1
|
Lu M, Billerbeck S. Improving homology-directed repair by small molecule agents for genetic engineering in unconventional yeast?-Learning from the engineering of mammalian systems. Microb Biotechnol 2024; 17:e14398. [PMID: 38376092 PMCID: PMC10878012 DOI: 10.1111/1751-7915.14398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 12/08/2023] [Accepted: 12/21/2023] [Indexed: 02/21/2024] Open
Abstract
The ability to precisely edit genomes by deleting or adding genetic information enables the study of biological functions and the building of efficient cell factories. In many unconventional yeasts, such as those promising new hosts for cell factory design but also human pathogenic yeasts and food spoilers, this progress has been limited by the fact that most yeasts favour non-homologous end joining (NHEJ) over homologous recombination (HR) as a DNA repair mechanism, impairing genetic access to these hosts. In mammalian cells, small molecules that either inhibit proteins involved in NHEJ, enhance protein function in HR, or arrest the cell cycle in HR-dominant phases are regarded as promising agents for the simple and transient increase of HR-mediated genome editing without the need for a priori host engineering. Only a few of these chemicals have been applied to the engineering of yeast, although the targeted proteins are mostly conserved, making chemical agents a yet-underexplored area for enhancing yeast engineering. Here, we consolidate knowledge of the available small molecules that have been used to improve HR efficiency in mammalian cells and the few ones that have been used in yeast. We include available high-throughput-compatible NHEJ/HR quantification assays that could be used to screen for and isolate yeast-specific inhibitors.
Collapse
Affiliation(s)
- Min Lu
- Molecular Microbiology, Groningen Biomolecular Sciences and Biotechnology InstituteUniversity of GroningenGroningenThe Netherlands
| | - Sonja Billerbeck
- Molecular Microbiology, Groningen Biomolecular Sciences and Biotechnology InstituteUniversity of GroningenGroningenThe Netherlands
| |
Collapse
|
2
|
Velazhahan V, McCann BL, Bignell E, Tate CG. Developing novel antifungals: lessons from G protein-coupled receptors. Trends Pharmacol Sci 2023; 44:162-174. [PMID: 36801017 DOI: 10.1016/j.tips.2022.12.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/15/2022] [Accepted: 12/15/2022] [Indexed: 02/18/2023]
Abstract
Up to 1.5 million people die yearly from fungal disease, but the repertoire of antifungal drug classes is minimal and the incidence of drug resistance is rising rapidly. This dilemma was recently declared by the World Health Organization as a global health emergency, but the discovery of new antifungal drug classes remains excruciatingly slow. This process could be accelerated by focusing on novel targets, such as G protein-coupled receptor (GPCR)-like proteins, that have a high likelihood of being druggable and have well-defined biology and roles in disease. We discuss recent successes in understanding the biology of virulence and in structure determination of yeast GPCRs, and highlight new approaches that might pay significant dividends in the urgent search for novel antifungal drugs.
Collapse
Affiliation(s)
- Vaithish Velazhahan
- Medical Research Council (MRC) Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Bethany L McCann
- MRC Centre for Medical Mycology, Stocker Road, University of Exeter, Exeter EX4 4QD, UK
| | - Elaine Bignell
- MRC Centre for Medical Mycology, Stocker Road, University of Exeter, Exeter EX4 4QD, UK.
| | - Christopher G Tate
- Medical Research Council (MRC) Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK.
| |
Collapse
|
3
|
Li M, Zhu P, Huang Z, Huang Y, Lv X, Zheng Q, Zhu Z, Fan Z, Yang Y, Shi P. Aspirin damages the cell wall of Saccharomyces cerevisiae by inhibiting the expression and activity of dolichol-phosphate mannose synthase 1. FEBS Lett 2022; 596:369-380. [PMID: 35028934 DOI: 10.1002/1873-3468.14283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 12/04/2021] [Accepted: 12/12/2021] [Indexed: 11/10/2022]
Abstract
Aspirin is a commonly used anti-inflammatory, analgesic and antithrombotic drug. It has attracted attention due to its potential antifungal therapeutic effect; however, the molecular mechanism is poorly understood. Here, the effects of aspirin on the cell wall of Saccharomyces cerevisiae were explored. We observed by scanning electron microscopy that aspirin could damage the cell wall ultrastructure. Meanwhile, a cellular surface hydrophobicity (CSH) assay showed that aspirin increased the hydrophobicity of the yeast cell surface. A drug sensitivity assay indicated that the overexpression of dolichol phosphate mannose synthase 1 (DPM1) reversed the cell wall damage and decreased the CSH induced by aspirin. Importantly, aspirin decreased the expression and enzyme activity of DPM1 in S. cerevisiae. Molecular docking results demonstrated that aspirin could directly bind to the Ser141 site of DPM1. Similarly, we found that aspirin damaged the cell wall and inhibited the expression of DPM1 in Candida albicans. These findings improve the current understanding of the action mode of aspirin and provide new strategies for antifungal drug design.
Collapse
Affiliation(s)
- Ming Li
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, China
| | - Pan Zhu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, China
| | - Zhiwei Huang
- Key Lab of Science & Technology of Eco-textile, Ministry of Education, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, China
| | - Yunxia Huang
- School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Xiaoguang Lv
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, China
| | - Qiaoqiao Zheng
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, China
| | - Ziting Zhu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, China
| | - Zheyu Fan
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, China
| | - Youjun Yang
- School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Ping Shi
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, China
| |
Collapse
|
4
|
Yeast Cells in Microencapsulation. General Features and Controlling Factors of the Encapsulation Process. Molecules 2021; 26:molecules26113123. [PMID: 34073703 PMCID: PMC8197184 DOI: 10.3390/molecules26113123] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 05/20/2021] [Accepted: 05/21/2021] [Indexed: 02/07/2023] Open
Abstract
Besides their best-known uses in the food and fermentation industry, yeasts have also found application as microcapsules. In the encapsulation process, exogenous and most typically hydrophobic compounds diffuse and end up being passively entrapped in the cell body, and can be released upon application of appropriate stimuli. Yeast cells can be employed either living or dead, intact, permeabilized, or even emptied of all their original cytoplasmic contents. The main selling points of this set of encapsulation technologies, which to date has predominantly targeted food and-to a lesser extent-pharmaceutical applications, are the low cost, biodegradability and biocompatibility of the capsules, coupled to their sustainable origin (e.g., spent yeast from brewing). This review aims to provide a broad overview of the different kinds of yeast-based microcapsules and of the main physico-chemical characteristics that control the encapsulation process and its efficiency.
Collapse
|
5
|
Dimopoulos G, Katsimichas A, Tsimogiannis D, Oreopoulou V, Taoukis P. Cell permeabilization processes for improved encapsulation of oregano essential oil in yeast cells. J FOOD ENG 2021. [DOI: 10.1016/j.jfoodeng.2020.110408] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
6
|
Multiscale and multidisciplinary approach to understanding nanoparticle transport in plants. Curr Opin Chem Eng 2020. [DOI: 10.1016/j.coche.2020.100659] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
7
|
Hill BD, Prabhu P, Rizvi SM, Wen F. Yeast Intracellular Staining (yICS): Enabling High-Throughput, Quantitative Detection of Intracellular Proteins via Flow Cytometry for Pathway Engineering. ACS Synth Biol 2020; 9:2119-2131. [PMID: 32603587 DOI: 10.1021/acssynbio.0c00199] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The complexities of pathway engineering necessitate screening libraries to discover phenotypes of interest. However, this approach is challenging when desirable phenotypes cannot be directly linked to growth advantages or fluorescence. In these cases, the ability to rapidly quantify intracellular proteins in the pathway of interest is critical to expedite the clonal selection process. While Saccharomyces cerevisiae remains a common host for pathway engineering, current approaches for intracellular protein detection in yeast either have low throughput, can interfere with protein function, or lack the ability to detect multiple proteins simultaneously. To fill this need, we developed yeast intracellular staining (yICS) that enables fluorescent antibodies to access intracellular compartments of yeast cells while maintaining their cellular integrity for analysis by flow cytometry. Using the housekeeping proteins β actin and glyceraldehyde 3-phophate dehydrogenase (GAPDH) as targets for yICS, we demonstrated for the first time successful antibody-based flow cytometric detection of yeast intracellular proteins with no modification. Further, yICS characterization of a recombinant d-xylose assimilation pathway showed 3-plexed, quantitative detection of the xylose reductase (XR), xylitol dehydrogenase (XDH), and xylulokinase (XK) enzymes each fused with a small (6-10 amino acids) tag, revealing distinct enzyme expression profiles between plasmid-based and genome-integrated expression approaches. As a result of its high-throughput and quantitative capability, yICS enabled rapid screening of a library created from CRISPR-mediated XDH integration into the yeast δ site, identifying rare (1%) clones that led to an 8.4-fold increase in XDH activity. These results demonstrate the utility of yICS for greatly accelerating pathway engineering efforts, as well as any application where the high-throughput and quantitative detection of intracellular proteins is desired.
Collapse
Affiliation(s)
- Brett D. Hill
- Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Ponnandy Prabhu
- Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Syed M. Rizvi
- Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Fei Wen
- Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
8
|
Ma Z, Xu M, Wang Q, Wang F, Zheng H, Gu Z, Li Y, Shi G, Ding Z. Development of an Efficient Strategy to Improve Extracellular Polysaccharide Production of Ganoderma lucidum Using L-Phenylalanine as an Enhancer. Front Microbiol 2019; 10:2306. [PMID: 31681192 PMCID: PMC6804554 DOI: 10.3389/fmicb.2019.02306] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 09/20/2019] [Indexed: 11/30/2022] Open
Abstract
Ganoderma lucidum has been a well-known species of basidiomycetes for a long time, and has been widely applied in the fields of food and medicine. Based on the simulation results of model iZBM1060 in our previous research, the effect of L-phenylalanine on G. lucidum extracellular polysaccharides (EPSs) was investigated in this study. EPS production reached 0.91 g/L at 0.4 g/L L-phenylalanine after a 24 h culture, which was 62.5% higher than that of control (0.56 g/L). Transcriptome and genome analysis showed that L-phenylalanine deaminase and benzoate 4-hydroxylase (related to L-phenylalanine metabolism) were significantly up-regulated, while the cell wall mannoprotein gene was down-regulated. Transmission electronic microscopy (TEM) and atomic force microscopy results showed that the cell wall thickness decreased by 58.58%, and cell wall porosity increased in cells treated with L-phenylalanine, which probably contribute to the increasing EPS production. This study provides an efficient strategy for fungal polysaccharide production with high output and low cost.
Collapse
Affiliation(s)
- Zhongbao Ma
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China.,National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, China
| | - Mengmeng Xu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China.,National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, China
| | - Qiong Wang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China.,National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, China
| | - Feng Wang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Huihua Zheng
- Jiangsu Alphay Biological Technology Co., Ltd., Nantong, China
| | - Zhenghua Gu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China.,National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, China
| | - Youran Li
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China.,National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, China
| | - Guiyang Shi
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China.,National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, China
| | - Zhongyang Ding
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China.,National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, China
| |
Collapse
|
9
|
Stirke A, Celiesiute-Germaniene R, Zimkus A, Zurauskiene N, Simonis P, Dervinis A, Ramanavicius A, Balevicius S. The link between yeast cell wall porosity and plasma membrane permeability after PEF treatment. Sci Rep 2019; 9:14731. [PMID: 31611587 PMCID: PMC6791849 DOI: 10.1038/s41598-019-51184-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 09/17/2019] [Indexed: 01/17/2023] Open
Abstract
An investigation of the yeast cell resealing process was performed by studying the absorption of the tetraphenylphosphonium (TPP+) ion by the yeast Saccharomyces cerevisiae. It was shown that the main barrier for the uptake of such TPP+ ions is the cell wall. An increased rate of TPP+ absorption after treatment of such cells with a pulsed electric field (PEF) was observed only in intact cells, but not in spheroplasts. The investigation of the uptake of TPP+ in PEF treated cells exposed to TPP+ for different time intervals also showed the dependence of the absorption rate on the PEF strength. The modelling of the TPP+ uptake recovery has also shown that the characteristic decay time of the non-equilibrium (PEF induced) pores was approximately a few tens of seconds and this did not depend on the PEF strength. A further investigation of such cell membrane recovery process using a florescent SYTOX Green nucleic acid stain dye also showed that such membrane resealing takes place over a time that is like that occurring in the cell wall. It was thus concluded that the similar characteristic lifetimes of the non-equilibrium pores in the cell wall and membrane after exposure to PEF indicate a strong coupling between these parts of the cell.
Collapse
Affiliation(s)
- Arunas Stirke
- Center for Physical Sciences and Technology, Sauletekio ave. 3, LT-10257, Vilnius, Lithuania
| | | | - Aurelijus Zimkus
- Department of Biochemistry and Biophysics, Life Sciences Center, Sauletekio ave. 7, LT-10257, Vilnius, Lithuania
| | - Nerija Zurauskiene
- Center for Physical Sciences and Technology, Sauletekio ave. 3, LT-10257, Vilnius, Lithuania
| | - Povilas Simonis
- Center for Physical Sciences and Technology, Sauletekio ave. 3, LT-10257, Vilnius, Lithuania
| | - Aldas Dervinis
- Center for Physical Sciences and Technology, Sauletekio ave. 3, LT-10257, Vilnius, Lithuania
| | - Arunas Ramanavicius
- Center for Physical Sciences and Technology, Sauletekio ave. 3, LT-10257, Vilnius, Lithuania.,Department of Physical Chemistry, Faculty of Chemistry and Geosciences, Vilnius University, Naugarduko st. 24, LT-03225, Vilnius, Lithuania
| | - Saulius Balevicius
- Center for Physical Sciences and Technology, Sauletekio ave. 3, LT-10257, Vilnius, Lithuania
| |
Collapse
|
10
|
Engineering a Model Cell for Rational Tuning of GPCR Signaling. Cell 2019; 177:782-796.e27. [PMID: 30955892 PMCID: PMC6476273 DOI: 10.1016/j.cell.2019.02.023] [Citation(s) in RCA: 107] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 12/20/2018] [Accepted: 02/13/2019] [Indexed: 12/18/2022]
Abstract
G protein-coupled receptor (GPCR) signaling is the primary method eukaryotes use to respond to specific cues in their environment. However, the relationship between stimulus and response for each GPCR is difficult to predict due to diversity in natural signal transduction architecture and expression. Using genome engineering in yeast, we constructed an insulated, modular GPCR signal transduction system to study how the response to stimuli can be predictably tuned using synthetic tools. We delineated the contributions of a minimal set of key components via computational and experimental refactoring, identifying simple design principles for rationally tuning the dose response. Using five different GPCRs, we demonstrate how this enables cells and consortia to be engineered to respond to desired concentrations of peptides, metabolites, and hormones relevant to human health. This work enables rational tuning of cell sensing while providing a framework to guide reprogramming of GPCR-based signaling in other systems.
Collapse
|
11
|
Zahrl RJ, Gasser B, Mattanovich D, Ferrer P. Detection and Elimination of Cellular Bottlenecks in Protein-Producing Yeasts. Methods Mol Biol 2019; 1923:75-95. [PMID: 30737735 DOI: 10.1007/978-1-4939-9024-5_2] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Yeasts are efficient cell factories and are commonly used for the production of recombinant proteins for biopharmaceutical and industrial purposes. For such products high levels of correctly folded proteins are needed, which sometimes requires improvement and engineering of the expression system. The article summarizes major breakthroughs that led to the efficient use of yeasts as production platforms and reviews bottlenecks occurring during protein production. Special focus is given to the metabolic impact of protein production. Furthermore, strategies that were shown to enhance secretion of recombinant proteins in different yeast species are presented.
Collapse
Affiliation(s)
- Richard J Zahrl
- Department of Biotechnology, University of Natural Resources and Life Sciences (BOKU), Vienna, Austria.,Austrian Centre of Industrial Biotechnology (acib), Vienna, Austria
| | - Brigitte Gasser
- Christian Doppler-Laboratory for Growth-Decoupled Protein Production in Yeast, Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna, Austria.,Department of Biotechnology, University of Natural Resources and Life Sciences (BOKU) and Austrian Centre of Industrial Biotechnology (acib), Vienna, Austria
| | - Diethard Mattanovich
- Department of Biotechnology, University of Natural Resources and Life Sciences (BOKU) and Austrian Centre of Industrial Biotechnology (acib), Vienna, Austria
| | - Pau Ferrer
- Luxembourg Institute of Science and Technology, Belvaux, Luxembourg. .,Department of Chemical, Biological and Environmental Engineering, Universitat Autònoma de Barcelona, Bellaterra (Cerdanyola del Vallès), Catalonia, Spain.
| |
Collapse
|
12
|
Sabu C, Mufeedha P, Pramod K. Yeast-inspired drug delivery: biotechnology meets bioengineering and synthetic biology. Expert Opin Drug Deliv 2018; 16:27-41. [DOI: 10.1080/17425247.2019.1551874] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Chinnu Sabu
- College of Pharmaceutical Sciences, Govt. Medical College, Kozhikode, India
| | - Panakkal Mufeedha
- College of Pharmaceutical Sciences, Govt. Medical College, Kozhikode, India
| | - Kannissery Pramod
- College of Pharmaceutical Sciences, Govt. Medical College, Kozhikode, India
| |
Collapse
|
13
|
Zimmermann A, Hofer S, Pendl T, Kainz K, Madeo F, Carmona-Gutierrez D. Yeast as a tool to identify anti-aging compounds. FEMS Yeast Res 2018; 18:4919731. [PMID: 29905792 PMCID: PMC6001894 DOI: 10.1093/femsyr/foy020] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Accepted: 02/27/2018] [Indexed: 12/23/2022] Open
Abstract
In the search for interventions against aging and age-related diseases, biological screening platforms are indispensable tools to identify anti-aging compounds among large substance libraries. The budding yeast, Saccharomyces cerevisiae, has emerged as a powerful chemical and genetic screening platform, as it combines a rapid workflow with experimental amenability and the availability of a wide range of genetic mutant libraries. Given the amount of conserved genes and aging mechanisms between yeast and human, testing candidate anti-aging substances in yeast gene-deletion or overexpression collections, or de novo derived mutants, has proven highly successful in finding potential molecular targets. Yeast-based studies, for example, have led to the discovery of the polyphenol resveratrol and the natural polyamine spermidine as potential anti-aging agents. Here, we present strategies for pharmacological anti-aging screens in yeast, discuss common pitfalls and summarize studies that have used yeast for drug discovery and target identification.
Collapse
Affiliation(s)
- Andreas Zimmermann
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, Graz, 8010, Austria
| | - Sebastian Hofer
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, Graz, 8010, Austria
| | - Tobias Pendl
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, Graz, 8010, Austria
| | - Katharina Kainz
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, Graz, 8010, Austria
| | - Frank Madeo
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, Graz, 8010, Austria
- BioTechMed Graz, Graz, 8010, Austria
| | | |
Collapse
|
14
|
Martin-Yken H, Gironde C, Derick S, Darius HT, Furger C, Laurent D, Chinain M. Ciguatoxins activate the Calcineurin signalling pathway in Yeasts: Potential for development of an alternative detection tool? ENVIRONMENTAL RESEARCH 2018; 162:144-151. [PMID: 29306662 DOI: 10.1016/j.envres.2017.12.022] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 11/05/2017] [Accepted: 12/22/2017] [Indexed: 06/07/2023]
Abstract
Ciguatoxins (CTXs) are lipid-soluble polyether compounds produced by dinoflagellates from the genus Gambierdiscus spp. typically found in tropical and subtropical zones. This endemic area is however rapidly expanding due to environmental perturbations, and both toxic Gambierdiscus spp. and ciguatoxic fishes have been recently identified in the North Atlantic Ocean (Madeira and Canary islands) and Mediterranean Sea. Ciguatoxins bind to Voltage Gated Sodium Channels on the membranes of sensory neurons, causing Ciguatera Fish Poisoning (CFP) in humans, a disease characterized by a complex array of gastrointestinal, neurological, neuropsychological, and cardiovascular symptoms. Although CFP is the most frequently reported non bacterial food-borne poisoning worldwide, there is still no simple and quick way of detecting CTXs in contaminated samples. In the prospect to engineer rapid and easy-to-use CTXs live cells-based tests, we have studied the effects of CTXs on the yeast Saccharomyces cerevisiae, a unicellular model which displays a remarkable conservation of cellular signalling pathways with higher eukaryotes. Taking advantage of this high level of conservation, yeast strains have been genetically modified to encode specific transcriptional reporters responding to CTXs exposure. These yeast strains were further exposed to different concentrations of either purified CTX or micro-algal extracts containing CTXs. Our data establish that CTXs are not cytotoxic to yeast cells even at concentrations as high as 1μM, and cause an increase in the level of free intracellular calcium in yeast cells. Concomitantly, a dose-dependent activation of the calcineurin signalling pathway is observed, as assessed by measuring the activity of specific transcriptional reporters in the engineered yeast strains. These findings offer promising prospects regarding the potential development of a yeast cells-based test that could supplement or, in some instances, replace current methods for the routine detection of CTXs in seafood products.
Collapse
Affiliation(s)
- Hélène Martin-Yken
- LISBP INSA Université de Toulouse, UMR CNRS 5504, UMR INRA 792, 135 Avenue de Rangueil, 31077 Toulouse, France.
| | - Camille Gironde
- Led Engineering Development and LAAS-CNRS, 7 Avenue du colonel Roche, Toulouse, France
| | - Sylvain Derick
- Led Engineering Development and LAAS-CNRS, 7 Avenue du colonel Roche, Toulouse, France
| | - Hélène Taiana Darius
- Laboratoire des Micro-Algues Toxiques, Institut Louis Malardé, UMR 241-EIO, BP 30 98713 Papeete, Tahiti, Polynésie Française
| | - Christophe Furger
- Led Engineering Development and LAAS-CNRS, 7 Avenue du colonel Roche, Toulouse, France
| | - Dominique Laurent
- Université Paul Sabatier Toulouse 3 UMR 152 et IRD Polynésie Française, BP 529 98713 Papeete, Tahiti, Polynésie Française
| | - Mireille Chinain
- Laboratoire des Micro-Algues Toxiques, Institut Louis Malardé, UMR 241-EIO, BP 30 98713 Papeete, Tahiti, Polynésie Française
| |
Collapse
|
15
|
Identification of an Arg-Leu-Arg tripeptide that contributes to the binding interface between the cytokine MIF and the chemokine receptor CXCR4. Sci Rep 2018; 8:5171. [PMID: 29581527 PMCID: PMC5979958 DOI: 10.1038/s41598-018-23554-5] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Accepted: 03/15/2018] [Indexed: 02/07/2023] Open
Abstract
MIF is a chemokine-like cytokine that plays a role in the pathogenesis of inflammatory and cardiovascular disorders. It binds to the chemokine-receptors CXCR2/CXCR4 to trigger atherogenic leukocyte migration albeit lacking canonical chemokine structures. We recently characterized an N-like-loop and the Pro-2-residue of MIF as critical molecular determinants of the CXCR4/MIF binding-site and identified allosteric agonism as a mechanism that distinguishes CXCR4-binding to MIF from that to the cognate ligand CXCL12. By using peptide spot-array technology, site-directed mutagenesis, structure-activity-relationships, and molecular docking, we identified the Arg-Leu-Arg (RLR) sequence-region 87–89 that – in three-dimensional space – ‘extends’ the N-like-loop to control site-1-binding to CXCR4. Contrary to wildtype MIF, mutant R87A-L88A-R89A-MIF fails to bind to the N-terminal of CXCR4 and the contribution of RLR to the MIF/CXCR4-interaction is underpinned by an ablation of MIF/CXCR4-specific signaling and reduction in CXCR4-dependent chemotactic leukocyte migration of the RLR-mutant of MIF. Alanine-scanning, functional competition by RLR-containing peptides, and molecular docking indicate that the RLR residues directly participate in contacts between MIF and CXCR4 and highlight the importance of charge-interactions at this interface. Identification of the RLR region adds important structural information to the MIF/CXCR4 binding-site that distinguishes this interface from CXCR4/CXCL12 and will help to design MIF-specific drug-targeting approaches.
Collapse
|
16
|
Walker L, Sood P, Lenardon MD, Milne G, Olson J, Jensen G, Wolf J, Casadevall A, Adler-Moore J, Gow NAR. The Viscoelastic Properties of the Fungal Cell Wall Allow Traffic of AmBisome as Intact Liposome Vesicles. mBio 2018; 9:e02383-17. [PMID: 29437927 PMCID: PMC5801470 DOI: 10.1128/mbio.02383-17] [Citation(s) in RCA: 111] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2017] [Accepted: 01/08/2018] [Indexed: 01/25/2023] Open
Abstract
The fungal cell wall is a critically important structure that represents a permeability barrier and protective shield. We probed Candida albicans and Cryptococcus neoformans with liposomes containing amphotericin B (AmBisome), with or without 15-nm colloidal gold particles. The liposomes have a diameter of 60 to 80 nm, and yet their mode of action requires them to penetrate the fungal cell wall to deliver amphotericin B to the cell membrane, where it binds to ergosterol. Surprisingly, using cryofixation techniques with electron microscopy, we observed that the liposomes remained intact during transit through the cell wall of both yeast species, even though the predicted porosity of the cell wall (pore size, ~5.8 nm) is theoretically too small to allow these liposomes to pass through intact. C. albicans mutants with altered cell wall thickness and composition were similar in both their in vitro AmBisome susceptibility and the ability of liposomes to penetrate the cell wall. AmBisome exposed to ergosterol-deficient C. albicans failed to penetrate beyond the mannoprotein-rich outer cell wall layer. Melanization of C. neoformans and the absence of amphotericin B in the liposomes were also associated with a significant reduction in liposome penetration. Therefore, AmBisome can reach cell membranes intact, implying that fungal cell wall viscoelastic properties are permissive to vesicular structures. The fact that AmBisome can transit through chemically diverse cell wall matrices when these liposomes are larger than the theoretical cell wall porosity suggests that the wall is capable of rapid remodeling, which may also be the mechanism for release of extracellular vesicles.IMPORTANCE AmBisome is a broad-spectrum fungicidal antifungal agent in which the hydrophobic polyene antibiotic amphotericin B is packaged within a 60- to 80-nm liposome. The mode of action involves perturbation of the fungal cell membrane by selectively binding to ergosterol, thereby disrupting membrane function. We report that the AmBisome liposome transits through the cell walls of both Candida albicans and Cryptococcus neoformans intact, despite the fact that the liposome is larger than the theoretical cell wall porosity. This implies that the cell wall has deformable, viscoelastic properties that are permissive to transwall vesicular traffic. These observations help explain the low toxicity of AmBisome, which can deliver its payload directly to the cell membrane without unloading the polyene in the cell wall. In addition, these findings suggest that extracellular vesicles may also be able to pass through the cell wall to deliver soluble and membrane-bound effectors and other molecules to the extracellular space.
Collapse
Affiliation(s)
- Louise Walker
- Aberdeen Fungal Group, Institute of Medical Sciences, Medical Research Council Centre for Medical Mycology at the University of Aberdeen, Foresterhill, Aberdeen, United Kingdom
| | - Prashant Sood
- Aberdeen Fungal Group, Institute of Medical Sciences, Medical Research Council Centre for Medical Mycology at the University of Aberdeen, Foresterhill, Aberdeen, United Kingdom
| | - Megan D Lenardon
- Aberdeen Fungal Group, Institute of Medical Sciences, Medical Research Council Centre for Medical Mycology at the University of Aberdeen, Foresterhill, Aberdeen, United Kingdom
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Gillian Milne
- Aberdeen Fungal Group, Institute of Medical Sciences, Medical Research Council Centre for Medical Mycology at the University of Aberdeen, Foresterhill, Aberdeen, United Kingdom
| | - Jon Olson
- Gilead Sciences Inc., San Dimas, California, USA
| | | | - Julie Wolf
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Arturo Casadevall
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York, USA
| | | | - Neil A R Gow
- Aberdeen Fungal Group, Institute of Medical Sciences, Medical Research Council Centre for Medical Mycology at the University of Aberdeen, Foresterhill, Aberdeen, United Kingdom
| |
Collapse
|
17
|
Cameron-Clarke A, Hulse GA, Clifton L, Cantrell IC. The Use of Adenylate Kinase Measurement to Determine Causes of Lysis in Lager Yeast. JOURNAL OF THE AMERICAN SOCIETY OF BREWING CHEMISTS 2018. [DOI: 10.1094/asbcj-61-0152] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
| | - G. A. Hulse
- South African Breweries, Beer Division, Sandton, South Africa
| | - L. Clifton
- South African Breweries, Beer Division, Sandton, South Africa
| | - I. C. Cantrell
- South African Breweries, Beer Division, Sandton, South Africa
| |
Collapse
|
18
|
Ganeva V, Galutzov B, Angelova B, Suckow M. Electroinduced Extraction of Human Ferritin Heavy Chain Expressed in Hansenula polymorpha. Appl Biochem Biotechnol 2017; 184:1286-1307. [PMID: 29019009 DOI: 10.1007/s12010-017-2627-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Accepted: 10/02/2017] [Indexed: 11/24/2022]
Abstract
А protocol for the efficient and selective recovery of human ferritin heavy chain (FTH1) expressed intracellularly in Hansenula polymorpha was developed. It was based on electropermeabilisation and an increase in the cell wall porosity by pulsed electric field (PEF) treatment and subsequent incubation with a low concentration of a lytic enzyme. Irreversible plasma membrane permeabilisation was induced by applying rectangular electric pulses in the flow mode. The electrical treatment itself did not cause the release of the recombinant protein but induced the sensitisation of H. polymorpha cells to the lytic enzyme. Consequently, the subsequent incubation of the permeabilised cells with lyticase led to the recovery of approximately 90% of the recombinant protein, with a purification factor of 1.8. A similar efficiency was obtained by using the industrial lytic enzyme Glucanex. The released FTH1 appears in the form of an oligomer with a molecular mass of approximately 480 kDa, which is able to bind iron. The possibility for scaling the proposed protocol is discussed.
Collapse
Affiliation(s)
- Valentina Ganeva
- Department Biophysics & Radiobiology, Biological Faculty, Sofia University, 8 Dragan Tzankov Blvd., 1164, Sofia, Bulgaria.
| | - Bojidar Galutzov
- Department Biophysics & Radiobiology, Biological Faculty, Sofia University, 8 Dragan Tzankov Blvd., 1164, Sofia, Bulgaria
| | - Boyana Angelova
- Department Biophysics & Radiobiology, Biological Faculty, Sofia University, 8 Dragan Tzankov Blvd., 1164, Sofia, Bulgaria
| | - Manfred Suckow
- ARTES Biotechnology GmbH, Elizabeth Selbert Str. 9, 40764, Langenfeld, Germany
| |
Collapse
|
19
|
Zahrl RJ, Peña DA, Mattanovich D, Gasser B. Systems biotechnology for protein production in Pichia pastoris. FEMS Yeast Res 2017; 17:4093073. [DOI: 10.1093/femsyr/fox068] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2017] [Accepted: 08/22/2017] [Indexed: 12/31/2022] Open
|
20
|
Pham-Hoang BN, Voilley A, Waché Y. Molecule structural factors influencing the loading of flavoring compounds in a natural-preformed capsule: Yeast cells. Colloids Surf B Biointerfaces 2016; 148:220-228. [PMID: 27606495 DOI: 10.1016/j.colsurfb.2016.08.045] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Revised: 08/24/2016] [Accepted: 08/25/2016] [Indexed: 12/12/2022]
Abstract
Yeast cells are efficient microcapsules for the encapsulation of flavoring compounds. However, as they are preformed capsules, they have to be loaded with the active. Encapsulation efficiency is to a certain level correlated with LogP. In this study, the effect of structural factors on the encapsulation of amphiphilic flavors was investigated. Homological series of carboxylic acids, ethyl esters, lactones, alcohols and ketones were encapsulated into the yeast Yarrowia lipolytica. Although, in a single homological series, the length of the molecule and thus the LogP were correlated with encapsulation efficiency (EY%), big differences were observable between series. For instance, carboxylic acids and lactones exhibited EY% around 45%-55%, respectively, for compounds bigger than C8 and C6, respectively, whereas ethyl esters reached only about 15-20% for C10 compounds. For a group of various C6-compounds, EY% varied from 4% for hexanal to 45% for hexanoic acid although the LogP of the two compounds was almost similar at 1.9. In total our results point out the importance of the level of polarity and localization of the polar part of the compound in addition to the global hydrophobicity of the molecule. They will be of importance to optimize the encapsulation of mixtures of compounds.
Collapse
Affiliation(s)
- Bao Ngoc Pham-Hoang
- UMR Procédés Alimentaires et Microbiologiques A 02.102, AgroSup Dijon/Université de Bourgogne-Franche Comté, 1 Esplanade Erasme, 21000 Dijon, France.
| | - Andrée Voilley
- UMR Procédés Alimentaires et Microbiologiques A 02.102, AgroSup Dijon/Université de Bourgogne-Franche Comté, 1 Esplanade Erasme, 21000 Dijon, France
| | - Yves Waché
- UMR Procédés Alimentaires et Microbiologiques A 02.102, AgroSup Dijon/Université de Bourgogne-Franche Comté, 1 Esplanade Erasme, 21000 Dijon, France
| |
Collapse
|
21
|
Rajasekaran D, Gröning S, Schmitz C, Zierow S, Drucker N, Bakou M, Kohl K, Mertens A, Lue H, Weber C, Xiao A, Luker G, Kapurniotu A, Lolis E, Bernhagen J. Macrophage Migration Inhibitory Factor-CXCR4 Receptor Interactions: EVIDENCE FOR PARTIAL ALLOSTERIC AGONISM IN COMPARISON WITH CXCL12 CHEMOKINE. J Biol Chem 2016; 291:15881-95. [PMID: 27226569 PMCID: PMC4957068 DOI: 10.1074/jbc.m116.717751] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Revised: 05/19/2016] [Indexed: 12/28/2022] Open
Abstract
An emerging number of non-chemokine mediators are found to bind to classical chemokine receptors and to elicit critical biological responses. Macrophage migration inhibitory factor (MIF) is an inflammatory cytokine that exhibits chemokine-like activities through non-cognate interactions with the chemokine receptors CXCR2 and CXCR4, in addition to activating the type II receptor CD74. Activation of the MIF-CXCR2 and -CXCR4 axes promotes leukocyte recruitment, mediating the exacerbating role of MIF in atherosclerosis and contributing to the wealth of other MIF biological activities. Although the structural basis of the MIF-CXCR2 interaction has been well studied and was found to engage a pseudo-ELR and an N-like loop motif, nothing is known about the regions of CXCR4 and MIF that are involved in binding to each other. Using a genetic strain of Saccharomyces cerevisiae that expresses a functional CXCR4 receptor, site-specific mutagenesis, hybrid CXCR3/CXCR4 receptors, pharmacological reagents, peptide array analysis, chemotaxis, fluorescence spectroscopy, and circular dichroism, we provide novel molecular information about the structural elements that govern the interaction between MIF and CXCR4. The data identify similarities with classical chemokine-receptor interactions but also provide evidence for a partial allosteric agonist compared with CXCL12 that is possible due to the two binding sites of CXCR4.
Collapse
Affiliation(s)
- Deepa Rajasekaran
- From the Department of Pharmacology, Yale University School of Medicine, New Haven, Connecticut 06520
| | - Sabine Gröning
- the Institute of Biochemistry and Molecular Cell Biology, Rheinisch-Westfälische Technische Hochschule (RWTH), Aachen University, Pauwelsstrasse 30, 52074 Aachen, Germany
| | - Corinna Schmitz
- the Institute of Biochemistry and Molecular Cell Biology, Rheinisch-Westfälische Technische Hochschule (RWTH), Aachen University, Pauwelsstrasse 30, 52074 Aachen, Germany, Vascular Biology, Institute for Stroke and Dementia Research, Klinikum der Universität München, Ludwig-Maximilians-University of Munich, Feodor-Lynen-Strasse 17, and
| | - Swen Zierow
- From the Department of Pharmacology, Yale University School of Medicine, New Haven, Connecticut 06520
| | - Natalie Drucker
- From the Department of Pharmacology, Yale University School of Medicine, New Haven, Connecticut 06520
| | - Maria Bakou
- the Division of Peptide Biochemistry, Technische Universität München, 85354 Freising-Weihenstephan, Germany
| | - Kristian Kohl
- the Division of Peptide Biochemistry, Technische Universität München, 85354 Freising-Weihenstephan, Germany
| | - André Mertens
- the Institute of Biochemistry and Molecular Cell Biology, Rheinisch-Westfälische Technische Hochschule (RWTH), Aachen University, Pauwelsstrasse 30, 52074 Aachen, Germany
| | - Hongqi Lue
- the Institute of Biochemistry and Molecular Cell Biology, Rheinisch-Westfälische Technische Hochschule (RWTH), Aachen University, Pauwelsstrasse 30, 52074 Aachen, Germany
| | - Christian Weber
- the Institute for Cardiovascular Prevention, Klinikum der Universität München, Ludwig-Maximilians-University of Munich, Pettenkofer Strasse 8, 80336 Munich, Germany
| | - Annie Xiao
- the Center for Molecular Imaging, Departments of Radiology, Biomedical Engineering, and Microbiology and Immunology, University of Michigan, Ann Arbor, Michigan 48109
| | - Gary Luker
- the Center for Molecular Imaging, Departments of Radiology, Biomedical Engineering, and Microbiology and Immunology, University of Michigan, Ann Arbor, Michigan 48109
| | - Aphrodite Kapurniotu
- the Division of Peptide Biochemistry, Technische Universität München, 85354 Freising-Weihenstephan, Germany,
| | - Elias Lolis
- From the Department of Pharmacology, Yale University School of Medicine, New Haven, Connecticut 06520,
| | - Jürgen Bernhagen
- the Institute of Biochemistry and Molecular Cell Biology, Rheinisch-Westfälische Technische Hochschule (RWTH), Aachen University, Pauwelsstrasse 30, 52074 Aachen, Germany, Vascular Biology, Institute for Stroke and Dementia Research, Klinikum der Universität München, Ludwig-Maximilians-University of Munich, Feodor-Lynen-Strasse 17, and the Munich Cluster for Systems Neurology (SyNergy), 81377 Munich, Germany
| |
Collapse
|
22
|
Tang H, Wang S, Wang J, Song M, Xu M, Zhang M, Shen Y, Hou J, Bao X. N-hypermannose glycosylation disruption enhances recombinant protein production by regulating secretory pathway and cell wall integrity in Saccharomyces cerevisiae. Sci Rep 2016; 6:25654. [PMID: 27156860 PMCID: PMC4860636 DOI: 10.1038/srep25654] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Accepted: 04/14/2016] [Indexed: 12/30/2022] Open
Abstract
Saccharomyces cerevisiae is a robust host for heterologous protein expression. The efficient expression of cellulases in S. cerevisiae is important for the consolidated bioprocess that directly converts lignocellulose into valuable products. However, heterologous proteins are often N-hyperglycosylated in S. cerevisiae, which may affect protein activity. In this study, the expression of three heterologous proteins, β-glucosidase, endoglucanase and cellobiohydrolase, was found to be N-hyperglycosylated in S. cerevisiae. To block the formation of hypermannose glycan, these proteins were expressed in strains with deletions in key Golgi mannosyltransferases (Och1p, Mnn9p and Mnn1p), respectively. Their extracellular activities improved markedly in the OCH1 and MNN9 deletion strains. Interestingly, truncation of the N-hypermannose glycan did not increase the specific activity of these proteins, but improved the secretion yield. Further analysis showed OCH1 and MNN9 deletion up-regulated genes in the secretory pathway, such as protein folding and vesicular trafficking, but did not induce the unfolded protein response. The cell wall integrity was also affected by OCH1 and MNN9 deletion, which contributed to the release of secretory protein extracellularly. This study demonstrated that mannosyltransferases disruption improved protein secretion through up-regulating secretory pathway and affecting cell wall integrity and provided new insights into glycosylation engineering for protein secretion.
Collapse
Affiliation(s)
- Hongting Tang
- State Key Laboratory of Microbial Technology, Shandong University, Jinan, 250100, China
| | - Shenghuan Wang
- State Key Laboratory of Microbial Technology, Shandong University, Jinan, 250100, China
| | - Jiajing Wang
- State Key Laboratory of Microbial Technology, Shandong University, Jinan, 250100, China
| | - Meihui Song
- State Key Laboratory of Microbial Technology, Shandong University, Jinan, 250100, China
| | - Mengyang Xu
- State Key Laboratory of Microbial Technology, Shandong University, Jinan, 250100, China
| | - Mengying Zhang
- State Key Laboratory of Microbial Technology, Shandong University, Jinan, 250100, China
| | - Yu Shen
- State Key Laboratory of Microbial Technology, Shandong University, Jinan, 250100, China
| | - Jin Hou
- State Key Laboratory of Microbial Technology, Shandong University, Jinan, 250100, China
| | - Xiaoming Bao
- State Key Laboratory of Microbial Technology, Shandong University, Jinan, 250100, China
| |
Collapse
|
23
|
Fisetin yeast-based bio-capsules via osmoporation: effects of process variables on the encapsulation efficiency and internalized fisetin content. Appl Microbiol Biotechnol 2016; 100:5547-58. [DOI: 10.1007/s00253-016-7425-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Revised: 02/23/2016] [Accepted: 02/26/2016] [Indexed: 01/04/2023]
|
24
|
Yoshimoto N, Ikeda Y, Tatematsu K, Iijima M, Nakai T, Okajima T, Tanizawa K, Kuroda S. Cytokine-dependent activation of JAK-STAT pathway in Saccharomyces cerevisiae. Biotechnol Bioeng 2016; 113:1796-804. [PMID: 26853220 DOI: 10.1002/bit.25948] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Revised: 12/28/2015] [Accepted: 02/03/2016] [Indexed: 01/28/2023]
Abstract
Protein phosphorylation is an important post-translational modification for intracellular signaling molecules, mostly found in serine and threonine residues. Tyrosine phosphorylations are very few events (less than 0.1% to phosphorylated serine/threonine residues), but capable of governing cell fate decisions involved in proliferation, differentiation, apoptosis, and oncogenic transformation. Hence, it is important for drug discovery and system biology to measure the intracellular level of phosphotyrosine. Although mammalian cells have been conventionally utilized for this purpose, accurate determination of phosphotyrosine level often suffers from high background due to the unexpected crosstalk among endogenous signaling molecules. This situation led us firstly to establish the ligand-induced activation of homomeric receptor tyrosine kinase (i.e., epidermal growth factor receptor) in Saccharomyces cerevisiae, a lower eukaryote possessing organelles similar to higher eukaryote but not showing substantial level of tyrosine kinase activity. In this study, we expressed heteromeric receptor tyrosine kinase (i.e., a complex of interleukin-5 receptor (IL5R) α chain, common β chain, and JAK2 tyrosine kinase) in yeast. When coexpressed with a cell wall-anchored form of IL5, the yeast exerted the autophosphorylation of JAK2, followed by the phosphorylation of transcription factor STAT5a and subsequent nuclear accumulation of phosphorylated STAT5a. Taken together, yeast could be an ideal host for sensitive detection of phosphotyrosine generated by a wide variety of tyrosine kinases. Biotechnol. Bioeng. 2016;113: 1796-1804. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Nobuo Yoshimoto
- The Institute of Scientific and Industrial Research, Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka, 567-0047, Japan
| | - Yuko Ikeda
- The Institute of Scientific and Industrial Research, Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka, 567-0047, Japan
| | - Kenji Tatematsu
- The Institute of Scientific and Industrial Research, Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka, 567-0047, Japan
| | - Masumi Iijima
- The Institute of Scientific and Industrial Research, Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka, 567-0047, Japan
| | - Tadashi Nakai
- The Institute of Scientific and Industrial Research, Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka, 567-0047, Japan
| | - Toshihide Okajima
- The Institute of Scientific and Industrial Research, Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka, 567-0047, Japan
| | - Katsuyuki Tanizawa
- The Institute of Scientific and Industrial Research, Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka, 567-0047, Japan
| | - Shun'ichi Kuroda
- The Institute of Scientific and Industrial Research, Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka, 567-0047, Japan.
| |
Collapse
|
25
|
Interactions Between Monovalent Cations and Nutrient Homeostasis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 892:271-289. [PMID: 26721278 DOI: 10.1007/978-3-319-25304-6_11] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Maintenance of appropriate fluxes of monovalent cation is a requirement for growth and survival. In the budding yeast Saccharomyces cerevisiae an electrochemical gradient of H(+) is fundamental for the uptake of diverse cations, such as K(+), and of many other nutrients. In spite of early work suggesting that alterations in monovalent cation fluxes impact on the uptake and utilization of nutrients, such as phosphate anions, only recently this important aspect of the yeast physiology has been addressed and characterized in some detail. This chapter provides a historical background and summarizes the latest findings.
Collapse
|
26
|
Cell Surface Interference with Plasma Membrane and Transport Processes in Yeasts. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 892:11-31. [PMID: 26721269 DOI: 10.1007/978-3-319-25304-6_2] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The wall of the yeast Saccharomyces cerevisiae is a shell of about 120 nm thick, made of two distinct layers, which surrounds the cell. The outer layer is constituted of highly glycosylated proteins and the inner layer is composed of β-glucan and chitin. These two layers are interconnected through covalent linkages leading to a supramolecular architecture that is characterized by physical and chemical properties including rigidity, porosity and biosorption. The later property results from the presence of highly negative charged phosphate and carboxylic groups of the cell wall proteins, allowing the cell wall to act as an efficient barrier to metals ions, toxins and organic compounds. An intimate connection between cell wall and plasma membrane is indicated by the fact that changes in membrane fluidity results in change in cell wall nanomechanical properties. Finally, cell wall contributes to transport processes through the use of dedicated cell wall mannoproteins, as it is the case for Fit proteins implicated in the siderophore-iron bound transport and the Tir/Dan proteins family in the uptake of sterols.
Collapse
|
27
|
Li W, Zhang Y, Xu Z, Meng Q, Fan Z, Ye S, Zhang G. Assembly of MOF Microcapsules with Size-Selective Permeability on Cell Walls. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201508795] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Wanbin Li
- Institute of Oceanic and Environmental Chemical Engineering; State Key Lab Base of Green Chemical Synthesis Technology; Zhejiang University of Technology; Hangzhou 310014 P. R. China
| | - Yufan Zhang
- College of Engineering; University of California; Berkeley CA 94720 USA
| | - Zehai Xu
- Institute of Oceanic and Environmental Chemical Engineering; State Key Lab Base of Green Chemical Synthesis Technology; Zhejiang University of Technology; Hangzhou 310014 P. R. China
| | - Qin Meng
- Department of Chemical and Biochemical Engineering; State Key Laboratory of Chemical Engineering; Zhejiang University; Hangzhou 310027 P. R. China
| | - Zheng Fan
- Institute of Oceanic and Environmental Chemical Engineering; State Key Lab Base of Green Chemical Synthesis Technology; Zhejiang University of Technology; Hangzhou 310014 P. R. China
| | - Shuaiju Ye
- Institute of Oceanic and Environmental Chemical Engineering; State Key Lab Base of Green Chemical Synthesis Technology; Zhejiang University of Technology; Hangzhou 310014 P. R. China
| | - Guoliang Zhang
- Institute of Oceanic and Environmental Chemical Engineering; State Key Lab Base of Green Chemical Synthesis Technology; Zhejiang University of Technology; Hangzhou 310014 P. R. China
| |
Collapse
|
28
|
Li W, Zhang Y, Xu Z, Meng Q, Fan Z, Ye S, Zhang G. Assembly of MOF Microcapsules with Size-Selective Permeability on Cell Walls. Angew Chem Int Ed Engl 2015; 55:955-9. [DOI: 10.1002/anie.201508795] [Citation(s) in RCA: 88] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2015] [Indexed: 11/06/2022]
Affiliation(s)
- Wanbin Li
- Institute of Oceanic and Environmental Chemical Engineering; State Key Lab Base of Green Chemical Synthesis Technology; Zhejiang University of Technology; Hangzhou 310014 P. R. China
| | - Yufan Zhang
- College of Engineering; University of California; Berkeley CA 94720 USA
| | - Zehai Xu
- Institute of Oceanic and Environmental Chemical Engineering; State Key Lab Base of Green Chemical Synthesis Technology; Zhejiang University of Technology; Hangzhou 310014 P. R. China
| | - Qin Meng
- Department of Chemical and Biochemical Engineering; State Key Laboratory of Chemical Engineering; Zhejiang University; Hangzhou 310027 P. R. China
| | - Zheng Fan
- Institute of Oceanic and Environmental Chemical Engineering; State Key Lab Base of Green Chemical Synthesis Technology; Zhejiang University of Technology; Hangzhou 310014 P. R. China
| | - Shuaiju Ye
- Institute of Oceanic and Environmental Chemical Engineering; State Key Lab Base of Green Chemical Synthesis Technology; Zhejiang University of Technology; Hangzhou 310014 P. R. China
| | - Guoliang Zhang
- Institute of Oceanic and Environmental Chemical Engineering; State Key Lab Base of Green Chemical Synthesis Technology; Zhejiang University of Technology; Hangzhou 310014 P. R. China
| |
Collapse
|
29
|
Wang R, Lin PY, Huang ST, Chiu CH, Lu TJ, Lo YC. Hyperproduction of β-Glucanase Exg1 Promotes the Bioconversion of Mogrosides in Saccharomyces cerevisiae Mutants Defective in Mannoprotein Deposition. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2015; 63:10271-10279. [PMID: 26549048 DOI: 10.1021/acs.jafc.5b03909] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Bacteria and fungi can secrete extracellular enzymes to convert macromolecules into smaller units. Hyperproduction of extracellular enzymes is often associated with alterations in cell wall structure in fungi. Recently, we identified that Saccharomyces cerevisiae kre6Δ mutants can efficiently convert mogroside V into mogroside III E, which has antidiabetic properties. However, the underlying efficient bioconversion mechanism is unclear. In the present study, the mogroside (MG) bioconversion properties of several cell wall structure defective mutants were analyzed. We also compared the cell walls of these mutants by transmission electron microscopy, a zymolyase sensitivity test, and a mannoprotein release assay. We found zymolyase-sensitive mutants (including kre1Δ, las21Δ, gas1Δ, and kre6Δ), with defects in mannoprotein deposition, exhibit efficient MG conversion and excessive leakage of Exg1; such defects were not observed in wild-type cells, or mutants with abnormal levels of glucans in the cell wall. Thus, yeast mutants defective in mannoprotein deposition may be employed to convert glycosylated bioactive compounds.
Collapse
Affiliation(s)
- Reuben Wang
- Institute of Food Science and Technology, National Taiwan University , No. 1, Section 4, Roosevelt Road, Taipei 10617, Taiwan
| | - Pei-Yin Lin
- College of Bioresources and Agriculture, Joint Center for Instruments and Researches , No. 81, Changxing Street, Da-an District, Taipei 10617, Taiwan
| | - Shyue-Tsong Huang
- Food Industry Research Development Institute, Bioresource Collection and Research Center , No. 331, Shih-Pin Road, Hsinchu 30062, Taiwan
| | - Chun-Hui Chiu
- Institute of Food Science and Technology, National Taiwan University , No. 1, Section 4, Roosevelt Road, Taipei 10617, Taiwan
| | - Ting-Jang Lu
- Institute of Food Science and Technology, National Taiwan University , No. 1, Section 4, Roosevelt Road, Taipei 10617, Taiwan
- College of Bioresources and Agriculture, Joint Center for Instruments and Researches , No. 81, Changxing Street, Da-an District, Taipei 10617, Taiwan
| | - Yi-Chen Lo
- Institute of Food Science and Technology, National Taiwan University , No. 1, Section 4, Roosevelt Road, Taipei 10617, Taiwan
| |
Collapse
|
30
|
Kuznets G, Vigonsky E, Weissman Z, Lalli D, Gildor T, Kauffman SJ, Turano P, Becker J, Lewinson O, Kornitzer D. A relay network of extracellular heme-binding proteins drives C. albicans iron acquisition from hemoglobin. PLoS Pathog 2014; 10:e1004407. [PMID: 25275454 PMCID: PMC4183699 DOI: 10.1371/journal.ppat.1004407] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Accepted: 08/18/2014] [Indexed: 12/14/2022] Open
Abstract
Iron scavenging constitutes a crucial challenge for survival of pathogenic microorganisms in the iron-poor host environment. Candida albicans, like many microbial pathogens, is able to utilize iron from hemoglobin, the largest iron pool in the host's body. Rbt5 is an extracellular glycosylphosphatidylinositol (GPI)-anchored heme-binding protein of the CFEM family that facilitates heme-iron uptake by an unknown mechanism. Here, we characterize an additional C. albicans CFEM protein gene, PGA7, deletion of which elicits a more severe heme-iron utilization phenotype than deletion of RBT5. The virulence of the pga7−/− mutant is reduced in a mouse model of systemic infection, consistent with a requirement for heme-iron utilization for C. albicans pathogenicity. The Pga7 and Rbt5 proteins exhibit distinct cell wall attachment, and discrete localization within the cell envelope, with Rbt5 being more exposed than Pga7. Both proteins are shown here to efficiently extract heme from hemoglobin. Surprisingly, while Pga7 has a higher affinity for heme in vitro, we find that heme transfer can occur bi-directionally between Pga7 and Rbt5, supporting a model in which they cooperate in a heme-acquisition relay. Together, our data delineate the roles of Pga7 and Rbt5 in a cell surface protein network that transfers heme from extracellular hemoglobin to the endocytic pathway, and provide a paradigm for how receptors embedded in the cell wall matrix can mediate nutrient uptake across the fungal cell envelope. Candida albicans, a commensal fungus of human mucosal surfaces in healthy individuals, is a common cause of superficial infections, as well as of life-threatening systemic infections in individuals suffering from a reduced immune function. As a systemic pathogen, it has to cope with a scarcity of specific nutrients in the host environment, chief among them iron. To overcome this iron limitation, C. albicans is able to extract iron from heme and hemoglobin, the largest iron pools in the human body, via a pathway that involves endocytosis into the cell. Here we show that efficient heme uptake relies on a family of extracellularly-anchored proteins that serve as heme receptors, two of which, at least, are required for efficient heme utilization. Our data suggest the existence of a relay system that transfers heme from one protein to the next across the cell envelope, explaining the requirement for multiple heme receptors for efficient heme-iron utilization. This study extends our understanding of the pathway of host heme utilization by fungal pathogens, and provides new insights into the question of how nutrients such as heme cross the fungal cell wall.
Collapse
Affiliation(s)
- Galit Kuznets
- B. Rappaport Faculty of Medicine, Technion – I.I.T. and the Rappaport Institute for Research in the Medical Sciences, Haifa, Israel
| | - Elena Vigonsky
- B. Rappaport Faculty of Medicine, Technion – I.I.T. and the Rappaport Institute for Research in the Medical Sciences, Haifa, Israel
| | - Ziva Weissman
- B. Rappaport Faculty of Medicine, Technion – I.I.T. and the Rappaport Institute for Research in the Medical Sciences, Haifa, Israel
| | - Daniela Lalli
- CERM and Department of Chemistry, University of Florence, Sesto Fiorentino, Italy
| | - Tsvia Gildor
- B. Rappaport Faculty of Medicine, Technion – I.I.T. and the Rappaport Institute for Research in the Medical Sciences, Haifa, Israel
| | - Sarah J. Kauffman
- Microbiology Department, University of Tennessee, Knoxville, Tennessee, United States of America
| | - Paola Turano
- CERM and Department of Chemistry, University of Florence, Sesto Fiorentino, Italy
| | - Jeffrey Becker
- Microbiology Department, University of Tennessee, Knoxville, Tennessee, United States of America
| | - Oded Lewinson
- B. Rappaport Faculty of Medicine, Technion – I.I.T. and the Rappaport Institute for Research in the Medical Sciences, Haifa, Israel
| | - Daniel Kornitzer
- B. Rappaport Faculty of Medicine, Technion – I.I.T. and the Rappaport Institute for Research in the Medical Sciences, Haifa, Israel
- * E-mail:
| |
Collapse
|
31
|
Sun Y, Miller CA, Wiese TE, Blake DA. Methylated phenanthrenes are more potent than phenanthrene in a bioassay of human aryl hydrocarbon receptor (AhR) signaling. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2014; 33:2363-7. [PMID: 25043914 PMCID: PMC4278532 DOI: 10.1002/etc.2687] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2014] [Revised: 07/05/2014] [Accepted: 07/13/2014] [Indexed: 05/07/2023]
Abstract
Alkylated polycyclic aromatic hydrocarbons (APAHs) are abundant in petroleum, but data regarding their toxicological properties are limited. A survey of all monomethylated phenanthrene structures revealed that they were 2 times to 5 times more potent than phenanthrene for activation of human aryl hydrocarbon receptor in a yeast bioassay. Phenanthrenes with equatorial methyl groups had the greatest potency. The greater potency of the methylated phenanthrenes highlights the need for more toxicological data on APAHs.
Collapse
Affiliation(s)
- Yue Sun
- Department of Biochemistry and Molecular Biology, Tulane University School of MedicineNew Orleans, Louisiana, USA
| | - Charles A Miller
- Department of Global Environmental Health Sciences, Tulane University School of Public Health and Tropical MedicineNew Orleans, Louisiana, USA
| | - Thomas E Wiese
- Division of Basic Pharmaceutical SciencesCollege of Pharmacy, Xavier University of LouisianaNew Orleans, Louisiana, USA
| | - Diane A Blake
- Department of Biochemistry and Molecular Biology, Tulane University School of MedicineNew Orleans, Louisiana, USA
| |
Collapse
|
32
|
Impact of protein uptake and degradation on recombinant protein secretion in yeast. Appl Microbiol Biotechnol 2014; 98:7149-59. [DOI: 10.1007/s00253-014-5783-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Revised: 04/09/2014] [Accepted: 04/13/2014] [Indexed: 10/25/2022]
|
33
|
Nygård Y, Mojzita D, Toivari M, Penttilä M, Wiebe MG, Ruohonen L. The diverse role of Pdr12 in resistance to weak organic acids. Yeast 2014; 31:219-32. [PMID: 24691985 DOI: 10.1002/yea.3011] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Revised: 03/20/2014] [Accepted: 03/27/2014] [Indexed: 11/08/2022] Open
Abstract
Resistance to weak organic acids is important relative to both weak organic acid preservatives and the development of inhibitor tolerant yeast as industrial production organisms. The ABC transporter Pdr12 is important for resistance to sorbic and propionic acid, but its role in tolerance to other weak organic acids with industrial relevance is not well established. In this study, yeast strains with altered expression of PDR12 and/or CMK1, a protein kinase associated with post-transcriptional negative regulation of Pdr12, were exposed to seven weak organic acids: acetic, formic, glycolic, lactic, propionic, sorbic and levulinic acid. These are widely used as preservatives, present in lignocellulosic hydrolysates or attractive as chemical precursors. Overexpression of PDR12 increased tolerance to acids with longer chain length, such as sorbic, propionic and levulinic acid, whereas deletion of PDR12 increased tolerance to the shorter acetic and formic acid. The viability of all strains decreased dramatically in acetic or propionic acid, but the Δpdr12 strains recovered more rapidly than other strains in acetic acid. Furthermore, our results indicated that Cmk1 plays a role in weak organic acid tolerance, beyond its role in regulation of Pdr12, since deletion of both Cmk1 and Pdr12 resulted in different responses to exposure to acids than were explained by deletion of Pdr12 alone.
Collapse
Affiliation(s)
- Yvonne Nygård
- VTT Technical Research Centre of Finland, Espoo, Finland
| | | | | | | | | | | |
Collapse
|
34
|
Thomas AW, Henson ZB, Du J, Vandenberg CA, Bazan GC. Synthesis, characterization, and biological affinity of a near-infrared-emitting conjugated oligoelectrolyte. J Am Chem Soc 2014; 136:3736-9. [PMID: 24575841 PMCID: PMC3985452 DOI: 10.1021/ja412695w] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
![]()
A near-IR-emitting
conjugated oligoelectrolyte (COE), ZCOE, was synthesized,
and its photophysical features were characterized.
The biological affinity of ZCOE is compared to that of
an established lipid-membrane-intercalating COE, DSSN+, which has blue-shifted optical properties making it compatible
for tracking preferential sites of accumulation. ZCOE exhibits diffuse staining of E. coli cells, whereas
it displays internal staining of select yeast cells which also show
propidium iodide staining, indicating ZCOE is a “dead”
stain for this organism. Staining of mammalian cells reveals complete
internalization of ZCOE through endocytosis, as supported
by colocalization with LysoTracker and late endosome markers. In all
cases DSSN+ persists in the outer membranes, most likely
due to its chemical structure more closely resembling a lipid bilayer.
Collapse
Affiliation(s)
- Alexander W Thomas
- Department of Chemistry & Biochemistry, and ‡Department of Molecular, Cellular and Developmental Biology, University of California , Santa Barbara, California 93106, United States
| | | | | | | | | |
Collapse
|
35
|
Wang S, Aarts JMMJG, de Haan LHJ, Argyriou D, Peijnenburg AACM, Rietjens IMCM, Bovee TFH. Towards an integratedin vitrostrategy for estrogenicity testing. J Appl Toxicol 2013; 34:1031-40. [DOI: 10.1002/jat.2928] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2013] [Revised: 07/11/2013] [Accepted: 08/04/2013] [Indexed: 12/30/2022]
Affiliation(s)
- Si Wang
- Division of Toxicology; Wageningen University and Research Centre; Tuinlaan 5 6703 HE Wageningen The Netherlands
- Business Unit of Toxicology & Bioassays, RIKILT - Institute of Food Safety; Wageningen University and Research Centre; Akkermaalsbos 2 6708 WB Wageningen The Netherlands
| | - Jac M. M. J. G. Aarts
- Business Unit of Toxicology & Bioassays, RIKILT - Institute of Food Safety; Wageningen University and Research Centre; Akkermaalsbos 2 6708 WB Wageningen The Netherlands
| | - Laura H. J. de Haan
- Division of Toxicology; Wageningen University and Research Centre; Tuinlaan 5 6703 HE Wageningen The Netherlands
| | - Dimitrios Argyriou
- Division of Toxicology; Wageningen University and Research Centre; Tuinlaan 5 6703 HE Wageningen The Netherlands
| | - Ad A. C. M. Peijnenburg
- Business Unit of Toxicology & Bioassays, RIKILT - Institute of Food Safety; Wageningen University and Research Centre; Akkermaalsbos 2 6708 WB Wageningen The Netherlands
| | - Ivonne M. C. M. Rietjens
- Division of Toxicology; Wageningen University and Research Centre; Tuinlaan 5 6703 HE Wageningen The Netherlands
| | - Toine F. H. Bovee
- Business Unit of Toxicology & Bioassays, RIKILT - Institute of Food Safety; Wageningen University and Research Centre; Akkermaalsbos 2 6708 WB Wageningen The Netherlands
| |
Collapse
|
36
|
Orlean P. Architecture and biosynthesis of the Saccharomyces cerevisiae cell wall. Genetics 2012; 192:775-818. [PMID: 23135325 PMCID: PMC3522159 DOI: 10.1534/genetics.112.144485] [Citation(s) in RCA: 303] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2012] [Accepted: 08/06/2012] [Indexed: 01/02/2023] Open
Abstract
The wall gives a Saccharomyces cerevisiae cell its osmotic integrity; defines cell shape during budding growth, mating, sporulation, and pseudohypha formation; and presents adhesive glycoproteins to other yeast cells. The wall consists of β1,3- and β1,6-glucans, a small amount of chitin, and many different proteins that may bear N- and O-linked glycans and a glycolipid anchor. These components become cross-linked in various ways to form higher-order complexes. Wall composition and degree of cross-linking vary during growth and development and change in response to cell wall stress. This article reviews wall biogenesis in vegetative cells, covering the structure of wall components and how they are cross-linked; the biosynthesis of N- and O-linked glycans, glycosylphosphatidylinositol membrane anchors, β1,3- and β1,6-linked glucans, and chitin; the reactions that cross-link wall components; and the possible functions of enzymatic and nonenzymatic cell wall proteins.
Collapse
Affiliation(s)
- Peter Orlean
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA.
| |
Collapse
|
37
|
Chung BH, Nam SW, Kim BM, Park YH. Highly efficient secretion of heterologous proteins from Saccharomyces cerevisiae using inulinase signal peptides. Biotechnol Bioeng 2012; 49:473-9. [PMID: 18623603 DOI: 10.1002/(sici)1097-0290(19960220)49:4<473::aid-bit15>3.0.co;2-b] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The INU genes of Kluyveromyces marxianus encode inulinases which are readily secreted from Saccharomyces cerevisiae into the culture medium. To evaluate the utility of the INU signal peptides for the secretion of heterologous proteins from S. cerevisiae, a variety of expression and secretion vectors were constructed with GAL10 promoter and GAL7 terminator. The coding sequence for human lipocortin-1 (LC1) was inserted in-frame with the INU signal sequences, and then the secretion efficiency and localization of LC1 were investigated in more detail and compared with those when being expressed by the vector with the MFalpha1 leader peptide. The vector systems with INU signal peptides secreted ca. 95% of the total LC1 expressed into the extracellular medium, while the MFalpha1 leader peptide-containing vector resulted in very low secretion efficiency below 10%. In addition, recombinant human interleukin-2 (IL-2) was expressed and secreted with the vector systems with INU signal peptide, and a majority fraction of the human IL-2 expressed was found to be secreted into the extracellular medium as observed in LC1 expression. (c) 1995 John Wiley & Sons, Inc.
Collapse
Affiliation(s)
- B H Chung
- Korea Research Institute of Bioscience and Biotechnology, P.O. Box 115, Yusong, Taejon 305-600, Korea
| | | | | | | |
Collapse
|
38
|
Efficient expression and purification of recombinant alcohol oxidase in Pichia pastoris. BIOTECHNOL BIOPROC E 2012. [DOI: 10.1007/s12257-011-0660-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
39
|
Regulation of cell wall biogenesis in Saccharomyces cerevisiae: the cell wall integrity signaling pathway. Genetics 2012; 189:1145-75. [PMID: 22174182 DOI: 10.1534/genetics.111.128264] [Citation(s) in RCA: 617] [Impact Index Per Article: 51.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The yeast cell wall is a strong, but elastic, structure that is essential not only for the maintenance of cell shape and integrity, but also for progression through the cell cycle. During growth and morphogenesis, and in response to environmental challenges, the cell wall is remodeled in a highly regulated and polarized manner, a process that is principally under the control of the cell wall integrity (CWI) signaling pathway. This pathway transmits wall stress signals from the cell surface to the Rho1 GTPase, which mobilizes a physiologic response through a variety of effectors. Activation of CWI signaling regulates the production of various carbohydrate polymers of the cell wall, as well as their polarized delivery to the site of cell wall remodeling. This review article centers on CWI signaling in Saccharomyces cerevisiae through the cell cycle and in response to cell wall stress. The interface of this signaling pathway with other pathways that contribute to the maintenance of cell wall integrity is also discussed.
Collapse
|
40
|
Rostkowski P, Horwood J, Shears JA, Lange A, Oladapo FO, Besselink HT, Tyler CR, Hill EM. Bioassay-directed identification of novel antiandrogenic compounds in bile of fish exposed to wastewater effluents. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2011; 45:10660-7. [PMID: 22047186 DOI: 10.1021/es202966c] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
The widespread occurrence of feminized male fish downstream of some UK Wastewater Treatment Works (WwTWs) has been associated with exposure to estrogenic and potentially antiandrogenic (AA) contaminants in the effluents. In this study, profiling of AA contaminants in WwTW effluents and fish was conducted using HPLC in combination with in vitro androgen receptor transcription screens. Analysis of extracts of wastewater effluents revealed complex profiles of AA activity comprising 21-53 HPLC fractions. Structures of bioavailable antiandrogens were identified by exposing rainbow trout to a WwTW effluent and profiling the bile for AA activity using yeast (anti-YAS) and mammalian-based (AR-CALUX) androgen receptor transcription screens. The predominant fractions with AA activity in both androgen receptor screens contained the germicides chlorophene and triclosan, and together these contaminants accounted for 51% of the total anti-YAS activity in the fish bile. Other AA compounds identified in bile included chloroxylenol, dichlorophene, resin acids, napthols, oxybenzone, 4-nonylphenol, and bisphenol A. Pure standards of these compounds were active in the androgen receptor screens at potencies relative to flutamide of between 0.1 and 13.0. Thus, we have identified, for the first time, a diverse range of AA chemicals in WwTWs that are bioavailable to fish and which need to be assessed for their risk to the reproductive health of these organisms and other aquatic biota.
Collapse
Affiliation(s)
- Pawel Rostkowski
- Department of Biology and Environmental Science, University of Sussex, BN1 9QG Brighton, U.K
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Takazaki S, Abe Y, Yamaguchi T, Yagi M, Ueda T, Kang D, Hamasaki N. Arg 901 in the AE1 C-terminal tail is involved in conformational change but not in substrate binding. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2011; 1818:658-65. [PMID: 22155194 DOI: 10.1016/j.bbamem.2011.11.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2011] [Revised: 11/06/2011] [Accepted: 11/22/2011] [Indexed: 10/14/2022]
Abstract
In our previous paper, we demonstrated that Arg 901 in the C-terminal tail of human AE1 (band 3, anion exchanger 1) had a functional role in conformational change during anion exchange. To further examine how Arg 901 is involved in conformational change, we expressed various Arg 901 mutants and alanine mutants of the C-terminal tail (from Leu 886 to Val 911) on the plasma membrane of Saccharomyces cerevisiae and evaluated the kinetic parameters of sulfate ion transport. As a result, Vmax decreased as the hydrophobicities of the 901st and peripheral hydrophilic residues increased, indicating that the hydrophobicity of the C-terminal residue is involved in the conformational change. We also found the alkali and protease resistance of the C-terminal region after Arg 901 modification with hydroxyphenylglyoxal (HPG) or phenylglyoxal (PG), a hydrophobic reagent. These results suggested that the increased hydrophobicity of the C-terminal region around Arg 901 leads to inefficient conformational change by the newly produced hydrophobic interaction.
Collapse
Affiliation(s)
- Shinya Takazaki
- Department of Clinical Chemistry and Laboratory Medicine, Kyushu University, Fukuoka, Japan
| | | | | | | | | | | | | |
Collapse
|
42
|
de Freitas CDT, Lopes JLDS, Beltramini LM, de Oliveira RSB, Oliveira JTA, Ramos MV. Osmotin from Calotropis procera latex: new insights into structure and antifungal properties. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2011; 1808:2501-7. [PMID: 21798235 DOI: 10.1016/j.bbamem.2011.07.014] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2011] [Revised: 06/29/2011] [Accepted: 07/12/2011] [Indexed: 10/18/2022]
Abstract
This study aimed at investigating the structural properties and mechanisms of the antifungal action of CpOsm, a purified osmotin from Calotropis procera latex. Fluorescence and CD assays revealed that the CpOsm structure is highly stable, regardless of pH levels. Accordingly, CpOsm inhibited the spore germination of Fusarium solani in all pH ranges tested. The content of the secondary structure of CpOsm was estimated as follows: α-helix (20%), β-sheet (33%), turned (19%) and unordered (28%), RMSD 1%. CpOsm was stable at up to 75°C, and thermal denaturation (T(m)) was calculated to be 77.8°C. This osmotin interacted with the negatively charged large unilamellar vesicles (LUVs) of 1-palmitoyl-2-oleoyl-sn-glycero-3-phospho-rac-1-glycerol (POPG), inducing vesicle permeabilization by the leakage of calcein. CpOsm induced the membrane permeabilization of spores and hyphae from Fusarium solani, allowing for propidium iodide uptake. These results show that CpOsm is a stable protein, and its antifungal activity involves membrane permeabilization, as property reported earlier for other osmotins and thaumatin-like proteins.
Collapse
|
43
|
Peijnenburg A, Riethof-Poortman J, Baykus H, Portier L, Bovee T, Hoogenboom R. AhR-agonistic, anti-androgenic, and anti-estrogenic potencies of 2-isopropylthioxanthone (ITX) as determined by in vitro bioassays and gene expression profiling. Toxicol In Vitro 2010; 24:1619-28. [DOI: 10.1016/j.tiv.2010.06.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2010] [Revised: 06/08/2010] [Accepted: 06/08/2010] [Indexed: 01/14/2023]
|
44
|
Paciello L, Andrès I, Zueco J, Bianchi MM, de Alteriis E, Parascandola P. Expression of human interleukin-1β in Saccharomyces cerevisiae using PIR4 as fusion partner and production in aerated fed-batch reactor. ANN MICROBIOL 2010. [DOI: 10.1007/s13213-010-0122-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
45
|
Bhattacharjee C, Manjunath NH, Prasad DT. Purification of a trypsin inhibitor from Cocculus hirsutus and identification of its biological activity. ACTA ACUST UNITED AC 2010. [DOI: 10.1007/s12892-009-0094-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
46
|
Bovee TFH, Thevis M, Hamers ARM, Peijnenburg AACM, Nielen MWF, Schoonen WGEJ. SERMs and SARMs: detection of their activities with yeast based bioassays. J Steroid Biochem Mol Biol 2010; 118:85-92. [PMID: 19883760 DOI: 10.1016/j.jsbmb.2009.10.007] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2009] [Revised: 10/21/2009] [Accepted: 10/22/2009] [Indexed: 12/21/2022]
Abstract
Selective estrogen receptor modulators (SERMs) and selective androgen receptor modulators (SARMs) are compounds that activate their cognate receptor in particular target tissues without affecting other organs. Many of these compounds will find their use in therapeutic treatments. However, they also will have a high potential for misuse in veterinary practice and the sporting world. Here we demonstrate that yeast estrogen and androgen bioassays can be used to detect SERMs and SARMs, and are also useful screening tools to investigate their mode of action. Six steroidal 11beta-substituents of E2 (SERMs) and some arylpropionamide- and quinoline-based SARMs were tested. In addition, 7 compounds previously tested on AR agonism and determined as inactive in the yeast androgen bioassay, while QSAR modelling revealed strong binding to the human androgen receptor, are now shown to act as AR antagonists.
Collapse
Affiliation(s)
- Toine F H Bovee
- RIKILT-Institute of Food Safety, Department of Safety & Health, Wageningen, The Netherlands.
| | | | | | | | | | | |
Collapse
|
47
|
Sichel C, Fernández-Ibáñez P, de Cara M, Tello J. Lethal synergy of solar UV-radiation and H(2)O(2) on wild Fusarium solani spores in distilled and natural well water. WATER RESEARCH 2009; 43:1841-1850. [PMID: 19217637 DOI: 10.1016/j.watres.2009.01.017] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2008] [Revised: 01/18/2009] [Accepted: 01/21/2009] [Indexed: 05/27/2023]
Abstract
Environmentally-friendly disinfection methods are needed in many industrial applications. As a natural metabolite of many organisms, hydrogen peroxide (H(2)O(2))-based disinfection may be such a method as long as H(2)O(2) is used in non-toxic concentrations. Nevertheless, when applied alone as a disinfectant, H(2)O(2) concentrations need to be high enough to achieve significant pathogen reduction, and this may lead to phytotoxicity. This paper shows how H(2)O(2) disinfection concentrations could be significantly reduced by using the synergic lethality of H(2)O(2) and sunlight the first time for fungi and disinfection. Experiments were performed on spores of Fusarium solani, the ubiquitous, pytho- and human pathogenic fungus. Laboratory (250-mL bottles) and pilot plant solar reactors (2 x 14 L compound parabolic collectors, CPCs) were employed with distilled water and real well water under natural sunlight. This opens the way to applications for agricultural water resources, seed disinfection, curing of fungal skin infections, etc.
Collapse
Affiliation(s)
- C Sichel
- Plataforma Solar de Almería, 04200 Tabernas, Almería, Spain
| | | | | | | |
Collapse
|
48
|
Casadevall A, Nosanchuk JD, Williamson P, Rodrigues ML. Vesicular transport across the fungal cell wall. Trends Microbiol 2009; 17:158-62. [PMID: 19299133 DOI: 10.1016/j.tim.2008.12.005] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2008] [Revised: 11/27/2008] [Accepted: 12/15/2008] [Indexed: 12/17/2022]
Abstract
Recent findings indicate that fungi use vesicular transport to deliver substances across their cell walls. Fungal vesicles are similar to mammalian exosomes and could originate from cytoplasmic multivesicular bodies. Vesicular transport enables the export of large molecules across the cell wall, and vesicles contain lipids, proteins and polysaccharides, many of which are associated with virulence. Concentration of fungal products in vesicles could increase their efficiency in food acquisition and/or delivering potentially noxious substances to other cells, such as amoebae or phagocytes. The discovery of vesicular transport in fungi opens many new avenues for investigation in basic cell biology and pathogenesis.
Collapse
Affiliation(s)
- Arturo Casadevall
- Departments of Microbiology and Immunology, Department of Medicine, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
| | | | | | | |
Collapse
|
49
|
Kilcher G, Delneri D, Duckham C, Tirelli N. Probing (macro)molecular transport through cell walls. Faraday Discuss 2009; 139:199-212; discussion 213-28, 419-20. [PMID: 19048997 DOI: 10.1039/b717840a] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We here report a study on the passive permeability of hydrophobic probes through the cell wall of Saccharomyces cerevisiae. In this study we have prepared a series of fluorescent probes with similar chemical composition and molecular weight ranging from a few hundreds to a few thousands of g mol(-1). Their permeation into the cell body exhibits a clear MW cut-off and the underlying mechanism is governed by the permeation of individual molecules rather than aggregates. We also show that it is possible to reversibly alter the cell wall permeation properties without compromising the essence of its structure, by modifying the polarity/dielectric constant of the wall through solvent exchange.
Collapse
Affiliation(s)
- Giona Kilcher
- School of Pharmacy and Pharmaceutical Sciences, University of Manchester, Oxford Road, Manchester, United Kingdom M13 9PT
| | | | | | | |
Collapse
|
50
|
|