains of interest such as C57BL/6 (B6) is still challenging because of their low fertility and embryo fragility. We have successfully generated multiple novel GM mouse strains in the B6 background while attempting to optimize i-GONAD. We found that i-GONAD reduced the litter size in superovulated pregnant females but did not impact pregnancy rates. Natural mating or low-hormone dose did not increase the low fertility rate observed in superovulated B6 females. However, diet enrichment had a positive effect on pregnancy success. We also optimized breeding conditions to increase the survival of small litters by co-housing i-GONAD-treated pregnant B6 females with synchronized pregnant FVB/NJ companion mothers. Thus, GM mice generation was increased by an enriched diet and shared pup rearing with highly fertile females such as FVB/NJ. In the present study, we generated 16 GM mice using a CRISPR/Cas system to target individual and multiple loci simultaneously or consecutively. We also compared homology-directed repair efficiency using different methods for LoxP insertion for conditional knockout mouse production. We found that a two-step serial LoxP insertion, in which each LoxP sequence was inserted individually in different i-GONAD procedures, was a low-risk high-efficiency method for generating floxed mice.
Collapse
Affiliation(s)
- Carolina R. Melo-Silva
- Department of Microbiology and Immunology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Cory J. Knudson
- Department of Microbiology and Immunology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Lingjuan Tang
- Department of Microbiology and Immunology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Samita Kafle
- Department of Microbiology and Immunology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Lauren E. Springer
- Department of Microbiology and Immunology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Jihae Choi
- Department of Microbiology and Immunology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Christopher M. Snyder
- Department of Microbiology and Immunology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Yajing Wang
- Department of Emergency Medicine, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Sangwon V. Kim
- Department of Microbiology and Immunology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Luis J. Sigal
- Department of Microbiology and Immunology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| |
Collapse
|
12
|
Serine 970 of RNA helicase MOV10 is phosphorylated and controls unfolding activity and fate of mRNAs targeted for AGO2-mediated silencing. J Biol Chem 2023; 299:104577. [PMID: 36871759 PMCID: PMC10070924 DOI: 10.1016/j.jbc.2023.104577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 02/24/2023] [Accepted: 02/25/2023] [Indexed: 03/07/2023] Open
Abstract
MOV10 is an RNA helicase that is required for organismal development and is highly expressed in postnatal brain. MOV10 was identified as an AGO2 associated protein that is also necessary for AGO2-mediated silencing. AGO2 is the primary effector of the miRNA pathway. MOV10 has been shown to be ubiquitinated, leading to its degradation and release from bound mRNAs but no other post-translational modifications with functional implications have been described. Using mass spectrometry, we show that MOV10 is phosphorylated in cells at the C-terminus, specifically at serine 970 (S970). Substitution of S970 to phospho-mimic aspartic acid (S970D) blocked unfolding of an RNA G-quadruplex, similar to when the helicase domain was mutated (K531A). In contrast, the alanine substitution (S970A) of MOV10 unfolded the model RNA G-quadruplex. To examine its role in cells, our RNA-seq analysis showed that the expression of S970D causes decreased expression of MOV10 enhanced Cross-Linking Immunoprecipitation (eCLIP) targets compared to WT. Introduction of S970A had an intermediate effect, suggesting that S970 was protective of mRNAs. In whole cell extracts, MOV10 and its substitutions bound AGO2 comparably; however, knockdown of AGO2 abrogated the S970D-induced mRNA degradation. Thus, MOV10 activity protects mRNA from AGO2; phosphorylation of S970 restricts this activity resulting in AGO2-mediated mRNA degradation. S970 is positioned C-terminal to the defined MOV10-AGO2 interaction site and is proximal to a disordered region that likely modulates AGO2 interaction with target mRNAs upon phosphorylation. In summary, we provide evidence for a model whereby MOV10 phosphorylation facilitates AGO2 association with the 3'UTR of translating mRNAs that leads to their degradation.
Collapse
|
13
|
Warkocki Z. An update on post-transcriptional regulation of retrotransposons. FEBS Lett 2023; 597:380-406. [PMID: 36460901 DOI: 10.1002/1873-3468.14551] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 11/09/2022] [Accepted: 11/18/2022] [Indexed: 12/04/2022]
Abstract
Retrotransposons, including LINE-1, Alu, SVA, and endogenous retroviruses, are one of the major constituents of human genomic repetitive sequences. Through the process of retrotransposition, some of them occasionally insert into new genomic locations by a copy-paste mechanism involving RNA intermediates. Irrespective of de novo genomic insertions, retrotransposon expression can lead to DNA double-strand breaks and stimulate cellular innate immunity through endogenous patterns. As a result, retrotransposons are tightly regulated by multi-layered regulatory processes to prevent the dangerous effects of their expression. In recent years, significant progress was made in revealing how retrotransposon biology intertwines with general post-transcriptional RNA metabolism. Here, I summarize current knowledge on the involvement of post-transcriptional factors in the biology of retrotransposons, focusing on LINE-1. I emphasize general RNA metabolisms such as methylation of adenine (m6 A), RNA 3'-end polyadenylation and uridylation, RNA decay and translation regulation. I discuss the effects of retrotransposon RNP sequestration in cytoplasmic bodies and autophagy. Finally, I summarize how innate immunity restricts retrotransposons and how retrotransposons make use of cellular enzymes, including the DNA repair machinery, to complete their replication cycles.
Collapse
Affiliation(s)
- Zbigniew Warkocki
- Department of RNA Metabolism, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
| |
Collapse
|
14
|
Vadla GP, Ricardez Hernandez SM, Mao J, Garro-Kacher MO, Lorson ZC, Rice RP, Hansen SA, Lorson CL, Singh K, Lorson MA. ABT1 modifies SMARD1 pathology via interactions with IGHMBP2 and stimulation of ATPase and helicase activity. JCI Insight 2023; 8:e164608. [PMID: 36480289 PMCID: PMC9977310 DOI: 10.1172/jci.insight.164608] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 12/07/2022] [Indexed: 12/13/2022] Open
Abstract
SMA with respiratory distress type 1 (SMARD1) and Charcot-Marie-Tooth type 2S (CMT2S) are results of mutations in immunoglobulin mu DNA binding protein 2 (IGHMBP2). IGHMBP2 is a UPF1-like helicase with proposed roles in several cellular processes, including translation. This study examines activator of basal transcription 1 (ABT1), a modifier of SMARD1-nmd disease pathology. Microscale thermophoresis and dynamic light scattering demonstrate that IGHMBP2 and ABT1 proteins directly interact with high affinity. The association of ABT1 with IGHMBP2 significantly increases the ATPase and helicase activity as well as the processivity of IGHMBP2. The IGHMBP2/ABT1 complex interacts with the 47S pre-rRNA 5' external transcribed spacer and U3 small nucleolar RNA (snoRNA), suggesting that the IGHMBP2/ABT1 complex is important for pre-rRNA processing. Intracerebroventricular injection of scAAV9-Abt1 decreases FVB-Ighmbp2nmd/nmd disease pathology, significantly increases lifespan, and substantially decreases neuromuscular junction denervation. To our knowledge, ABT1 is the first disease-modifying gene identified for SMARD1. We provide a mechanism proposing that ABT1 decreases disease pathology in FVB-Ighmbp2nmd/nmd mutants by optimizing IGHMBP2 biochemical activity (ATPase and helicase activity). Our studies provide insight into SMARD1 pathogenesis, suggesting that ABT1 modifies IGHMBP2 activity as a means to regulate pre-rRNA processing.
Collapse
Affiliation(s)
- Gangadhar P. Vadla
- Department of Veterinary Pathobiology, College of Veterinary Medicine, and
- Bond Life Sciences Center, University of Missouri, Columbia, Missouri, USA
| | - Sara M. Ricardez Hernandez
- Department of Veterinary Pathobiology, College of Veterinary Medicine, and
- Bond Life Sciences Center, University of Missouri, Columbia, Missouri, USA
| | - Jiude Mao
- Department of Veterinary Pathobiology, College of Veterinary Medicine, and
- Bond Life Sciences Center, University of Missouri, Columbia, Missouri, USA
| | - Mona O. Garro-Kacher
- Department of Veterinary Pathobiology, College of Veterinary Medicine, and
- Bond Life Sciences Center, University of Missouri, Columbia, Missouri, USA
| | - Zachary C. Lorson
- Department of Veterinary Pathobiology, College of Veterinary Medicine, and
- Bond Life Sciences Center, University of Missouri, Columbia, Missouri, USA
| | - Ronin P. Rice
- Department of Veterinary Pathobiology, College of Veterinary Medicine, and
- Bond Life Sciences Center, University of Missouri, Columbia, Missouri, USA
| | - Sarah A. Hansen
- Bond Life Sciences Center, University of Missouri, Columbia, Missouri, USA
| | - Christian L. Lorson
- Department of Veterinary Pathobiology, College of Veterinary Medicine, and
- Bond Life Sciences Center, University of Missouri, Columbia, Missouri, USA
| | - Kamal Singh
- Department of Veterinary Pathobiology, College of Veterinary Medicine, and
- Bond Life Sciences Center, University of Missouri, Columbia, Missouri, USA
| | - Monique A. Lorson
- Department of Veterinary Pathobiology, College of Veterinary Medicine, and
- Bond Life Sciences Center, University of Missouri, Columbia, Missouri, USA
| |
Collapse
|
15
|
Arora R, Bodak M, Penouty L, Hackman C, Ciaudo C. Sequestration of
LINE
‐1 in cytosolic aggregates by
MOV10
restricts retrotransposition. EMBO Rep 2022; 23:e54458. [PMID: 35856394 PMCID: PMC9442310 DOI: 10.15252/embr.202154458] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 06/22/2022] [Accepted: 06/30/2022] [Indexed: 11/09/2022] Open
Affiliation(s)
- Rajika Arora
- Swiss Federal Institute of Technology Zurich IMHS, Chair of RNAi and Genome Integrity Zurich Switzerland
| | - Maxime Bodak
- Swiss Federal Institute of Technology Zurich IMHS, Chair of RNAi and Genome Integrity Zurich Switzerland
| | - Laura Penouty
- Swiss Federal Institute of Technology Zurich IMHS, Chair of RNAi and Genome Integrity Zurich Switzerland
| | - Cindy Hackman
- Swiss Federal Institute of Technology Zurich IMHS, Chair of RNAi and Genome Integrity Zurich Switzerland
| | - Constance Ciaudo
- Swiss Federal Institute of Technology Zurich IMHS, Chair of RNAi and Genome Integrity Zurich Switzerland
| |
Collapse
|
16
|
Yang S, Zhang X, Li X, Yin X, Teng L, Ji G, Li H. Evolutionary and Expression Analysis of MOV10 and MOV10L1 Reveals Their Origin, Duplication and Divergence. Int J Mol Sci 2022; 23:ijms23147523. [PMID: 35886872 PMCID: PMC9319325 DOI: 10.3390/ijms23147523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 06/30/2022] [Accepted: 07/05/2022] [Indexed: 12/04/2022] Open
Abstract
MOV10 and MOV10L1 both encode ATP-dependent RNA helicases. In mammals, MOV10 and MOV10L1 participate in various kinds of biological contexts, such as defense of RNA virus invasion, neuron system, germ cell and early development. However, mov10 and mov10l1 in zebrafish are obscure and the evolutionary relationships of mov10 among different species remain unclear. In this study, we found MOV10 and MOV10L1 had some variations despite they possessed the conserved feature of RNA helicase, however, they may originate from a single ancestor although they shared limited homology. A single MOV10L1 gene existed among all species, while MOV10 gene experienced lineage-specific intra-chromosomal gene duplication in several species. Interestingly, the mov10 gene expanded to three in zebrafish, which originating from a duplication by whole genome specific duplication of teleost lineage followed by a specific intra-chromosome tandem duplication. The mov10 and mov10l1 showed distinct expression profiles in early stages, however, in adult zebrafish, three mov10 genes exhibited similar diverse expression patterns in almost all tissues. We also demonstrated mov10 genes were upregulated upon virus challenge, highlighting they had redundant conserved roles in virus infection. These results provide valuable data for the evolution of MOV10 and MOV10L1 and they are important to the further functional exploration.
Collapse
Affiliation(s)
- Shuaiqi Yang
- College of Marine Life Sciences, and Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China; (S.Y.); (X.Z.); (X.L.); (X.Y.)
| | - Xiangmin Zhang
- College of Marine Life Sciences, and Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China; (S.Y.); (X.Z.); (X.L.); (X.Y.)
| | - Xianpeng Li
- College of Marine Life Sciences, and Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China; (S.Y.); (X.Z.); (X.L.); (X.Y.)
| | - Xiu Yin
- College of Marine Life Sciences, and Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China; (S.Y.); (X.Z.); (X.L.); (X.Y.)
| | - Lei Teng
- School of Basic Medicine, Qingdao University, Qingdao 266071, China;
| | - Guangdong Ji
- College of Marine Life Sciences, and Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China; (S.Y.); (X.Z.); (X.L.); (X.Y.)
- Correspondence: (G.J.); (H.L.); Tel.: +86-0532-82032092 (H.L.)
| | - Hongyan Li
- College of Marine Life Sciences, and Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China; (S.Y.); (X.Z.); (X.L.); (X.Y.)
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266003, China
- Correspondence: (G.J.); (H.L.); Tel.: +86-0532-82032092 (H.L.)
| |
Collapse
|