1
|
Ye R, Zhao H, Wang X, Xue Y. Technological advancements in deciphering RNA-RNA interactions. Mol Cell 2024; 84:3722-3736. [PMID: 39047724 DOI: 10.1016/j.molcel.2024.06.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 06/11/2024] [Accepted: 06/28/2024] [Indexed: 07/27/2024]
Abstract
RNA-RNA interactions (RRIs) can dictate RNA molecules to form intricate higher-order structures and bind their RNA substrates in diverse biological processes. To elucidate the function, binding specificity, and regulatory mechanisms of various RNA molecules, especially the vast repertoire of non-coding RNAs, advanced technologies and methods that globally map RRIs are extremely valuable. In the past decades, many state-of-the-art technologies have been developed for this purpose. This review focuses on those high-throughput technologies for the global mapping of RRIs. We summarize the key concepts and the pros and cons of different technologies. In addition, we highlight the novel biological insights uncovered by these RRI mapping methods and discuss the future challenges for appreciating the crucial roles of RRIs in gene regulation across bacteria, viruses, archaea, and mammals.
Collapse
Affiliation(s)
- Rong Ye
- Key Laboratory of Epigenetic Regulation and Intervention, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Hailian Zhao
- Key Laboratory of Epigenetic Regulation and Intervention, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xi Wang
- State Key Laboratory of Female Fertility Promotion, Clinical Stem Cell Research Center, Peking University Third Hospital, Beijing 100191, China
| | - Yuanchao Xue
- Key Laboratory of Epigenetic Regulation and Intervention, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
2
|
Munsayac A, Leite WC, Hopkins JB, Hall I, O’Neill HM, Keane SC. Selective deuteration of an RNA:RNA complex for structural analysis using small-angle scattering. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.09.612093. [PMID: 39314299 PMCID: PMC11419110 DOI: 10.1101/2024.09.09.612093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
The structures of RNA:RNA complexes regulate many biological processes. Despite their importance, protein-free RNA:RNA complexes represent a tiny fraction of experimentally-determined structures. Here, we describe a joint small-angle X-ray and neutron scattering (SAXS/SANS) approach to structurally interrogate conformational changes in a model RNA:RNA complex. Using SAXS, we measured the solution structures of the individual RNAs in their free state and of the overall RNA:RNA complex. With SANS, we demonstrate, as a proof-of-principle, that isotope labeling and contrast matching (CM) can be combined to probe the bound state structure of an RNA within a selectively deuterated RNA:RNA complex. Furthermore, we show that experimental scattering data can validate and improve predicted AlphaFold 3 RNA:RNA complex structures to reflect its solution structure. Our work demonstrates that in silico modeling, SAXS, and CM-SANS can be used in concert to directly analyze conformational changes within RNAs when in complex, enhancing our understanding of RNA structure in functional assemblies.
Collapse
Affiliation(s)
- Aldrex Munsayac
- Department of Chemistry, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Wellington C. Leite
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37830, USA
| | - Jesse B. Hopkins
- The Biophysics Collaborative Access Team (BioCAT), Department of Physics, Illinois Institute of Technology, Chicago, IL 60616, USA
| | - Ian Hall
- Department of Chemistry, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Hugh M. O’Neill
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37830, USA
| | - Sarah C. Keane
- Department of Chemistry, University of Michigan, Ann Arbor, MI, 48109, USA
- Biophysics Program, University of Michigan, Ann Arbor, MI, 48109, USA
| |
Collapse
|
3
|
Stasevich EM, Simonova AV, Bogomolova EA, Murashko MM, Uvarova AN, Zheremyan EA, Korneev KV, Schwartz AM, Kuprash DV, Demin DE. Cut from the same cloth: RNAs transcribed from regulatory elements. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2024; 1867:195049. [PMID: 38964653 DOI: 10.1016/j.bbagrm.2024.195049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 06/25/2024] [Accepted: 06/28/2024] [Indexed: 07/06/2024]
Abstract
A certain degree of chromatin openness is necessary for the activity of transcription-regulating regions within the genome, facilitating accessibility to RNA polymerases and subsequent synthesis of regulatory element RNAs (regRNAs) from these regions. The rapidly increasing number of studies underscores the significance of regRNAs across diverse cellular processes and diseases, challenging the paradigm that these transcripts are non-functional transcriptional noise. This review explores the multifaceted roles of regRNAs in human cells, encompassing rather well-studied entities such as promoter RNAs and enhancer RNAs (eRNAs), while also providing insights into overshadowed silencer RNAs and insulator RNAs. Furthermore, we assess notable examples of shorter regRNAs, like miRNAs, snRNAs, and snoRNAs, playing important roles. Expanding our discourse, we deliberate on the potential usage of regRNAs as biomarkers and novel targets for cancer and other human diseases.
Collapse
Affiliation(s)
- E M Stasevich
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - A V Simonova
- Laboratory of Intracellular Signaling in Health and Disease, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - E A Bogomolova
- Laboratory of Intracellular Signaling in Health and Disease, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia; Moscow Center for Advanced Studies, Moscow, Russia
| | - M M Murashko
- Laboratory of Intracellular Signaling in Health and Disease, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia; Moscow Center for Advanced Studies, Moscow, Russia
| | - A N Uvarova
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - E A Zheremyan
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - K V Korneev
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - A M Schwartz
- Department of Human Biology, University of Haifa, Haifa, Israel
| | - D V Kuprash
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - D E Demin
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia.
| |
Collapse
|
4
|
Zhao H, Cai Z, Rao J, Wu D, Ji L, Ye R, Wang D, Chen J, Cao C, Hu N, Shu T, Zhu P, Wang J, Zhou X, Xue Y. SARS-CoV-2 RNA stabilizes host mRNAs to elicit immunopathogenesis. Mol Cell 2024; 84:490-505.e9. [PMID: 38128540 DOI: 10.1016/j.molcel.2023.11.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 10/09/2023] [Accepted: 11/22/2023] [Indexed: 12/23/2023]
Abstract
SARS-CoV-2 RNA interacts with host factors to suppress interferon responses and simultaneously induces cytokine release to drive the development of severe coronavirus disease 2019 (COVID-19). However, how SARS-CoV-2 hijacks host RNAs to elicit such imbalanced immune responses remains elusive. Here, we analyzed SARS-CoV-2 RNA in situ structures and interactions in infected cells and patient lung samples using RIC-seq. We discovered that SARS-CoV-2 RNA forms 2,095 potential duplexes with the 3' UTRs of 205 host mRNAs to increase their stability by recruiting RNA-binding protein YBX3 in A549 cells. Disrupting the SARS-CoV-2-to-host RNA duplex or knocking down YBX3 decreased host mRNA stability and reduced viral replication. Among SARS-CoV-2-stabilized host targets, NFKBIZ was crucial for promoting cytokine production and reducing interferon responses, probably contributing to cytokine storm induction. Our study uncovers the crucial roles of RNA-RNA interactions in the immunopathogenesis of RNA viruses such as SARS-CoV-2 and provides valuable host targets for drug development.
Collapse
Affiliation(s)
- Hailian Zhao
- Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhaokui Cai
- Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Jian Rao
- National Health Commission of the People's Republic of China Key Laboratory of Systems Biology of Pathogens and Christophe Mérieux Laboratory, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China
| | - Di Wu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
| | - Lei Ji
- Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Rong Ye
- Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Di Wang
- Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Juan Chen
- Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Changchang Cao
- Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Naijing Hu
- Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ting Shu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
| | - Ping Zhu
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Southern Medical University, Guangzhou 510100, China
| | - Jianwei Wang
- National Health Commission of the People's Republic of China Key Laboratory of Systems Biology of Pathogens and Christophe Mérieux Laboratory, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China.
| | - Xi Zhou
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China.
| | - Yuanchao Xue
- Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
5
|
Backofen R, Gorodkin J, Hofacker IL, Stadler PF. Comparative RNA Genomics. Methods Mol Biol 2024; 2802:347-393. [PMID: 38819565 DOI: 10.1007/978-1-0716-3838-5_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2024]
Abstract
Over the last quarter of a century it has become clear that RNA is much more than just a boring intermediate in protein expression. Ancient RNAs still appear in the core information metabolism and comprise a surprisingly large component in bacterial gene regulation. A common theme with these types of mostly small RNAs is their reliance of conserved secondary structures. Large-scale sequencing projects, on the other hand, have profoundly changed our understanding of eukaryotic genomes. Pervasively transcribed, they give rise to a plethora of large and evolutionarily extremely flexible non-coding RNAs that exert a vastly diverse array of molecule functions. In this chapter we provide a-necessarily incomplete-overview of the current state of comparative analysis of non-coding RNAs, emphasizing computational approaches as a means to gain a global picture of the modern RNA world.
Collapse
Affiliation(s)
- Rolf Backofen
- Bioinformatics Group, Department of Computer Science, University of Freiburg, Freiburg, Germany
- Center for Non-coding RNA in Technology and Health, University of Copenhagen, Frederiksberg, Denmark
| | - Jan Gorodkin
- Center for Non-coding RNA in Technology and Health, Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Ivo L Hofacker
- Institute for Theoretical Chemistry, University of Vienna, Wien, Austria
- Bioinformatics and Computational Biology research group, University of Vienna, Vienna, Austria
- Center for Non-coding RNA in Technology and Health, University of Copenhagen, Frederiksberg, Denmark
| | - Peter F Stadler
- Bioinformatics Group, Department of Computer Science, University of Leipzig, Leipzig, Germany.
- Interdisciplinary Center for Bioinformatics, University of Leipzig, Leipzig, Germany.
- Max Planck Institute for Mathematics in the Sciences, Leipzig, Germany.
- Universidad National de Colombia, Bogotá, Colombia.
- Institute for Theoretical Chemistry, University of Vienna, Wien, Austria.
- Center for Non-coding RNA in Technology and Health, University of Copenhagen, Frederiksberg, Denmark.
- Santa Fe Institute, Santa Fe, NM, USA.
| |
Collapse
|
6
|
Herbert C, Ohrnberger CL, Quinlisk E, Addepalli B, Limbach PA. Characterizing Benzo[a]pyrene Adducts in Transfer RNAs Using Liquid Chromatography Coupled with Tandem Mass Spectrometry (LC-MS/MS). Biomedicines 2023; 11:3270. [PMID: 38137491 PMCID: PMC10741534 DOI: 10.3390/biomedicines11123270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/01/2023] [Accepted: 12/04/2023] [Indexed: 12/24/2023] Open
Abstract
The activated forms of the environmental pollutant benzo[a]pyrene (B[a]P), such as benzo[a]pyrene diol epoxide (BPDE), are known to cause damage to genomic DNA and proteins. However, the impact of BPDE on ribonucleic acid (RNA) remains unclear. To understand the full spectrum of potential BPDE-RNA adducts formed, we reacted ribonucleoside standards with BPDE and characterized the reaction products using liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS). To understand the potential types of adducts that could form with biological RNAs, eukaryotic transfer RNAs (tRNAs) were also reacted with BPDE. The isolation and analysis of the modified and adducted ribonucleosides using LC-MS/MS revealed several BPDE derivatives of post-transcriptional modifications. The approach outlined in this work enables the identification of RNA adducts from BPDE, which can pave the way for understanding the potential impacts of such adducts on the higher-order structure and function of modified RNAs.
Collapse
Affiliation(s)
| | | | | | | | - Patrick A. Limbach
- Rieveschl Laboratories for Mass Spectrometry, Department of Chemistry, University of Cincinnati, 301 Clifton Court, Cincinnati, OH 45221-0172, USA; (C.H.)
| |
Collapse
|
7
|
Chien PY, Gao L, Liu Y. Quantitative Analysis of Transcription Termination via Position-Selective Labeling of RNA (PLOR) Method. Int J Mol Sci 2023; 24:ijms24054934. [PMID: 36902367 PMCID: PMC10003555 DOI: 10.3390/ijms24054934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 02/27/2023] [Accepted: 03/01/2023] [Indexed: 03/08/2023] Open
Abstract
T7 RNA polymerase is the most widely used enzyme in RNA synthesis, and it is also used for RNA labeling in position-selective labeling of RNA (PLOR). PLOR is a liquid-solid hybrid phase method that has been developed to introduce labels to specific positions of RNA. Here, we applied PLOR as a single-round transcription method to quantify the terminated and read-through products in transcription for the first time. Various factors, including pausing strategies, Mg2+, ligand and the NTP concentration at the transcriptional termination of adenine riboswitch RNA have been characterized. This helps to understand transcription termination, which is one of the least understood processes in transcription. Additionally, our strategy can potentially be used to study the co-transcription behavior of general RNA, especially when continuous transcription is not desired.
Collapse
|
8
|
Velema WA, Lu Z. Chemical RNA Cross-Linking: Mechanisms, Computational Analysis, and Biological Applications. JACS AU 2023; 3:316-332. [PMID: 36873678 PMCID: PMC9975857 DOI: 10.1021/jacsau.2c00625] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/23/2022] [Accepted: 12/23/2022] [Indexed: 06/18/2023]
Abstract
In recent years, RNA has emerged as a multifaceted biomolecule that is involved in virtually every function of the cell and is critical for human health. This has led to a substantial increase in research efforts to uncover the many chemical and biological aspects of RNA and target RNA for therapeutic purposes. In particular, analysis of RNA structures and interactions in cells has been critical for understanding their diverse functions and druggability. In the last 5 years, several chemical methods have been developed to achieve this goal, using chemical cross-linking combined with high-throughput sequencing and computational analysis. Applications of these methods resulted in important new insights into RNA functions in a variety of biological contexts. Given the rapid development of new chemical technologies, a thorough perspective on the past and future of this field is provided. In particular, the various RNA cross-linkers and their mechanisms, the computational analysis and challenges, and illustrative examples from recent literature are discussed.
Collapse
Affiliation(s)
- Willem A. Velema
- Institute
for Molecules and Materials, Radboud University, Nijmegen 6500 HC, The Netherlands
| | - Zhipeng Lu
- Department
of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, California 90033, United States
| |
Collapse
|
9
|
Zhang Y, Wang Y, Ji H, Ding J, Wang K. The interplay between noncoding RNA and YAP/TAZ signaling in cancers: molecular functions and mechanisms. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2022; 41:202. [PMID: 35701841 PMCID: PMC9199231 DOI: 10.1186/s13046-022-02403-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 05/25/2022] [Indexed: 12/13/2022]
Abstract
The Hippo signaling pathway was found coordinately modulates cell regeneration and organ size. Its dysregulation contributes to uncontrolled cell proliferation and malignant transformation. YAP/TAZ are two critical effectors of the Hippo pathway and have been demonstrated essential for the initiation or growth of most tumors. Noncoding RNAs (ncRNAs), including miRNAs, lncRNAs, and circRNAs, have been shown to play critical roles in the development of many cancers. In the past few decades, a growing number of studies have revealed that ncRNAs can directly or indirectly regulate YAP/TAZ signaling. YAP/TAZ also regulate ncRNAs expression in return. This review summarizes the interactions between YAP/TAZ signaling and noncoding RNAs together with their biological functions on cancer progression. We also try to describe the complex feedback loop existing between these components.
Collapse
Affiliation(s)
- Yirao Zhang
- Department of Oncology, Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210011, Jiangsu, China
| | - Yang Wang
- Department of Oncology, Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210011, Jiangsu, China
| | - Hao Ji
- Department of Liver Surgery and Liver Transplantation Center, School of Medicine, Renji Hospital, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Jie Ding
- Department of Oncology, Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210011, Jiangsu, China.
| | - Keming Wang
- Department of Oncology, Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210011, Jiangsu, China.
| |
Collapse
|