1
|
Larcombe DE, Bohovych IM, Pradhan A, Ma Q, Hickey E, Leaves I, Cameron G, Avelar GM, de Assis LJ, Childers DS, Bain JM, Lagree K, Mitchell AP, Netea MG, Erwig LP, Gow NAR, Brown AJP. Glucose-enhanced oxidative stress resistance-A protective anticipatory response that enhances the fitness of Candida albicans during systemic infection. PLoS Pathog 2023; 19:e1011505. [PMID: 37428810 PMCID: PMC10358912 DOI: 10.1371/journal.ppat.1011505] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 07/20/2023] [Accepted: 06/22/2023] [Indexed: 07/12/2023] Open
Abstract
Most microbes have developed responses that protect them against stresses relevant to their niches. Some that inhabit reasonably predictable environments have evolved anticipatory responses that protect against impending stresses that are likely to be encountered in their niches-termed "adaptive prediction". Unlike yeasts such as Saccharomyces cerevisiae, Kluyveromyces lactis and Yarrowia lipolytica and other pathogenic Candida species we examined, the major fungal pathogen of humans, Candida albicans, activates an oxidative stress response following exposure to physiological glucose levels before an oxidative stress is even encountered. Why? Using competition assays with isogenic barcoded strains, we show that "glucose-enhanced oxidative stress resistance" phenotype enhances the fitness of C. albicans during neutrophil attack and during systemic infection in mice. This anticipatory response is dependent on glucose signalling rather than glucose metabolism. Our analysis of C. albicans signalling mutants reveals that the phenotype is not dependent on the sugar receptor repressor pathway, but is modulated by the glucose repression pathway and down-regulated by the cyclic AMP-protein kinase A pathway. Changes in catalase or glutathione levels do not correlate with the phenotype, but resistance to hydrogen peroxide is dependent on glucose-enhanced trehalose accumulation. The data suggest that the evolution of this anticipatory response has involved the recruitment of conserved signalling pathways and downstream cellular responses, and that this phenotype protects C. albicans from innate immune killing, thereby promoting the fitness of C. albicans in host niches.
Collapse
Affiliation(s)
- Daniel E. Larcombe
- Institute of Medical Sciences, University of Aberdeen, Aberdeen, United Kingdom
- Medical Research Council Centre for Medical Mycology, University of Exeter, School of Biosciences, Geoffrey Pope Building, Exeter, United Kingdom
| | - Iryna M. Bohovych
- Institute of Medical Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | - Arnab Pradhan
- Institute of Medical Sciences, University of Aberdeen, Aberdeen, United Kingdom
- Medical Research Council Centre for Medical Mycology, University of Exeter, School of Biosciences, Geoffrey Pope Building, Exeter, United Kingdom
| | - Qinxi Ma
- Medical Research Council Centre for Medical Mycology, University of Exeter, School of Biosciences, Geoffrey Pope Building, Exeter, United Kingdom
| | - Emer Hickey
- Medical Research Council Centre for Medical Mycology, University of Exeter, School of Biosciences, Geoffrey Pope Building, Exeter, United Kingdom
| | - Ian Leaves
- Medical Research Council Centre for Medical Mycology, University of Exeter, School of Biosciences, Geoffrey Pope Building, Exeter, United Kingdom
| | - Gary Cameron
- Rowett Institute, School of Medicine Medical Sciences & Nutrition, University of Aberdeen, Aberdeen, United Kingdom
| | - Gabriela M. Avelar
- Institute of Medical Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | - Leandro J. de Assis
- Medical Research Council Centre for Medical Mycology, University of Exeter, School of Biosciences, Geoffrey Pope Building, Exeter, United Kingdom
| | - Delma S. Childers
- Institute of Medical Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | - Judith M. Bain
- Institute of Medical Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | - Katherine Lagree
- Department of Microbiology, Biosciences Building, University of Georgia, Athens, Georgia, United States of America
| | - Aaron P. Mitchell
- Department of Microbiology, Biosciences Building, University of Georgia, Athens, Georgia, United States of America
| | - Mihai G. Netea
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, Netherlands
- Department for Immunology & Metabolism, Life and Medical Sciences Institute, University of Bonn, Bonn, Germany
| | - Lars P. Erwig
- Institute of Medical Sciences, University of Aberdeen, Aberdeen, United Kingdom
- Johnson-Johnson Innovation, EMEA Innovation Centre, One Chapel Place, London, United Kingdom
| | - Neil A. R. Gow
- Institute of Medical Sciences, University of Aberdeen, Aberdeen, United Kingdom
- Medical Research Council Centre for Medical Mycology, University of Exeter, School of Biosciences, Geoffrey Pope Building, Exeter, United Kingdom
| | - Alistair J. P. Brown
- Institute of Medical Sciences, University of Aberdeen, Aberdeen, United Kingdom
- Medical Research Council Centre for Medical Mycology, University of Exeter, School of Biosciences, Geoffrey Pope Building, Exeter, United Kingdom
| |
Collapse
|
2
|
The adaptive response to alternative carbon sources in the pathogen Candida albicans involves a remodeling of thiol- and glutathione-dependent redox status. Biochem J 2023; 480:197-217. [PMID: 36625375 DOI: 10.1042/bcj20220505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 01/03/2023] [Accepted: 01/10/2023] [Indexed: 01/11/2023]
Abstract
Candida albicans is an opportunist pathogen responsible for a large spectrum of infections, from superficial mycosis to systemic diseases known as candidiasis. During infection in vivo, Candida albicans must adapt to host microenvironments and this adaptive response is crucial for the survival of this organism, as it facilitates the effective assimilation of alternative carbon sources others than glucose. We performed a global proteomic analysis on the global changes in protein abundance in response to changes in micronutrient levels, and, in parallel, explored changes in the intracellular redox and metabolic status of the cells. We show here that each of the carbon sources considered - glucose, acetate and lactate - induces a unique pattern of response in C. albicans cells, and that some conditions trigger an original and specific adaptive response involving the adaptation of metabolic pathways, but also a complete remodeling of thiol-dependent antioxidant defenses. Protein S-thiolation and the overproduction of reduced glutathione are two components of the response to high glucose concentration. In the presence of acetate, glutathione-dependent oxidative stress occurs, reduced thiol groups bind to proteins, and glutathione is exported out of the cells, these changes probably being triggered by an increase in glutathione-S-transferases. Overall, our results suggest that the role of cellular redox status regulation and defenses against oxidative stress, including the thiol- and glutathione-dependent response, in the adaptive response of C. albicans to alternative carbon sources should be reconsidered.
Collapse
|
3
|
Edlind T, Katiyar S. Intrinsically High Resistance of Candida glabrata to Hydrogen Peroxide and Its Reversal in a Fluconazole-Resistant Mutant. Antimicrob Agents Chemother 2022; 66:e0072122. [PMID: 35916516 PMCID: PMC9487529 DOI: 10.1128/aac.00721-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Affiliation(s)
- Tom Edlind
- MicrobiType LLC, Wyndmoor, Pennsylvania, USA
| | - Santosh Katiyar
- Drexel University College of Medicine, Philadelphia, Pennsylvania, USA
| |
Collapse
|
4
|
Effect of Humic Acid on the Growth and Metabolism of Candida albicans Isolated from Surface Waters in North-Eastern Poland. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19159408. [PMID: 35954766 PMCID: PMC9368076 DOI: 10.3390/ijerph19159408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 07/26/2022] [Accepted: 07/27/2022] [Indexed: 12/04/2022]
Abstract
The aim of this study was to determine the effect of humic acid on the growth and metabolism of Candida albicans, a common waterborne pathogenic yeast. At 10–20 mg/L, humic acid caused the greatest increase in biomass and compactness of proteins and monosaccharides, both in cells and in extracellular secretion of the yeast. At higher humic acid concentrations (40–80 mg/L), C. albicans cells still had higher protein levels compared to control, but showed reduced levels of metabolites and inhibited growth, and a significant increase in the activity of antioxidant enzymes, indicating a toxic effect of the humic acid. The increase in protein content in the cells of C. albicans combined with an increase in the activity of antioxidant enzymes may indicate that the studied yeast excels in conditions of high water enrichment with low availability of organic matter. This indicates that Candida albicans is capable of breaking down organic matter that other microorganisms cannot cope with, and for this reason, this yeast uses carbon sources that are not available to other microorganisms. This indicates that this fungus plays an important role in the organic carbon sphere to higher trophic levels, and is common in water polluted with organic matter.
Collapse
|
5
|
Alqahtani FM, Handy ST, Sutton CL, Farone MB. Combining Genome-Wide Gene Expression Analysis (RNA-seq) and a Gene Editing Platform (CRISPR-Cas9) to Uncover the Selectively Pro-oxidant Activity of Aurone Compounds Against Candida albicans. Front Microbiol 2021; 12:708267. [PMID: 34335543 PMCID: PMC8319688 DOI: 10.3389/fmicb.2021.708267] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 06/23/2021] [Indexed: 11/13/2022] Open
Abstract
Candida albicans is the major fungal cause of healthcare-associated bloodstream infections worldwide with a 40% mortality rate. The scarcity of antifungal treatments due to the eukaryotic origin of fungal cells has challenged the development of selectively antifungal drugs. In an attempt to identify novel antifungal agents, aurones SH1009 and SH9051, as synthetically bioactive compounds, have been recently documented as anti-Candida agents. Since the molecular mechanisms behind the inhibitory activities of these aurones in C. albicans are unclear, this study aimed to determine the comprehensive cellular processes affected by these aurones and their molecular targets. Genome-wide transcriptional analysis of SH1009- and SH9051-treated C. albicans revealed uniquely repressed expression in different metabolic pathways, particularly trehalose and sulfur amino acid metabolic processes for SH1009 and SH9051, respectively. In contrast, the most commonly enriched process for both aurones was the up-regulation of RNA processing and ribosomal cleavages as an indicator of high oxidative stress, suggesting that a common aspect in the chemical structure of both aurones led to pro-oxidative properties. Additionally, uniquely induced responses (iron ion homeostasis for SH1009 and arginine biosynthesis for SH9051) garnered attention on key roles for the aurone functional groups. Deletion of the transcription factor for the trehalose biosynthesis pathway, Tye7p, resulted in an SH1009-resistant mutant, which also exhibited low trehalose content, validating the primary molecular target of SH1009. Aurone SH9051 uniquely simulated an exogenous supply of methionine or cysteine, leading to sulfur amino acid catabolism as evidenced by quantifying an overproduction of sulfite. Phenyl aurone, the common structure of aurones, contributed proportionally in the pro-oxidative activity through ferric ion reduction effects leading to high ROS levels. Our results determined selective and novel molecular mechanisms for aurone SH1009 and also elucidated the diverse cellular effects of different aurones based on functional groups.
Collapse
Affiliation(s)
- Fatmah M Alqahtani
- Department of Biology, Middle Tennessee State University, Murfreesboro, TN, United States
| | - Scott T Handy
- Department of Chemistry, Middle Tennessee State University, Murfreesboro, TN, United States
| | - Caleb L Sutton
- Department of Biology, Middle Tennessee State University, Murfreesboro, TN, United States
| | - Mary B Farone
- Department of Biology, Middle Tennessee State University, Murfreesboro, TN, United States
| |
Collapse
|
6
|
Zhan C, Li X, Yang Y, Nielsen J, Bai Z, Chen Y. Strategies and challenges with the microbial conversion of methanol to high-value chemicals. Biotechnol Bioeng 2021; 118:3655-3668. [PMID: 34133022 DOI: 10.1002/bit.27862] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 05/25/2021] [Accepted: 06/10/2021] [Indexed: 01/03/2023]
Abstract
As alternatives to traditional fermentation substrates, methanol (CH3 OH), carbon dioxide (CO2 ) and methane (CH4 ) represent promising one-carbon (C1) sources that are readily available at low-cost and share similar metabolic pathway. Of these C1 compounds, methanol is used as a carbon and energy source by native methylotrophs, and can be obtained from CO2 and CH4 by chemical catalysis. Therefore, constructing and rewiring methanol utilization pathways may enable the use of one-carbon sources for microbial fermentations. Recent bioengineering efforts have shown that both native and nonnative methylotrophic organisms can be engineered to convert methanol, together with other carbon sources, into biofuels and other commodity chemicals. However, many challenges remain and must be overcome before industrial-scale bioprocessing can be established using these engineered cell refineries. Here, we provide a comprehensive summary and comparison of methanol metabolic pathways from different methylotrophs, followed by a review of recent progress in engineering methanol metabolic pathways in vitro and in vivo to produce chemicals. We discuss the major challenges associated with establishing efficient methanol metabolic pathways in microbial cells, and propose improved designs for future engineering.
Collapse
Affiliation(s)
- Chunjun Zhan
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, China.,The Key Laboratory of Industrial Biotechnology, School of Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China.,The Key Laboratory of Carbohydrate Chemistry and Biotechnology, School of Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China.,Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | - Xiaowei Li
- Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden.,Novo Nordisk Foundation Center for Biosustainability, Chalmers University of Technology, Gothenburg, Sweden
| | - Yankun Yang
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, China.,The Key Laboratory of Industrial Biotechnology, School of Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China.,The Key Laboratory of Carbohydrate Chemistry and Biotechnology, School of Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China
| | - Jens Nielsen
- Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden.,Novo Nordisk Foundation Center for Biosustainability, Chalmers University of Technology, Gothenburg, Sweden.,BioInnovation Institute, Copenhagen N, Denmark
| | - Zhonghu Bai
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, China.,The Key Laboratory of Industrial Biotechnology, School of Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China.,The Key Laboratory of Carbohydrate Chemistry and Biotechnology, School of Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China
| | - Yun Chen
- Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden.,Novo Nordisk Foundation Center for Biosustainability, Chalmers University of Technology, Gothenburg, Sweden
| |
Collapse
|
7
|
Poopedi E, Marimani M, AlOmar SY, Aldahmash B, Ahmad A. Modulation of antioxidant defence system in response to berberine in Candida albicans. Yeast 2020; 38:157-169. [PMID: 33141949 DOI: 10.1002/yea.3531] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 10/23/2020] [Accepted: 10/23/2020] [Indexed: 12/14/2022] Open
Abstract
Emergence of multidrug resistant species of Candida is evolving, which advocates an urgent need for the development of new therapeutic strategies and antifungal drugs. Activation of antioxidant defence system in Candida albicans is known as forefront mechanism to escape drug toxicity. This study evaluated the role of antioxidant defence genes in the susceptibility to fluconazole in C. albicans and also determined the effect of berberine on growth, antioxidant enzymes and the expression of their genes in C. albicans isolates. Expression of major antioxidant genes was significantly increased in fluconazole-resistant isolates in comparison with the susceptible group. Antifungal susceptibility against berberine showed MIC values ranging from 125 to 500 μg/ml. Berberine treatment caused upregulation of mRNA expression and enzymatic activities of the targeted major antioxidants. Interestingly, C. albicans exhibited efficient antioxidant response at lower concentrations but could not sufficiently alleviate berberine-induced oxidative stress occurring at concentrations greater than 250 μg/ml. Therefore, berberine could serve as a potent Reactive Oxygen Species (ROS)-inducing agent, disrupting the antioxidant system especially in fluconazole-resistant C. albicans to overcome antifungal drug resistance. TAKE AWAYS: Evaluated the role of antioxidant enzymes in FLC resistance in C. albicans Studied the effect of berberine on growth of different C. albicans isolates Investigated the modulation of antioxidant enzymes by berberine in C. albicans Studied the effect of berberine on antioxidant gene expression in C. albicans.
Collapse
Affiliation(s)
- Evida Poopedi
- Clinical Microbiology and Infectious Diseases, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, 2193, South Africa
| | - Musa Marimani
- Department of Anatomical Pathology, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, 2193, South Africa
| | - Suliman Yousef AlOmar
- Doping Research, Department of Zoology, College of Science, King Saud University, Riyadh, 11451, Kingdom of Saudi Arabia
| | - Badr Aldahmash
- Department of Zoology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Aijaz Ahmad
- Clinical Microbiology and Infectious Diseases, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, 2193, South Africa.,Infection Control, Charlotte Maxeke Johannesburg Academic Hospital, National Health Laboratory Service, Johannesburg, 2193, South Africa
| |
Collapse
|
8
|
Differential responses of genes and enzymes associated with ROS protective responses in the sugarcane smut fungus. Fungal Biol 2020; 124:1039-1051. [PMID: 33213784 DOI: 10.1016/j.funbio.2020.09.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 09/09/2020] [Accepted: 09/23/2020] [Indexed: 12/29/2022]
Abstract
The fungal pathogen Sporisorium scitamineum causes sugarcane smut disease. We have previously shown that resistant sugarcane plants induce ROS, coinciding with a delay in fungal colonization. Here, we investigated whether the fungus modifies the enzymatic antioxidant system in vitro and when colonizing sugarcane tissues in response to ROS. In vitro, the exposure to ROS did not affect cell integrity, and a combination of superoxide dismutases (SOD) and catalases (CAT) were active. In vitro, the fungus did not alter the expression of the transcriptional regulator Yap1 and the effector Pep1. The fungus activated distinct enzymes when colonizing plant tissues. Instead of CAT, S. scitamineum induced glutathione peroxidase (Gpx) expression only when colonizing smut-resistant plants. Yap1 had an earlier expression in both smut-susceptible and -resistant plants, with no apparent correlation with the expression of antioxidant genes sod, cat, gpx, or external redox imbalance. The expression of the effector pep1 was induced only in smut-resistant plants, potentially in response to ROS. These results collectively suggest that S. scitamineum copes with oxidative stress by inducing different mechanisms depending on the conditions (in vitro/in planta) and intensity of ROS. Moreover, the effector Pep1 is responsive to the stress imposed only by the sugarcane resistant genotype.
Collapse
|
9
|
Novelli Poisson GF, Juárez ÁB, Noseda DG, Ríos de Molina MC, Galvagno MA. Adaptive Evolution Strategy to Enhance the Performance of Scheffersomyces stipitis for Industrial Cellulosic Ethanol Production. Ind Biotechnol (New Rochelle N Y) 2020. [DOI: 10.1089/ind.2020.0008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Affiliation(s)
- Guido F. Novelli Poisson
- Universidad de Buenos Aires, Facultad de Ingeniería, Departamento de Ingeniería Química, Laboratorio de Microbiología Industrial, Pabellón de Industrias, Ciudad Universitaria, Buenos Aires, Argentina
- Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín-Consejo Nacional de Investigaciones Científicas y Técnicas, San Martín, Buenos Aires, Argentina
| | - Ángela B. Juárez
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Biodiversidad y Biología Experimental y Departamento de Química Biológica Buenos Aires, Argentina
| | - Diego G. Noseda
- Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín-Consejo Nacional de Investigaciones Científicas y Técnicas, San Martín, Buenos Aires, Argentina
| | - María C. Ríos de Molina
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Química Biológica Ciudad Universitaria, Buenos Aires, Argentina
| | - Miguel A. Galvagno
- Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín-Consejo Nacional de Investigaciones Científicas y Técnicas, San Martín, Buenos Aires, Argentina
| |
Collapse
|
10
|
Balhaddad AA, Garcia IM, Ibrahim MS, Rolim JPML, Gomes EAB, Martinho FC, Collares FM, Xu H, Melo MAS. Prospects on Nano-Based Platforms for Antimicrobial Photodynamic Therapy Against Oral Biofilms. PHOTOBIOMODULATION PHOTOMEDICINE AND LASER SURGERY 2020; 38:481-496. [PMID: 32716697 DOI: 10.1089/photob.2020.4815] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Objective: This review clusters the growing field of nano-based platforms for antimicrobial photodynamic therapy (aPDT) targeting pathogenic oral biofilms and increase interactions between dental researchers and investigators in many related fields. Background data: Clinically relevant disinfection of dental tissues is difficult to achieve with aPDT alone. It has been found that limited penetrability into soft and hard dental tissues, diffusion of the photosensitizers, and the small light absorption coefficient are contributing factors. As a result, the effectiveness of aPDT is reduced in vivo applications. To overcome limitations, nanotechnology has been implied to enhance the penetration and delivery of photosensitizers to target microorganisms and increase the bactericidal effect. Materials and methods: The current literature was screened for the various platforms composed of photosensitizers functionalized with nanoparticles and their enhanced performance against oral pathogenic biofilms. Results: The evidence-based findings from the up-to-date literature were promising to control the onset and the progression of dental biofilm-triggered diseases such as dental caries, endodontic infections, and periodontal diseases. The antimicrobial effects of aPDT with nano-based platforms on oral bacterial disinfection will help to advance the design of combination strategies that increase the rate of complete and durable clinical response in oral infections. Conclusions: There is enthusiasm about the potential of nano-based platforms to treat currently out of the reach pathogenic oral biofilms. Much of the potential exists because these nano-based platforms use unique mechanisms of action that allow us to overcome the challenging of intra-oral and hard-tissue disinfection.
Collapse
Affiliation(s)
- Abdulrahman A Balhaddad
- PhD Program in Dental Biomedical Sciences, University of Maryland School of Dentistry, Baltimore, Maryland, USA.,Department of Restorative Dental Sciences, College of Dentistry, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Isadora M Garcia
- PhD Program in Dental Biomedical Sciences, University of Maryland School of Dentistry, Baltimore, Maryland, USA.,Dental Materials Laboratory, School of Dentistry, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Maria Salem Ibrahim
- PhD Program in Dental Biomedical Sciences, University of Maryland School of Dentistry, Baltimore, Maryland, USA.,Department of Preventive Dental Sciences, College of Dentistry, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Juliana P M L Rolim
- Department of Dentistry, Christus University Center (Unichristus), Fortaleza, Brazil
| | - Edison A B Gomes
- Department of Dentistry, Christus University Center (Unichristus), Fortaleza, Brazil
| | - Frederico C Martinho
- Endodontic Division, Department of Advanced Oral Sciences and Therapeutics, University of Maryland School of Dentistry, Baltimore, Maryland, USA
| | - Fabricio M Collares
- Dental Materials Laboratory, School of Dentistry, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Hockin Xu
- PhD Program in Dental Biomedical Sciences, University of Maryland School of Dentistry, Baltimore, Maryland, USA.,Biomaterials & Tissue Engineering Division, Department of Advanced Oral Sciences and Therapeutics, University of Maryland School of Dentistry, Baltimore, Maryland, USA
| | - Mary Anne S Melo
- PhD Program in Dental Biomedical Sciences, University of Maryland School of Dentistry, Baltimore, Maryland, USA.,Division of Operative Dentistry, Department of General Dentistry, University of Maryland School of Dentistry, Baltimore, Maryland, USA
| |
Collapse
|
11
|
Sabino CP, Wainwright M, Ribeiro MS, Sellera FP, Dos Anjos C, Baptista MDS, Lincopan N. Global priority multidrug-resistant pathogens do not resist photodynamic therapy. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2020; 208:111893. [PMID: 32446039 DOI: 10.1016/j.jphotobiol.2020.111893] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 05/04/2020] [Accepted: 05/08/2020] [Indexed: 01/08/2023]
Abstract
Microbial drug-resistance demands immediate implementation of novel therapeutic strategies. Antimicrobial photodynamic therapy (aPDT) combines the administration of a photosensitizer (PS) compound with low-irradiance light to induce photochemical reactions that yield reactive oxygen species (ROS). Since ROS react with nearly all biomolecules, aPDT offers a powerful multitarget method to avoid selection of drug-resistant strains. In this study, we assayed photodynamic inactivation under a standardized method, combining methylene blue (MB) as PS and red light, against global priority pathogens. The species tested include Acinetobacter baumannii, Klebsiella aerogenes, Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa, Enterococcus faecium, Enterococcus faecalis, Staphylococcus aureus, Candida albicans and Cryptococcus neoformans. Our strain collection presents resistance to all tested antimicrobials (>50). All drug-resistant strains were compared to their drug-sensitive counterparts. Regardless of resistance phenotype, MB-aPDT presented species-specific dose-response kinetics. More than 5log10 reduction was observed within less than 75 s of illumination for A. baumannii, E. coli, E. faecium, E. faecalis and S. aureus and within less than 7 min for K. aerogenes, K. pneumoniae, P. aeruginosa, C. albicans and C. neoformans. No signs of correlations in between drug-resistance profiles and aPDT sensitivity were observed. Therefore, MB-aPDT can provide effective therapeutic protocols for a very broad spectrum of pathogens. Hence, we believe that this study represents a very important step to bring aPDT closer to implementation into mainstream medical practices.
Collapse
Affiliation(s)
- Caetano Padial Sabino
- BioLambda, Scientific and Commercial LTD, São Paulo, SP, Brazil.; Department of Clinical Analysis, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil..
| | - Mark Wainwright
- School of Pharmacy & Biomolecular Sciences, Liverpool John Moores University, Liverpool, UK
| | - Martha Simões Ribeiro
- Center for Lasers and Applications, Nuclear, and Energy Research Institute, National Commission for Nuclear Energy, São Paulo, SP, Brazil
| | - Fábio Parra Sellera
- Department of Internal Medicine, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil
| | - Carolina Dos Anjos
- Department of Internal Medicine, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil
| | | | - Nilton Lincopan
- Department of Clinical Analysis, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil.; Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
12
|
Garg N, Saroy K. Interactive effects of polyamines and arbuscular mycorrhiza in modulating plant biomass, N 2 fixation, ureide, and trehalose metabolism in Cajanus cajan (L.) Millsp. genotypes under nickel stress. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:3043-3064. [PMID: 31838702 DOI: 10.1007/s11356-019-07300-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 12/04/2019] [Indexed: 05/27/2023]
Abstract
Nickel (Ni) is an essential micronutrient but considered toxic for plant growth when present in excess in the soil. Polyamines (PAs) and arbuscular mycorrhiza (AM) play key roles in alleviating metal toxicity in plants. Present study compared the roles of AM and PAs in improving rhizobial symbiosis, ureide, and trehalose (Tre) metabolism under Ni stress in Cajanus cajan (pigeon pea) genotypes (Pusa 2001, AL 201). The results documented significant negative impacts of Ni on plant biomass, especially roots, more in AL 201 than Pusa 2001. Symbiotic efficiency with Rhizobium and AM declined under Ni stress, resulting in reduced AM colonization, N2 fixation, and ureide biosynthesis. This decline was proportionate to increased Ni uptake in roots and nodules. Put-reduced Ni uptake improved plant growth and functional efficiency of nodules and ureides synthesis, with higher positive effects than other PAs. However, AM inoculations were most effective in enhancing nodulation, nitrogen fixing potential, and Tre synthesis under Ni toxicity. Combined applications of AM with respective PAs, especially +Put+AM, were highly beneficial in alleviating Ni-induced nodule senescence by arresting leghemoglobin degradation and improving functional efficiency of nodules by boosting Tre metabolism, especially in Pusa 2001. The study suggested use of Put along with AM as a promising approach in imparting Ni tolerance to pigeon pea plants.
Collapse
Affiliation(s)
- Neera Garg
- Department of Botany, Panjab University, Chandigarh, 160014, India.
| | - Kiran Saroy
- Department of Botany, Panjab University, Chandigarh, 160014, India
| |
Collapse
|
13
|
Marozienė A, Lesanavičius M, Davioud-Charvet E, Aliverti A, Grellier P, Šarlauskas J, Čėnas N. Antiplasmodial Activity of Nitroaromatic Compounds: Correlation with Their Reduction Potential and Inhibitory Action on Plasmodium falciparum Glutathione Reductase. Molecules 2019; 24:molecules24244509. [PMID: 31835450 PMCID: PMC6943496 DOI: 10.3390/molecules24244509] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 11/21/2019] [Accepted: 12/04/2019] [Indexed: 02/02/2023] Open
Abstract
With the aim to clarify the mechanism(s) of action of nitroaromatic compounds against the malaria parasite Plasmodium falciparum, we examined the single-electron reduction by P. falciparum ferredoxin:NADP+ oxidoreductase (PfFNR) of a series of nitrofurans and nitrobenzenes (n = 23), and their ability to inhibit P. falciparum glutathione reductase (PfGR). The reactivity of nitroaromatics in PfFNR-catalyzed reactions increased with their single-electron reduction midpoint potential (E17). Nitroaromatic compounds acted as non- or uncompetitive inhibitors towards PfGR with respect to NADPH and glutathione substrates. Using multiparameter regression analysis, we found that the in vitro activity of these compounds against P. falciparum strain FcB1 increased with their E17 values, octanol/water distribution coefficients at pH 7.0 (log D), and their activity as PfGR inhibitors. Our data demonstrate that both factors, the ease of reductive activation and the inhibition of PfGR, are important in the antiplasmodial in vitro activity of nitroaromatics. To the best of our knowledge, this is the first quantitative demonstration of this kind of relationship. No correlation between antiplasmodial activity and ability to inhibit human erythrocyte GR was detected in tested nitroaromatics. Our data suggest that the efficacy of prooxidant antiparasitic agents may be achieved through their combined action, namely inhibition of antioxidant NADPH:disulfide reductases, and the rapid reduction by single-electron transferring dehydrogenases-electrontransferases.
Collapse
Affiliation(s)
- Audronė Marozienė
- Department of Xenobiotics Biochemistry, Institute of Biochemistry of Vilnius University, Saulėtekio 7, LT-10257 Vilnius, Lithuania; (A.M.); (M.L.); (J.Š.)
| | - Mindaugas Lesanavičius
- Department of Xenobiotics Biochemistry, Institute of Biochemistry of Vilnius University, Saulėtekio 7, LT-10257 Vilnius, Lithuania; (A.M.); (M.L.); (J.Š.)
| | - Elisabeth Davioud-Charvet
- UMR7042 CNRS-Unistra-UHA, Laboratoire d’Innovation Moléculaire et Applications (LIMA), Bioorganic and Medicinal Chemistry Team, European School of Chemistry, Polymers and Materials, 25 rue Becquerel, F-67087 Strasbourg, France;
| | - Alessandro Aliverti
- Department of Biosciences, Universita degli Studi di Milano, via Celoria 26, I-20133 Milano, Italy;
| | - Philippe Grellier
- MCAM, UMR7245, Museum National d’Histoire Naturelle, CNRS, 61 rue Buffon, F-75231 Paris CEDEX 05, France;
| | - Jonas Šarlauskas
- Department of Xenobiotics Biochemistry, Institute of Biochemistry of Vilnius University, Saulėtekio 7, LT-10257 Vilnius, Lithuania; (A.M.); (M.L.); (J.Š.)
| | - Narimantas Čėnas
- Department of Xenobiotics Biochemistry, Institute of Biochemistry of Vilnius University, Saulėtekio 7, LT-10257 Vilnius, Lithuania; (A.M.); (M.L.); (J.Š.)
- Correspondence: ; Tel.: +370-5-223-4392
| |
Collapse
|
14
|
Guirao-Abad JP, Pujante V, Sánchez-Fresneda R, Yagüe G, Argüelles JC. Sensitivity of the Candida albicans trehalose-deficient mutants tps1Δ and tps2Δ to amphotericin B and micafungin. J Med Microbiol 2019; 68:1479-1488. [DOI: 10.1099/jmm.0.001053] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Affiliation(s)
| | - Vanessa Pujante
- Área de Microbiología, Facultad de Biología, Universidad de Murcia, E-30100, Spain
| | | | - Genoveva Yagüe
- Servicio de Microbiología Clínica, Hospital Universitario Virgen de la Arrixaca, IMIB, Murcia, Spain
| | | |
Collapse
|
15
|
Shimamura S, Miyazaki T, Tashiro M, Takazono T, Saijo T, Yamamoto K, Imamura Y, Izumikawa K, Yanagihara K, Kohno S, Mukae H. Autophagy-Inducing Factor Atg1 Is Required for Virulence in the Pathogenic Fungus Candida glabrata. Front Microbiol 2019; 10:27. [PMID: 30761093 PMCID: PMC6362428 DOI: 10.3389/fmicb.2019.00027] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2018] [Accepted: 01/09/2019] [Indexed: 01/09/2023] Open
Abstract
Candida glabrata is one of the leading causes of candidiasis and serious invasive infections in hosts with weakened immune systems. C. glabrata is a haploid budding yeast that resides in healthy hosts. Little is known about the mechanisms of C. glabrata virulence. Autophagy is a ‘self-eating’ process developed in eukaryotes to recycle molecules for adaptation to various environments. Autophagy is speculated to play a role in pathogen virulence by supplying sources of essential proteins for survival in severe host environments. Here, we investigated the effects of defective autophagy on C. glabrata virulence. Autophagy was induced by nitrogen starvation and hydrogen peroxide (H2O2) in C. glabrata. A mutant strain lacking CgAtg1, an autophagy-inducing factor, was generated and confirmed to be deficient for autophagy. The Cgatg1Δ strain was sensitive to nitrogen starvation and H2O2, died rapidly in water without any nutrients, and showed high intracellular ROS levels compared with the wild-type strain and the CgATG1-reconstituted strain in vitro. Upon infecting mouse peritoneal macrophages, the Cgatg1Δ strain showed higher mortality from phagocytosis by macrophages. Finally, in vivo experiments were performed using two mouse models of disseminated candidiasis and intra-abdominal candidiasis. The Cgatg1Δ strain showed significantly decreased CFUs in the organs of the two mouse models. These results suggest that autophagy contributes to C. glabrata virulence by conferring resistance to unstable nutrient environments and immune defense of hosts, and that Atg1 is a novel fitness factor in Candida species.
Collapse
Affiliation(s)
- Shintaro Shimamura
- Department of Respiratory Medicine, Nagasaki University Hospital, Nagasaki, Japan
| | - Taiga Miyazaki
- Department of Respiratory Medicine, Nagasaki University Hospital, Nagasaki, Japan.,Department of Infectious Diseases, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Masato Tashiro
- Department of Infectious Diseases, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Takahiro Takazono
- Department of Respiratory Medicine, Nagasaki University Hospital, Nagasaki, Japan.,Department of Infectious Diseases, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Tomomi Saijo
- Department of Respiratory Medicine, Nagasaki University Hospital, Nagasaki, Japan
| | - Kazuko Yamamoto
- Department of Respiratory Medicine, Nagasaki University Hospital, Nagasaki, Japan
| | - Yoshifumi Imamura
- Department of Respiratory Medicine, Nagasaki University Hospital, Nagasaki, Japan
| | - Koichi Izumikawa
- Department of Infectious Diseases, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Katsunori Yanagihara
- Department of Laboratory Medicine, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Shigeru Kohno
- Department of Respiratory Medicine, Nagasaki University Hospital, Nagasaki, Japan
| | - Hiroshi Mukae
- Department of Respiratory Medicine, Nagasaki University Hospital, Nagasaki, Japan
| |
Collapse
|
16
|
Clinical and Microbiological Characteristics of Candida guilliermondii and Candida fermentati. Antimicrob Agents Chemother 2018; 62:AAC.02528-17. [PMID: 29581115 DOI: 10.1128/aac.02528-17] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Accepted: 03/15/2018] [Indexed: 11/20/2022] Open
Abstract
A total of 46 clinical isolates of Candida guilliermondii and Candida famata were reidentified genetically, resulting in 27 C. guilliermondii and 12 Candida fermentati strains. The majority of C. guilliermondii strains, but not C. fermentati strains, were isolated from blood cultures. C. fermentati was more sensitive to antifungals, hydrogen peroxide, and killing by murine macrophages than was C. guilliermondii The C. guilliermondii isolates were echinocandin susceptible in vitro but resistant to micafungin in a murine model of invasive candidiasis.
Collapse
|
17
|
Sun Z, Zhou S, Qiu H, Gu Y, Zhao Y. A series of water-soluble photosensitizers based on 3-cinnamoylcoumarin forin vitroantimicrobial photodynamic inactivation. RSC Adv 2018; 8:17073-17078. [PMID: 35539218 PMCID: PMC9080500 DOI: 10.1039/c8ra02557f] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2018] [Accepted: 04/19/2018] [Indexed: 11/21/2022] Open
Abstract
Three cationic PSs (M3–M5) exhibited equivalent photodynamic inactivation (PDI) efficacies to MRSA andA. baumannii, whileM4andM5showed significantly higher PDI toC. albicans, compared to methylene blue, indicating their large potentials on PDI.
Collapse
Affiliation(s)
- Zhiyuan Sun
- Technical Institute of Physics and Chemistry
- Chinese Academy of Sciences
- Beijing 100190
- P. R. China
- University of Chinese Academy of Sciences
| | - Shaona Zhou
- Department of Laser Medicine
- Chinese PLA General Hospital
- Beijing
- P. R. China
| | - Haixia Qiu
- Department of Laser Medicine
- Chinese PLA General Hospital
- Beijing
- P. R. China
| | - Ying Gu
- Department of Laser Medicine
- Chinese PLA General Hospital
- Beijing
- P. R. China
| | - Yuxia Zhao
- Technical Institute of Physics and Chemistry
- Chinese Academy of Sciences
- Beijing 100190
- P. R. China
| |
Collapse
|
18
|
Singhal U, Khanuja M, Prasad R, Varma A. Impact of Synergistic Association of ZnO-Nanorods and Symbiotic Fungus Piriformospora indica DSM 11827 on Brassica oleracea var. botrytis (Broccoli). Front Microbiol 2017; 8:1909. [PMID: 29089926 PMCID: PMC5651031 DOI: 10.3389/fmicb.2017.01909] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2017] [Accepted: 09/19/2017] [Indexed: 01/15/2023] Open
Abstract
In the present work, novel nanotool called 'nano-embedded fungus' formed by impact of synergistic association of ZnO-nanorods and fungus Piriformospora indica DSM 11827, for growth of Brassica oleracea var. botrytis (Broccoli) is reported. ZnO-nanorods were synthesized by mechanical assisted thermal decomposition process and characterized by scanning electron microscopy (SEM) for morphology, X-ray diffraction for structural studies and UV-vis absorption spectroscopy for band gap determination. Nanoembedded fungus is prepared by optimizing ZnO-nanorods concentration (500 ppm) which resulted in the increased biomass of P. indica, as confirmed by dry weight method, spore count, spread plate and microscopy techniques viz. SEM and confocal microscopy. Enhancement in B. oleracea var. botrytis is reported on treatment with nanoembedded fungus. According to the authors, this is the first holistic study focusing on the impact of ZnO-nanorods in the enhancement of fungal symbiont for enhanced biomass productivity of B. oleracea plant.
Collapse
Affiliation(s)
- Uma Singhal
- Amity Institute of Microbial Technology, Amity University, Noida, India
| | - Manika Khanuja
- Centre for Nanoscience and Nanotechnology, Jamia Millia Islamia, New Delhi, India
| | - Ram Prasad
- Amity Institute of Microbial Technology, Amity University, Noida, India
| | - Ajit Varma
- Amity Institute of Microbial Technology, Amity University, Noida, India
| |
Collapse
|
19
|
Urrialde V, Alburquerque B, Guirao-Abad JP, Pla J, Argüelles JC, Alonso-Monge R. Arsenic inorganic compounds cause oxidative stress mediated by the transcription factor PHO4 in Candida albicans. Microbiol Res 2017; 203:10-18. [DOI: 10.1016/j.micres.2017.06.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 05/08/2017] [Accepted: 06/14/2017] [Indexed: 10/19/2022]
|
20
|
Guirao-Abad JP, Sánchez-Fresneda R, Alburquerque B, Hernández JA, Argüelles JC. ROS formation is a differential contributory factor to the fungicidal action of Amphotericin B and Micafungin in Candida albicans. Int J Med Microbiol 2017; 307:241-248. [PMID: 28412040 DOI: 10.1016/j.ijmm.2017.03.005] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Revised: 02/14/2017] [Accepted: 03/12/2017] [Indexed: 01/02/2023] Open
Abstract
The hypothetical role played by the intracellular formation of reactive oxygen species (ROS) in the fungicidal action carried out by Amphotericin B (AmB) and Micafungin (MF) was examined in Candida albicans, which remains the most prevalent fungal pathogen. The clinical MICs for MF and AmB were 0.016 and 0.12μg/ml, respectively. Whereas AmB (0.5-1.0×MIC) induced a marked production of intracellular ROS accompanied by a high degree of cell killing in the C. albicans SC5314 strain, the fungicidal effect of MF was still operative, but ROS generation was slight. Preincubation with thiourea suppressed the formation of ROS and caused a marked increase in cell viability, regardless of the antifungal used. Simultaneous measurement of several well established antioxidant enzymes (catalase, glutathione reductase and superoxide dismutase) revealed strong AmB-induced activation of the three enzymatic activities, whereas MF only had a weak stimulating effect. Likewise, AmB but not MF promoted a conspicuous rise in the mitochondrial membrane potential together with the intracellular synthesis of trehalose, the non-reducing disaccharide which acts as a specific protector against oxidative stress in C. albicans. Optical and electronic microscopy analysis revealed a significant damage to cell integrity and structural alterations caused by both antifungals. Taken together, our results strongly suggest that the induction of an internal oxidative stress in C. albicans through the accumulation of ROS is a preferential contributory factor to the antifungal action of a widely used polyene (AmB) but not of MF (echinocandin).
Collapse
Affiliation(s)
- José P Guirao-Abad
- Área de Microbiología, Facultad de Biología, Universidad de Murcia, Spain
| | - Ruth Sánchez-Fresneda
- Área de Microbiología, Facultad de Biología, Universidad de Murcia, Spain; IMIB-Arrixaca, 30100 Murcia, Spain
| | - Begoña Alburquerque
- Área de Microbiología, Facultad de Biología, Universidad de Murcia, Spain; IMIB-Arrixaca, 30100 Murcia, Spain
| | - José A Hernández
- Grupo de Biotecnología de Frutales, Departamento de Mejora Vegetal. Centro de Edafología y Biología Aplicada del Segura (C.S.I.C.), Apdo 164, E-30100 Murcia, Spain
| | - Juan-Carlos Argüelles
- Área de Microbiología, Facultad de Biología, Universidad de Murcia, Spain; IMIB-Arrixaca, 30100 Murcia, Spain.
| |
Collapse
|
21
|
Maliszewska I, Lisiak B, Popko K, Matczyszyn K. Enhancement of the Efficacy of Photodynamic Inactivation of Candida albicans with the Use of Biogenic Gold Nanoparticles. Photochem Photobiol 2017; 93:1081-1090. [PMID: 28191638 DOI: 10.1111/php.12733] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Accepted: 12/09/2016] [Indexed: 12/12/2022]
Abstract
This study reports on successful photodynamic inactivation of planktonic and biofilm cells of Candida albicans using Rose Bengal (RB) in combination with biogenic gold nanoparticles synthesized by the cell-free filtrate of Penicillium funiculosum BL1 strain. Monodispersed colloidal gold nanoparticles coated with proteins were characterized by a number of techniques including SEM-EDS, TEM, UV-Vis absorption and fluorescence spectroscopy, as well as Fourier transform infrared spectroscopy to be 24 ± 3 nm spheres. A Xe lamp (output power of 20mW, delivering intensity of 53 mW cm-2 ) was used as a light source to study the effects of RB alone, the gold nanoparticles alone and the RB-gold nanoparticle mixture on the viability of C. albicans cells. The most effective reduction in the number of planktonic cells was found after 30 min of Xe lamp light irradiation (95.4 J cm-2 ) and was 4.89 log10 that is 99.99% kill for the mixture of RB with gold nanoparticles compared with 2.19 log10 or 99.37% for RB alone. The biofilm cells were more resistant to photodynamic inactivation, and the highest effective reduction in the number of cells was found after 30 min of irradiation in the presence of the RB-gold nanoparticles mixture and was 1.53 log10 , that is 97.04% kill compared with 0.6 log10 or 74.73% for RB. The probable mechanism of enhancement of RB-mediated photodynamic fungicidal efficacy against C. albicans in the presence of biogenic gold nanoparticles is discussed leading to the conclusion that this process may have a multifaceted character.
Collapse
Affiliation(s)
- Irena Maliszewska
- Division of Medicinal Chemistry and Microbiology, Faculty of Chemistry, Wroclaw University of Science and Technology, Wroclaw, Poland
| | - Barbara Lisiak
- Division of Medicinal Chemistry and Microbiology, Faculty of Chemistry, Wroclaw University of Science and Technology, Wroclaw, Poland
| | - Katarzyna Popko
- Division of Medicinal Chemistry and Microbiology, Faculty of Chemistry, Wroclaw University of Science and Technology, Wroclaw, Poland
| | - Katarzyna Matczyszyn
- Advanced Materials Engineering and Modelling Group, Faculty of Chemistry, Wroclaw University of Science and Technology, Wroclaw, Poland
| |
Collapse
|
22
|
Central Role of the Trehalose Biosynthesis Pathway in the Pathogenesis of Human Fungal Infections: Opportunities and Challenges for Therapeutic Development. Microbiol Mol Biol Rev 2017; 81:81/2/e00053-16. [PMID: 28298477 DOI: 10.1128/mmbr.00053-16] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Invasive fungal infections cause significant morbidity and mortality in part due to a limited antifungal drug arsenal. One therapeutic challenge faced by clinicians is the significant host toxicity associated with antifungal drugs. Another challenge is the fungistatic mechanism of action of some drugs. Consequently, the identification of fungus-specific drug targets essential for fitness in vivo remains a significant goal of medical mycology research. The trehalose biosynthetic pathway is found in a wide variety of organisms, including human-pathogenic fungi, but not in humans. Genes encoding proteins involved in trehalose biosynthesis are mechanistically linked to the metabolism, cell wall homeostasis, stress responses, and virulence of Candida albicans, Cryptococcus neoformans, and Aspergillus fumigatus. While there are a number of pathways for trehalose production across the tree of life, the TPS/TPP (trehalose-6-phosphate synthase/trehalose-6-phosphate phosphatase) pathway is the canonical pathway found in human-pathogenic fungi. Importantly, data suggest that proteins involved in trehalose biosynthesis play other critical roles in fungal metabolism and in vivo fitness that remain to be fully elucidated. By further defining the biology and functions of trehalose and its biosynthetic pathway components in pathogenic fungi, an opportunity exists to leverage this pathway as a potent antifungal drug target. The goal of this review is to cover the known roles of this important molecule and its associated biosynthesis-encoding genes in the human-pathogenic fungi studied to date and to employ these data to critically assess the opportunities and challenges facing development of this pathway as a therapeutic target.
Collapse
|
23
|
Tongul B, Tarhan L. Oxidant and antioxidant status in Saccharomyces cerevisiae exposed to antifungal ketoconazole. Process Biochem 2016. [DOI: 10.1016/j.procbio.2016.08.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
24
|
Nishikawa H, Miyazaki T, Nakayama H, Minematsu A, Yamauchi S, Yamashita K, Takazono T, Shimamura S, Nakamura S, Izumikawa K, Yanagihara K, Kohno S, Mukae H. Roles of vacuolar H+-ATPase in the oxidative stress response of Candida glabrata. FEMS Yeast Res 2016; 16:fow054. [PMID: 27370212 DOI: 10.1093/femsyr/fow054] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/23/2016] [Indexed: 11/13/2022] Open
Abstract
Vacuolar H(+)-ATPase (V-ATPase) is responsible for the acidification of eukaryotic intracellular compartments and plays an important role in oxidative stress response (OSR), but its molecular bases are largely unknown. Here, we investigated how V-ATPase is involved in the OSR by using a strain lacking VPH2, which encodes an assembly factor of V-ATPase, in the pathogenic fungus Candida glabrata The loss of Vph2 resulted in increased H2O2 sensitivity and intracellular reactive oxygen species (ROS) level independently of mitochondrial functions. The Δvph2 mutant also displayed growth defects under alkaline conditions accompanied by the accumulation of intracellular ROS and these phenotypes were recovered in the presence of the ROS scavenger N-acetyl-l-cysteine. Both expression and activity levels of mitochondrial manganese superoxide dismutase (Sod2) and catalase (Cta1) were decreased in the Δvph2 mutant. Phenotypic analyses of strains lacking and overexpressing these genes revealed that Sod2 and Cta1 play a predominant role in endogenous and exogenous OSR, respectively. Furthermore, supplementation of copper and iron restored the expression of SOD2 specifically in the Δvph2 mutant, suggesting that the homeostasis of intracellular cupper and iron levels maintained by V-ATPase was important for the Sod2-mediated OSR. This report demonstrates novel roles of V-ATPase in the OSR in C. glabrata.
Collapse
Affiliation(s)
- Hiroshi Nishikawa
- Second Department of Internal Medicine, Nagasaki University, Nagasaki 852-8501, Japan Department of Respiratory Medicine, Unit of Translational Medicine, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki 852-8501, Japan
| | - Taiga Miyazaki
- Second Department of Internal Medicine, Nagasaki University, Nagasaki 852-8501, Japan Department of Respiratory Medicine, Unit of Translational Medicine, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki 852-8501, Japan Division of Infectious Diseases, Department of Molecular Microbiology and Immunology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki 852-8501, Japan
| | - Hironobu Nakayama
- Faculty of Pharmaceutical Sciences, Suzuka University of Medical Sciences, Suzuka, Mie 513-8670, Japan
| | - Asuka Minematsu
- Second Department of Internal Medicine, Nagasaki University, Nagasaki 852-8501, Japan
| | - Shunsuke Yamauchi
- Second Department of Internal Medicine, Nagasaki University, Nagasaki 852-8501, Japan Department of Laboratory Medicine, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki 852-8501, Japan
| | - Kohei Yamashita
- Second Department of Internal Medicine, Nagasaki University, Nagasaki 852-8501, Japan
| | - Takahiro Takazono
- Second Department of Internal Medicine, Nagasaki University, Nagasaki 852-8501, Japan Division of Infectious Diseases, Department of Molecular Microbiology and Immunology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki 852-8501, Japan
| | - Shintaro Shimamura
- Second Department of Internal Medicine, Nagasaki University, Nagasaki 852-8501, Japan
| | - Shigeki Nakamura
- Second Department of Internal Medicine, Nagasaki University, Nagasaki 852-8501, Japan
| | - Koichi Izumikawa
- Division of Infectious Diseases, Department of Molecular Microbiology and Immunology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki 852-8501, Japan
| | - Katsunori Yanagihara
- Department of Laboratory Medicine, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki 852-8501, Japan
| | - Shigeru Kohno
- Second Department of Internal Medicine, Nagasaki University, Nagasaki 852-8501, Japan
| | - Hiroshi Mukae
- Second Department of Internal Medicine, Nagasaki University, Nagasaki 852-8501, Japan Department of Respiratory Medicine, Unit of Translational Medicine, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki 852-8501, Japan
| |
Collapse
|
25
|
Trehalose rescues glial cell dysfunction in striatal cultures from HD R6/1 mice at early postnatal development. Mol Cell Neurosci 2016; 74:128-45. [DOI: 10.1016/j.mcn.2016.05.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2015] [Revised: 03/29/2016] [Accepted: 05/24/2016] [Indexed: 12/31/2022] Open
|
26
|
Kotzybik K, Gräf V, Kugler L, Stoll DA, Greiner R, Geisen R, Schmidt-Heydt M. Influence of Different Nanomaterials on Growth and Mycotoxin Production of Penicillium verrucosum. PLoS One 2016; 11:e0150855. [PMID: 26974550 PMCID: PMC4790900 DOI: 10.1371/journal.pone.0150855] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Accepted: 02/19/2016] [Indexed: 01/17/2023] Open
Abstract
Nanoparticles are ubiquitous in the environment. They originate from anthropogenic or natural sources or they are intentionally produced for different purposes. There exist manifold applications of nanoparticles in modern life leading unavoidably to a confrontation and interaction between nanomaterial and living organisms. Based on their wide distribution tending to increase steadily, the influence of particles based on silica and silver, exhibiting nominal sizes between 0.65 nm and 200 nm, on the physiology of the mycotoxigenic filamentous fungus Penicillium verrucosum was analyzed. The applied concentration and time-point, the size and the chemical composition of the particles was shown to have a strong influence on growth and mycotoxin biosynthesis. On microscopic scale it could be shown that silver nanoparticles attach to the mycelial surface. Moreover, silver nanoparticles with 0.65 nm and 5 nm in size were shown to internalize within the cell, form agglomerates in the cytoplasm and associate to cell organelles.
Collapse
Affiliation(s)
- Kathrin Kotzybik
- Department of Safety and Quality of Fruits and Vegetables, Federal Research Institute of Nutrition and Food, Max Rubner-Institut, Karlsruhe, Germany
| | - Volker Gräf
- Department of Food Technology and Bioprocess Engineering, Federal Research Institute of Nutrition and Food, Max Rubner-Institut, Karlsruhe, Germany
| | - Lena Kugler
- Department of Safety and Quality of Fruits and Vegetables, Federal Research Institute of Nutrition and Food, Max Rubner-Institut, Karlsruhe, Germany
| | - Dominic A. Stoll
- Department of Safety and Quality of Fruits and Vegetables, Federal Research Institute of Nutrition and Food, Max Rubner-Institut, Karlsruhe, Germany
| | - Ralf Greiner
- Department of Food Technology and Bioprocess Engineering, Federal Research Institute of Nutrition and Food, Max Rubner-Institut, Karlsruhe, Germany
| | - Rolf Geisen
- Department of Safety and Quality of Fruits and Vegetables, Federal Research Institute of Nutrition and Food, Max Rubner-Institut, Karlsruhe, Germany
| | - Markus Schmidt-Heydt
- Department of Safety and Quality of Fruits and Vegetables, Federal Research Institute of Nutrition and Food, Max Rubner-Institut, Karlsruhe, Germany
| |
Collapse
|
27
|
Sánchez-Fresneda R, Guirao-Abad JP, Martinez-Esparza M, Maicas S, Valentín E, Argüelles JC. Homozygous deletion of ATC1 and NTC1 genes in Candida parapsilosis abolishes trehalase activity and affects cell growth, sugar metabolism, stress resistance, infectivity and biofilm formation. Fungal Genet Biol 2015; 85:45-57. [PMID: 26529381 DOI: 10.1016/j.fgb.2015.10.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Revised: 10/26/2015] [Accepted: 10/31/2015] [Indexed: 12/16/2022]
Abstract
A double homozygous atc1Δ/atc1Δ/ntc1Δ/ntc1Δ mutant (atc1Δ/ntc1Δ KO) was constructed in the pathogen opportunistic yeast Candida parapsilosis by disruption of the two chromosomal alleles coding for NTC1 gene (encoding a neutral trehalase) in a Cpatc1Δ/atc1Δ background (atc1Δ KO strain, deficient in acid trehalase). The Cpatc1Δ/ntc1Δ KO mutant failed to counteract the inability of Cpatc1Δ cells to metabolize exogenous trehalose and showed a similar growth pattern on several monosaccharides and disaccharides. However, upon prolonged incubation in either rich medium (YPD) or nutrient-starved medium the viability of Cpatc1Δ cells exhibited a sensitive phenotype, which was augmented by further CpNTC1/NTC1 disruption. Furthermore, Cpatc1Δ/ntc1Δ KO cells had difficulty in resuming active growth in fresh YPD. This homozygous mutant also lacked any in vitro measurable trehalase activity, whether acid or neutral, suggesting that a single gene codes for each enzyme. By contrast, in Cpatc1Δ/ntc1Δ KO strain the resistance to oxidative and heat stress displayed by atc1Δ mutant was suppressed. Cpatc1Δ/ntc1Δ KO cells showed a significant decrease in virulence as well as in the capacity to form biofilms. These results point to a major role for acid trehalase (Atc1p) in the pathobiology of C. parapsilosis, whereas the activity of neutral trehalase can only partially counteract Atc1p deficiency. They also support the use of ATC1 and NTC1 genes as interesting antifungal targets.
Collapse
Affiliation(s)
- Ruth Sánchez-Fresneda
- Área de Microbiología, Facultad de Biología, Universidad de Murcia, 30100 Murcia, Spain; IMIB-Arrixaca, Spain; Departamento de Microbiología y Ecología, Facultad de Farmacia, Universidad de Valencia, 46100 Burjassot, Valencia, Spain
| | - José P Guirao-Abad
- Área de Microbiología, Facultad de Biología, Universidad de Murcia, 30100 Murcia, Spain; IMIB-Arrixaca, Spain
| | - María Martinez-Esparza
- Departamento de Bioquímica, Biología Molecular (B) e Inmunología, Facultad de Medicina, Universidad de Murcia, 30100 Murcia, Spain; IMIB-Arrixaca, Spain
| | - Sergi Maicas
- Departamento de Microbiología y Ecología, Facultad de Biología, Universidad de Valencia, 46100 Burjassot, Valencia, Spain
| | - Eulogio Valentín
- Departamento de Microbiología y Ecología, Facultad de Farmacia, Universidad de Valencia, 46100 Burjassot, Valencia, Spain
| | - Juan-Carlos Argüelles
- Área de Microbiología, Facultad de Biología, Universidad de Murcia, 30100 Murcia, Spain; IMIB-Arrixaca, Spain.
| |
Collapse
|
28
|
Mina S, Staerck C, d'Almeida SM, Marot A, Delneste Y, Calenda A, Tabiasco J, Bouchara JP, Fleury MJJ. Identification of Scedosporium boydii catalase A1 gene, a reactive oxygen species detoxification factor highly expressed in response to oxidative stress and phagocytic cells. Fungal Biol 2015; 119:1322-1333. [PMID: 26615753 DOI: 10.1016/j.funbio.2015.09.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Revised: 09/10/2015] [Accepted: 09/24/2015] [Indexed: 01/27/2023]
Abstract
Scedosporium boydii is an opportunistic filamentous fungus which may be responsible for a large variety of infections in both immunocompetent and immunocompromised individuals. This fungus belongs to the Scedosporium apiospermum species complex which usually ranks second among the filamentous fungi colonizing the airways of patients with cystic fibrosis (CF). Species of the S. apiospermum complex are able to chronically colonize the CF airways suggesting pathogenic mechanisms allowing persistence and growth of these fungi in the respiratory tract. Few putative virulence factors have been purified and characterized so far in the S. apiospermum complex including a cytosolic Cu,Zn-superoxide dismutase (SOD) and a monofunctional catalase (catalase A1). Upon microbial infection, host phagocytes release reactive oxygen species (ROS), such as hydrogen peroxide, as part of the antimicrobial response. Catalases are known to protect pathogens against ROS by degradation of the hydrogen peroxide. Here, we identified the S. boydii catalase A1 gene (CATA1) and investigated its expression in response to the environmental conditions encountered in the CF airways and to the oxidative stress. Results showed that S. boydii CATA1 gene expression is not affected by hypoxia, hypercapnia or pH changes. In contrast, CATA1 gene was overexpressed in response to a chemically induced oxidative stress with a relative gene expression 37-fold higher in the presence of 250 μM H(2)O(2), 20-fold higher with 250 μM menadione and 5-fold higher with 2 mM paraquat. Moreover, S. boydii CATA1 gene expression progressively increased upon exposure to activated THP-1-derived macrophages, reaching a maximum after 12 h (26 fold). Activated HL60-derived neutrophils and activated human peripheral blood neutrophils more rapidly induced S. boydii CATA1 gene overexpression, a maximum gene expression level being reached at 75 min (17 fold) and 60 min (15 fold), respectively. In contrast expression of the gene encoding the Cu,Zn-SOD (SODC gene) was not affected by H(2)O(2), menadione, paraquat or in co-culture with phagocytic cells. These results suggest that S. boydii CATA1 gene is highly stimulated by the oxidative burst response whereas SODC gene is constitutively expressed.
Collapse
Affiliation(s)
- Sara Mina
- L'UNAM Université, Université d'Angers, Groupe d'Etude des Interactions Hôte-Pathogène, UPRES EA 3142, Angers, France
| | - Cindy Staerck
- L'UNAM Université, Université d'Angers, Groupe d'Etude des Interactions Hôte-Pathogène, UPRES EA 3142, Angers, France
| | - Sènan M d'Almeida
- L'UNAM Université, Université d'Angers, Immunité Innée et Immunothérapie, Angers, France; Inserm UMR 892, Angers, France; CNRS UMR 6299, Angers, France
| | - Agnès Marot
- L'UNAM Université, Université d'Angers, Groupe d'Etude des Interactions Hôte-Pathogène, UPRES EA 3142, Angers, France
| | - Yves Delneste
- L'UNAM Université, Université d'Angers, Immunité Innée et Immunothérapie, Angers, France; Inserm UMR 892, Angers, France; CNRS UMR 6299, Angers, France; Laboratoire d'Immunologie et Allergologie, Centre Hospitalier Universitaire d'Angers, France
| | - Alphonse Calenda
- L'UNAM Université, Université d'Angers, Groupe d'Etude des Interactions Hôte-Pathogène, UPRES EA 3142, Angers, France
| | - Julie Tabiasco
- L'UNAM Université, Université d'Angers, Immunité Innée et Immunothérapie, Angers, France; Inserm UMR 892, Angers, France; CNRS UMR 6299, Angers, France
| | - Jean-Philippe Bouchara
- L'UNAM Université, Université d'Angers, Groupe d'Etude des Interactions Hôte-Pathogène, UPRES EA 3142, Angers, France; Laboratoire de Parasitologie-Mycologie, Centre Hospitalier Universitaire d'Angers, France
| | - Maxime J J Fleury
- L'UNAM Université, Université d'Angers, Groupe d'Etude des Interactions Hôte-Pathogène, UPRES EA 3142, Angers, France.
| |
Collapse
|
29
|
Ramos RS, Oliveira ML, Izaguirry AP, Vargas LM, Soares MB, Mesquita FS, Santos FW, Binelli M. The periovulatory endocrine milieu affects the uterine redox environment in beef cows. Reprod Biol Endocrinol 2015; 13:39. [PMID: 25957795 PMCID: PMC4436708 DOI: 10.1186/s12958-015-0036-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Accepted: 04/27/2015] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND In cattle, recent studies have shown positive associations between pre-ovulatory concentrations of estradiol (E2), progesterone (P4) at early diestrus and fertility. However, information on cellular and molecular mechanisms through which sex steroids regulate uterine function to support early pregnancy is lacking. Based on endometrial transcriptome data, objective was to compare function of the redox system in the bovine uterus in response to different periovulatory endocrine milieus. METHODS We employed an animal model to control growth of the pre-ovulatory follicle and subsequent corpus luteum (CL). The large follicle-large CL group (LF-LCL, N=42) presented greater levels of E2 on the day of GnRH treatment (D0; 2.94 vs. 1.27 pg/mL; P=0.0007) and P4 at slaughter on D7 (3.71 vs. 2.62 ng/mL, P=0.01), compared with the small follicle-small CL group (SF-SCL, N=41). Endometrium and uterine washings (N=9, per group) were collected for analyses of variables associated with the uterine redox system. RESULTS The SF-SCL group had lower endometrial catalase (0.5 vs. 0.79 U/mg protein, P<0.001) and glutathione peroxidase (GPx; 2.0 vs. 2.43 nmol β-nicotinamide adenine dinucleotide phosphate reduced/min/mg protein, P=0.04) activity, as well as higher lipid peroxidation (28.5 vs. 17.43 nmol malondialdehyde/mg of protein, P<0.001) and superoxide dismutase (SOD) activity (44.77 vs. 37.76 U; P=0.04). There were no differences in the endometrial reactive species (RS) or glutathione (GSH) concentrations between the groups. The uterine washing samples showed no differences in the concentrations of RS or GSH or in total SOD activity (P>0.1). Additionally, catalase, GPx4, SOD1 and SOD2 gene expression was lower in the SF-SCL group than in the LF-LCL group. CONCLUSIONS We concluded that the intrauterine environment of cows from the LF-LCL group exhibited higher antioxidant activity than that of the cows from the SF-SCL group. We speculate that uterine receptivity and fertility are associated with an optimal redox environment, such as that present in the animals in the LF-LCL group.
Collapse
Affiliation(s)
- Roney S Ramos
- Department of Animal Reproduction, School of Veterinary Medicine and Animal Science, University of São Paulo, Pirassununga, SP, 13635-900, Brazil.
| | - Milena L Oliveira
- Department of Animal Reproduction, School of Veterinary Medicine and Animal Science, University of São Paulo, Pirassununga, SP, 13635-900, Brazil.
| | - Aryele P Izaguirry
- Laboratory of Reproductive Biotechnology (Biotech), Federal University of Pampa, Uruguaiana, Brazil.
| | - Laura M Vargas
- Laboratory of Reproductive Biotechnology (Biotech), Federal University of Pampa, Uruguaiana, Brazil.
| | - Melina B Soares
- Laboratory of Reproductive Biotechnology (Biotech), Federal University of Pampa, Uruguaiana, Brazil.
| | - Fernando S Mesquita
- School of Veterinary Medicine, Federal University of Pampa, Uruguaiana, Brazil.
| | - Francielli W Santos
- Laboratory of Reproductive Biotechnology (Biotech), Federal University of Pampa, Uruguaiana, Brazil.
| | - Mario Binelli
- Department of Animal Reproduction, School of Veterinary Medicine and Animal Science, University of São Paulo, Pirassununga, SP, 13635-900, Brazil.
| |
Collapse
|
30
|
|
31
|
Khan A, Ahmad A, Ahmad Khan L, Padoa CJ, van Vuuren S, Manzoor N. Effect of two monoterpene phenols on antioxidant defense system in Candida albicans. Microb Pathog 2015; 80:50-6. [DOI: 10.1016/j.micpath.2015.02.004] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Revised: 02/09/2015] [Accepted: 02/10/2015] [Indexed: 11/25/2022]
|
32
|
Roukas T. The role of oxidative stress on carotene production by Blakeslea trispora in submerged fermentation. Crit Rev Biotechnol 2015; 36:424-33. [PMID: 25600464 DOI: 10.3109/07388551.2014.989424] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
In aerobic metabolism, reactive oxygen species (ROS) are formed during the fermentation that can cause oxidative stress in microorganisms. Microbial cells possess both enzymatic and non-enzymatic defensive systems that may protect cells from oxidative damage. The antioxidant enzymes superoxide dismutase and catalase are the two key defensive enzymes to oxidative stress. The factors that induce oxidative stress in microorganisms include butylated hydroxytoluene (BHT), hydrogen peroxide, metal ions, dissolved oxygen tension, elevated temperature, menadione, junglone, paraquat, liquid paraffin, introduction to bioreactors of shake flask inocula and synthetic medium sterilized at initial pH 11.0. Carotenes are highly unsaturated isoprene derivatives. They are used as antioxidants and as coloring agents for food products. In fungi, carotenes are derived via the mevalonate biosynthesis pathway. The key genes in carotene biosynthesis are hmgR, ipi, isoA, carG, carRA and carB. Among microorganisms, Βlakeslea trispora is the main microorganism used for the production of carotenes on the industrial scale. Currently, the synthetic medium is considered the superior substrate for the production of carotenes in a pilot plant scale. The fermentation systems used for the production of carotenes include shake flasks, stirred tank fermentor, bubble column reactor and flat panel photobioreactor. This review summarizes the oxidative stresses in microorganisms and it is focused on the current status of carotene production by B. trispora including oxidative stress induced by BHT, enhanced dissolved oxygen levels, iron ions, liquid paraffin and synthetic medium sterilized at an initial pH 11.0. The oxidative stress induced by the above factors increases significantly the production of carotenes. However, to further reduce the cost of carotene production, new biotechnological methods with higher productivity still need to be explored.
Collapse
Affiliation(s)
- Triantafyllos Roukas
- a Laboratory of Food Engineering and Processing, Department of Food Science and Technology , Aristotle University , Thessaloniki , Greece
| |
Collapse
|
33
|
Situ SF, Samia ACS. Highly efficient antibacterial iron oxide@carbon nanochains from wüstite precursor nanoparticles. ACS APPLIED MATERIALS & INTERFACES 2014; 6:20154-20163. [PMID: 25347201 DOI: 10.1021/am505744m] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
A new hydrothermal synthesis approach involving the carbonization of glucose in the presence of wüstite (FeO) nanoparticles is presented, which leads to the fabrication of rapidly acting and potent antibacterial agents based on iron oxide@carbon (IO@C) nanochains. By using nonmagnetic FeO precursor nanoparticles that slowly oxidize into the magnetic Fe3O4 crystal structure under hydrothermal conditions, we were able to prepare well-defined and short-length IO@C nanochains that are highly dispersed in aqueous media and readily interact with bacterial cells, leading to a complete loss in bacterial cell viability within short incubation times at minimal dosage. The smaller IO@C nanochains synthesized using the FeO precursor nanoparticles can reach above 2-fold enhancement in microbe-killing activity when compared to the larger nanochains fabricated directly from Fe3O4 nanoparticles. In addition, the synthesized IO@C nanochains can be easily isolated using an external magnet and be subsequently recycled to effectively eradicate Escherichia coli cells even after five separate treatment cycles.
Collapse
Affiliation(s)
- Shu F Situ
- Department of Chemistry, Case Western Reserve University , 10900 Euclid Avenue, Cleveland, Ohio 44106, United States
| | | |
Collapse
|
34
|
The production of reactive oxygen species is a universal action mechanism of Amphotericin B against pathogenic yeasts and contributes to the fungicidal effect of this drug. Antimicrob Agents Chemother 2014; 58:6627-38. [PMID: 25155595 DOI: 10.1128/aac.03570-14] [Citation(s) in RCA: 152] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Amphotericin B (AMB) is an antifungal drug that binds to ergosterol and forms pores at the cell membrane, causing the loss of ions. In addition, AMB induces the accumulation of reactive oxygen species (ROS), and although these molecules have multiple deleterious effects on fungal cells, their specific role in the action mechanism of AMB remains unknown. In this work, we studied the role of ROS in the action mechanism of AMB. We determined the intracellular induction of ROS in 44 isolates of different pathogenic yeast species (Candida albicans, Candida parapsilosis, Candida glabrata, Candida tropicalis, Candida krusei, Cryptococcus neoformans, and Cryptococcus gattii). We also characterized the production of ROS in AMB-resistant isolates. We found that AMB induces the formation of ROS in all the species tested. The inhibition of the mitochondrial respiratory chain by rotenone blocked the induction of ROS by AMB and provided protection from the killing action of the antifungal. Moreover, this phenomenon was absent in strains that displayed resistance to AMB. These strains showed an alteration in the respiration rate and mitochondrial membrane potential and also had higher catalase activity than that of the AMB-susceptible strains. Consistently, AMB failed to induce protein carbonylation in the resistant strains. Our data demonstrate that the production of ROS by AMB is a universal and important action mechanism that is correlated with the fungicidal effect and might explain the low rate of resistance to the molecule. Finally, these data provide an opportunity to design new strategies to improve the efficacy of this antifungal.
Collapse
|
35
|
Brown AJP, Brown GD, Netea MG, Gow NAR. Metabolism impacts upon Candida immunogenicity and pathogenicity at multiple levels. Trends Microbiol 2014; 22:614-22. [PMID: 25088819 PMCID: PMC4222764 DOI: 10.1016/j.tim.2014.07.001] [Citation(s) in RCA: 163] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Revised: 07/01/2014] [Accepted: 07/11/2014] [Indexed: 11/28/2022]
Abstract
Metabolism is integral to the pathogenicity of Candida albicans, a major fungal pathogen of humans. As well as providing the platform for nutrient assimilation and growth in diverse host niches, metabolic adaptation affects the susceptibility of C. albicans to host-imposed stresses and antifungal drugs, the expression of key virulence factors, and fungal vulnerability to innate immune defences. These effects, which are driven by complex regulatory networks linking metabolism, morphogenesis, stress adaptation, and cell wall remodelling, influence commensalism and infection. Therefore, current concepts of Candida-host interactions must be extended to include the impact of metabolic adaptation upon pathogenicity and immunogenicity.
Collapse
Affiliation(s)
- Alistair J P Brown
- Aberdeen Fungal Group, School of Medical Sciences, University of Aberdeen, Institute of Medical Sciences, Foresterhill, Aberdeen AB25 2ZD, UK.
| | - Gordon D Brown
- Aberdeen Fungal Group, School of Medical Sciences, University of Aberdeen, Institute of Medical Sciences, Foresterhill, Aberdeen AB25 2ZD, UK
| | - Mihai G Netea
- Departments of Medicine, Radboud University Nijmegen Medical Center, Nijmegen and Radboud Center for Infectious Diseases, Geert Grooteplein Zuid 8, 6525 GA, Nijmegen, The Netherlands
| | - Neil A R Gow
- Aberdeen Fungal Group, School of Medical Sciences, University of Aberdeen, Institute of Medical Sciences, Foresterhill, Aberdeen AB25 2ZD, UK
| |
Collapse
|
36
|
Changes in glutathione-dependent redox status and mitochondrial energetic strategies are part of the adaptive response during the filamentation process in Candida albicans. Biochim Biophys Acta Mol Basis Dis 2014; 1842:1855-69. [PMID: 25018088 DOI: 10.1016/j.bbadis.2014.07.006] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2014] [Revised: 07/04/2014] [Accepted: 07/06/2014] [Indexed: 01/05/2023]
Abstract
Candida albicans is an opportunist pathogen responsible for a large spectrum of infections, from superficial mycosis to systemic diseases called candidiasis. Its ability to grow in various morphological forms, such as unicellular budding yeast, filamentous pseudohyphae and hyphae, contributes to its survival in the diverse microenvironments it encounters in the host. During infection in vivo, C. albicans is faced with high levels of reactive oxygen species (ROS) generated by phagocytes, and the thiol-dependent redox status of the cells reflects their levels of oxidative stress. We investigated the role of glutathione during the transition between the yeast and hyphal forms of the pathogen, in relation to possible changes in mitochondrial bioenergetic pathways. Using various growth media and selective mutations affecting the filamentation process, we showed that C. albicans filamentation was always associated with a depletion of intracellular glutathione levels. Moreover, the induction of hypha formation resulted in general changes in thiol metabolism, including the oxidation of cell surface -SH groups and glutathione excretion. Metabolic adaptation involved tricarboxylic acid (TCA) cycle activation, acceleration of mitochondrial respiration and a redistribution of electron transfer pathways, with an increase in the contribution of the alternative oxidase and rotenone-insensitive dehydrogenase. Changes in redox status and apparent oxidative stress may be necessary to the shift to adaptive metabolic pathways, ensuring normal mitochondrial function and adenosine triphosphate (ATP) levels. The consumption of intracellular glutathione levels during the filamentation process may thus be the price paid by C. albicans for survival in the conditions encountered in the host.
Collapse
|
37
|
Cuéllar-Cruz M, López-Romero E, Ruiz-Baca E, Zazueta-Sandoval R. Differential response of Candida albicans and Candida glabrata to oxidative and nitrosative stresses. Curr Microbiol 2014; 69:733-9. [PMID: 25002360 DOI: 10.1007/s00284-014-0651-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2014] [Accepted: 05/17/2014] [Indexed: 10/25/2022]
Abstract
Invasive candidiasis is associated with high mortality in immunocompromised and hospitalized patients. Candida albicans is the main pathological agent followed by Candida glabrata, Candida krusei, Candida parapsilosis, and Candida tropicalis. These pathogens colonize different host tissues in humans as they are able to neutralize the reactive species generated from nitrogen and oxygen during the respiratory burst. Among the enzymatic mechanisms that Candida species have developed to protect against free radicals are enzymes with antioxidant and immunodominant functions such as flavohemoglobins, catalases, superoxide dismutases, glutathione reductases, thioredoxins, peroxidases, heat-shock proteins, and enolases. These mechanisms are under transcriptional regulation by factors such as Cta4p, Cwt1p, Yap1p, Skn7p, Msn2p, and Msn4p. However, even though it has been proposed that all Candida species have similar enzymatic systems, it has been observed that they respond differentially to various types of stress. These differential responses may explain the colonization of different organs by each species. Here, we review the enzymatic mechanisms developed by C. albicans and C. glabrata species in response to oxidative and nitrosative stresses. Lack of experimental information for other pathogenic species limits a comparative approach among different organisms.
Collapse
Affiliation(s)
- Mayra Cuéllar-Cruz
- Departamento de Biología, División de Ciencias Naturales y Exactas, Campus Guanajuato, Universidad de Guanajuato, Noria Alta S/N, C.P. 36050, Guanajuato, Mexico,
| | | | | | | |
Collapse
|
38
|
Sánchez-Fresneda R, Martínez-Esparza M, Maicas S, Argüelles JC, Valentín E. In Candida parapsilosis the ATC1 gene encodes for an acid trehalase involved in trehalose hydrolysis, stress resistance and virulence. PLoS One 2014; 9:e99113. [PMID: 24922533 PMCID: PMC4055668 DOI: 10.1371/journal.pone.0099113] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Accepted: 05/09/2014] [Indexed: 11/19/2022] Open
Abstract
An ORF named CPAR2-208980 on contig 005809 was identified by screening a Candida parapsilosis genome data base. Its 67% identity with the acid trehalase sequence from C. albicans (ATC1) led us to designate it CpATC1. Homozygous mutants that lack acid trehalase activity were constructed by gene disruption at the two CpATC1 chromosomal alleles. Phenotypic characterization showed that atc1Δ null cells were unable to grow on exogenous trehalose as carbon source, and also displayed higher resistance to environmental challenges, such as saline exposure (1.2 M NaCl), heat shock (42°C) and both mild and severe oxidative stress (5 and 50 mM H2O2). Significant amounts of intracellular trehalose were specifically stored in response to the thermal upshift in both wild type and mutant strains. Analysis of their antioxidant activities revealed that catalase was only triggered in response to heat shock in atc1Δ cells, whereas glutathione reductase was activated upon mild oxidative stress in wild type and reintegrant strains, and in response to the whole set of stress treatments in the homozygous mutant. Furthermore, yeast cells with double CpATC1 deletion were significantly attenuated in non-mammalian infection models, suggesting that CpATC1 is required for the pathobiology of the fungus. Our results demonstrate the involvement of CpAtc1 protein in the physiological hydrolysis of external trehalose in C. parapsilosis, where it also plays a major role in stress resistance and virulence.
Collapse
Affiliation(s)
- Ruth Sánchez-Fresneda
- Departamento de Genética y Microbiología, Facultad de Biología, Universidad de Murcia, Campus de Espinardo, Murcia, Spain
- Departamento de Bioquímica, Biología Molecular (B) e Inmunología, Facultad de Medicina, and Regional Campus of International Excellence “Campus Mare Nostrum", Universidad de Murcia, Campus de Espinardo, Murcia, Spain
- Departamento de Microbiología y Ecología, Facultad de Farmacia, Universidad de Valencia, Burjassot, Valencia, Spain
| | - María Martínez-Esparza
- Departamento de Bioquímica, Biología Molecular (B) e Inmunología, Facultad de Medicina, and Regional Campus of International Excellence “Campus Mare Nostrum", Universidad de Murcia, Campus de Espinardo, Murcia, Spain
| | - Sergi Maicas
- Departamento de Microbiología y Ecología, Facultad de Biología, Universidad de Valencia, Burjassot, Valencia, Spain
| | - Juan-Carlos Argüelles
- Departamento de Genética y Microbiología, Facultad de Biología, Universidad de Murcia, Campus de Espinardo, Murcia, Spain
| | - Eulogio Valentín
- Departamento de Microbiología y Ecología, Facultad de Farmacia, Universidad de Valencia, Burjassot, Valencia, Spain
| |
Collapse
|
39
|
Sun X, Lu H, Jiang Y, Cao Y. CaIPF19998 reduces drug susceptibility by enhancing the ability of biofilm formation and regulating redox homeostasis in Candida albicans. Curr Microbiol 2013; 67:322-6. [PMID: 23620174 DOI: 10.1007/s00284-013-0366-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2012] [Accepted: 04/18/2013] [Indexed: 10/26/2022]
Abstract
CaIPF19998, a functionally unknown gene in Candida albicans, was identified by its homology to Saccharomyces cerevisiae AIF1 gene, which is involved in cell apoptosis. In this study, ipf19998 null mutant was generated with the URA-blaster method and the construction of overexpression of CaIPF19998 was measured by quantitative RT-PCR. Minimal inhibitory concentrations determination showed that the ipf19998 overexpressed strains was more resistant to the antifungals tested than the wildtype (strain CAI4). The 2,3-bis (2-methoxy-4-nitro-5-sulfo-phenyl)-2Htetrazolium-5-carboxanilide reduction assay showed that CaIPF19998 could enhance the capacity of C. albicans biofilms formation. On Candida biofilms mode, intracellular levels of reactive oxygen species were significantly decreased and real-time RT-PCR showed that some important redox-related genes, including ALD5, CIT1, PIL1, AHP1, TRX1 and TSA1, were up-regulated in the CaIPF19998 overexpressed strains. These results demonstrate that CaIPF19998 played an important role in C. albicans biofilms formation and intracellular redox homeostasis, therefore led to a close relationship between CaIPF19998 and drug susceptibility in C. albicans.
Collapse
Affiliation(s)
- Xuanrong Sun
- School of Pharmacy, Second Military Medical University, 325 Guohe Road, Shanghai, 200433, People's Republic of China.
| | | | | | | |
Collapse
|
40
|
Redundant catalases detoxify phagocyte reactive oxygen and facilitate Histoplasma capsulatum pathogenesis. Infect Immun 2013; 81:2334-46. [PMID: 23589579 DOI: 10.1128/iai.00173-13] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Histoplasma capsulatum is a respiratory pathogen that infects phagocytic cells. The mechanisms allowing Histoplasma to overcome toxic reactive oxygen molecules produced by the innate immune system are an integral part of Histoplasma's ability to survive during infection. To probe the contribution of Histoplasma catalases in oxidative stress defense, we created and analyzed the virulence defects of mutants lacking CatB and CatP, which are responsible for extracellular and intracellular catalase activities, respectively. Both CatB and CatP protected Histoplasma from peroxide challenge in vitro and from antimicrobial reactive oxygen produced by human neutrophils and activated macrophages. Optimal protection required both catalases, as the survival of a double mutant lacking both CatB and CatP was lower than that of single-catalase-deficient cells. Although CatB contributed to reactive oxygen species defenses in vitro, CatB was dispensable for lung infection and extrapulmonary dissemination in vivo. Loss of CatB from a strain also lacking superoxide dismutase (Sod3) did not further reduce the survival of Histoplasma yeasts. Nevertheless, some catalase function was required for pathogenesis since simultaneous loss of both CatB and CatP attenuated Histoplasma virulence in vivo. These results demonstrate that Histoplasma's dual catalases comprise a system that enables Histoplasma to efficiently overcome the reactive oxygen produced by the innate immune system.
Collapse
|
41
|
Lopes M, Mota M, Belo I. Comparison of Yarrowia lipolytica and Pichia pastoris cellular response to different agents of oxidative stress. Appl Biochem Biotechnol 2013; 170:448-58. [PMID: 23546869 DOI: 10.1007/s12010-013-0205-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2012] [Accepted: 03/18/2013] [Indexed: 11/30/2022]
Abstract
Yeast cells exposed to adverse conditions employ a number of defense mechanisms in order to respond effectively to the stress effects of reactive oxygen species. In this work, the cellular response of Yarrowia lipolytica and Pichia pastoris to the exposure to the ROS-inducing agents' paraquat, hydrogen peroxide, and increased air pressure was analyzed. Yeast cells at exponential phase were exposed for 3 h to 1 mM paraquat, to 50 mM H2O2, or to increased air pressure of 3 or 5 bar. For both strains, the cellular viability loss and lipid peroxidation was lower for the cells exposed to increased air pressure than for those exposed to chemical oxidants. The glutathione induction occurred only in Y. lipolytica strain and reached the highest level as a response to PQ exposure. In general, antioxidant enzymes were more expressed in Y. lipolytica than in P. pastoris. The enzyme superoxide dismutase was induced in both strains under all the oxidant conditions but was dependent on the cellular growth phase, being undetectable in non-growing cells, whereas glutathione reductase was more induced in those conditions. Hydrogen peroxide was the most efficient inducer of catalase. Both yeast cultures underwent no cellular growth inhibition with increased air pressure, indicating that these yeast species were able to adapt to the oxidative stressful environment.
Collapse
Affiliation(s)
- Marlene Lopes
- IBB-Institute for Biotechnology and Bioengineering, Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal.
| | | | | |
Collapse
|
42
|
Identification of Candida albicans heat shock proteins and Candida glabrata and Candida krusei enolases involved in the response to oxidative stress. Open Life Sci 2013. [DOI: 10.2478/s11535-013-0138-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
AbstractIn the past two decades, Candida species have become the second leading cause of invasive mycosis in immunocompromised patients. In order to colonize their hosts, these microorganisms express adhesins and cell wall proteins that allow them to adhere and neutralize the reactive oxygen species produced by phagocytic cells during the respiratory burst. However, the precise mechanism by which Candida cell wall proteins change their expression in response to oxidative stress has not been described. In an attempt to understand this change in response to oxidative stress, in this study, three Candida species, namely, C. albicans, C. glabrata and C. krusei, were exposed to increasing concentrations of H2O2 and induced cell wall proteins were identified by two-dimensional gel electrophoresis and peptide mass fingerprinting. Sequence analysis of differential proteins led to the identification of two heat-shock proteins in C. albicans, two enolases in C. glabrata and one enolase in C. krusei. Enolases may be involved in the protection of pathogenic cells against oxidative stress as suggested by the decrease in their expression when they were exposed to high concentrations of H2O2. To our knowledge, this is the first demonstration that expression of these proteins changes in response to oxidative stress in different Candida species. This knowledge can eventually facilitate both an early diagnosis and a more efficient treatment of this mycosis.
Collapse
|
43
|
Bouki E, Dimitriadis VK, Kaloyianni M, Dailianis S. Antioxidant and pro-oxidant challenge of tannic acid in mussel hemocytes exposed to cadmium. MARINE ENVIRONMENTAL RESEARCH 2013; 85:13-20. [PMID: 23375356 DOI: 10.1016/j.marenvres.2012.12.005] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2012] [Revised: 12/10/2012] [Accepted: 12/13/2012] [Indexed: 06/01/2023]
Abstract
The present study investigates the antioxidant and pro-oxidant behavior of tannic acid (TA) in hemocytes of mussel Mytilus galloprovincialis, in the presence or the absence of cadmium (Cd). TA at concentrations up to 20 μM, primarily found to be no toxic (in terms of cell viability, superoxide anions, nitric oxide and lipid peroxidation products currently estimated), significantly diminished the cytotoxic and oxidative effects induced by the metal (50 and/or 100 μM) in all cases. On the other hand, higher concentrations of TA (40 and 60 μM) were toxic, thus enhancing Cd-mediated cytotoxic and oxidative effects. The present study showed TA beneficiary properties in hemocytes of mussels, at least at low concentrations, while TA at concentrations higher than 20 μM could serve as an excellent oxidized substrate, thus enhancing toxic effects either alone or with the presence of micromolar concentrations of non transition metals, such as Cd.
Collapse
Affiliation(s)
- Evdokia Bouki
- Department of Biology, Section of Animal Biology, Faculty of Sciences, University of Patras, GR-26500 Patras, Greece
| | | | | | | |
Collapse
|
44
|
Li Q, Geng X, Zheng W, Tang J, Xu B, Shi Q. Current understanding of ovarian aging. SCIENCE CHINA-LIFE SCIENCES 2012; 55:659-69. [PMID: 22932881 DOI: 10.1007/s11427-012-4352-5] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2012] [Accepted: 06/22/2012] [Indexed: 02/07/2023]
Abstract
The reproductive system of human female exhibits a much faster rate of aging than other body systems. Ovarian aging is thought to be dominated by a gradual decreasing numbers of follicles, coinciding with diminished quality of oocytes. Menopause is the final step in the process of ovarian aging. This review focuses on the mechanisms underlying the ovarian aging involving a poor complement of follicles at birth and a high rate of attrition each month, as well as the alternated endocrine factors. We also discuss the possible causative factors that contribute to ovarian aging, e.g., genetic factors, accumulation of irreparable damage of microenvironment, pathological effect and other factors. The appropriate and reliable methods to assess ovarian aging, such as quantification of follicles, endocrine measurement and genetic testing have also been discussed. Increased knowledge of the ovarian aging mechanisms may improve the prevention of premature ovarian failure.
Collapse
Affiliation(s)
- Qian Li
- Hefei National Laboratory for Physical Sciences at Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, 230027, China
| | | | | | | | | | | |
Collapse
|
45
|
Vouras C, Dailianis S. Evidence for phosphatidylinositol-3-OH-kinase (PI3-kinase) involvement in Cd-mediated oxidative effects on hemocytes of mussels. Comp Biochem Physiol C Toxicol Pharmacol 2012; 155:587-93. [PMID: 22342345 DOI: 10.1016/j.cbpc.2012.01.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2011] [Revised: 01/18/2012] [Accepted: 01/31/2012] [Indexed: 10/14/2022]
Abstract
This study investigated phosphatidylinositol-3-OH-kinase (PI3-kinase) involvement in the induction of cadmium-mediated oxidative effects on hemocytes of mussel Mytilus galloprovincialis. PI3-kinase was investigated with the use of wortmannin, a specific covalent inhibitor of PI3-kinase. Moreover, phorbol-myristate acetate (PMA), a well-known protein kinase C (PKC)-mediated NADPH oxidase and nitric oxide (NO) synthase stimulator, was also used for elucidating PI3-kinase involvement during the respiratory burst process in challenge hemocytes. According to the results, cells pre-treated with non-toxic concentrations of wortmannin (1 and/or 50 nM, as revealed by neutral red retention assay) for 15 min, showed a significant attenuation of cadmium ability (at concentration of 50 μM) to promote cell death, superoxide anion (O(2)(-)) production, NO generation and lipid peroxidation (in terms of malondialdehyde equivalents). On the other hand, wortmannin-treated cells showed a significant attenuation of PMA ability to induce NO generation but not O(2)(-) production. These findings reveal that PI3-kinase could lead to a PKC-independent induction of NO synthase activity in cells faced with pro-oxidants, such as cadmium, while its activation could be fundamental for the regulation of NAPDH oxidase activity, probably through a PKC-dependent signaling pathway.
Collapse
Affiliation(s)
- Christos Vouras
- Department of Biology, Section of Animal Biology, University of Patras, 26500, Greece
| | | |
Collapse
|
46
|
Abstract
The growing resistance against antifungal drugs has renewed the search for alternative treatment modalities, and antimicrobial photodynamic therapy (PDT) seems to be a potential candidate. Preliminary findings have demonstrated that dermatophytes and yeasts can be effectively sensitized in vitro and in vivo by administering photosensitizers (PSs) belonging to four chemical groups: phenothiazine dyes, porphyrins and phthalocyanines, as well as aminolevulinic acid, which, while not a PS in itself, is effectively metabolized into protoporphyrin IX. Besides efficacy, PDT has shown other benefits. First, the sensitizers used are highly selective, i.e., fungi can be killed at combinations of drug and light doses much lower than that needed for a similar effect on keratinocytes. Second, all investigated PSs lack genotoxic and mutagenic activity. Finally, the hazard of selection of drug resistant fungal strains has been rarely reported. We review the studies published to date on antifungal applications of PDT, with special focus on yeast, and aim to raise awareness of this area of research, which has the potential to make a significant impact in future treatment of fungal infections.
Collapse
|
47
|
Zhou G, Wang J, Qiu L, Feng MG. A Group III histidine kinase (mhk1) upstream of high-osmolarity glycerol pathway regulates sporulation, multi-stress tolerance and virulence of Metarhizium robertsii, a fungal entomopathogen. Environ Microbiol 2011; 14:817-29. [PMID: 22118192 DOI: 10.1111/j.1462-2920.2011.02643.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The role of Metarhizium robertsii Group III histidine kinase (mhk1) in regulating various phenotypes of the fungal entomopathogen and the transcripts of 25 downstream genes likely associated with the phenotypes were probed by constructing Δmhk1 and Δmhk1/mhk1 mutants. All examined Δmhk1 phenotypes except unchanged sensitivity to fungicide (dimethachlon) differed significantly from those of wild type and Δmhk1/mhk1, which were similar to each other. Significant phenotypic changes in Δmhk1 included increased conidial yields on two media, increased tolerance to H(2)O(2) , decreased tolerance to menadione, increased tolerance to hyperosmolarity, increased conidial thermotolerance, decreased conidial UV-B resistance and reduced virulence to Tenebrio molitor larvae. The mhk1 disruption elevated the transcripts of nine genes, including two associated with conidiation (flbC and hymA) and three encoding catalases but decreased seven other gene transcripts, including three for superoxide dismultases, under normal conditions. The high-osmolarity glycerol pathway MAPK phosphorylation level in Δmhk1 culture was increased 1.0- to 1.8-fold by KCl, sucrose and menadione stresses but reduced drastically by H(2)O(2) or heat (40°C) stress, accompanied with different transcript patterns of all examined genes under the stresses. Our results confirmed the crucial role of mhk1 in regulating the expression of the downstream genes and associated phenotypes important for the fungal biocontrol potential.
Collapse
Affiliation(s)
- Gang Zhou
- Institute of Microbiology, College of Life Science, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | | | | | | |
Collapse
|
48
|
Forche A, Abbey D, Pisithkul T, Weinzierl MA, Ringstrom T, Bruck D, Petersen K, Berman J. Stress alters rates and types of loss of heterozygosity in Candida albicans. mBio 2011; 2:e00129-11. [PMID: 21791579 PMCID: PMC3143845 DOI: 10.1128/mbio.00129-11] [Citation(s) in RCA: 174] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2011] [Accepted: 06/30/2011] [Indexed: 01/27/2023] Open
Abstract
UNLABELLED Genetic diversity is often generated during adaptation to stress, and in eukaryotes some of this diversity is thought to arise via recombination and reassortment of alleles during meiosis. Candida albicans, the most prevalent pathogen of humans, has no known meiotic cycle, and yet it is a heterozygous diploid that undergoes mitotic recombination during somatic growth. It has been shown that clinical isolates as well as strains passaged once through a mammalian host undergo increased levels of recombination. Here, we tested the hypothesis that stress conditions increase rates of mitotic recombination in C. albicans, which is measured as loss of heterozygosity (LOH) at specific loci. We show that LOH rates are elevated during in vitro exposure to oxidative stress, heat stress, and antifungal drugs. In addition, an increase in stress severity correlated well with increased LOH rates. LOH events can arise through local recombination, through homozygosis of longer tracts of chromosome arms, or by whole-chromosome homozygosis. Chromosome arm homozygosis was most prevalent in cultures grown under conventional lab conditions. Importantly, exposure to different stress conditions affected the levels of different types of LOH events, with oxidative stress causing increased recombination, while fluconazole and high temperature caused increases in events involving whole chromosomes. Thus, C. albicans generates increased amounts and different types of genetic diversity in response to a range of stress conditions, a process that we term "stress-induced LOH" that arises either by elevating rates of recombination and/or by increasing rates of chromosome missegregation. IMPORTANCE Stress-induced mutagenesis fuels the evolution of bacterial pathogens and is mainly driven by genetic changes via mitotic recombination. Little is known about this process in other organisms. Candida albicans, an opportunistic fungal pathogen, causes infections that require adaptation to different host environmental niches. We measured the rates of LOH and the types of LOH events that appeared in the absence and in the presence of physiologically relevant stresses and found that stress causes a significant increase in the rates of LOH and that this increase is proportional to the degree of stress. Furthermore, the types of LOH events that arose differed in a stress-dependent manner, indicating that eukaryotic cells generate increased genetic diversity in response to a range of stress conditions. We propose that this "stress-induced LOH" facilitates the rapid adaptation of C. albicans, which does not undergo meiosis, to changing environments within the host.
Collapse
Affiliation(s)
- A. Forche
- Department of Biology, Bowdoin College, Brunswick, Maine, USA, and
| | - D. Abbey
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, Minnesota, USA
| | - T. Pisithkul
- Department of Biology, Bowdoin College, Brunswick, Maine, USA, and
| | - M. A. Weinzierl
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, Minnesota, USA
| | - T. Ringstrom
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, Minnesota, USA
| | - D. Bruck
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, Minnesota, USA
| | - K. Petersen
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, Minnesota, USA
| | - J. Berman
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, Minnesota, USA
| |
Collapse
|
49
|
Martinez-Esparza M, Tapia-Abellan A, Vitse-Standaert A, Garcia-Penarrubia P, Arguelles JC, Poulain D, Jouault T. Glycoconjugate expression on the cell wall of tps1/tps1 trehalose-deficient Candida albicans strain and implications for its interaction with macrophages. Glycobiology 2011; 21:796-805. [DOI: 10.1093/glycob/cwr007] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023] Open
|
50
|
González-Párraga P, Sánchez-Fresneda R, Zaragoza O, Argüelles JC. Amphotericin B induces trehalose synthesis and simultaneously activates an antioxidant enzymatic response in Candida albicans. Biochim Biophys Acta Gen Subj 2011; 1810:777-83. [PMID: 21570449 DOI: 10.1016/j.bbagen.2011.04.012] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2011] [Revised: 03/21/2011] [Accepted: 04/27/2011] [Indexed: 11/29/2022]
Abstract
BACKGROUND Enzymes involved in trehalose metabolism have been proposed as potential targets for new antifungals. To analyse this proposal, the susceptibility to Amphotericin B (AmB) of the C. albicans trehalose-deficient mutant tps1Δ/tps1Δ, was examined. METHODS Determination of endogenous trehalose and antioxidant enzymatic activities as well as RT-PCR analysis in cells subjected to AmB treatments was performed. RESULTS Exponential tps1Δ null cultures showed high degree of cell killing upon exposure to increasing AmB doses respect to CAI.4 parental strain. Reintroduction of the TPS1 gene restored the percentage of cell viability. AmB induced significant synthesis of endogenous trehalose in parental cells, due to the transitory accumulation of TPS1 mRNA or to the moderate activation of trehalose synthase (Tps1p) with the simultaneous deactivation of neutral trehalase (Ntc1p). Since tps1Δ/tps1Δ mutant cells are highly susceptible to acute oxidative stress, the putative antioxidant response to AmB was also measured. A conspicuous activation of catalase and glutathione reductase (GR), but not of superoxide dismutase (SOD), was observed when the two cell types were exposed to high concentrations of AmB (5μg/ml). However, no significant differences were detected between parental and tps1Δ null strains as regards the level of activities. CONCLUSIONS The protective intracellular accumulation of trehalose together with the induction of antioxidant enzymatic defences are worthy mechanisms involved in the resistance of C. albicans to the fungicidal action of AmB. GENERAL SIGNIFICANCE The potential usefulness of trehalose synthesis proteins as an interesting antifungal target is reinforced. More importantly, AmB elicits a complex defensive response in C. albicans.
Collapse
Affiliation(s)
- Pilar González-Párraga
- Área de Microbiología, Facultad de Biología, Universidad de Murcia, E-30071, Murcia, Spain
| | | | | | | |
Collapse
|