1
|
Zheng D, Li F, Wang S, Liu PS, Xie X. High-content image screening to identify chemical modulators for peroxisome and ferroptosis. Cell Mol Biol Lett 2024; 29:26. [PMID: 38368371 PMCID: PMC10874541 DOI: 10.1186/s11658-024-00544-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 02/05/2024] [Indexed: 02/19/2024] Open
Abstract
BACKGROUND The peroxisome is a dynamic organelle with variety in number, size, shape, and activity in different cell types and physiological states. Recent studies have implicated peroxisomal homeostasis in ferroptosis susceptibility. Here, we developed a U-2OS cell line with a fluorescent peroxisomal tag and screened a target-selective chemical library through high-content imaging analysis. METHODS U-2OS cells stably expressing the mOrange2-Peroxisomes2 tag were generated to screen a target-selective inhibitor library. The nuclear DNA was counterstained with Hoechst 33342 for cell cycle analysis. Cellular images were recorded and quantitatively analyzed through a high-content imaging platform. The effect of selected compounds on ferroptosis induction was analyzed in combination with ferroptosis inducers (RSL3 and erastin). Flow cytometry analysis was conducted to assess the level of reactive oxygen species (ROS) and cell death events. RESULTS Through the quantification of DNA content and peroxisomal signals in single cells, we demonstrated that peroxisomal abundance was closely linked with cell cycle progression and that peroxisomal biogenesis mainly occurred in the G1/S phase. We further identified compounds that positively and negatively regulated peroxisomal abundance without significantly affecting the cell cycle distribution. Some compounds promoted peroxisomal signals by inducing oxidative stress, while others regulated peroxisomal abundance independent of redox status. Importantly, compounds with peroxisome-enhancing activity potentiated ferroptosis induction. CONCLUSIONS Our findings pinpoint novel cellular targets that might be involved in peroxisome homeostasis and indicate that compounds promoting peroxisomal abundance could be jointly applied with ferroptosis inducers to potentiate anticancer effect.
Collapse
Affiliation(s)
- Daheng Zheng
- School of Life and Environmental Sciences, Shaoxing University, Shaoxing City, Zhejiang, China
| | - Fei Li
- School of Life and Environmental Sciences, Shaoxing University, Shaoxing City, Zhejiang, China
| | - Shanshan Wang
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangdong, China
| | - Pu-Ste Liu
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan, Taiwan, ROC
| | - Xin Xie
- School of Life and Environmental Sciences, Shaoxing University, Shaoxing City, Zhejiang, China.
| |
Collapse
|
2
|
Cai HL, Shimada M, Nakagawa T. The potential and capability of the methylotrophic yeast Ogataea methanolica in a "methanol bioeconomy". Yeast 2022; 39:440-448. [PMID: 35811458 DOI: 10.1002/yea.3807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 04/03/2022] [Accepted: 07/07/2022] [Indexed: 11/08/2022] Open
Abstract
Efficient bioconversion of methanol, which can be generated from greenhouse gases, into valuable resources contributes to achieving climate goals and developing a sustainable economy. The methylotrophic yeast Ogataea methanolica is considered to be a suitable host for efficient methanol bioconversion because it has outstanding characteristics for the better adaptive potential to a high methanol environment (i.e., greater than 5%). This capacity represents a huge potential to construct an innovative carbon-neutral production system that converts methanol into value-added chemicals under the control of strong methanol-induced promoters. In this review, we discuss what is known about the regulation of methanol metabolism and adaptation mechanisms for 5% methanol conditions in O. methanolica in detail. We also discuss about the potential to breed "super methylotrophic yeast," which has potent growth characteristics under high methanol conditions.
Collapse
Affiliation(s)
- Hao-Liang Cai
- The United Graduate School of Agricultural Science, Gifu University, Gifu, Japan
| | - Masaya Shimada
- The United Graduate School of Agricultural Science, Gifu University, Gifu, Japan.,Faculty of Applied Biological Sciences, Gifu University, Gifu, Japan
| | - Tomoyuki Nakagawa
- The United Graduate School of Agricultural Science, Gifu University, Gifu, Japan.,Faculty of Applied Biological Sciences, Gifu University, Gifu, Japan
| |
Collapse
|
3
|
Imanishi D, Zaitsu S, Takahashi S. Regulation of d-Aspartate Oxidase Gene Expression by Pyruvate Metabolism in the Yeast Cryptococcus humicola. Microorganisms 2021; 9:microorganisms9122444. [PMID: 34946046 PMCID: PMC8708985 DOI: 10.3390/microorganisms9122444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 11/24/2021] [Accepted: 11/25/2021] [Indexed: 11/16/2022] Open
Abstract
d-Aspartate oxidase (DDO) is a peroxisomal flavoenzyme that catalyzes the oxidative deamination of acidic d-amino acids. In the yeast Cryptococcus humicola strain UJ1, the enzyme ChDDO is essential for d-Asp utilization and is expressed only in the presence of d-Asp. Pyruvate carboxylase (Pyc) catalyzes the conversion of pyruvate to oxaloacetate and is involved in the import and activation of certain peroxisomal flavoenzymes in yeasts. In this study, we analyzed the role of Pyc in the expression of ChDDO gene in C. humicola strain UJ1. PYC gene disruption (∆Chpyc1) in strain UJ1 resulted in growth retardation on glucose and NH4Cl medium. The growth was restored by supplying oxaloacetate from l-Asp or α-ketoglutarate by a transaminase. On the other hand, the supply of oxaloacetate from d-Asp by ChDDO was not able to prevent growth retardation because of a significant decrease in ChDDO gene expression at the transcriptional level. The addition of pyruvate significantly decreased ChDDO gene transcription in the ∆Chpyc1 strain but increased the same in the wild-type strain, even though the intracellular pyruvate content was similar in both strains. These results suggest that ChDDO gene expression might be regulated by pyruvate metabolism, as well as by the presence of d-Asp.
Collapse
|
4
|
Cai H, Doi R, Shimada M, Hayakawa T, Nakagawa T. Metabolic regulation adapting to high methanol environment in the methylotrophic yeast Ogataea methanolica. Microb Biotechnol 2021; 14:1512-1524. [PMID: 33939325 PMCID: PMC8313246 DOI: 10.1111/1751-7915.13811] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Revised: 03/25/2021] [Accepted: 03/26/2021] [Indexed: 11/28/2022] Open
Abstract
Since methylotrophic yeasts such as Ogataea methanolica can use methanol as a sole carbon feedstock, they could be applied to produce valuable products from methanol, a next-generation energy source synthesized from natural gases, using genetic engineering tools. In this study, metabolite profiling of O. methanolica was conducted under glucose (Glc) and low and high methanol (L- and H-MeOH) conditions to show the adaptation mechanism to a H-MeOH environment. The yeast strain responded not only to the presence of methanol but also to its concentration based on the growth condition. Under H-MeOH conditions, O. methanolica downregulated the methanol utilization, glycolytic pathway and alcohol oxidase (AOD) isozymes and dihydroxyacetone synthase (DAS) expression compared with L-MeOH-grown cells. However, levels of energy carriers, such as ATP, were maintained to support cell survival. In H-MeOH-grown cells, reactive oxygen species (ROS) levels were significantly elevated. Along with increasing ROS levels, ROS scavenging system expression was significantly increased in H-MeOH-grown cells. Thus, we concluded that formaldehyde and H2 O2 , which are products of methanol oxidation by AOD isozymes in the peroxisome, are overproduced in H-MeOH-grown cells, and excessive ROS derived from these cells is generated in the cytosol, resulting in upregulation of the antioxidant system and downregulation of the methanol-utilizing pathway to suppress overproduction of toxic intermediates.
Collapse
Affiliation(s)
- Hao‐Liang Cai
- The United Graduate School of Agricultural ScienceGifu University1‐1 YanagidoGifu501‐1193Japan
| | - Ryohei Doi
- The Graduate School of Natural Sciences and Technologies1‐1 YanagidoGifu501‐1193Japan
| | - Masaya Shimada
- The United Graduate School of Agricultural ScienceGifu University1‐1 YanagidoGifu501‐1193Japan
- The Graduate School of Natural Sciences and Technologies1‐1 YanagidoGifu501‐1193Japan
- The Faculty of Applied Biological Sciences1‐1 YanagidoGifu501‐1193Japan
| | - Takashi Hayakawa
- The United Graduate School of Agricultural ScienceGifu University1‐1 YanagidoGifu501‐1193Japan
- The Graduate School of Natural Sciences and Technologies1‐1 YanagidoGifu501‐1193Japan
- The Faculty of Applied Biological Sciences1‐1 YanagidoGifu501‐1193Japan
| | - Tomoyuki Nakagawa
- The United Graduate School of Agricultural ScienceGifu University1‐1 YanagidoGifu501‐1193Japan
- The Graduate School of Natural Sciences and Technologies1‐1 YanagidoGifu501‐1193Japan
- The Faculty of Applied Biological Sciences1‐1 YanagidoGifu501‐1193Japan
| |
Collapse
|
5
|
Wakayama K, Yamaguchi S, Takeuchi A, Mizumura T, Ozawa S, Tomizuka N, Hayakawa T, Nakagawa T. Regulation of intracellular formaldehyde toxicity during methanol metabolism of the methylotrophic yeast Pichia methanolica. J Biosci Bioeng 2016; 122:545-549. [DOI: 10.1016/j.jbiosc.2016.03.022] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Revised: 03/27/2016] [Accepted: 03/28/2016] [Indexed: 11/16/2022]
|
6
|
Gvozdev AR, Tukhvatullin IA, Gvozdev RI. Quinone-dependent alcohol dehydrogenases and FAD-dependent alcohol oxidases. BIOCHEMISTRY (MOSCOW) 2013; 77:843-56. [PMID: 22860906 DOI: 10.1134/s0006297912080056] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
This review considers quinone-dependent alcohol dehydrogenases and FAD-dependent alcohol oxidases, enzymes that are present in numerous methylotrophic eu- and prokaryotes and significantly differ in their primary and quaternary structure. The cofactors of the enzymes are bound to the protein polypeptide chain through ionic and hydrophobic interactions. Microorganisms containing these enzymes are described. Methods for purification of the enzymes, their physicochemical properties, and spatial structures are considered. The supposed mechanism of action and practical application of these enzymes as well as their producers are discussed.
Collapse
Affiliation(s)
- A R Gvozdev
- Biosensor AN Ltd., pr. Akademika Semenova 1, 142432 Chernogolovka, Moscow Region, Russia.
| | | | | |
Collapse
|
7
|
Kim S, Warburton S, Boldogh I, Svensson C, Pon L, d'Anjou M, Stadheim TA, Choi BK. Regulation of alcohol oxidase 1 (AOX1) promoter and peroxisome biogenesis in different fermentation processes in Pichia pastoris. J Biotechnol 2013; 166:174-81. [PMID: 23735484 DOI: 10.1016/j.jbiotec.2013.05.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2012] [Revised: 03/09/2013] [Accepted: 05/17/2013] [Indexed: 11/28/2022]
Abstract
Production of recombinant proteins is affected by process conditions, where transcriptional regulation of Pichia pastoris alcohol oxidase 1 (PpAOX1) promoter has been a key factor to influence expression levels of proteins of interest. Here, we demonstrate that the AOX1 promoter and peroxisome biogenesis are regulated based on different process conditions. Two types of GFP-fusion proteins, Ub-R-GFP (short-lived GFP in the cytosol) and GFP-SKL (peroxisomal targeting GFP), were successfully used to characterize the time-course of the AOX1 promoter and peroxisome biogenesis, respectively. The activity of the AOX1 promoter and peroxisome biogenesis was highly subjected to different fermentation process conditions - methanol-limited condition at normoxy (ML), switched feeding of carbon sources (e.g., glucose and methanol) under carbon-limited condition at normoxy (SML), and oxygen-limited (OL) condition. The AOX1 promoter was most active under the ML, but less active under the OL. Peroxisome biogenesis showed a high dependency on methanol consumption. In addition, the proliferation of peroxisomes was inhibited in a medium containing glucose and stimulated in the methanol phase under a carbon-limited fed-batch culture condition. The specific productivity of a monoclonal antibody (qp) under the AOX1 promoter was higher at 86h of induction in the ML than in the OL (0.026 vs 0.020mgg(-1)h(-1)). However, the oxygen-limited condition was a robust process suitable for longer induction (180h) due to high cell fitness. Our study suggests that the maximal production of a recombinant protein is highly dependent on methanol consumption rate that is affected by the availability of methanol and oxygen molecules.
Collapse
Affiliation(s)
- Sehoon Kim
- GlycoFi, Biologics Discovery, Merck & Co., Inc, 16 Cavendish Ct., Lebanon, NH 03766, USA
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Fujimura S, Yurimoto H, Kurimoto S, Matsufuji Y, Ito T, Hayakawa T, Tomizuka N, Sakai Y, Nakagawa T. Expression level of methanol-inducible peroxisomal proteins and peroxisome morphology are affected by oxygen conditions and mitochondrial respiratory pathway function in the methylotrophic yeast Candida boidinii. FEMS Yeast Res 2013; 13:359-66. [PMID: 23448597 DOI: 10.1111/1567-1364.12040] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2012] [Revised: 02/06/2013] [Accepted: 02/22/2013] [Indexed: 11/29/2022] Open
Abstract
In the methylotrophic yeast, Candida boidinii, methanol-inducible peroxisomal proteins, for example alcohol oxidase (AOD), dihydroxyacetone synthase (DAS), and peroxisomal glutathione peroxidase (Pmp20), were induced only under aerobic conditions, while expression of PMP47 encoding peroxisomal integral membrane protein Pmp47 was independent of oxygen conditions. Expression of the methanol-inducible peroxisomal enzymes was repressed by inhibition of the mitochondrial respiratory chain. In the respiratory-deficient (ρ0) mutant strain, their induction was at very low levels despite the presence of oxygen, whereas the expression of PMP47 was unaffected. Taken together, these facts indicate that C. boidinii can sense oxygen conditions, and that mitochondrial respiratory function may have a profound effect on induction of methanol-inducible gene expression of peroxisomal proteins. Peroxisome morphology was also affected by oxygen conditions and respiratory function. Under hypoxic conditions or respiration-inhibited conditions, cells induced by methanol contained small peroxisomes, indicating that peroxisome biogenesis and the protein import machinery were not affected by oxygen conditions but that peroxisome morphology was dependent on induction of peroxisomal matrix proteins.
Collapse
Affiliation(s)
- Shuki Fujimura
- Department of Food Science and Technology, Faculty of Bioindustry, Tokyo University of Agriculture, Abashiri, Hokkaido, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Gvozdev AR, Tukhvatullin IA, Gvozdev RI. Purification and properties of alcohol oxidase from Pichia putida. BIOCHEMISTRY (MOSCOW) 2010; 75:242-8. [PMID: 20367612 DOI: 10.1134/s000629791002015x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Alcohol oxidase (AO) was extracted from the methylotrophic yeast Pichia putida and purified using various methods. AO purified by crystallization was homogeneous based on analytical centrifugation with subsequent gel filtration and SDS-PAGE. The molecular weight of the enzyme was around 600 kDa. SDS-PAGE revealed a single protein band (74 +/- 4 kDa), and 8-9 bands of native protein with similar specific AO activities and substrate specificities were identified by PAGE without SDS. Electron microscopy of a single molecule revealed eight subunits located on the top of a regular tetragon with dotted symmetry of 422 D4 providing evidence that AO consists of eight subunits. Apparently, each molecule of AO has two types of subunits with very similar molecular weights and differing from each other by the number of acidic and basic amino acid residues. Each subunit includes one molecule of FAD and 2-3 cysteine residues. The pH optimum was within 8.5-9.0. Specific activity of the enzyme varied from 10 to 50 micromol methanol/min per mg protein from batch to batch depending on separation methods and had linear relationship with protein concentration. The AO was quickly inactivated at 20 degrees C and seemed to be stable in phosphate-citrate buffer with 30-50% (w/v) of sucrose. Different forms of 0.1-1 mm crystals of the enzyme were obtained. However the crystals did not yield X-ray reflections, apparently as a result of their molecular microheterogeneity.
Collapse
Affiliation(s)
- A R Gvozdev
- Biosensor AN Ltd., Chernogolovka, Moscow Region, 142432, Russia.
| | | | | |
Collapse
|
10
|
Current awareness on yeast. Yeast 2007. [DOI: 10.1002/yea.1575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
11
|
Schrader M, Yoon Y. Mitochondria and peroxisomes: Are the ‘Big Brother’ and the ‘Little Sister’ closer than assumed? Bioessays 2007; 29:1105-14. [DOI: 10.1002/bies.20659] [Citation(s) in RCA: 107] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|