1
|
Schulze A, Zimmermann A, Kainz K, Egger NB, Bauer MA, Madeo F, Carmona-Gutierrez D. Assessing chronological aging in Saccharomyces cerevisiae. Methods Cell Biol 2023; 181:87-108. [PMID: 38302246 DOI: 10.1016/bs.mcb.2022.09.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Abstract
Chronological age represents the time that passes between birth and a given date. To understand the complex network of factors contributing to chronological lifespan, a variety of model organisms have been implemented. One of the best studied organisms is the yeast Saccharomyces cerevisiae, which has greatly contributed toward identifying conserved biological mechanisms that act on longevity. Here, we discuss high- und low-throughput protocols to monitor and characterize chronological lifespan and chronological aging-associated cell death in S. cerevisiae. Included are propidium iodide staining with the possibility to quantitatively assess aging-associated cell death via flow cytometry or qualitative assessments via microscopy, cell viability assessment through plating and cell counting and cell death characterization via propidium iodide/AnnexinV staining and subsequent flow cytometric analysis or microscopy. Importantly, all of these methods combined give a clear picture of the chronological lifespan under different conditions or genetic backgrounds and represent a starting point for pharmacological or genetic interventions.
Collapse
Affiliation(s)
- Adina Schulze
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, Graz, Austria
| | - Andreas Zimmermann
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, Graz, Austria; BioTechMed-Graz, Graz, Austria
| | - Katharina Kainz
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, Graz, Austria
| | - Nadine B Egger
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, Graz, Austria
| | - Maria A Bauer
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, Graz, Austria
| | - Frank Madeo
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, Graz, Austria; BioTechMed-Graz, Graz, Austria; Field of Excellence BioHealth, University of Graz, Graz, Austria.
| | | |
Collapse
|
2
|
|
3
|
Lee JW, Ong TG, Samian MR, Teh AH, Watanabe N, Osada H, Ong EBB. Screening of selected ageing-related proteins that extend chronological life span in yeast Saccharomyces cerevisiae. Sci Rep 2021; 11:24148. [PMID: 34921163 PMCID: PMC8683414 DOI: 10.1038/s41598-021-03490-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Accepted: 12/03/2021] [Indexed: 12/27/2022] Open
Abstract
Ageing-related proteins play various roles such as regulating cellular ageing, countering oxidative stress, and modulating signal transduction pathways amongst many others. Hundreds of ageing-related proteins have been identified, however the functions of most of these ageing-related proteins are not known. Here, we report the identification of proteins that extended yeast chronological life span (CLS) from a screen of ageing-related proteins. Three of the CLS-extending proteins, Ptc4, Zwf1, and Sme1, contributed to an overall higher survival percentage and shorter doubling time of yeast growth compared to the control. The CLS-extending proteins contributed to thermal and oxidative stress responses differently, suggesting different mechanisms of actions. The overexpression of Ptc4 or Zwf1 also promoted rapid cell proliferation during yeast growth, suggesting their involvement in cell division or growth pathways.
Collapse
Affiliation(s)
- Jee Whu Lee
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
- USM-RIKEN International Centre for Ageing Science (URICAS), Universiti Sains Malaysia, 11800 USM, Malaysia, Penang
| | - Tee Gee Ong
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
- USM-RIKEN International Centre for Ageing Science (URICAS), Universiti Sains Malaysia, 11800 USM, Malaysia, Penang
| | - Mohammed Razip Samian
- USM-RIKEN International Centre for Ageing Science (URICAS), Universiti Sains Malaysia, 11800 USM, Malaysia, Penang
- School of Biological Sciences, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
| | - Aik-Hong Teh
- USM-RIKEN International Centre for Ageing Science (URICAS), Universiti Sains Malaysia, 11800 USM, Malaysia, Penang
- Centre for Chemical Biology, Universiti Sains Malaysia, 11900 Bayan Lepas, Penang, Malaysia
| | - Nobumoto Watanabe
- USM-RIKEN International Centre for Ageing Science (URICAS), Universiti Sains Malaysia, 11800 USM, Malaysia, Penang
- Bioprobe Application Research Unit, RIKEN Centre for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Hiroyuki Osada
- USM-RIKEN International Centre for Ageing Science (URICAS), Universiti Sains Malaysia, 11800 USM, Malaysia, Penang
- Chemical Biology Research Group, RIKEN Centre for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Eugene Boon Beng Ong
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, 11800 USM, Penang, Malaysia.
- USM-RIKEN International Centre for Ageing Science (URICAS), Universiti Sains Malaysia, 11800 USM, Malaysia, Penang.
| |
Collapse
|
4
|
Ebrahimi M, Habernig L, Broeskamp F, Aufschnaiter A, Diessl J, Atienza I, Matz S, Ruiz FA, Büttner S. Phosphate Restriction Promotes Longevity via Activation of Autophagy and the Multivesicular Body Pathway. Cells 2021; 10:3161. [PMID: 34831384 PMCID: PMC8620443 DOI: 10.3390/cells10113161] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 11/05/2021] [Accepted: 11/08/2021] [Indexed: 01/05/2023] Open
Abstract
Nutrient limitation results in an activation of autophagy in organisms ranging from yeast, nematodes and flies to mammals. Several evolutionary conserved nutrient-sensing kinases are critical for efficient adaptation of yeast cells to glucose, nitrogen or phosphate depletion, subsequent cell-cycle exit and the regulation of autophagy. Here, we demonstrate that phosphate restriction results in a prominent extension of yeast lifespan that requires the coordinated activity of autophagy and the multivesicular body pathway, enabling efficient turnover of cytoplasmic and plasma membrane cargo. While the multivesicular body pathway was essential during the early days of aging, autophagy contributed to long-term survival at later days. The cyclin-dependent kinase Pho85 was critical for phosphate restriction-induced autophagy and full lifespan extension. In contrast, when cell-cycle exit was triggered by exhaustion of glucose instead of phosphate, Pho85 and its cyclin, Pho80, functioned as negative regulators of autophagy and lifespan. The storage of phosphate in form of polyphosphate was completely dispensable to in sustaining viability under phosphate restriction. Collectively, our results identify the multifunctional, nutrient-sensing kinase Pho85 as critical modulator of longevity that differentially coordinates the autophagic response to distinct kinds of starvation.
Collapse
Affiliation(s)
- Mahsa Ebrahimi
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, 106 91 Stockholm, Sweden; (M.E.); (L.H.); (F.B.); (J.D.); (S.M.)
| | - Lukas Habernig
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, 106 91 Stockholm, Sweden; (M.E.); (L.H.); (F.B.); (J.D.); (S.M.)
| | - Filomena Broeskamp
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, 106 91 Stockholm, Sweden; (M.E.); (L.H.); (F.B.); (J.D.); (S.M.)
| | - Andreas Aufschnaiter
- Department of Biochemistry and Biophysics, Stockholm University, 106 91 Stockholm, Sweden;
| | - Jutta Diessl
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, 106 91 Stockholm, Sweden; (M.E.); (L.H.); (F.B.); (J.D.); (S.M.)
| | - Isabel Atienza
- Instituto de Investigación e Innovación Biomédica de Cádiz (INIBICA), University of Cadiz, 11001 Cadiz, Spain; (I.A.); (F.A.R.)
| | - Steffen Matz
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, 106 91 Stockholm, Sweden; (M.E.); (L.H.); (F.B.); (J.D.); (S.M.)
| | - Felix A. Ruiz
- Instituto de Investigación e Innovación Biomédica de Cádiz (INIBICA), University of Cadiz, 11001 Cadiz, Spain; (I.A.); (F.A.R.)
| | - Sabrina Büttner
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, 106 91 Stockholm, Sweden; (M.E.); (L.H.); (F.B.); (J.D.); (S.M.)
- Institute of Molecular Biosciences, University of Graz, 8010 Graz, Austria
| |
Collapse
|
5
|
Reza MH, Patkar R, Sanyal K. Vacuolar transporter Mnr2 safeguards organellar integrity in aged cells. Mol Microbiol 2021; 116:861-876. [PMID: 34165830 DOI: 10.1111/mmi.14776] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 06/06/2021] [Accepted: 06/21/2021] [Indexed: 01/10/2023]
Abstract
Aging is associated with altered mitochondrial function, which is dependent on the magnesium (Mg+2 ) ion flux. The molecular mechanism underlying Mg+2 homeostasis, especially during aging has not been well understood. We previously demonstrated that the absence of a vacuolar ion transporter Mnr2 accelerates cell death in the older part of the colony in Magnaporthe oryzae presumably due to an altered Mg+2 homeostasis. Here, we show the localization of Mnr2 as dynamic puncta at the vacuolar membrane, especially in the older Magnaporthe cells. Such vacuolar Mnr2 puncta are often localized in close proximity with the filamentous mitochondria in the older cells. Further, we show loss of integrity of mitochondria and vacuoles in older mnr2∆ null cells. Remarkably, exogenously added Mg+2 restores the mitochondrial structure as well as improves the lifespan of mnr2∆ null cells. Taken together, we propose an ion transporter Mnr2-based Mg+2 homeostasis as a means in preserving mitochondrial and vacuolar integrity and function in older M. oryzae cells.
Collapse
Affiliation(s)
- Md Hashim Reza
- Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bengaluru, India.,Bharat Chattoo Genome Research Centre, Department of Microbiology & Biotechnology Centre, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, India
| | - Rajesh Patkar
- Bharat Chattoo Genome Research Centre, Department of Microbiology & Biotechnology Centre, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, India.,Department of Biosciences & Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
| | - Kaustuv Sanyal
- Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bengaluru, India
| |
Collapse
|
6
|
Boulton C. Provocation: all yeast cells are born equal, but some grow to be more equal than others. JOURNAL OF THE INSTITUTE OF BREWING 2021. [DOI: 10.1002/jib.647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
7
|
Simonis P, Garjonyte R, Stirke A. Mediated amperometry as a prospective method for the investigation of electroporation. Sci Rep 2020; 10:19094. [PMID: 33154473 PMCID: PMC7644768 DOI: 10.1038/s41598-020-76086-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 10/22/2020] [Indexed: 12/23/2022] Open
Abstract
Pulsed electric field effects induced in a membrane, as well as intracellular structures, depend on cell type, field and media parameters. To achieve desired outcomes, membranes should be permeabilized in a controlled manner, and thus efficiency of electroporation should be investigated in advance. Here, we present a framework for using mediated amperometry as a prospective method for the investigation of electroporation and its effects on cellular machinery. Whole-cell sensors with single mediator systems comprised of hydrophilic or lipophilic mediators were successfully employed to investigate membrane permeability as well as cellular responses. Exposure of yeast cells to single electric field pulse (τ = 300 µs, E = 16 kV/cm) resulted in up to tenfold increase of current strength mediated with hydrophilic mediators. Exposure to PEF resulted in decrease of menadione mediated current strength (from 138 ± 15 to 32 ± 15 nA), which could be completely compensated by supplementing electrolyte with NADH.
Collapse
Affiliation(s)
- Povilas Simonis
- State Research Institute, Center for Physical Sciences and Technology, Saulėtekio al. 3, Vilnius, Lithuania.
| | - Rasa Garjonyte
- State Research Institute, Center for Physical Sciences and Technology, Saulėtekio al. 3, Vilnius, Lithuania
| | - Arunas Stirke
- State Research Institute, Center for Physical Sciences and Technology, Saulėtekio al. 3, Vilnius, Lithuania
| |
Collapse
|
8
|
Toth A, Aufschnaiter A, Fedotovskaya O, Dawitz H, Ädelroth P, Büttner S, Ott M. Membrane-tethering of cytochrome c accelerates regulated cell death in yeast. Cell Death Dis 2020; 11:722. [PMID: 32892209 PMCID: PMC7474732 DOI: 10.1038/s41419-020-02920-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 04/02/2020] [Accepted: 04/03/2020] [Indexed: 12/18/2022]
Abstract
Intrinsic apoptosis as a modality of regulated cell death is intimately linked to permeabilization of the outer mitochondrial membrane and subsequent release of the protein cytochrome c into the cytosol, where it can participate in caspase activation via apoptosome formation. Interestingly, cytochrome c release is an ancient feature of regulated cell death even in unicellular eukaryotes that do not contain an apoptosome. Therefore, it was speculated that cytochrome c release might have an additional, more fundamental role for cell death signalling, because its absence from mitochondria disrupts oxidative phosphorylation. Here, we permanently anchored cytochrome c with a transmembrane segment to the inner mitochondrial membrane of the yeast Saccharomyces cerevisiae, thereby inhibiting its release from mitochondria during regulated cell death. This cytochrome c retains respiratory growth and correct assembly of mitochondrial respiratory chain supercomplexes. However, membrane anchoring leads to a sensitisation to acetic acid-induced cell death and increased oxidative stress, a compensatory elevation of cellular oxygen-consumption in aged cells and a decreased chronological lifespan. We therefore conclude that loss of cytochrome c from mitochondria during regulated cell death and the subsequent disruption of oxidative phosphorylation is not required for efficient execution of cell death in yeast, and that mobility of cytochrome c within the mitochondrial intermembrane space confers a fitness advantage that overcomes a potential role in regulated cell death signalling in the absence of an apoptosome.
Collapse
Affiliation(s)
- Alexandra Toth
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Svante Arrheniusväg 16, 106 91, Stockholm, Sweden
| | - Andreas Aufschnaiter
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Svante Arrheniusväg 16, 106 91, Stockholm, Sweden
- Institute of Molecular Biosciences, University of Graz, Humboldtstraße 50, 8010, Graz, Austria
| | - Olga Fedotovskaya
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Svante Arrheniusväg 16, 106 91, Stockholm, Sweden
| | - Hannah Dawitz
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Svante Arrheniusväg 16, 106 91, Stockholm, Sweden
| | - Pia Ädelroth
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Svante Arrheniusväg 16, 106 91, Stockholm, Sweden
| | - Sabrina Büttner
- Institute of Molecular Biosciences, University of Graz, Humboldtstraße 50, 8010, Graz, Austria.
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Svante Arrheniusväg 20C, 106 91, Stockholm, Sweden.
| | - Martin Ott
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Svante Arrheniusväg 16, 106 91, Stockholm, Sweden.
| |
Collapse
|
9
|
Shetty M, Noguchi C, Wilson S, Martinez E, Shiozaki K, Sell C, Mell JC, Noguchi E. Maf1-dependent transcriptional regulation of tRNAs prevents genomic instability and is associated with extended lifespan. Aging Cell 2020; 19:e13068. [PMID: 31833215 PMCID: PMC6996946 DOI: 10.1111/acel.13068] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 10/17/2019] [Accepted: 10/18/2019] [Indexed: 12/18/2022] Open
Abstract
Maf1 is the master repressor of RNA polymerase III responsible for transcription of tRNAs and 5S rRNAs. Maf1 is negatively regulated via phosphorylation by the mTOR pathway, which governs protein synthesis, growth control, and lifespan regulation in response to nutrient availability. Inhibiting the mTOR pathway extends lifespan in various organisms. However, the downstream effectors for the regulation of cell homeostasis that are critical to lifespan extension remain elusive. Here we show that fission yeast Maf1 is required for lifespan extension. Maf1's function in tRNA repression is inhibited by mTOR-dependent phosphorylation, whereas Maf1 is activated via dephosphorylation by protein phosphatase complexes, PP4 and PP2A. Mutational analysis reveals that Maf1 phosphorylation status influences lifespan, which is correlated with elevated tRNA and protein synthesis levels in maf1∆ cells. However, mTOR downregulation, which negates protein synthesis, fails to rescue the short lifespan of maf1∆ cells, suggesting that elevated protein synthesis is not a cause of lifespan shortening in maf1∆ cells. Interestingly, maf1∆ cells accumulate DNA damage represented by formation of Rad52 DNA damage foci and Rad52 recruitment at tRNA genes. Loss of the Rad52 DNA repair protein further exacerbates the shortened lifespan of maf1∆ cells. Strikingly, PP4 deletion alleviates DNA damage and rescues the short lifespan of maf1∆ cells even though tRNA synthesis is increased in this condition, suggesting that elevated DNA damage is the major cause of lifespan shortening in maf1∆ cells. We propose that Maf1-dependent inhibition of tRNA synthesis controls fission yeast lifespan by preventing genomic instability that arises at tRNA genes.
Collapse
Affiliation(s)
- Mihir Shetty
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Chiaki Noguchi
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Sydney Wilson
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Esteban Martinez
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Kazuhiro Shiozaki
- Division of Biological Science, Nara Institute of Science and Technology, Ikoma, Japan
- Department of Microbiology and Molecular Genetics, University of California, Davis, CA, USA
| | - Christian Sell
- Department of Pathology, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Joshua Chang Mell
- Department of Microbiology and Immunology, Centers for Genomics Sciences, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Eishi Noguchi
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, PA, USA
| |
Collapse
|
10
|
Valiakhmetov AY, Kuchin AV, Suzina NE, Zvonarev AN, Shepelyakovskaya AO. Glucose causes primary necrosis in exponentially grown yeast Saccharomyces cerevisiae. FEMS Yeast Res 2019; 19:5347945. [PMID: 30785621 DOI: 10.1093/femsyr/foz019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 02/19/2019] [Indexed: 02/07/2023] Open
Abstract
In this paper, we present data on sugar-induced cell death (SICD) in the yeast Saccharomyces cerevisiae in the exponential phase of growth. We suggest that the nature of SICD in exponentially grown yeast is primary necrosis, in contrast to cells in the stationary growth phase, which exhibit apoptotic SICD. The following findings confirm this conclusion: (i) the process rate; (ii) the impairments of plasma membrane integrity; (iii) the drastic morphological changes in the intracellular content; (iv) the absence of chromatin condensation; (v) the absence of externalization of phosphotidylserine (PS) on the outer leaflet of plasma membrane and (vi) the insensitivity of the SICD process to cycloheximide (CHX). Research shows that SICD occurs in a subpopulation of cells in the S-phase.
Collapse
Affiliation(s)
- A Ya Valiakhmetov
- Skryabin Institute of Biochemistry and Physiology of Microorganisms, FRC PCBR RAS.,Moscow Region State University
| | - A V Kuchin
- Institute of Cell Biophysics, FRC PCBR RAS
| | - N E Suzina
- Skryabin Institute of Biochemistry and Physiology of Microorganisms, FRC PCBR RAS
| | - A N Zvonarev
- Skryabin Institute of Biochemistry and Physiology of Microorganisms, FRC PCBR RAS
| | | |
Collapse
|
11
|
Andréasson C, Ott M, Büttner S. Mitochondria orchestrate proteostatic and metabolic stress responses. EMBO Rep 2019; 20:e47865. [PMID: 31531937 PMCID: PMC6776902 DOI: 10.15252/embr.201947865] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 05/13/2019] [Accepted: 08/27/2019] [Indexed: 01/06/2023] Open
Abstract
The eukaryotic cell is morphologically and functionally organized as an interconnected network of organelles that responds to stress and aging. Organelles communicate via dedicated signal transduction pathways and the transfer of information in form of metabolites and energy levels. Recent data suggest that the communication between organellar proteostasis systems is a cornerstone of cellular stress responses in eukaryotic cells. Here, we discuss the integration of proteostasis and energy fluxes in the regulation of cellular stress and aging. We emphasize the molecular architecture of the regulatory transcriptional pathways that both sense and control metabolism and proteostasis. A special focus is placed on mechanistic insights gained from the model organism budding yeast in signaling from mitochondria to the nucleus and how this shapes cellular fitness.
Collapse
Affiliation(s)
- Claes Andréasson
- Department of Molecular BiosciencesThe Wenner‐Gren InstituteStockholm UniversityStockholmSweden
| | - Martin Ott
- Department of Biochemistry and BiophysicsStockholm UniversityStockholmSweden
| | - Sabrina Büttner
- Department of Molecular BiosciencesThe Wenner‐Gren InstituteStockholm UniversityStockholmSweden
- Institute of Molecular BiosciencesUniversity of GrazGrazAustria
| |
Collapse
|
12
|
Gross AS, Zimmermann A, Pendl T, Schroeder S, Schoenlechner H, Knittelfelder O, Lamplmayr L, Santiso A, Aufschnaiter A, Waltenstorfer D, Ortonobes Lara S, Stryeck S, Kast C, Ruckenstuhl C, Hofer SJ, Michelitsch B, Woelflingseder M, Müller R, Carmona-Gutierrez D, Madl T, Büttner S, Fröhlich KU, Shevchenko A, Eisenberg T. Acetyl-CoA carboxylase 1-dependent lipogenesis promotes autophagy downstream of AMPK. J Biol Chem 2019; 294:12020-12039. [PMID: 31209110 PMCID: PMC6690696 DOI: 10.1074/jbc.ra118.007020] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 05/31/2019] [Indexed: 12/16/2022] Open
Abstract
Autophagy, a membrane-dependent catabolic process, ensures survival of aging cells and depends on the cellular energetic status. Acetyl-CoA carboxylase 1 (Acc1) connects central energy metabolism to lipid biosynthesis and is rate-limiting for the de novo synthesis of lipids. However, it is unclear how de novo lipogenesis and its metabolic consequences affect autophagic activity. Here, we show that in aging yeast, autophagy levels highly depend on the activity of Acc1. Constitutively active Acc1 (acc1S/A ) or a deletion of the Acc1 negative regulator, Snf1 (yeast AMPK), shows elevated autophagy levels, which can be reversed by the Acc1 inhibitor soraphen A. Vice versa, pharmacological inhibition of Acc1 drastically reduces cell survival and results in the accumulation of Atg8-positive structures at the vacuolar membrane, suggesting late defects in the autophagic cascade. As expected, acc1S/A cells exhibit a reduction in acetate/acetyl-CoA availability along with elevated cellular lipid content. However, concomitant administration of acetate fails to fully revert the increase in autophagy exerted by acc1S/A Instead, administration of oleate, while mimicking constitutively active Acc1 in WT cells, alleviates the vacuolar fusion defects induced by Acc1 inhibition. Our results argue for a largely lipid-dependent process of autophagy regulation downstream of Acc1. We present a versatile genetic model to investigate the complex relationship between acetate metabolism, lipid homeostasis, and autophagy and propose Acc1-dependent lipogenesis as a fundamental metabolic path downstream of Snf1 to maintain autophagy and survival during cellular aging.
Collapse
Affiliation(s)
- Angelina S Gross
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, 8010 Graz, Austria
| | - Andreas Zimmermann
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, 8010 Graz, Austria; Central Lab Gracia, NAWI Graz, University of Graz, 8010 Graz, Austria
| | - Tobias Pendl
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, 8010 Graz, Austria
| | - Sabrina Schroeder
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, 8010 Graz, Austria; BioTechMed-Graz, 8010 Graz, Austria
| | - Hannes Schoenlechner
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, 8010 Graz, Austria
| | - Oskar Knittelfelder
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
| | - Laura Lamplmayr
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, 8010 Graz, Austria
| | - Ana Santiso
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, 8010 Graz, Austria
| | - Andreas Aufschnaiter
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, 8010 Graz, Austria; Department of Molecular Biosciences, Wenner-Gren Institute, Stockholm University, 114 19 Stockholm, Sweden
| | - Daniel Waltenstorfer
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, 8010 Graz, Austria
| | - Sandra Ortonobes Lara
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, 8010 Graz, Austria
| | - Sarah Stryeck
- Gottfried Schatz Research Center for Cell Signaling, Metabolism, and Aging, Institute of Molecular Biology and Biochemistry, Medical University of Graz, 8036 Graz, Austria
| | - Christina Kast
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, 8010 Graz, Austria
| | - Christoph Ruckenstuhl
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, 8010 Graz, Austria
| | - Sebastian J Hofer
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, 8010 Graz, Austria; BioTechMed-Graz, 8010 Graz, Austria
| | - Birgit Michelitsch
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, 8010 Graz, Austria; Division of Plastic, Aesthetic, and Reconstructive Surgery, Department of Surgery, Medical University of Graz, 8036 Graz, Austria
| | | | - Rolf Müller
- Helmholtz Institute for Pharmaceutical Research Saarland, 66123 Saarbrücken, Germany
| | | | - Tobias Madl
- BioTechMed-Graz, 8010 Graz, Austria; Gottfried Schatz Research Center for Cell Signaling, Metabolism, and Aging, Institute of Molecular Biology and Biochemistry, Medical University of Graz, 8036 Graz, Austria
| | - Sabrina Büttner
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, 8010 Graz, Austria; Department of Molecular Biosciences, Wenner-Gren Institute, Stockholm University, 114 19 Stockholm, Sweden
| | - Kai-Uwe Fröhlich
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, 8010 Graz, Austria
| | - Andrej Shevchenko
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
| | - Tobias Eisenberg
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, 8010 Graz, Austria; Central Lab Gracia, NAWI Graz, University of Graz, 8010 Graz, Austria; BioTechMed-Graz, 8010 Graz, Austria.
| |
Collapse
|
13
|
Aufschnaiter A, Büttner S. The vacuolar shapes of ageing: From function to morphology. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2019; 1866:957-970. [PMID: 30796938 DOI: 10.1016/j.bbamcr.2019.02.011] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 02/13/2019] [Accepted: 02/15/2019] [Indexed: 12/21/2022]
Abstract
Cellular ageing results in accumulating damage to various macromolecules and the progressive decline of organelle function. Yeast vacuoles as well as their counterpart in higher eukaryotes, the lysosomes, emerge as central organelles in lifespan determination. These acidic organelles integrate enzymatic breakdown and recycling of cellular waste with nutrient sensing, storage, signalling and mobilization. Establishing physical contact with virtually all other organelles, vacuoles serve as hubs of cellular homeostasis. Studies in Saccharomyces cerevisiae contributed substantially to our understanding of the ageing process per se and the multifaceted roles of vacuoles/lysosomes in the maintenance of cellular fitness with progressing age. Here, we discuss the multiple roles of the vacuole during ageing, ranging from vacuolar dynamics and acidification as determinants of lifespan to the function of this organelle as waste bin, recycling facility, nutrient reservoir and integrator of nutrient signalling.
Collapse
Affiliation(s)
- Andreas Aufschnaiter
- Institute of Molecular Biosciences, University of Graz, Humboldtstraße 50, 8010 Graz, Austria
| | - Sabrina Büttner
- Institute of Molecular Biosciences, University of Graz, Humboldtstraße 50, 8010 Graz, Austria; Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Svante Arrhenius väg 20C, 106 91 Stockholm, Sweden.
| |
Collapse
|
14
|
Khan AH, Zou Z, Xiang Y, Chen S, Tian XL. Conserved signaling pathways genetically associated with longevity across the species. Biochim Biophys Acta Mol Basis Dis 2018; 1865:1745-1755. [PMID: 31109448 DOI: 10.1016/j.bbadis.2018.09.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 07/26/2018] [Accepted: 09/04/2018] [Indexed: 02/08/2023]
Abstract
Advanced age is an independent risk factor for natural death and common diseases, such as cardiovascular diseases, dementia, and cancers, which are life-threatening and cause disabilities. On the other hand, individual with healthy longevity is a plausible model for successful aging. Thus, search for longevity-associated genes and pathways likely provides a unique approach to understand the genetic mechanisms underlying aging and healthspan, and emerging evidence from model organisms has highlighted the significance of genetic components in longevity. Here we reviewed the uses of model organisms including yeast, ciliate, nematode, arthropod, fish, rodent, and primate as well as human to identify the genetic determinants of longevity and discussed the genetic contributions of conserved longevity pathways, such as adrenergic system, AMPK, insulin/IGF-1, and mTOR signaling pathways.
Collapse
Affiliation(s)
- Abdul Haseeb Khan
- Human population genetics, Human Aging Research Institute (HARI), Nanchang University, Xuefu Rd 999, Honggutan New District, Nanchang, Jiangxi Province 330031, China; School of Life Science, Nanchang University, Xuefu Rd 999, Honggutan New District, Nanchang, Jiangxi Province 330031, China
| | - Zhiwen Zou
- School of Life Science, Nanchang University, Xuefu Rd 999, Honggutan New District, Nanchang, Jiangxi Province 330031, China
| | - Yang Xiang
- Human population genetics, Human Aging Research Institute (HARI), Nanchang University, Xuefu Rd 999, Honggutan New District, Nanchang, Jiangxi Province 330031, China; School of Life Science, Nanchang University, Xuefu Rd 999, Honggutan New District, Nanchang, Jiangxi Province 330031, China
| | - Shenghan Chen
- Human population genetics, Human Aging Research Institute (HARI), Nanchang University, Xuefu Rd 999, Honggutan New District, Nanchang, Jiangxi Province 330031, China; School of Life Science, Nanchang University, Xuefu Rd 999, Honggutan New District, Nanchang, Jiangxi Province 330031, China
| | - Xiao-Li Tian
- Human population genetics, Human Aging Research Institute (HARI), Nanchang University, Xuefu Rd 999, Honggutan New District, Nanchang, Jiangxi Province 330031, China; School of Life Science, Nanchang University, Xuefu Rd 999, Honggutan New District, Nanchang, Jiangxi Province 330031, China.
| |
Collapse
|
15
|
Hofer S, Kainz K, Zimmermann A, Bauer MA, Pendl T, Poglitsch M, Madeo F, Carmona-Gutierrez D. Studying Huntington's Disease in Yeast: From Mechanisms to Pharmacological Approaches. Front Mol Neurosci 2018; 11:318. [PMID: 30233317 PMCID: PMC6131589 DOI: 10.3389/fnmol.2018.00318] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 08/16/2018] [Indexed: 12/22/2022] Open
Abstract
Huntington's disease (HD) is a neurodegenerative disorder that leads to progressive neuronal loss, provoking impaired motor control, cognitive decline, and dementia. So far, HD remains incurable, and available drugs are effective only for symptomatic management. HD is caused by a mutant form of the huntingtin protein, which harbors an elongated polyglutamine domain and is highly prone to aggregation. However, many aspects underlying the cytotoxicity of mutant huntingtin (mHTT) remain elusive, hindering the efficient development of applicable interventions to counteract HD. An important strategy to obtain molecular insights into human disorders in general is the use of eukaryotic model organisms, which are easy to genetically manipulate and display a high degree of conservation regarding disease-relevant cellular processes. The budding yeast Saccharomyces cerevisiae has a long-standing and successful history in modeling a plethora of human maladies and has recently emerged as an effective tool to study neurodegenerative disorders, including HD. Here, we summarize some of the most important contributions of yeast to HD research, specifically concerning the elucidation of mechanistic features of mHTT cytotoxicity and the potential of yeast as a platform to screen for pharmacological agents against HD.
Collapse
Affiliation(s)
- Sebastian Hofer
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
| | - Katharina Kainz
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
| | - Andreas Zimmermann
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
- Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Maria A. Bauer
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
| | - Tobias Pendl
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
| | - Michael Poglitsch
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
| | - Frank Madeo
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
- BioTechMed-Graz, Graz, Austria
| | | |
Collapse
|
16
|
Aufschnaiter A, Kohler V, Walter C, Tosal-Castano S, Habernig L, Wolinski H, Keller W, Vögtle FN, Büttner S. The Enzymatic Core of the Parkinson's Disease-Associated Protein LRRK2 Impairs Mitochondrial Biogenesis in Aging Yeast. Front Mol Neurosci 2018; 11:205. [PMID: 29977190 PMCID: PMC6021522 DOI: 10.3389/fnmol.2018.00205] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 05/22/2018] [Indexed: 02/01/2023] Open
Abstract
Mitochondrial dysfunction is a prominent trait of cellular decline during aging and intimately linked to neuronal degeneration during Parkinson's disease (PD). Various proteins associated with PD have been shown to differentially impact mitochondrial dynamics, quality control and function, including the leucine-rich repeat kinase 2 (LRRK2). Here, we demonstrate that high levels of the enzymatic core of human LRRK2, harboring GTPase as well as kinase activity, decreases mitochondrial mass via an impairment of mitochondrial biogenesis in aging yeast. We link mitochondrial depletion to a global downregulation of mitochondria-related gene transcripts and show that this catalytic core of LRRK2 localizes to mitochondria and selectively compromises respiratory chain complex IV formation. With progressing cellular age, this culminates in dissipation of mitochondrial transmembrane potential, decreased respiratory capacity, ATP depletion and generation of reactive oxygen species. Ultimately, the collapse of the mitochondrial network results in cell death. A point mutation in LRRK2 that increases the intrinsic GTPase activity diminishes mitochondrial impairment and consequently provides cytoprotection. In sum, we report that a downregulation of mitochondrial biogenesis rather than excessive degradation of mitochondria underlies the reduction of mitochondrial abundance induced by the enzymatic core of LRRK2 in aging yeast cells. Thus, our data provide a novel perspective for deciphering the causative mechanisms of LRRK2-associated PD pathology.
Collapse
Affiliation(s)
| | - Verena Kohler
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
| | - Corvin Walter
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Sergi Tosal-Castano
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Lukas Habernig
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Heimo Wolinski
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
| | - Walter Keller
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
| | - F.-Nora Vögtle
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Sabrina Büttner
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| |
Collapse
|
17
|
Ginovart M, Carbó R, Blanco M, Portell X. Digital Image Analysis of Yeast Single Cells Growing in Two Different Oxygen Concentrations to Analyze the Population Growth and to Assist Individual-Based Modeling. Front Microbiol 2018; 8:2628. [PMID: 29354112 PMCID: PMC5758558 DOI: 10.3389/fmicb.2017.02628] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Accepted: 12/15/2017] [Indexed: 11/22/2022] Open
Abstract
Nowadays control of the growth of Saccharomyces to obtain biomass or cellular wall components is crucial for specific industrial applications. The general aim of this contribution is to deal with experimental data obtained from yeast cells and from yeast cultures to attempt the integration of the two levels of information, individual and population, to progress in the control of yeast biotechnological processes by means of the overall analysis of this set of experimental data, and to assist in the improvement of an individual-based model, namely, INDISIM-Saccha. Populations of S. cerevisiae growing in liquid batch culture, in aerobic and microaerophilic conditions, were studied. A set of digital images was taken during the population growth, and a protocol for the treatment and analyses of the images obtained was established. The piecewise linear model of Buchanan was adjusted to the temporal evolutions of the yeast populations to determine the kinetic parameters and changes of growth phases. In parallel, for all the yeast cells analyzed, values of direct morphological parameters, such as area, perimeter, major diameter, minor diameter, and derived ones, such as circularity and elongation, were obtained. Graphical and numerical methods from descriptive statistics were applied to these data to characterize the growth phases and the budding state of the yeast cells in both experimental conditions, and inferential statistical methods were used to compare the diverse groups of data achieved. Oxidative metabolism of yeast in a medium with oxygen available and low initial sugar concentration can be taken into account in order to obtain a greater number of cells or larger cells. Morphological parameters were analyzed statistically to identify which were the most useful for the discrimination of the different states, according to budding and/or growth phase, in aerobic and microaerophilic conditions. The use of the experimental data for subsequent modeling work was then discussed and compared to simulation results generated with INDISIM-Saccha, which allowed us to advance in the development of this yeast model, and illustrated the utility of data at different levels of observation and the needs and logic behind the development of a microbial individual-based model.
Collapse
Affiliation(s)
- Marta Ginovart
- Department of Mathematics, Universitat Politècnica de Catalunya, Barcelona, Spain
| | - Rosa Carbó
- Department of Agri-Food Engineering and Biotechnology, Universitat Politècnica de Catalunya, Barcelona, Spain
| | - Mónica Blanco
- Department of Mathematics, Universitat Politècnica de Catalunya, Barcelona, Spain
| | - Xavier Portell
- Cranfield Soil and Agrifood Institute, Cranfield University, Bedfordshire, United Kingdom
| |
Collapse
|
18
|
Carmona-Gutierrez D, Bauer MA, Zimmermann A, Aguilera A, Austriaco N, Ayscough K, Balzan R, Bar-Nun S, Barrientos A, Belenky P, Blondel M, Braun RJ, Breitenbach M, Burhans WC, Büttner S, Cavalieri D, Chang M, Cooper KF, Côrte-Real M, Costa V, Cullin C, Dawes I, Dengjel J, Dickman MB, Eisenberg T, Fahrenkrog B, Fasel N, Fröhlich KU, Gargouri A, Giannattasio S, Goffrini P, Gourlay CW, Grant CM, Greenwood MT, Guaragnella N, Heger T, Heinisch J, Herker E, Herrmann JM, Hofer S, Jiménez-Ruiz A, Jungwirth H, Kainz K, Kontoyiannis DP, Ludovico P, Manon S, Martegani E, Mazzoni C, Megeney LA, Meisinger C, Nielsen J, Nyström T, Osiewacz HD, Outeiro TF, Park HO, Pendl T, Petranovic D, Picot S, Polčic P, Powers T, Ramsdale M, Rinnerthaler M, Rockenfeller P, Ruckenstuhl C, Schaffrath R, Segovia M, Severin FF, Sharon A, Sigrist SJ, Sommer-Ruck C, Sousa MJ, Thevelein JM, Thevissen K, Titorenko V, Toledano MB, Tuite M, Vögtle FN, Westermann B, Winderickx J, Wissing S, Wölfl S, Zhang ZJ, Zhao RY, Zhou B, Galluzzi L, Kroemer G, Madeo F. Guidelines and recommendations on yeast cell death nomenclature. MICROBIAL CELL (GRAZ, AUSTRIA) 2018; 5:4-31. [PMID: 29354647 PMCID: PMC5772036 DOI: 10.15698/mic2018.01.607] [Citation(s) in RCA: 130] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 12/29/2017] [Indexed: 12/18/2022]
Abstract
Elucidating the biology of yeast in its full complexity has major implications for science, medicine and industry. One of the most critical processes determining yeast life and physiology is cel-lular demise. However, the investigation of yeast cell death is a relatively young field, and a widely accepted set of concepts and terms is still missing. Here, we propose unified criteria for the defi-nition of accidental, regulated, and programmed forms of cell death in yeast based on a series of morphological and biochemical criteria. Specifically, we provide consensus guidelines on the differ-ential definition of terms including apoptosis, regulated necrosis, and autophagic cell death, as we refer to additional cell death rou-tines that are relevant for the biology of (at least some species of) yeast. As this area of investigation advances rapidly, changes and extensions to this set of recommendations will be implemented in the years to come. Nonetheless, we strongly encourage the au-thors, reviewers and editors of scientific articles to adopt these collective standards in order to establish an accurate framework for yeast cell death research and, ultimately, to accelerate the pro-gress of this vibrant field of research.
Collapse
Affiliation(s)
| | - Maria Anna Bauer
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, Graz, Austria
| | - Andreas Zimmermann
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, Graz, Austria
| | - Andrés Aguilera
- Centro Andaluz de Biología, Molecular y Medicina Regenerativa-CABIMER, Universidad de Sevilla, Sevilla, Spain
| | | | - Kathryn Ayscough
- Department of Biomedical Science, University of Sheffield, Sheffield, United Kingdom
| | - Rena Balzan
- Department of Physiology and Biochemistry, University of Malta, Msida, Malta
| | - Shoshana Bar-Nun
- Department of Biochemistry and Molecular Biology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Antonio Barrientos
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, USA
- Department of Neurology, University of Miami Miller School of Medi-cine, Miami, USA
| | - Peter Belenky
- Department of Molecular Microbiology and Immunology, Brown University, Providence, USA
| | - Marc Blondel
- Institut National de la Santé et de la Recherche Médicale UMR1078, Université de Bretagne Occidentale, Etablissement Français du Sang Bretagne, CHRU Brest, Hôpital Morvan, Laboratoire de Génétique Moléculaire, Brest, France
| | - Ralf J. Braun
- Institute of Cell Biology, University of Bayreuth, Bayreuth, Germany
| | | | - William C. Burhans
- Department of Molecular and Cellular Biology, Roswell Park Cancer Institute, Buffalo, NY, USA
| | - Sabrina Büttner
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, Graz, Austria
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | | | - Michael Chang
- European Research Institute for the Biology of Ageing, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Katrina F. Cooper
- Dept. Molecular Biology, Graduate School of Biomedical Sciences, Rowan University, Stratford, USA
| | - Manuela Côrte-Real
- Center of Molecular and Environmental Biology, Department of Biology, University of Minho, Braga, Portugal
| | - Vítor Costa
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
- Departamento de Biologia Molecular, Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| | | | - Ian Dawes
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, Australia
| | - Jörn Dengjel
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Martin B. Dickman
- Institute for Plant Genomics and Biotechnology, Texas A&M University, Texas, USA
| | - Tobias Eisenberg
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, Graz, Austria
- BioTechMed Graz, Graz, Austria
| | - Birthe Fahrenkrog
- Laboratory Biology of the Nucleus, Institute for Molecular Biology and Medicine, Université Libre de Bruxelles, Charleroi, Belgium
| | - Nicolas Fasel
- Department of Biochemistry, University of Lausanne, Lausanne, Switzerland
| | - Kai-Uwe Fröhlich
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, Graz, Austria
| | - Ali Gargouri
- Laboratoire de Biotechnologie Moléculaire des Eucaryotes, Center de Biotechnologie de Sfax, Sfax, Tunisia
| | - Sergio Giannattasio
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, National Research Council, Bari, Italy
| | - Paola Goffrini
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
| | - Campbell W. Gourlay
- Kent Fungal Group, School of Biosciences, University of Kent, Canterbury, United Kingdom
| | - Chris M. Grant
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
| | - Michael T. Greenwood
- Department of Chemistry and Chemical Engineering, Royal Military College, Kingston, Ontario, Canada
| | - Nicoletta Guaragnella
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, National Research Council, Bari, Italy
| | | | - Jürgen Heinisch
- Department of Biology and Chemistry, University of Osnabrück, Osnabrück, Germany
| | - Eva Herker
- Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany
| | | | - Sebastian Hofer
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, Graz, Austria
| | | | - Helmut Jungwirth
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, Graz, Austria
| | - Katharina Kainz
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, Graz, Austria
| | - Dimitrios P. Kontoyiannis
- Division of Internal Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Paula Ludovico
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Minho, Portugal
- ICVS/3B’s - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Stéphen Manon
- Institut de Biochimie et de Génétique Cellulaires, UMR5095, CNRS & Université de Bordeaux, Bordeaux, France
| | - Enzo Martegani
- Department of Biotechnolgy and Biosciences, University of Milano-Bicocca, Milano, Italy
| | - Cristina Mazzoni
- Instituto Pasteur-Fondazione Cenci Bolognetti - Department of Biology and Biotechnology "C. Darwin", La Sapienza University of Rome, Rome, Italy
| | - Lynn A. Megeney
- Sprott Center for Stem Cell Research, Ottawa Hospital Research Institute, The Ottawa Hospital, Ottawa, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Canada
- Department of Medicine, Division of Cardiology, University of Ottawa, Ottawa, Canada
| | - Chris Meisinger
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Jens Nielsen
- Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
- Novo Nordisk Foundation Center for Biosustainability, Chalmers University of Technology, Gothenburg, Sweden
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, DK2800 Lyngby, Denmark
| | - Thomas Nyström
- Institute for Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Heinz D. Osiewacz
- Institute for Molecular Biosciences, Goethe University, Frankfurt am Main, Germany
| | - Tiago F. Outeiro
- Department of Experimental Neurodegeneration, Center for Nanoscale Microscopy and Molecular Physiology of the Brain, Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, Göttingen, Germany
- Max Planck Institute for Experimental Medicine, Göttingen, Germany
- Institute of Neuroscience, The Medical School, Newcastle University, Framlington Place, Newcastle Upon Tyne, NE2 4HH, United Kingdom
- CEDOC, Chronic Diseases Research Centre, NOVA Medical School, Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Lisboa, Portugal
| | - Hay-Oak Park
- Department of Molecular Genetics, The Ohio State University, Columbus, OH, USA
| | - Tobias Pendl
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, Graz, Austria
| | - Dina Petranovic
- Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
- Novo Nordisk Foundation Center for Biosustainability, Chalmers University of Technology, Gothenburg, Sweden
| | - Stephane Picot
- Malaria Research Unit, SMITh, ICBMS, UMR 5246 CNRS-INSA-CPE-University Lyon, Lyon, France
- Institut of Parasitology and Medical Mycology, Hospices Civils de Lyon, Lyon, France
| | - Peter Polčic
- Department of Biochemistry, Faculty of Natural Sciences, Comenius University in Bratislava, Bratislava, Slovak Republic
| | - Ted Powers
- Department of Molecular and Cellular Biology, College of Biological Sciences, UC Davis, Davis, California, USA
| | - Mark Ramsdale
- Biosciences, University of Exeter, Exeter, United Kingdom
| | - Mark Rinnerthaler
- Department of Cell Biology and Physiology, Division of Genetics, University of Salzburg, Salzburg, Austria
| | - Patrick Rockenfeller
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, Graz, Austria
- Kent Fungal Group, School of Biosciences, University of Kent, Canterbury, United Kingdom
| | | | - Raffael Schaffrath
- Institute of Biology, Division of Microbiology, University of Kassel, Kassel, Germany
| | - Maria Segovia
- Department of Ecology, Faculty of Sciences, University of Malaga, Malaga, Spain
| | - Fedor F. Severin
- A.N. Belozersky Institute of physico-chemical biology, Moscow State University, Moscow, Russia
| | - Amir Sharon
- School of Plant Sciences and Food Security, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Stephan J. Sigrist
- Institute for Biology/Genetics, Freie Universität Berlin, Berlin, Germany
| | - Cornelia Sommer-Ruck
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, Graz, Austria
| | - Maria João Sousa
- Center of Molecular and Environmental Biology, Department of Biology, University of Minho, Braga, Portugal
| | - Johan M. Thevelein
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, KU Leuven, Leuven, Belgium
- Center for Microbiology, VIB, Leuven-Heverlee, Belgium
| | - Karin Thevissen
- Centre of Microbial and Plant Genetics, KU Leuven, Leuven, Belgium
| | | | - Michel B. Toledano
- Institute for Integrative Biology of the Cell (I2BC), SBIGEM, CEA-Saclay, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Mick Tuite
- Kent Fungal Group, School of Biosciences, University of Kent, Canterbury, United Kingdom
| | - F.-Nora Vögtle
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | | | - Joris Winderickx
- Department of Biology, Functional Biology, KU Leuven, Leuven-Heverlee, Belgium
| | | | - Stefan Wölfl
- Institute of Pharmacy and Molecu-lar Biotechnology, Heidelberg University, Heidelberg, Germany
| | - Zhaojie J. Zhang
- Department of Zoology and Physiology, University of Wyoming, Laramie, USA
| | - Richard Y. Zhao
- Department of Pathology, University of Maryland School of Medicine, Baltimore, USA
| | - Bing Zhou
- School of Life Sciences, Tsinghua University, Beijing, China
| | - Lorenzo Galluzzi
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA
- Sandra and Edward Meyer Cancer Center, New York, NY, USA
- Université Paris Descartes/Paris V, Paris, France
| | - Guido Kroemer
- Université Paris Descartes/Paris V, Paris, France
- Equipe 11 Labellisée Ligue Contre le Cancer, Centre de Recherche des Cordeliers, Paris, France
- Cell Biology and Metabolomics Platforms, Gustave Roussy Comprehensive Cancer Center, Villejuif, France
- INSERM, U1138, Paris, France
- Université Pierre et Marie Curie/Paris VI, Paris, France
- Pôle de Biologie, Hôpital Européen Georges Pompidou, Paris, France
- Institute, Department of Women’s and Children’s Health, Karolinska University Hospital, Stockholm, Sweden
| | - Frank Madeo
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, Graz, Austria
- BioTechMed Graz, Graz, Austria
| |
Collapse
|
19
|
Wloch-Salamon DM, Fisher RM, Regenberg B. Division of labour in the yeast:Saccharomyces cerevisiae. Yeast 2017; 34:399-406. [DOI: 10.1002/yea.3241] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Revised: 06/24/2017] [Accepted: 06/27/2017] [Indexed: 12/12/2022] Open
Affiliation(s)
| | - Roberta M. Fisher
- Department of Biology; University of Copenhagen; Universitetsparken 13 DK-2100 Copenhagen Denmark
- Centre for Social Evolution, Department of Biology; University of Copenhagen; Universitetsparken 15 Copenhagen Denmark
| | - Birgitte Regenberg
- Department of Biology; University of Copenhagen; Universitetsparken 13 DK-2100 Copenhagen Denmark
| |
Collapse
|
20
|
Time-resolved, single-cell analysis of induced and programmed cell death via non-invasive propidium iodide and counterstain perfusion. Sci Rep 2016; 6:32104. [PMID: 27580964 PMCID: PMC5007472 DOI: 10.1038/srep32104] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Accepted: 08/03/2016] [Indexed: 01/02/2023] Open
Abstract
Conventional propidium iodide (PI) staining requires the execution of multiple steps prior to analysis, potentially affecting assay results as well as cell vitality. In this study, this multistep analysis method has been transformed into a single-step, non-toxic, real-time method via live-cell imaging during perfusion with 0.1 μM PI inside a microfluidic cultivation device. Dynamic PI staining was an effective live/dead analytical tool and demonstrated consistent results for single-cell death initiated by direct or indirect triggers. Application of this method for the first time revealed the apparent antibiotic tolerance of wild-type Corynebacterium glutamicum cells, as indicated by the conversion of violet fluorogenic calcein acetoxymethyl ester (CvAM). Additional implementation of this method provided insight into the induced cell lysis of Escherichia coli cells expressing a lytic toxin-antitoxin module, providing evidence for non-lytic cell death and cell resistance to toxin production. Finally, our dynamic PI staining method distinguished necrotic-like and apoptotic-like cell death phenotypes in Saccharomyces cerevisiae among predisposed descendants of nutrient-deprived ancestor cells using PO-PRO-1 or green fluorogenic calcein acetoxymethyl ester (CgAM) as counterstains. The combination of single-cell cultivation, fluorescent time-lapse imaging, and PI perfusion facilitates spatiotemporally resolved observations that deliver new insights into the dynamics of cellular behaviour.
Collapse
|
21
|
Honigberg SM. Similar environments but diverse fates: Responses of budding yeast to nutrient deprivation. MICROBIAL CELL 2016; 3:302-328. [PMID: 27917388 PMCID: PMC5134742 DOI: 10.15698/mic2016.08.516] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Diploid budding yeast (Saccharomyces cerevisiae) can adopt one
of several alternative differentiation fates in response to nutrient limitation,
and each of these fates provides distinct biological functions. When different
strain backgrounds are taken into account, these various fates occur in response
to similar environmental cues, are regulated by the same signal transduction
pathways, and share many of the same master regulators. I propose that the
relationships between fate choice, environmental cues and signaling pathways are
not Boolean, but involve graded levels of signals, pathway activation and
master-regulator activity. In the absence of large differences between
environmental cues, small differences in the concentration of cues may be
reinforced by cell-to-cell signals. These signals are particularly essential for
fate determination within communities, such as colonies and biofilms, where fate
choice varies dramatically from one region of the community to another. The lack
of Boolean relationships between cues, signaling pathways, master regulators and
cell fates may allow yeast communities to respond appropriately to the wide
range of environments they encounter in nature.
Collapse
Affiliation(s)
- Saul M Honigberg
- Division of Cell Biology and Biophysics, University of Missouri-Kansas City, 5007 Rockhill Rd, Kansas City MO 64110, USA
| |
Collapse
|
22
|
Availability of Amino Acids Extends Chronological Lifespan by Suppressing Hyper-Acidification of the Environment in Saccharomyces cerevisiae. PLoS One 2016; 11:e0151894. [PMID: 26991662 PMCID: PMC4798762 DOI: 10.1371/journal.pone.0151894] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Accepted: 03/04/2016] [Indexed: 11/24/2022] Open
Abstract
The chronological lifespan of Saccharomyces cerevisiae represents the duration of cell survival in the postdiauxic and stationary phases. Using a prototrophic strain derived from the standard auxotrophic laboratory strain BY4742, we showed that supplementation of non-essential amino acids to a synthetic defined (SD) medium increases maximal cell growth and extends the chronological lifespan. The positive effects of amino acids can be reproduced by modulating the medium pH, indicating that amino acids contribute to chronological longevity in a cell-extrinsic manner by alleviating medium acidification. In addition, we showed that the amino acid-mediated effects on extension of chronological longevity are independent of those achieved through a reduction in the TORC1 pathway, which is mediated in a cell-intrinsic manner. Since previous studies showed that extracellular acidification causes mitochondrial dysfunction and leads to cell death, our results provide a path to premature chronological aging caused by differences in available nitrogen sources. Moreover, acidification of culture medium is generally associated with culture duration and cell density; thus, further studies are required on cell physiology of auxotrophic yeast strains during the stationary phase because an insufficient supply of essential amino acids may cause alterations in environmental conditions.
Collapse
|
23
|
Kasuba KC, Vavilala SL, D'Souza JS. Apoptosis-like cell death in unicellular photosynthetic organisms — A review. ALGAL RES 2015. [DOI: 10.1016/j.algal.2015.07.016] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
24
|
CTT1 overexpression increases life span of calorie-restricted Saccharomyces cerevisiae deficient in Sod1. Biogerontology 2015; 16:343-51. [DOI: 10.1007/s10522-015-9550-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2014] [Accepted: 01/05/2015] [Indexed: 10/24/2022]
|