1
|
Chen A, Tan B, Du R, Chong YS, Zhang C, Koh AS, Li LJ. Gestational diabetes mellitus and development of intergenerational overall and subtypes of cardiovascular diseases: a systematic review and meta-analysis. Cardiovasc Diabetol 2024; 23:320. [PMID: 39198842 PMCID: PMC11360578 DOI: 10.1186/s12933-024-02416-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 08/19/2024] [Indexed: 09/01/2024] Open
Abstract
OBJECTIVE We aimed to summarize the association between gestational diabetes mellitus (GDM) and its intergenerational cardiovascular diseases (CVDs) impacts in both mothers and offspring post-delivery in existing literature. METHODS PubMed, Embase, Web of Science, and Scopus were utilized for searching publications between January 1980 and June 2024, with data extraction and meta-analysis continuing until 31 July 2024. Based on a predefined PROSPERO protocol, studies published as full-length, English-language journal articles that reported the presence of GDM during pregnancy and its association with any CVD development post-delivery were selected. All studies were evaluated using the Newcastle-Ottawa Scale. Maximally adjusted risk estimates were pooled using random-effects meta-analysis to assess the risk ratio (RR) of GDM, and overall and subtypes of CVDs in both mothers and offspring post-delivery. RESULTS The meta-analysis was based on 38 studies with a total of 77,678,684 participants. The results showed a 46% increased risk (RR 1.46, 95% CI 1.34-1.59) for mothers and a 23% increased risk (1.23, 1.05-1.45) for offspring of developing overall CVDs after delivery, following a GDM-complicated pregnancy. Our subgroup analysis revealed that mothers with a history of GDM faced various risks (20% to 2-fold) of developing different subtypes of CVDs, including cerebrovascular disease, coronary artery disease, heart failure, and venous thromboembolism. CONCLUSIONS These findings underscore the heightened risk of developing various CVDs for mothers and offspring affected by GDM, emphasizing the importance of preventive measures even right after birth to mitigate the burden of CVDs in these populations.
Collapse
Affiliation(s)
- Ashley Chen
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Breanna Tan
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Ruochen Du
- Statistics Unit, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Yap Seng Chong
- Department of O&G, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Cuilin Zhang
- Department of O&G, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Global Centre for Asian Women's Health, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- School of Medicine, NUS Bia-Echo Asia Centre for Reproductive Longevity and Equality (ACRLE), Yong Loo Lin, National University of Singapore, Singapore, Singapore
| | - Angela S Koh
- Department of Cardiology, National Heart Centre Singapore, Singapore, Singapore
- Duke-NUS Medical School, Singapore, Singapore
| | - Ling-Jun Li
- Department of O&G, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
- Global Centre for Asian Women's Health, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
- School of Medicine, NUS Bia-Echo Asia Centre for Reproductive Longevity and Equality (ACRLE), Yong Loo Lin, National University of Singapore, Singapore, Singapore.
- Yong Loo Lin School of Medicine, Global Centre for Asian Women's Health, National University of Singapore, Singapore. 12 Science Drive 2, Level 16, Singapore, 117549, Singapore.
| |
Collapse
|
2
|
Huang C, Liu Z, Chen M, Zhang H, Mo R, Chen R, Liu Y, Wang S, Xue Q. Up-regulation of BRD4 contributes to gestational diabetes mellitus-induced cardiac hypertrophy in offspring by promoting mitochondria dysfunction in sex-independent manner. Biochem Pharmacol 2024; 226:116387. [PMID: 38944397 DOI: 10.1016/j.bcp.2024.116387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 04/27/2024] [Accepted: 06/21/2024] [Indexed: 07/01/2024]
Abstract
Gestational diabetes mellitus (GDM) is associated with cardiovascular disease in postnatal life. The current study tested the hypothesis that GDM caused the cardiac hypertrophy in fetal (ED18.5), postnatal day 7 (PD7), postnatal day 21 (PD21) and postnatal day 90 (PD90) offspring by upregulation of BRD4 and mitochondrial dysfunction. Pregnant mice were divided into control and GDM groups. Hearts were isolated from ED18.5, PD7, PD21 and PD90. GDM increased the body weight (BW) and heart weight (HW) in ED18.5 and PD7, but not PD21 and PD90 offspring. However, HW/BW ratio was increased in all ages of GDM offspring compared to control group. Electron microscopy showed disorganized myofibrils, mitochondrial swelling, vacuolization, and cristae disorder in GDM offspring. GDM resulted in myocardial hypertrophy in offspring, which persisted from fetus to adult in a sex-independent manner. Echocardiography analysis revealed that GDM caused diastolic dysfunction, but had no effect on systolic function. Meanwhile, myocardial BRD4 was significantly upregulated in GDM offspring and BRD4 inhibition by JQ1 alleviated GDM-induced myocardial hypertrophy in offspring. Co-immunoprecipitation showed that BRD4 interacted with DRP1 and there was an increase of BRD4 and DRP1 interaction in GDM offspring. Furthermore, GDM caused the accumulation of damaged mitochondria in hearts from all ages of offspring, including mitochondrial fusion fission imbalance (upregulation of DRP1, and downregulation of MFN1, MFN2 and OPA1) and myocardial mitochondrial ROS accumulation, which was reversed by JQ1. These results suggested that the upregulation of BRD4 is involved in GDM-induced myocardial hypertrophy in the offspring through promoting mitochondrial damage in a gender-independent manner.
Collapse
Affiliation(s)
- Cailing Huang
- Department of Pharmacology, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China
| | - Zimo Liu
- Department of Pharmacology, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China
| | - Mei Chen
- Department of Pharmacology, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China
| | - Haichuan Zhang
- Department of Pharmacology, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China
| | - Ruyao Mo
- Department of Pharmacology, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China
| | - Renshan Chen
- Guangzhou Hospital of Integrated Traditional and Western Medicine, Guangzhou, Guangdong, China
| | - Yinghua Liu
- Department of Pharmacology, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China
| | - Shixiang Wang
- Department of Cardiology, the third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China.
| | - Qin Xue
- Department of Pharmacology, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China.
| |
Collapse
|
3
|
Hou Q, Yan F, Li X, Liu H, Yang X, Dong X. ATP5me alleviates high glucose-induced myocardial cell injury. Int Immunopharmacol 2024; 129:111626. [PMID: 38320353 DOI: 10.1016/j.intimp.2024.111626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 01/24/2024] [Accepted: 01/29/2024] [Indexed: 02/08/2024]
Abstract
BACKGROUND Gestational diabetes mellitus (GDM) is associated with adverse myocardial remodeling and impaired cardiac function of fetus. Nevertheless, specific molecular mechanisms underlying type 1 GDM-induced fetal myocardial injury remain unknown. Therefore, this study proposes to identify possible molecular mechanisms using RNA-seq. METHODS A rat type 1 GDM model was developed using streptozotocin (STZ) (25 and 50 mg/kg), and weight and glucose tolerance of maternal and offspring were evaluated. Changes in markers of myocardial injury and oxidative stress identified by ELISA and biochemical kits in offspring hearts. Identification of differentially expressed mRNAs (DE-mRNAs) associated with myocardial injury in type 1 GDM offspring using RNA-seq. Proliferation, apoptosis, and oxidative stress were assessed in high glucose-induced H9C2 cells after exogenously modulating ATP Synthase Membrane Subunit E (ATP5me). RESULTS Maternal weight, glucose and glucose tolerance, and fetal weight and heart weight were reduced in the type 1 GDM model, especially in 50 mg/kg STZ-induced. Increased of creatine kinase-MB (CK-MB), cardiac troponin T (cTnT), hypersensitive C-reactive protein (hs-CRP), reactive oxygen species (ROS) and malondialdehyde (MDA) and decreased of superoxide dismutase (SOD) were observed in type 1 GDM offspring hearts. type 1 GDM offspring hearts exhibited disorganized cardiomyocytes with enlarged gaps, broken myocardial fibers, erythrocyte accumulation and inflammatory infiltration. RNA-seq identified 462 DE-mRNAs in type 1 GDM offspring hearts, which mainly regulate immunity, redox reactions, and cellular communication. Atp5me was under-expressed in type 1 GDM offspring hearts, and high glucose decreased Atp5me expression in H9C2 cells. Overexpressing Atp5me alleviated high glucose-induced decrease in proliferation, mitochondrial membrane potential, BCL2 and SOD, and increase in apoptosis, MDA, ROS, c-Caspase-3, and BAX in H9C2 cells. CONCLUSION This study first demonstrated that ATP5me attenuated type 1 GDM-induced fetal myocardial injury. This provides a possible molecular mechanism for the treatment of type 1 GDM-induced fetal myocardial injury.
Collapse
Affiliation(s)
- Qingsha Hou
- Obstetrical Department, the First People's Hospital of Yunnan Province, the Affiliated Hospital of Kunming University of Science and Technology, No.157 Jinbi Road, Kunming, Yunnan, 650032, China
| | - Fang Yan
- Obstetrical Department, the First People's Hospital of Yunnan Province, the Affiliated Hospital of Kunming University of Science and Technology, No.157 Jinbi Road, Kunming, Yunnan, 650032, China
| | - Xiuling Li
- Obstetrical Department, the First People's Hospital of Yunnan Province, the Affiliated Hospital of Kunming University of Science and Technology, No.157 Jinbi Road, Kunming, Yunnan, 650032, China
| | - Huanling Liu
- Obstetrical Department, the First People's Hospital of Yunnan Province, the Affiliated Hospital of Kunming University of Science and Technology, No.157 Jinbi Road, Kunming, Yunnan, 650032, China
| | - Xiang Yang
- Obstetrical Department, the First People's Hospital of Yunnan Province, the Affiliated Hospital of Kunming University of Science and Technology, No.157 Jinbi Road, Kunming, Yunnan, 650032, China
| | - Xudong Dong
- Obstetrical Department, the First People's Hospital of Yunnan Province, the Affiliated Hospital of Kunming University of Science and Technology, No.157 Jinbi Road, Kunming, Yunnan, 650032, China.
| |
Collapse
|
4
|
Wang F, Han S, Fang L, Lin X. A fetal rat model of ventricular noncompaction caused by intrauterine hyperglycemia. Cardiovasc Pathol 2024; 69:107601. [PMID: 38072092 DOI: 10.1016/j.carpath.2023.107601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 11/17/2023] [Accepted: 12/05/2023] [Indexed: 12/25/2023] Open
Abstract
BACKGROUND This study aims to develop a fetal rat model of ventricular noncompaction (NVM) using streptozotocin (STZ)-induced gestational hyperglycemia and compare it with a retinoic acid (RA) model. METHODS Female SD rats were categorized into STZ, RA, and normal control (NC) groups. The STZ group was given a high-fat diet pre-pregnancy and 35 mg/kg of 2% STZ postpregnancy. The RA group received a 90 mg/kg dose of RA on day 13 postpregnancy. Embryonic myocardial morphology was analyzed through HE staining, and embryonic cardiomyocyte ultrastructures were studied using electron microscopy. Diagnoses of NVM were based on a ratio of noncompact myocardium (N) to compact myocardium (C) >1.4, accompanied by thick myocardial trabeculae and a thin myocardial compaction layer. Kruskal-Wallis test determined N/C ratio differences among groups. RESULTS Both STZ and RA groups displayed significant NVM characteristics. The left ventricular (LV) N/C in the STZ, RA, and NC groups were 1.983 (1.423-3.527), 1.640 (1.197-2.895), and 0.927 (0.806-1.087), respectively, with a statistically significant difference (P<0.001). The right ventricular (RV) N/C in the STZ, RA, and NC groups were 2.097 (1.364-3.081), 1.897 (1.337-2.662), and 0.869 (0.732-1.022), respectively, with a significant difference (P<0.001). Electron microscopy highlighted marked endoplasmic reticulum swelling in embryonic cardiomyocytes from both STZ and RA groups. CONCLUSION Our model underscores the pivotal role of an adverse intrauterine developmental environment in the onset of NVM. This insight holds significant implications for future studies exploring the pathogenesis of NVM.
Collapse
Affiliation(s)
- Fanglu Wang
- Department of Cardiology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100730, China
| | - Songbo Han
- Department of Cardiology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100730, China
| | - Ligang Fang
- Department of Cardiology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100730, China
| | - Xue Lin
- Department of Cardiology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100730, China.
| |
Collapse
|
5
|
Li S, Wang L, Yang H, Fan L. Changes in the shape and function of the fetal heart of pre- and gestational diabetes mothers. BMC Pregnancy Childbirth 2024; 24:57. [PMID: 38212679 PMCID: PMC10782618 DOI: 10.1186/s12884-024-06262-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 01/07/2024] [Indexed: 01/13/2024] Open
Abstract
BACKGROUND Hyperglycemia during pregnancy can affect fetal heart in many ways, including causing cardiac malformation, leading to hypertrophic cardiomyopathy and cardiac dysfunction. Echocardiographic evaluation can assist identify alterations in heart structure, morphology and function, enabling prompt monitoring and management. However, according to earlier research, the cardiac alterations are modest in hyperglycemic mothers' fetuses, and might not be detectable using conventional methods and it is also unclear whether these changes are related to the metabolism of mothers. Fetal Heart Quantification (Fetal HQ) can assess ventricular geometry and function more sensitively and thoroughly, and identify sub-clinical cardiac dysfunction. The purpose of this study was to evaluate fetal heart by Fetal HQ in fetuses of hyperglycemic mothers who either had pre-gestational or gestational diabetes and to correlate them with maternal metabolic indices. METHODS The fetuses of 25 gestational age-matched control mothers, 48 women with gestational diabetes mellitus (GDM), and 11 women with diabetes mellitus (DM) were included in the prospective case-control research. Using fetal echocardiography and speckle tracking echocardiography (STE), the heart of the fetus was evaluated. Differences in the groups' anthropometric, metabolic, and cardiac parameters were examined. It was assessed whether maternal features, prenatal glucose, lipids, and maternal hemoglobin A1c (HbA1c) correlated with fetal cardiac parameters. RESULTS The LV EDV and ESV were significantly higher in the GDM group as compared to the DM group (p < 0.05). The GSI% was significantly lower in the GDM group compared with the control (p < 0.05). The LV SV and CO of the GDM group were both significantly higher compared with the DM group (p < 0.05). There was a significant decrease in RV FS for segments 1-7 in GDM fetuses compared to the control (p < 0.05) and for segments 5-10 compared to DM (p < 0.05). Fetal cardiac morphology and function indices correlate with maternal pregestational weight, BMI, early pregnancy fast glucose, lipids, and glycemic control levels. CONCLUSIONS Fetuses exposed to gestational diabetes have altered heart morphology and function that is linked to maternal metabolic parameters, which presents a special indication for performing geometry and function cardiac assessment. Fetal HQ can be employed to evaluate the fetal cardiac shape and function in fetuses exposed to gestational diabetes.
Collapse
Affiliation(s)
- Shuang Li
- Department of Obstetrics and Gynecology, Peking University First Hospital, Beijing, China.
| | - Linlin Wang
- Department of Obstetrics and Gynecology, Peking University First Hospital, Beijing, China
| | - Huixia Yang
- Department of Obstetrics and Gynecology, Peking University First Hospital, Beijing, China
| | - Lixin Fan
- Department of Obstetrics and Gynecology, Peking University First Hospital, Beijing, China
| |
Collapse
|
6
|
Diniz MS, Hiden U, Falcão-Pires I, Oliveira PJ, Sobrevia L, Pereira SP. Fetoplacental endothelial dysfunction in gestational diabetes mellitus and maternal obesity: A potential threat for programming cardiovascular disease. Biochim Biophys Acta Mol Basis Dis 2023; 1869:166834. [PMID: 37541330 DOI: 10.1016/j.bbadis.2023.166834] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 07/08/2023] [Accepted: 07/27/2023] [Indexed: 08/06/2023]
Abstract
Gestational diabetes mellitus (GDM) and maternal obesity (MO) increase the risk of adverse fetal outcomes, and the incidence of cardiovascular disease later in life. Extensive research has been conducted to elucidate the underlying mechanisms by which GDM and MO program the offspring to disease. This review focuses on the role of fetoplacental endothelial dysfunction in programming the offspring for cardiovascular disease in GDM and MO pregnancies. We discuss how pre-existing maternal health conditions can lead to vascular dysfunction in the fetoplacental unit and the fetus. We also examine the role of fetoplacental endothelial dysfunction in impairing fetal cardiovascular system development and the involvement of nitric oxide and hydrogen sulfide in mediating fetoplacental vascular dysfunction. Furthermore, we suggest that the L-Arginine-Nitric Oxide and the Adenosine-L-Arginine-Nitric Oxide (ALANO) signaling pathways are pertinent targets for research. Despite significant progress in this area, there are still knowledge gaps that need to be addressed in future research.
Collapse
Affiliation(s)
- Mariana S Diniz
- CNC - Center for Neuroscience and Cell Biology, CIBB - Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal; Ph.D. Programme in Experimental Biology and Biomedicine (PDBEB), Institute for Interdisciplinary Research (IIIUC), University of Coimbra, Coimbra, Portugal; Cellular and Molecular Physiology Laboratory (CMPL), Department of Obstetrics, Division of Obstetrics and Gynaecology, School of Medicine, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago 8330024, Chile.
| | - Ursula Hiden
- Department of Obstetrics and Gynecology, Medical University of Graz, 8063 Graz, Austria; Research Unit Early Life Determinants (ELiD), Medical University of Graz, 8036 Graz, Austria
| | - Inês Falcão-Pires
- UnIC@RISE, Department of Surgery and Physiology, Faculty of Medicine, University of Porto, Porto, Portugal
| | - Paulo J Oliveira
- CNC - Center for Neuroscience and Cell Biology, CIBB - Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
| | - Luis Sobrevia
- Cellular and Molecular Physiology Laboratory (CMPL), Department of Obstetrics, Division of Obstetrics and Gynaecology, School of Medicine, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago 8330024, Chile; Department of Physiology, Faculty of Pharmacy, Universidad de Sevilla, Seville E-41012, Spain; Medical School (Faculty of Medicine), São Paulo State University (UNESP), São Paulo, Brazil; University of Queensland Centre for Clinical Research (UQCCR), Faculty of Medicine and Biomedical Sciences, University of Queensland, Herston, QLD 4029, Australia; Tecnologico de Monterrey, Eutra, The Institute for Obesity Research (IOR), School of Medicine and Health Sciences, Monterrey, Nuevo León, Mexico.
| | - Susana P Pereira
- CNC - Center for Neuroscience and Cell Biology, CIBB - Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal; Laboratory of Metabolism and Exercise (LaMetEx), Research Centre in Physical Activity, Health and Leisure (CIAFEL), Laboratory for Integrative and Translational Research in Population Health (ITR), Faculty of Sports, University of Porto, 4200-450 Porto, Portugal.
| |
Collapse
|
7
|
Diniz MS, Magalhães CC, Tocantins C, Grilo LF, Teixeira J, Pereira SP. Nurturing through Nutrition: Exploring the Role of Antioxidants in Maternal Diet during Pregnancy to Mitigate Developmental Programming of Chronic Diseases. Nutrients 2023; 15:4623. [PMID: 37960276 PMCID: PMC10649237 DOI: 10.3390/nu15214623] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 10/27/2023] [Accepted: 10/27/2023] [Indexed: 11/15/2023] Open
Abstract
Chronic diseases represent one of the major causes of death worldwide. It has been suggested that pregnancy-related conditions, such as gestational diabetes mellitus (GDM), maternal obesity (MO), and intra-uterine growth restriction (IUGR) induce an adverse intrauterine environment, increasing the offspring's predisposition to chronic diseases later in life. Research has suggested that mitochondrial function and oxidative stress may play a role in the developmental programming of chronic diseases. Having this in mind, in this review, we include evidence that mitochondrial dysfunction and oxidative stress are mechanisms by which GDM, MO, and IUGR program the offspring to chronic diseases. In this specific context, we explore the promising advantages of maternal antioxidant supplementation using compounds such as resveratrol, curcumin, N-acetylcysteine (NAC), and Mitoquinone (MitoQ) in addressing the metabolic dysfunction and oxidative stress associated with GDM, MO, and IUGR in fetoplacental and offspring metabolic health. This approach holds potential to mitigate developmental programming-related risk of chronic diseases, serving as a probable intervention for disease prevention.
Collapse
Affiliation(s)
- Mariana S. Diniz
- CNC-UC—Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; (M.S.D.); (C.C.M.); (C.T.); (L.F.G.)
- CIBB—Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-517 Coimbra, Portugal
- Doctoral Programme in Experimental Biology and Biomedicine (PDBEB), Institute for Interdisciplinary Research, University of Coimbra, 3004-504 Coimbra, Portugal
| | - Carina C. Magalhães
- CNC-UC—Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; (M.S.D.); (C.C.M.); (C.T.); (L.F.G.)
- CIBB—Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-517 Coimbra, Portugal
| | - Carolina Tocantins
- CNC-UC—Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; (M.S.D.); (C.C.M.); (C.T.); (L.F.G.)
- CIBB—Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-517 Coimbra, Portugal
- Doctoral Programme in Experimental Biology and Biomedicine (PDBEB), Institute for Interdisciplinary Research, University of Coimbra, 3004-504 Coimbra, Portugal
| | - Luís F. Grilo
- CNC-UC—Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; (M.S.D.); (C.C.M.); (C.T.); (L.F.G.)
- CIBB—Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-517 Coimbra, Portugal
- Doctoral Programme in Experimental Biology and Biomedicine (PDBEB), Institute for Interdisciplinary Research, University of Coimbra, 3004-504 Coimbra, Portugal
| | - José Teixeira
- CNC-UC—Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; (M.S.D.); (C.C.M.); (C.T.); (L.F.G.)
- CIBB—Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-517 Coimbra, Portugal
| | - Susana P. Pereira
- CNC-UC—Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; (M.S.D.); (C.C.M.); (C.T.); (L.F.G.)
- CIBB—Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-517 Coimbra, Portugal
- Laboratory of Metabolism and Exercise (LaMetEx), Research Centre in Physical Activity, Health and Leisure (CIAFEL), Laboratory for Integrative and Translational Research in Population Health (ITR), Faculty of Sports, University of Porto, 4200-450 Porto, Portugal
| |
Collapse
|
8
|
Pereira SP, Diniz MS, Tavares LC, Cunha-Oliveira T, Li C, Cox LA, Nijland MJ, Nathanielsz PW, Oliveira PJ. Characterizing Early Cardiac Metabolic Programming via 30% Maternal Nutrient Reduction during Fetal Development in a Non-Human Primate Model. Int J Mol Sci 2023; 24:15192. [PMID: 37894873 PMCID: PMC10607248 DOI: 10.3390/ijms242015192] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 09/28/2023] [Accepted: 10/06/2023] [Indexed: 10/29/2023] Open
Abstract
Intra-uterine growth restriction (IUGR) is a common cause of fetal/neonatal morbidity and mortality and is associated with increased offspring predisposition for cardiovascular disease (CVD) development. Mitochondria are essential organelles in maintaining cardiac function, and thus, fetal cardiac mitochondria could be responsive to the IUGR environment. In this study, we investigated whether in utero fetal cardiac mitochondrial programming can be detectable in an early stage of IUGR pregnancy. Using a well-established nonhuman IUGR primate model, we induced IUGR by reducing by 30% the maternal diet (MNR), both in males (MNR-M) and in female (MNR-F) fetuses. Fetal cardiac left ventricle (LV) tissue and blood were collected at 90 days of gestation (0.5 gestation, 0.5 G). Blood biochemical parameters were determined and heart LV mitochondrial biology assessed. MNR fetus biochemical blood parameters confirm an early fetal response to MNR. In addition, we show that in utero cardiac mitochondrial MNR adaptations are already detectable at this early stage, in a sex-divergent way. MNR induced alterations in the cardiac gene expression of oxidative phosphorylation (OXPHOS) subunits (mostly for complex-I, III, and ATP synthase), along with increased protein content for complex-I, -III, and -IV subunits only for MNR-M in comparison with male controls, highlight the fetal cardiac sex-divergent response to MNR. At this fetal stage, no major alterations were detected in mitochondrial DNA copy number nor markers for oxidative stress. This study shows that in 90-day nonhuman primate fetuses, a 30% decrease in maternal nutrition generated early in utero adaptations in fetal blood biochemical parameters and sex-specific alterations in cardiac left ventricle gene and protein expression profiles, affecting predominantly OXPHOS subunits. Since the OXPHOS system is determinant for energy production in mitochondria, our findings suggest that these early IUGR-induced mitochondrial adaptations play a role in offspring's mitochondrial dysfunction and can increase predisposition to CVD in a sex-specific way.
Collapse
Affiliation(s)
- Susana P. Pereira
- Laboratory of Metabolism and Exercise (LaMetEx), Research Centre in Physical Activity, Health and Leisure (CIAFEL), Laboratory for Integrative and Translational Research in Population Health (ITR), Faculty of Sports, University of Porto, 4200-450 Porto, Portugal
- CNC-UC, Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; (M.S.D.); (T.C.-O.); (P.J.O.)
- CIBB—Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504 Coimbra, Portugal
- Center for Pregnancy and Newborn Research, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA;
| | - Mariana S. Diniz
- CNC-UC, Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; (M.S.D.); (T.C.-O.); (P.J.O.)
- PDBEB—Ph.D. Programme in Experimental Biology and Biomedicine, Institute for Interdisciplinary Research (IIIUC), University of Coimbra, 3030-789 Coimbra, Portugal
| | - Ludgero C. Tavares
- CNC-UC, Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; (M.S.D.); (T.C.-O.); (P.J.O.)
- CIVG—Vasco da Gama Research Center, University School Vasco da Gama—EUVG, 3020-210 Coimbra, Portugal
| | - Teresa Cunha-Oliveira
- CNC-UC, Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; (M.S.D.); (T.C.-O.); (P.J.O.)
| | - Cun Li
- Texas Pregnancy & Life-Course Health Research Center, Department of Animal Science, University of Wyoming, Laramie, WY 82071, USA;
| | - Laura A. Cox
- Center for Precision Medicine, Wake Forest University Health Sciences, Winston-Salem, NC 27157, USA; (L.A.C.); (P.W.N.)
- Section on Molecular Medicine, Department of Internal Medicine, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX 78227, USA
- Section on Comparative Medicine, Department of Pathology, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| | - Mark J. Nijland
- Center for Pregnancy and Newborn Research, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA;
| | - Peter W. Nathanielsz
- Center for Precision Medicine, Wake Forest University Health Sciences, Winston-Salem, NC 27157, USA; (L.A.C.); (P.W.N.)
| | - Paulo J. Oliveira
- CNC-UC, Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; (M.S.D.); (T.C.-O.); (P.J.O.)
- CIBB—Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504 Coimbra, Portugal
| |
Collapse
|
9
|
Meyer BJ, Cortie C, Dekker-Nitert M, Barrett HL, Freeman DJ. Women with gestational diabetes mellitus, controlled for plasma glucose level, exhibit maternal and fetal dyslipidaemia that may warrant treatment. Diabetes Res Clin Pract 2023; 204:110929. [PMID: 37783345 DOI: 10.1016/j.diabres.2023.110929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 09/16/2023] [Accepted: 09/29/2023] [Indexed: 10/04/2023]
Abstract
AIMS To compare maternal and fetal cord plasma and lipoprotein triglyceride (TG) concentrations in women with Gestational Diabetes Mellitus (GDM), with hyperglycaemia and hypertriglyceridaemia, and healthy women. METHODS Fasted maternal blood at 28.6 ± 3.4 (T1) and 36.2 ± 1.0 (T2) [mean ± S.D] weeks of gestation, and cord blood were collected. Plasma lipoprotein fractions underwent compositional analysis. RESULTS Plasma glucose did not differ between GDM and healthy women. T1 maternal plasma TG (2.60 ± 0.89 mmol/l versus 1.71 ± 0.69 mmol/l) and plasma apolipoprotein B (1.30 ± 0.48 g/l versus 0.75 ± 0.40 g/l) were higher in GDM compared to healthy. Maternal plasma TG increased over gestation in both groups. T1 plasma VLDL total protein (38 ± 15 mg/dl versus 25 ± 11 mg/dl), total cholesterol (TC) (30 ± 14 mg/dl versus 16 ± 13 mg/dl) and phospholipid (PL) (43 ± 17 mg/dl versus 26 ± 16 mg/dl) were higher in GDM than healthy, and similarly for IDL, suggesting increased lipoprotein particle number. T1 VLDL-TG enrichment was higher in healthy and increased over gestation in GDM women but decreased in healthy. IDL-TG enrichment (TG/TC) increased over gestation in women with GDM and decreased in healthy. Cord blood VLDL, IDL and LDL from GDM had a two-fold higher TG enrichment than healthy pregnancy. CONCLUSION Increased maternal lipoprotein number, but not TG enrichment, in GDM mothers may explain TG enrichment of cord lipoproteins.
Collapse
Affiliation(s)
- Barbara J Meyer
- School of Medical, Indigenous and Health Science, University of Wollongong, Northfields Ave, Illawarra Health and Medical Research Institute, Molecular Horizons, Wollongong, NSW 2522, Australia
| | - Colin Cortie
- Graduate School of Medicine, University of Wollongong, Northfields Ave, Illawarra Health and Medical Research Institute, Wollongong, NSW 2522, Australia
| | - Marloes Dekker-Nitert
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Helen L Barrett
- Mater Research Institute-The University of Queensland, South Brisbane, QLD, Australia; Obstetric Medicine, Royal Hospital for Women, Randwick, NSW, 2031, Australia; Faculty of Medicine, University of New South Wales, Randwick, NSW, 2031, Australia.
| | - Dilys J Freeman
- School of Cardiovascular and Metabolic Health, University of Glasgow, Glasgow G12 8QQ, UK
| |
Collapse
|
10
|
Zhang Z, Zhu Z, Zhou P, Zou Y, Yang J, Haick H, Wang Y. Soft Bioelectronics for Therapeutics. ACS NANO 2023; 17:17634-17667. [PMID: 37677154 DOI: 10.1021/acsnano.3c02513] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/09/2023]
Abstract
Soft bioelectronics play an increasingly crucial role in high-precision therapeutics due to their softness, biocompatibility, clinical accuracy, long-term stability, and patient-friendliness. In this review, we provide a comprehensive overview of the latest representative therapeutic applications of advanced soft bioelectronics, ranging from wearable therapeutics for skin wounds, diabetes, ophthalmic diseases, muscle disorders, and other diseases to implantable therapeutics against complex diseases, such as cardiac arrhythmias, cancer, neurological diseases, and others. We also highlight key challenges and opportunities for future clinical translation and commercialization of soft therapeutic bioelectronics toward personalized medicine.
Collapse
Affiliation(s)
- Zongman Zhang
- Department of Chemical Engineering, Guangdong Technion-Israel Institute of Technology, 241 Daxue Road, Shantou, Guangdong 515063, China
- The Wolfson Department of Chemical Engineering, Technion-Israel Institute of Technology, Haifa 3200003, Israel
| | - Zhongtai Zhu
- Department of Chemical Engineering, Guangdong Technion-Israel Institute of Technology, 241 Daxue Road, Shantou, Guangdong 515063, China
| | - Pengcheng Zhou
- Department of Chemical Engineering, Guangdong Technion-Israel Institute of Technology, 241 Daxue Road, Shantou, Guangdong 515063, China
- The Wolfson Department of Chemical Engineering, Technion-Israel Institute of Technology, Haifa 3200003, Israel
| | - Yunfan Zou
- Department of Biotechnology and Food Engineering, Guangdong Technion-Israel Institute of Technology, 241 Daxue Road, Shantou, Guangdong 515063, China
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Jiawei Yang
- Department of Chemical Engineering, Guangdong Technion-Israel Institute of Technology, 241 Daxue Road, Shantou, Guangdong 515063, China
- The Wolfson Department of Chemical Engineering, Technion-Israel Institute of Technology, Haifa 3200003, Israel
| | - Hossam Haick
- The Wolfson Department of Chemical Engineering, Technion-Israel Institute of Technology, Haifa 3200003, Israel
| | - Yan Wang
- Department of Chemical Engineering, Guangdong Technion-Israel Institute of Technology, 241 Daxue Road, Shantou, Guangdong 515063, China
- The Wolfson Department of Chemical Engineering, Technion-Israel Institute of Technology, Haifa 3200003, Israel
- Guangdong Provincial Key Laboratory of Materials and Technologies for Energy Conversion, Guangdong Technion-Israel Institute of Technology, 241 Daxue Road, Shantou, Guangdong 515063, China
| |
Collapse
|
11
|
Guo J, Huang J, Lei S, Wan D, Liang B, Yan H, Liu Y, Feng Y, Yang S, He J, Kong D, Shi J, Wang S. Construction of Rapid Extracellular Matrix-Deposited Small-Diameter Vascular Grafts Induced by Hypoxia in a Bioreactor. ACS Biomater Sci Eng 2023; 9:844-855. [PMID: 36723920 DOI: 10.1021/acsbiomaterials.2c00809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Cardiovascular disease has become one of the most globally prevalent diseases, and autologous or vascular graft transplantation has been the main treatment for the end stage of the disease. However, there are no commercialized small-diameter vascular graft (SDVG) products available. The design of SDVGs is promising in the future, and SDVG preparation using an in vitro bioreactor is a favorable method, but it faces the problem of long-term culture of >8 weeks. Herein, we used different oxygen (O2) concentrations and mechanical stimulation to induce greater secretion of extracellular matrix (ECM) from cells in vitro to rapidly prepare SDVGs. Culturing with 2% O2 significantly increased the production of the ECM components and growth factors of human dermal fibroblasts (hDFs). To accelerate the formation of ECM, hDFs were seeded on a polycaprolactone (PCL) scaffold and cultured in a flow culture bioreactor with 2% O2 for only 3 weeks. After orthotopic transplantation in rat abdominal aorta, the cultured SDVGs (PCL-decellularized ECM) showed excellent endothelialization and smooth muscle regeneration. The vascular grafts cultured with hypoxia and mechanical stimulation could accelerate the reconstruction speed and obtain an improved therapeutic effect and thereby provide a new research direction for improving the production and supply of SDVGs.
Collapse
Affiliation(s)
- Jingyue Guo
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Weijin Road 94, Tianjin 300071, China
| | - Jiaxing Huang
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Weijin Road 94, Tianjin 300071, China
| | - Shaojin Lei
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Weijin Road 94, Tianjin 300071, China
| | - Dongdong Wan
- Department of Orthopedic Surgery, Tianjin First Central Hospital, Nankai University, Tianjin 300192, China
| | - Boyuan Liang
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Weijin Road 94, Tianjin 300071, China
| | - Hongyu Yan
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Weijin Road 94, Tianjin 300071, China
| | - Yufei Liu
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Weijin Road 94, Tianjin 300071, China
| | - Yuming Feng
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Weijin Road 94, Tianjin 300071, China
| | - Sen Yang
- Department of Vascular Surgery, Tianjin First Central Hospital, Nankai University, Tianjin 300192, China
| | - Ju He
- Department of Vascular Surgery, Tianjin First Central Hospital, Nankai University, Tianjin 300192, China
| | - Deling Kong
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Weijin Road 94, Tianjin 300071, China
| | - Jie Shi
- Institute of Disaster and Emergency Medicine, Tianjin University, Weijin Road 92, Tianjin 300072, China.,Wenzhou Safety (Emergency) Institute, Tianjin University, Wenzhou 325000, China
| | - Shufang Wang
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Weijin Road 94, Tianjin 300071, China
| |
Collapse
|