1
|
Aggarwal S, Mishra S. Differential role of segments of α-mating factor secretion signal in Pichia pastoris towards granulocyte colony-stimulating factor emerging from a wild type or codon optimized copy of the gene. Microb Cell Fact 2020; 19:199. [PMID: 33121493 PMCID: PMC7597063 DOI: 10.1186/s12934-020-01460-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Accepted: 10/20/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The methylotrophic yeast, Pichia pastoris has been widely used for the production of human therapeutics, but production of granulocyte colony-stimulating factor (G-CSF) in this yeast is low.The work reported here aimed to improve the extracellular production of G-CSF by introducing mutations in the leader sequence and using a codon optimized copy of G-CSF. Bioinformatic analysis was carried out to propose an explanation for observed effect of mutations on extracellular G-CSF production. RESULTS Mutations in the pro-region of the α-mating type (MAT) secretory signal, when placed next to a codon optimized (CO)-GCSF copy, specifically, the Δ57-70 type, led to highest G-CSF titre of 39.4 ± 1.4 mg/L. The enhanced effect of this deletion was also observed when it preceded the WT copy of the gene. Deletion of the 30-43 amino acids in the pro-peptide, fused with the wild type (WT)-GCSF copy, completely diminished G-CSF secretion, while no effect was observed when this deletion was in front of the CO-GCSF construct. Also, Matα:Δ47-49 deletion preceding the WT-GCSF dampened the secretion of this protein, while no effect was seen when this deletion preceded the CO-GCSF copy of the gene. This indicated that faster rates of translation (as achieved through codon optimization) could overcome the control exercised by these segments. The loss of secretion occurring due to Δ30-43 in the WT-GCSF was partially restored (by 60%) when the Δ57-70 was added. The effect of Δ47-49 segment in the WT-GCSF could also be partially restored (by 60%) by addition of Δ57-70 indicating the importance of the 47-49 region. A stimulatory effect of Δ57-70 was confirmed in the double deletion (Matα:Δ57-70;47-49) construct preceding the CO-GCSF. Secondary and tertiary structures, when predicted using I-TASSER, allowed to understand the relationship between structural changes and their impact on G-CSF secretion. The Δ57-70 amino acids form a major part of 3rd alpha-helix in the pre-pro peptide and its distortion increased the flexibility of the loop, thereby promoting its interaction with the cargo protein. A minimum loop length was found to be necessary for secretion. The strict control in the process of secretion appeared to be overcome by changing the secondary structures in the signal peptides. Such fine tuning can allow enhanced secretion of other therapeutics in this expression system. CONCLUSIONS Among the different truncations (Matα:Δ57-70, Matα:Δ47-49, Matα:Δ30-43, Matα:Δ57-70;30-43, Matα:Δ57-70;47-49) in pro-peptide of α-MAT secretion signal, Matα:Δ57-70 fused to CO-GCSF, led to highest G-CSF titre as compared to other Matα truncations. On the other hand, Matα:Δ30-43 and Matα:Δ47-49 fused to the WT-GCSF dampened the secretion of this protein indicating important role of these segments in the secretion of the cargo protein.
Collapse
Affiliation(s)
- Sakshi Aggarwal
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, Hauz-Khas, New-Delhi, 110016, India
| | - Saroj Mishra
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, Hauz-Khas, New-Delhi, 110016, India.
| |
Collapse
|
2
|
Synthetic Methylotrophy in Yeasts: Towards a Circular Bioeconomy. Trends Biotechnol 2020; 39:348-358. [PMID: 33008643 DOI: 10.1016/j.tibtech.2020.08.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 08/07/2020] [Accepted: 08/24/2020] [Indexed: 01/04/2023]
Abstract
Mitigating climate change is a key driver for the development of sustainable and CO2-neutral production processes. In this regard, connecting carbon capture and utilization processes to derive microbial C1 fermentation substrates from CO2 is highly promising. This strategy uses methylotrophic microbes to unlock next-generation processes, converting CO2-derived methanol. Synthetic biology approaches in particular can empower synthetic methylotrophs to produce a variety of commodity chemicals. We believe that yeasts have outstanding potential for this purpose, because they are able to separate toxic intermediates and metabolic reactions in organelles. This compartmentalization can be harnessed to design superior synthetic methylotrophs, capable of utilizing methanol and other hitherto largely disregarded C1 compounds, thus supporting the establishment of a future circular economy.
Collapse
|
3
|
Biochemical Characterization of a Lipolytic Enzyme From Aspergillus oryzae That Hydrolyzes Triacylglycerol and Sterol Esters. Appl Biochem Biotechnol 2020; 192:910-922. [PMID: 32617843 DOI: 10.1007/s12010-020-03360-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 06/22/2020] [Indexed: 10/23/2022]
Abstract
A novel lipolytic enzyme-encoding gene, lipO745, from Aspergillus oryzae RIB40 was cloned and expressed in Pichia pastoris. Purified recombinant LipO745 (rLipO745) had a molecular mass of approximately 60 kDa on sodium dodecyl sulfate-polyacrylamide gel electrophoresis. rLipO745 exhibited maximum activity at 40 °C and pH 7.0 and was stable at temperatures ≤ 40 °C. The substrate specificity of purified rLipO745 was analyzed using α-naphthyl esters as artificial substrates and various triacylglycerol and sterol esters as natural substrates. From among a panel of α-naphthyl esters (C2-C16), α-naphthyl butyrate (C4), with an activity of 269 ± 3.3 units/mg protein, was the optimal substrate for hydrolysis by the purified recombinant protein. The Km and kcat values of rLiO745 for the C4 substrate were 0.073 ± 0.0012 mM and 608 ± 108 s-1, respectively. The purified recombinant enzyme had considerable hydrolytic activity toward tributyrin, tripalmitin, and triolein, indicating lipase activity, and toward cholesteryl acetate, butyrate, palmitate, and oleate, indicating sterol esterase activity. Transesterification activities between tributyrin and cholesterol or between tributyrin and campesterol were also determined.
Collapse
|
4
|
Ozyigit II. Gene transfer to plants by electroporation: methods and applications. Mol Biol Rep 2020; 47:3195-3210. [PMID: 32242300 DOI: 10.1007/s11033-020-05343-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 02/22/2020] [Indexed: 01/09/2023]
Abstract
Developing gene transfer technologies enables the genetic manipulation of the living organisms more efficiently. The methods used for gene transfer fall into two main categories; natural and artificial transformation. The natural methods include the conjugation, transposition, bacterial transformation as well as phage and retroviral transductions, contain the physical methods whereas the artificial methods can physically alter and transfer genes from one to another organisms' cell using, for instance, biolistic transformation, micro- and macroinjection, and protoplast fusion etc. The artificial gene transformation can also be conducted through chemical methods which include calcium phosphate-mediated, polyethylene glycol-mediated, DEAE-Dextran, and liposome-mediated transfers. Electrical methods are also artificial ways to transfer genes that can be done by electroporation and electrofusion. Comparatively, among all the above-mentioned methods, electroporation is being widely used owing to its high efficiency and broader applicability. Electroporation is an electrical transformation method by which transient electropores are produced in the cell membranes. Based on the applications, process can be either reversible where electropores in membrane are resealable and cells preserve the vitality or irreversible where membrane is not able to reseal, and cell eventually dies. This problem can be minimized by developing numerical models to iteratively optimize the field homogeneity considering the cell size, shape, number, and electrode positions supplemented by real-time measurements. In modern biotechnology, numerical methods have been used in electrotransformation, electroporation-based inactivation, electroextraction, and electroporative biomass drying. Moreover, current applications of electroporation also point to some other uncovered potentials for various exploitations in future.
Collapse
Affiliation(s)
- Ibrahim Ilker Ozyigit
- Department of Biology, Faculty of Science and Arts, Marmara University, Goztepe, 34722, Istanbul, Turkey. .,Department of Biology, Faculty of Science, Kyrgyz-Turkish Manas University, 720038, Bishkek, Kyrgyzstan.
| |
Collapse
|
5
|
Wetzel D, Chan JA, Suckow M, Barbian A, Weniger M, Jenzelewski V, Reiling L, Richards JS, Anderson DA, Kouskousis B, Palmer C, Hanssen E, Schembecker G, Merz J, Beeson JG, Piontek M. Display of malaria transmission-blocking antigens on chimeric duck hepatitis B virus-derived virus-like particles produced in Hansenula polymorpha. PLoS One 2019; 14:e0221394. [PMID: 31483818 PMCID: PMC6726142 DOI: 10.1371/journal.pone.0221394] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 08/07/2019] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Malaria caused by Plasmodium falciparum is one of the major threats to human health globally. Despite huge efforts in malaria control and eradication, highly effective vaccines are urgently needed, including vaccines that can block malaria transmission. Chimeric virus-like particles (VLP) have emerged as a promising strategy to develop new malaria vaccine candidates. METHODS We developed yeast cell lines and processes for the expression of malaria transmission-blocking vaccine candidates Pfs25 and Pfs230 as VLP and VLP were analyzed for purity, size, protein incorporation rate and expression of malaria antigens. RESULTS In this study, a novel platform for the display of Plasmodium falciparum antigens on chimeric VLP is presented. Leading transmission-blocking vaccine candidates Pfs25 and Pfs230 were genetically fused to the small surface protein (dS) of the duck hepatitis B virus (DHBV). The resulting fusion proteins were co-expressed in recombinant Hansenula polymorpha (syn. Pichia angusta, Ogataea polymorpha) strains along with the wild-type dS as the VLP scaffold protein. Through this strategy, chimeric VLP containing Pfs25 or the Pfs230-derived fragments Pfs230c or Pfs230D1M were purified. Up to 100 mg chimeric VLP were isolated from 100 g dry cell weight with a maximum protein purity of 90% on the protein level. Expression of the Pfs230D1M construct was more efficient than Pfs230c and enabled VLP with higher purity. VLP showed reactivity with transmission-blocking antibodies and supported the surface display of the malaria antigens on the native VLP. CONCLUSION The incorporation of leading Plasmodium falciparum transmission-blocking antigens into the dS-based VLP scaffold is a promising novel strategy for their display on nano-scaled particles. Competitive processes for efficient production and purification were established in this study.
Collapse
Affiliation(s)
- David Wetzel
- ARTES Biotechnology GmbH, Langenfeld, Germany
- Laboratory of Plant and Process Design, Technical University of Dortmund, Dortmund, Germany
| | - Jo-Anne Chan
- Burnet Institute for Medical Research and Public Health, Melbourne, Victoria, Australia
| | | | - Andreas Barbian
- Düsseldorf University Hospital, Institute for Anatomy I, Düsseldorf, Germany
| | | | | | - Linda Reiling
- Burnet Institute for Medical Research and Public Health, Melbourne, Victoria, Australia
| | - Jack S. Richards
- Burnet Institute for Medical Research and Public Health, Melbourne, Victoria, Australia
| | - David A. Anderson
- Burnet Institute for Medical Research and Public Health, Melbourne, Victoria, Australia
| | - Betty Kouskousis
- Burnet Institute for Medical Research and Public Health, Melbourne, Victoria, Australia
| | - Catherine Palmer
- Burnet Institute for Medical Research and Public Health, Melbourne, Victoria, Australia
| | - Eric Hanssen
- The Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Melbourne, Victoria, Australia
| | - Gerhard Schembecker
- Laboratory of Plant and Process Design, Technical University of Dortmund, Dortmund, Germany
| | - Juliane Merz
- Evonik Technology & Infrastructure GmbH, Hanau, Germany
| | - James G. Beeson
- Burnet Institute for Medical Research and Public Health, Melbourne, Victoria, Australia
- Central Clinical School and Department of Microbiology, Monash University, Melbourne, Victoria, Australia
- Department of Medicine, Royal Melbourne Hospital, University of Melbourne, Melbourne, Victoria, Australia
| | | |
Collapse
|
6
|
Abstract
Laccases are multi-copper oxidoreductases which catalyze the oxidation of a wide range of substrates during the simultaneous reduction of oxygen to water. These enzymes, originally found in fungi, plants, and other natural sources, have many industrial and biotechnological applications. They are used in the food, textile, pulp, and paper industries, as well as for bioremediation purposes. Although natural hosts can provide relatively high levels of active laccases after production optimization, heterologous expression can bring, moreover, engineered enzymes with desired properties, such as different substrate specificity or improved stability. Hence, diverse hosts suitable for laccase production are reviewed here, while the greatest emphasis is placed on yeasts which are commonly used for industrial production of various proteins. Different approaches to optimize the laccase expression and activity are also discussed in detail here.
Collapse
Affiliation(s)
- Zuzana Antošová
- Department of Membrane Transport, Institute of Physiology, Czech Academy of Sciences (CAS), Vídeňská 1083, 142 20, Prague 4, Czech Republic.
| | - Hana Sychrová
- Department of Membrane Transport, Institute of Physiology, Czech Academy of Sciences (CAS), Vídeňská 1083, 142 20, Prague 4, Czech Republic.
| |
Collapse
|
7
|
Optimization of codon usage of the envelope protein E2 gene from various genotypes of hepatitis C virus to predict the expression level in Pichia pastoris. Genes Genomics 2016. [DOI: 10.1007/s13258-016-0442-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
8
|
Cabrera-Muñoz A, Rojas L, Gil DF, González-González Y, Mansur M, Camejo A, Pires JR, Alonso-Del-Rivero Antigua M. Heterologous expression of Cenchritis muricatus protease inhibitor II (CmPI-II) in Pichia pastoris system: Purification, isotopic labeling and preliminary characterization. Protein Expr Purif 2016; 126:127-136. [PMID: 27353494 DOI: 10.1016/j.pep.2016.06.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Revised: 06/23/2016] [Accepted: 06/24/2016] [Indexed: 10/21/2022]
Abstract
Cenchritis muricatus protease inhibitor II (CmPI-II) is a tight-binding serine protease inhibitor of the Kazal family with an atypical broad specificity, being active against several proteases such as bovine pancreatic trypsin, human neutrophil elastase and subtilisin A. CmPI-II 3D structures are necessary for understanding the molecular basis of its activity. In the present work, we describe an efficient and straightforward recombinant expression strategy, as well as a cost-effective procedure for isotope labeling for NMR structure determination purposes. The vector pCM101 containing the CmPI-II gene, under the control of Pichia pastoris AOX1 promoter was constructed. Methylotrophic Pichia pastoris strain KM71H was then transformed with the plasmid and the recombinant protein (rCmPI-II) was expressed in benchtop fermenter in unlabeled or (15)N-labeled forms using ammonium chloride ((15)N, 99%) as the sole nitrogen source. Protein purification was accomplished by sequential cation exchange chromatography in STREAMLINE DirectHST, anion exchange chromatography on Hitrap Q-Sepharose FF and gel filtration on Superdex 75 10/30, yielding high quantities of pure rCmPI-II and (15)N rCmPI-II. Recombinant proteins displayed similar functional features as compared to the natural inhibitor and NMR spectra indicated folded and homogeneously labeled samples, suitable for further studies of structure and protease-inhibitor interactions.
Collapse
Affiliation(s)
- Aymara Cabrera-Muñoz
- Centro de Estudios de Proteínas, Facultad de Biología, Universidad de La Habana, Ciudad de La Habana-Cuba, Calle 25 No 455, Vedado, La Habana, Cuba.
| | - Laritza Rojas
- Centro de Estudios de Proteínas, Facultad de Biología, Universidad de La Habana, Ciudad de La Habana-Cuba, Calle 25 No 455, Vedado, La Habana, Cuba.
| | - Dayrom F Gil
- Centro de Estudios de Proteínas, Facultad de Biología, Universidad de La Habana, Ciudad de La Habana-Cuba, Calle 25 No 455, Vedado, La Habana, Cuba.
| | - Yamile González-González
- Centro de Estudios de Proteínas, Facultad de Biología, Universidad de La Habana, Ciudad de La Habana-Cuba, Calle 25 No 455, Vedado, La Habana, Cuba.
| | - Manuel Mansur
- Institut de Biotecnología i de Biomedicina, Universitat Autònoma de Barcelona, Campus Universitari, 08193, Bellaterra, Cerdanyola del Vallès, Barcelona, Spain.
| | - Ayamey Camejo
- Centro de Estudios de Proteínas, Facultad de Biología, Universidad de La Habana, Ciudad de La Habana-Cuba, Calle 25 No 455, Vedado, La Habana, Cuba.
| | - José R Pires
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho, 373 - Bloco E, Sala 10, 21941-902, Rio de Janeiro, RJ, Brazil.
| | - Maday Alonso-Del-Rivero Antigua
- Centro de Estudios de Proteínas, Facultad de Biología, Universidad de La Habana, Ciudad de La Habana-Cuba, Calle 25 No 455, Vedado, La Habana, Cuba.
| |
Collapse
|
9
|
Wang X, Wang Q, Wang J, Bai P, Shi L, Shen W, Zhou M, Zhou X, Zhang Y, Cai M. Mit1 Transcription Factor Mediates Methanol Signaling and Regulates the Alcohol Oxidase 1 (AOX1) Promoter in Pichia pastoris. J Biol Chem 2016; 291:6245-61. [PMID: 26828066 PMCID: PMC4813576 DOI: 10.1074/jbc.m115.692053] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Indexed: 01/03/2023] Open
Abstract
The alcohol oxidase 1 (AOX1) promoter (PAOX1) of Pichia pastoris is the most powerful and commonly used promoter for driving protein expression. However, mechanisms regulating its transcriptional activity are unclear. Here, we identified a Zn(II)2Cys6-type methanol-induced transcription factor 1 (Mit1) and elucidated its roles in regulating PAOX1 activity in response to glycerol and methanol. Mit1 regulated the expression of many genes involved in methanol utilization pathway, including AOX1, but did not participate in peroxisome proliferation and transportation of peroxisomal proteins during methanol metabolism. Structural analysis of Mit1 by performing domain deletions confirmed its specific and critical role in the strict repression of PAOX1 in glycerol medium. Importantly, Mit1, Mxr1, and Prm1, which positively regulated PAOX1 in response to methanol, were bound to PAOX1 at different sites and did not interact with each other. However, these factors cooperatively activated PAOX1 through a cascade. Mxr1 mainly functioned during carbon derepression, whereas Mit1 and Prm1 functioned during methanol induction, with Prm1 transmitting methanol signal to Mit1 by binding to the MIT1 promoter (PMIT1), thus increasingly expressing Mit1 and subsequently activating PAOX1.
Collapse
Affiliation(s)
- Xiaolong Wang
- From the State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China and
| | - Qi Wang
- From the State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China and
| | - Jinjia Wang
- From the State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China and
| | - Peng Bai
- From the State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China and
| | - Lei Shi
- From the State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China and
| | - Wei Shen
- From the State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China and
| | - Mian Zhou
- From the State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China and
| | - Xiangshan Zhou
- From the State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China and
| | - Yuanxing Zhang
- From the State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China and the Shanghai Collaborative Innovation Center for Biomanufacturing (SCICB), Shanghai 200237, China
| | - Menghao Cai
- From the State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China and
| |
Collapse
|
10
|
Gruškienė R, Kairys V, Matijošytė I. CLEA-Based Immobilization of Methylotropic Yeast Alcohol Oxidase: Influence on Storage Stability and Reaction Efficiency. Org Process Res Dev 2015. [DOI: 10.1021/acs.oprd.5b00291] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
| | - Visvaldas Kairys
- Faculty
of Chemistry, Department of Applied Chemistry, Vilnius University, Naugarduko str. 24, Vilnius LT-03225, Lithuania
| | | |
Collapse
|
11
|
Kotnik T, Frey W, Sack M, Haberl Meglič S, Peterka M, Miklavčič D. Electroporation-based applications in biotechnology. Trends Biotechnol 2015; 33:480-8. [PMID: 26116227 DOI: 10.1016/j.tibtech.2015.06.002] [Citation(s) in RCA: 285] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Revised: 05/22/2015] [Accepted: 06/01/2015] [Indexed: 02/06/2023]
Abstract
Electroporation is already an established technique in several areas of medicine, but many of its biotechnological applications have only started to emerge; we review here some of the most promising. We outline electroporation as a phenomenon and then proceed to applications, first outlining the best established - the use of reversible electroporation for heritable genetic modification of microorganisms (electrotransformation), and then explore recent advances in applying electroporation for inactivation of microorganisms, extraction of biomolecules, and fast drying of biomass. Although these applications often aim to upscale to the industrial and/or clinical level, we also outline some important chip-scale applications of electroporation. We conclude our review with a discussion of the main challenges and future perspectives.
Collapse
Affiliation(s)
- Tadej Kotnik
- Department of Biomedical Engineering, Faculty of Electrical Engineering, University of Ljubljana, Tržaška 25, 1000 Ljubljana, Slovenia
| | - Wolfgang Frey
- Institute for Pulsed Power and Microwave Technology, Karlsruhe Institute of Technology, Hermann-v-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Martin Sack
- Institute for Pulsed Power and Microwave Technology, Karlsruhe Institute of Technology, Hermann-v-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Saša Haberl Meglič
- Department of Biomedical Engineering, Faculty of Electrical Engineering, University of Ljubljana, Tržaška 25, 1000 Ljubljana, Slovenia
| | - Matjaž Peterka
- Instrumentation and Process Control, Centre of Excellence for Biosensors, Tovarniška cesta 26, 5270 Ajdovščina, Slovenia
| | - Damijan Miklavčič
- Department of Biomedical Engineering, Faculty of Electrical Engineering, University of Ljubljana, Tržaška 25, 1000 Ljubljana, Slovenia.
| |
Collapse
|
12
|
Gerelli Y, de Ghellinck A, Jouhet J, Laux V, Haertlein M, Fragneto G. Multi-lamellar organization of fully deuterated lipid extracts of yeast membranes. ACTA ACUST UNITED AC 2014; 70:3167-76. [PMID: 25478835 DOI: 10.1107/s1399004714022913] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Accepted: 10/18/2014] [Indexed: 05/28/2023]
Abstract
Neutron scattering studies on mimetic biomembranes are currently limited by the low availability of deuterated unsaturated lipid species. In the present work, results from the first neutron diffraction experiments on fully deuterated lipid extracts from the yeast Pichia pastoris are presented. The structural features of these fully deuterated lipid stacks are compared with those of their hydrogenous analogues and with other similar synthetic systems. The influence of temperature and humidity on the samples has been investigated by means of small momentum-transfer neutron diffraction. All of the lipid extracts investigated self-assemble into multi-lamellar stacks having different structural periodicities; the stacking distances are affected by temperature and humidity without altering the basic underlying arrangement. At high relative humidity the deuterated and hydrogenous samples are similar in their multi-lamellar arrangement, being characterized by two main periodicities of ∼75 and ∼110 Å reflecting the presence of a large number of polar phospholipid molecules. Larger differences are found at lower relative humidity, where hydrogenous lipids are characterized by a larger single lamellar structure than that observed in the deuterated samples. In both cases the heterogeneity in composition is reflected in a wide structural complexity. The different behaviour upon dehydration can be related to compositional differences in the molecular composition of the two samples, which is attributed to metabolic effects related to the use of perdeuterated growth media.
Collapse
Affiliation(s)
- Yuri Gerelli
- Institut Laue-Langevin, 71 Avenue des Martyrs, 38000 Grenoble, France
| | | | - Juliette Jouhet
- Laboratoire de Physiologie Cellulaire and Végétale (LPCV), CNRS (UMR5168)/Université Grenoble Alpes/INRA (USC1359)/CEA Grenoble, Institut de Recherches en Technologies et Sciences pour le Vivant (iRTSV), 17 Rue des Martyrs, 38054 Grenoble CEDEX 9, France
| | - Valérie Laux
- Institut Laue-Langevin, 71 Avenue des Martyrs, 38000 Grenoble, France
| | - Michael Haertlein
- Institut Laue-Langevin, 71 Avenue des Martyrs, 38000 Grenoble, France
| | - Giovanna Fragneto
- Institut Laue-Langevin, 71 Avenue des Martyrs, 38000 Grenoble, France
| |
Collapse
|
13
|
Sahu U, Krishna Rao K, Rangarajan PN. Trm1p, a Zn(II)₂Cys₆-type transcription factor, is essential for the transcriptional activation of genes of methanol utilization pathway, in Pichia pastoris. Biochem Biophys Res Commun 2014; 451:158-64. [PMID: 25088995 DOI: 10.1016/j.bbrc.2014.07.094] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Accepted: 07/21/2014] [Indexed: 11/29/2022]
Abstract
The zinc finger transcription factors Mxr1p and Rop are key regulators of methanol metabolism in the methylotrophic yeast, Pichia pastoris, while Trm1p and Trm2p regulate methanol metabolism in Candida boidinii. Here, we demonstrate that Trm1p is essential for the expression of genes of methanol utilization (mut) pathway in P. pastoris as well. Expression of AOXI and other genes of mut pathway is severely compromised in P. pastoris ΔTrm1 strain resulting in impaired growth on media containing methanol as the sole source of carbon. Trm1p localizes to the nucleus of cells cultured on glucose or methanol. The zinc finger domain of Mxr1p but not Trm1p binds to AOXI promoter sequences in vitro, indicating that these two positive regulators act by different mechanisms. We conclude that both Trm1p and Mxr1p are essential for the expression of genes of mut pathway in P. pastoris and the mechanism of transcriptional regulation of mut pathway may be similar in P. pastoris and C. boidinii.
Collapse
Affiliation(s)
- Umakant Sahu
- Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India
| | | | - Pundi N Rangarajan
- Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India.
| |
Collapse
|
14
|
Saraya R, Gidijala L, Veenhuis M, van der Klei IJ. Tools for genetic engineering of the yeast Hansenula polymorpha. Methods Mol Biol 2014; 1152:43-62. [PMID: 24744026 DOI: 10.1007/978-1-4939-0563-8_3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Hansenula polymorpha is a methylotrophic yeast species that has favorable properties for heterologous protein production and metabolic engineering. It provides an attractive expression platform with the capability to secrete high levels of commercially important proteins. Over the past few years many efforts have led to advances in the development of this microbial host including the generation of expression vectors containing strong constitutive or inducible promoters and a large array of dominant and auxotrophic markers. Moreover, highly efficient transformation procedures used to generate genetically stable strains are now available. Here, we describe these tools as well as the methods for genetic engineering of H. polymorpha.
Collapse
Affiliation(s)
- Ruchi Saraya
- Molecular Cell Biology, Kluyver Centre for Genomics of Industrial Fermentation, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, The Netherlands
| | | | | | | |
Collapse
|
15
|
Mohammadian J, Mansoori-Derakhshan S, Mohammadian M, Shekari-Khaniani M. Construction of Yeast Recombinant Expression Vector Containing Human Epidermal Growth Factor (hEGF). Adv Pharm Bull 2013; 3:473-6. [PMID: 24312882 PMCID: PMC3848235 DOI: 10.5681/apb.2013.079] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2013] [Revised: 05/15/2013] [Accepted: 05/18/2013] [Indexed: 11/17/2022] Open
Abstract
PURPOSE The objective of this study was construction of recombinant hEGF-pPIC9 which may be used for expression of recombinant hEGF in following studies. METHODS EGF cDNA was purchased from Genecopoeia Company and used for PCR amplification. Prior to ligation, the PCR product and pPIC9 vector was digested with EcoRI and XhoI and ligated in pPIC9 vector and subjected to colony PCR screening and sequencing analysis. RESULTS PCR amplification of EGF cDNA using recombinant hEGF-pPIC9 vector as template was concluded in amplification of 197bp fragment. Construction of recombinant hEGF-pPIC9 of EGf gene was verified by PCR and sequencing. CONCLUSION Construction of Recombinant hEGF-pPIC9 was the primary stage for production and expression of EFG in the future study.
Collapse
Affiliation(s)
- Jamal Mohammadian
- Department of Clinical Biochemistry, Division of Medical Biotechnology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sima Mansoori-Derakhshan
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Mahmoud Shekari-Khaniani
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
16
|
Barba Cedillo V, Prieto A, Martínez MJ. Potential of Ophiostoma piceae sterol esterase for biotechnologically relevant hydrolysis reactions. Bioengineered 2013; 4:249-53. [PMID: 23138020 PMCID: PMC3728196 DOI: 10.4161/bioe.22818] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2012] [Revised: 11/06/2012] [Accepted: 11/07/2012] [Indexed: 01/14/2023] Open
Abstract
The ascomycete Ophiostoma piceae produces a sterol esterase (OPE) with high affinity toward p-nitrophenol, glycerol, and sterol esters. Recently, this enzyme has been heterologously expressed in the methylotrophic yeast Pichia pastoris under the AOX1 methanol-inducible promoter (PAOX1) using sorbitol as co-susbtrate, and the hydrolytic activity of the recombinant protein (OPE*) turned out to be improved from a kinetic point of view. In this study, we analyze the effects of sorbitol during the expression of OPE*, at first added as an additional carbon source, and methanol as inducer. The O. piceae enzyme was successfully used for PVAc hydrolysis, suggesting its potential applicability in recycled paper production to decrease stickies problems.
Collapse
Affiliation(s)
- Víctor Barba Cedillo
- Centro de Investigaciones Biológicas (CIB); Spanish National Research Council (CSIC); Madrid, Spain
| | - Alicia Prieto
- Centro de Investigaciones Biológicas (CIB); Spanish National Research Council (CSIC); Madrid, Spain
| | - María Jesús Martínez
- Centro de Investigaciones Biológicas (CIB); Spanish National Research Council (CSIC); Madrid, Spain
| |
Collapse
|
17
|
Molnárová J, Vadkertiová R, Stratilová E. Extracellular enzymatic activities and physiological profiles of yeasts colonizing fruit trees. J Basic Microbiol 2013; 54 Suppl 1:S74-84. [DOI: 10.1002/jobm.201300072] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2013] [Accepted: 03/23/2013] [Indexed: 11/06/2022]
Affiliation(s)
- Jana Molnárová
- Institute of Chemistry, Slovak Academy of Sciences; Bratislava Slovakia
| | | | - Eva Stratilová
- Institute of Chemistry, Slovak Academy of Sciences; Bratislava Slovakia
| |
Collapse
|
18
|
An improved integrative transformation system for Pichia pastoris with DNA-polyethylenimine-dextran sulfate nanoparticles. BIOTECHNOL BIOPROC E 2013. [DOI: 10.1007/s12257-012-0667-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
19
|
Cell culture using centrifugal microfluidic platform with demonstration on Pichia pastoris. Biomed Microdevices 2012; 15:321-37. [DOI: 10.1007/s10544-012-9735-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
20
|
Barba Cedillo V, Plou FJ, Martínez MJ. Recombinant sterol esterase from Ophiostoma piceae: an improved biocatalyst expressed in Pichia pastoris. Microb Cell Fact 2012; 11:73. [PMID: 22676486 PMCID: PMC3514274 DOI: 10.1186/1475-2859-11-73] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2011] [Accepted: 03/02/2012] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND The ascomycete Ophiostoma piceae produces a sterol esterase (OPE) with high affinity towards p-nitrophenol, glycerol and sterol esters. Its hydrolytic activity on natural mixtures of triglycerides and sterol esters has been proposed for pitch biocontrol in paper industry since these compounds produce important economic losses during paper pulp manufacture. RESULTS Recently, this enzyme has been heterologously expressed in the methylotrophic yeast Pichia pastoris, and the hydrolytic activity of the recombinant protein (OPE*) studied. After the initial screening of different clones expressing the enzyme, only one was selected for showing the highest production rate. Different culture conditions were tested to improve the expression of the recombinant enzyme. Complex media were better than minimal media for production, but in any case the levels of enzymatic activity were higher (7-fold in the best case) than those obtained from O. piceae. The purified enzyme had a molecular mass of 76 kDa, higher than that reported for the native enzyme under SDS-PAGE (60 kDa). Steady-state kinetic characterization of the recombinant protein showed improved catalytic efficiency for this enzyme as compared to the native one, for all the assayed substrates (p-nitrophenol, glycerol, and cholesterol esters). Different causes for this were studied, as the increased glycosylation degree of the recombinant enzyme, their secondary structures or the oxidation of methionine residues. However, none of these could explain the improvements found in the recombinant protein. N-terminal sequencing of OPE* showed that two populations of this enzyme were expressed, having either 6 or 8 amino acid residues more than the native one. This fact affected the aggregation behaviour of the recombinant protein, as was corroborated by analytical ultracentrifugation, thus improving the catalytic efficiency of this enzyme. CONCLUSION P. pastoris resulted to be an optimum biofactory for the heterologous production of recombinant sterol esterase from O. piceae, yielding higher activity levels than those obtained with the saprophytic fungus. The enzyme showed improved kinetic parameters because of its modified N-terminus, which allowed changes in its aggregation behaviour, suggesting that its hydrophobicity has been modified.
Collapse
Affiliation(s)
- Víctor Barba Cedillo
- Centro de Investigaciones Biológicas (CIB), Spanish National Research Council (CSIC), Ramiro de Maeztu 9, Madrid 28040, Spain
| | - Francisco J Plou
- Instituto de Catálisis y Petroleoquímica, Spanish National Research Council (CSIC), Marie Curie 2, Madrid 28049, Spain
| | - María Jesús Martínez
- Centro de Investigaciones Biológicas (CIB), Spanish National Research Council (CSIC), Ramiro de Maeztu 9, Madrid 28040, Spain
| |
Collapse
|
21
|
Joshi KK, Nanda JS, Kumar P, Sahni G. Substrate kringle-mediated catalysis by the streptokinase-plasmin activator complex: Critical contribution of kringle-4 revealed by the mutagenesis approaches. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2012; 1824:326-33. [DOI: 10.1016/j.bbapap.2011.10.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2011] [Revised: 09/18/2011] [Accepted: 10/19/2011] [Indexed: 10/16/2022]
|
22
|
Abstract
A common method for inducing the production of recombinant proteins in Pichia pastoris is through the use of methanol. However, the by-products of methanol metabolism are toxic to yeast cells and therefore its addition to recombinant cultures must be controlled and monitored throughout the process in order to maximise recombinant protein yields. Described here are online and off-line methods to monitor and control methanol addition to bench-top-scale bioreactors.
Collapse
Affiliation(s)
- Zharain Bawa
- School of Life & Health Sciences and Aston Research Centre for Healthy Ageing, Aston University, Birmingham, UK.
| | | |
Collapse
|
23
|
|
24
|
Lau YL, Thiruvengadam G, Lee WW, Fong MY. Immunogenic characterization of the chimeric surface antigen 1 and 2 (SAG1/2) of Toxoplasma gondii expressed in the yeast Pichia pastoris. Parasitol Res 2011; 109:871-8. [PMID: 21455621 DOI: 10.1007/s00436-011-2315-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2010] [Accepted: 03/01/2011] [Indexed: 10/18/2022]
Abstract
In this study, we successfully expressed a chimerical surface antigen 1 and 2 (SAG1/2) of Toxoplasma gondii in Pichia pastoris. Eighty human serum samples, including 60 from confirmed cases of toxoplasmosis, were tested against the purified recombinant SAG1/2 in Western blots. Results of Western blots targeted at Toxoplasma IgG and IgM showed that the recombinant SAG1/2 reacted with all sera from the toxoplasmosis cases but none with the Toxoplasma-negative serum samples. These results showed that the P. pastoris-derived recombinant SAG1/2 was sensitive and specific and suitable for use as antigen for detecting anti-Toxoplasma antibodies. To further investigate the immunological characteristic of the recombinant protein, the recombinant SAG1/2 was injected subcutaneously into BALB/c mice, and their serum was tested against total protein lysate of T. gondii. Mice immunized with the recombinant SAG1/2 reacted specifically with the native SAG1 and SAG2 of T. gondii. Significant proliferation of splenocytes stimulated with tachyzoite total protein lysate was observed in vaccinated BALB/c mice but not in those from negative control mice. Specific production of IFN-γ, the Th1-type cytokines, was also found in stimulated splenocytes from vaccinated mice. These results show that the chimeric protein recombinant SAG1/2 can elicit a Th1-associated protection against T. gondii infections in mice. Finally, vaccinated mice were significantly protected against lethal challenge with live T. gondii RH strain tachyzoites (P < 0.005), and their survival time increased significantly compared to the negative control.
Collapse
Affiliation(s)
- Yee Ling Lau
- Department of Parasitology, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia.
| | | | | | | |
Collapse
|
25
|
Hu F, Li X, Lü J, Mao PH, Jin X, Rao B, Zheng P, Zhou YL, Liu SY, Ke T, Ma XD, Ma LX. A visual method for direct selection of high-producing Pichia pastoris clones. BMC Biotechnol 2011; 11:23. [PMID: 21418613 PMCID: PMC3071314 DOI: 10.1186/1472-6750-11-23] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2010] [Accepted: 03/21/2011] [Indexed: 11/26/2022] Open
Abstract
Background The methylotrophic yeast, Pichia pastoris, offers the possibility to generate a high amount of recombinant proteins in a fast and easy way to use expression system. Being a single-celled microorganism, P. pastoris is easy to manipulate and grows rapidly on inexpensive media at high cell densities. A simple and direct method for the selection of high-producing clones can dramatically enhance the whole production process along with significant decrease in production costs. Results A visual method for rapid selection of high-producing clones based on mannanase reporter system was developed. The study explained that it was possible to use mannanase activity as a measure of the expression level of the protein of interest. High-producing target protein clones were directly selected based on the size of hydrolysis holes in the selected plate. As an example, the target gene (9elp-hal18) was expressed and purified in Pichia pastoris using this technology. Conclusions A novel methodology is proposed for obtaining the high-producing clones of proteins of interest, based on the mannanase reporter system. This system may be adapted to other microorganisms, such as Saccharomyces cerevisiae for the selection of clones.
Collapse
Affiliation(s)
- Fan Hu
- Hubei Key Laboratory of Industrial Biotechnology, College of Life Science, Hubei University, Wuhan, 430062, PR China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Balamurugan V, Venkatesan G, Sen A, Annamalai L, Bhanuprakash V, Singh RK. Recombinant protein-based viral disease diagnostics in veterinary medicine. Expert Rev Mol Diagn 2010; 10:731-53. [PMID: 20843198 DOI: 10.1586/erm.10.61] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Identification of pathogens or antibody response to pathogens in human and animals modulates the treatment strategies for naive population and subsequent infections. Diseases can be controlled and even eradicated based on the epidemiology and effective prophylaxis, which often depends on development of efficient diagnostics. In addition, combating newly emerging diseases in human as well as animal healthcare is challenging and is dependent on developing safe and efficient diagnostics. Detection of antibodies directed against specific antigens has been the method of choice for documenting prior infection. Other than zoonosis, development of inexpensive vaccines and diagnostics is a unique problem in animal healthcare. The advent of recombinant DNA technology and its application in the biotechnology industry has revolutionized animal healthcare. The use of recombinant DNA technology in animal disease diagnosis has improved the rapidity, specificity and sensitivity of various diagnostic assays. This is because of the absence of host cellular proteins in the recombinant derived antigen preparations that dramatically decrease the rate of false-positive reactions. Various recombinant products are used for disease diagnosis in veterinary medicine and this article discusses recombinant-based viral disease diagnostics currently used for detection of pathogens in livestock and poultry.
Collapse
|
27
|
Control of specific growth rate to enhance the production of a novel disintegrin, saxatilin, in recombinant Pichia pastoris. J Biosci Bioeng 2010; 110:314-9. [DOI: 10.1016/j.jbiosc.2010.03.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2009] [Revised: 03/15/2010] [Accepted: 03/25/2010] [Indexed: 11/20/2022]
|
28
|
Joshi KK, Sahni G. Molecular cloning, expression, purification and characterization of truncated forms of human plasminogen in Pichia pastoris expression system. Process Biochem 2010. [DOI: 10.1016/j.procbio.2010.04.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
29
|
Chung BK, Selvarasu S, Andrea C, Ryu J, Lee H, Ahn J, Lee H, Lee DY. Genome-scale metabolic reconstruction and in silico analysis of methylotrophic yeast Pichia pastoris for strain improvement. Microb Cell Fact 2010; 9:50. [PMID: 20594333 PMCID: PMC2908565 DOI: 10.1186/1475-2859-9-50] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2010] [Accepted: 07/01/2010] [Indexed: 01/21/2023] Open
Abstract
Background Pichia pastoris has been recognized as an effective host for recombinant protein production. A number of studies have been reported for improving this expression system. However, its physiology and cellular metabolism still remained largely uncharacterized. Thus, it is highly desirable to establish a systems biotechnological framework, in which a comprehensive in silico model of P. pastoris can be employed together with high throughput experimental data analysis, for better understanding of the methylotrophic yeast's metabolism. Results A fully compartmentalized metabolic model of P. pastoris (iPP668), composed of 1,361 reactions and 1,177 metabolites, was reconstructed based on its genome annotation and biochemical information. The constraints-based flux analysis was then used to predict achievable growth rate which is consistent with the cellular phenotype of P. pastoris observed during chemostat experiments. Subsequent in silico analysis further explored the effect of various carbon sources on cell growth, revealing sorbitol as a promising candidate for culturing recombinant P. pastoris strains producing heterologous proteins. Interestingly, methanol consumption yields a high regeneration rate of reducing equivalents which is substantial for the synthesis of valuable pharmaceutical precursors. Hence, as a case study, we examined the applicability of P. pastoris system to whole-cell biotransformation and also identified relevant metabolic engineering targets that have been experimentally verified. Conclusion The genome-scale metabolic model characterizes the cellular physiology of P. pastoris, thus allowing us to gain valuable insights into the metabolism of methylotrophic yeast and devise possible strategies for strain improvement through in silico simulations. This computational approach, combined with synthetic biology techniques, potentially forms a basis for rational analysis and design of P. pastoris metabolic network to enhance humanized glycoprotein production.
Collapse
Affiliation(s)
- Bevan Ks Chung
- NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, 28 Medical Drive, #05-01, 117456, Singapore.
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Majidzadeh-A K, Khalaj V, Fatemeh D, Mahdi H, Farzaneh B, Ahmad A, Mahboudi F. Cloning and expression of functional full-length human tissue plasminogen activator in Pichia pastoris. Appl Biochem Biotechnol 2010; 162:2037-48. [PMID: 20455033 DOI: 10.1007/s12010-010-8979-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2010] [Accepted: 04/26/2010] [Indexed: 11/25/2022]
Abstract
Human tissue plasminogen activator (t-PA) plays a pivotal role in the treatment of acute myocardial infarction, ischemic stroke, and deep vein thrombosis. It has the benefit of generating no adverse effects such as fibrinogen depletion, systemic hemorrhage, and immunologic reactions. Human t-PA is a serine-protease enzyme containing 527 amino acid residues in five structural domains. The correct folding of t-PA requires the correct pairing of 17 disulfide bridges in the molecule. A gene encoding full-length human t-PA was cloned into pPICZαA expression vector downstream of alcohol oxidase promoter and α-mating signal sequence from Saccharomyces cerevisiae and flush with the kex2 cleavage site to express the protein with a native N terminus. The methylotrophic yeast, Pichia pastoris GS115 strain, was transformed with this cassette, and methanol utilizing (mut+) transformants were selected for production and secretion of human t-PA into culture media. SDS-PAGE and Western blot analysis showed the expressed bands of t-PA protein. Zymography test indicated suitable folding and proper function of the expressed recombinant human t-PA in conversion of plasminogen to plasmin and gelatin lysis. Amidolytic activity test showed the amidolytic activity of 1,650 IU/ml. The results of this study concluded that P. pastoris methylotrophic yeast can be a suitable alternative for mammalian and prokaryotic expression systems to produce t-PA.
Collapse
|
31
|
Osawa F, Fujii T, Nishida T, Tada N, Ohnishi T, Kobayashi O, Komeda T, Yoshida S. Efficient production of L-lactic acid by Crabtree-negative yeast Candida boidinii. Yeast 2009; 26:485-96. [PMID: 19655300 DOI: 10.1002/yea.1702] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Industrial production of L-lactic acid, which in polymerized form as poly-lactic acid is widely used as a biodegradable plastic, has been attracting world-wide attention. By genetic engineering we constructed a strain of the Crabtree-negative yeast Candida boidinii that efficiently produced a large amount of L-lactic acid. The alcohol fermentation pathway of C. boidinii was altered by disruption of the PDC1 gene encoding pyruvate decarboxylase, resulting in an ethanol production that was reduced to 17% of the wild-type strain. The alcohol fermentation pathway of the PDC1 deletion strain was then successfully utilized for the synthesis of L-lactic acid by placing the bovine L-lactate dehydrogenase-encoding gene under the control of the PDC1 promoter by targeted integration. Optimizing the conditions for batch culture in a 5 l jar-fermenter resulted in an L-lactic acid production reaching 85.9 g/l within 48 h. This productivity (1.79 g/l/h) is the highest thus far reported for L-lactic acid-producing yeasts.
Collapse
Affiliation(s)
- Fumi Osawa
- Central Laboratories for Frontier Technology, Kirin Holdings Co. Ltd, Kanagawa 236-0004, Japan
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Recent advances on the GAP promoter derived expression system of Pichia pastoris. Mol Biol Rep 2008; 36:1611-9. [PMID: 18781398 DOI: 10.1007/s11033-008-9359-4] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2008] [Accepted: 08/28/2008] [Indexed: 10/21/2022]
Abstract
Pichia pastoris is an efficient host for the expression and secretion of heterologous proteins and the most important feature of P. pastoris is the existence of a strong and tightly regulated promoter from the alcohol oxidase I (AOX1) gene. The AOX1 promoter (pAOX1) has been used to express foreign genes and to produce a variety of recombinant proteins in P. pastoris. However, some efforts have been made to develop new alternative promoters to pAOX1 to avoid the use of methanol. The glyceraldehyde-3-phosphate dehydrogenase promoter (pGAP) has been used for constitutive expression of many heterologous proteins. The pGAP-based expression system is more suitable for large-scale production because the hazard and cost associated with the storage and delivery of large volume of methanol are eliminated. Some important developments and features of this expression system will be summarized in this review.
Collapse
|
33
|
Abstract
Recombinant protein expression has become a standard laboratory tool, and a wide variety of systems and techniques are now in use. Because there are so many systems to choose from, the investigator has to be careful to use the combination that will give the best results for the protein being studied. This overview unit discusses expression and production choices, including post-translational modifications (e.g., glycosylation, acylation, sulfation, and removal of N-terminal methionine), in vivo and in vitro folding, and influence of downstream elements on expression.
Collapse
Affiliation(s)
- D Gray
- Chiron Corporation, Emeryville, California, USA
| | | |
Collapse
|
34
|
Yao H, Yu S, Zhang L, Zuo K, Ling H, Zhang F, Tang K. Isolation of a novel lipase gene from Serratia liquefaciens S33 DB-1, functional expression in Pichia pastoris and its properties. Mol Biotechnol 2007; 38:99-107. [PMID: 18219590 DOI: 10.1007/s12033-007-9007-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2007] [Accepted: 09/17/2007] [Indexed: 10/23/2022]
Abstract
A new lipase gene designated as SlLipA was isolated from Serratia liquefaciens S33 DB-1 by the genomic-walking method. The cloned gene contained an open reading frame (ORF) of 1,845 bp encoding 615 amino acids with a conserved GXSXG motif. Genome sequence analysis showed that an aldo/keto reductase gene closed to the SlLipA gene. The lipase gene was cloned into the expression vector pPICZalphaA and successfully integrated into the heterologous host, methylotrophic yeast Pichia pastoris GS115. Five transformants could be expressed as secreted recombinant proteins with the high activity on Triglyceride-Agarose plate and as candidates to produce the recombinant enzyme. A C-terminal His tag was used for its purification. The lipase activity of different transformants against substrate para-nitrophenyl laurate (p-NPL) varied from 14 to 16 U ml(-1). For the substrates para-nitrophenyl caprate (p-NPC), p-NPL, para-nitrophenyl myristate (p-NPM), para-nitrophenyl palmitate (p-NPP), and para-nitrophenyl stearate (p-NPS), the specific activity was shown to be preferred to long acyl chain length of p-NPS.
Collapse
Affiliation(s)
- Hongyan Yao
- Plant Biotechnology Research Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200030, PR China
| | | | | | | | | | | | | |
Collapse
|
35
|
Juozapaitis M, Serva A, Kucinskaite I, Zvirbliene A, Slibinskas R, Staniulis J, Sasnauskas K, Shiell BJ, Bowden TR, Michalski WP. Generation of menangle virus nucleocapsid-like particles in yeast Saccharomyces cerevisiae. J Biotechnol 2007; 130:441-7. [PMID: 17602774 DOI: 10.1016/j.jbiotec.2007.05.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2007] [Revised: 04/25/2007] [Accepted: 05/18/2007] [Indexed: 11/18/2022]
Abstract
Menangle virus (MenV), which was isolated in Australia in 1997 during an outbreak of severe reproductive disease in pigs, is a novel member of the genus Rubulavirus in the family Paramyxoviridae. Although successfully eradicated from the affected piggery, fruit bats are considered to be the natural reservoir of the virus and therefore an ongoing risk of re-introduction to the pig population exists. Accordingly, reagents to facilitate serological surveillance are required to enhance the diagnostic capability for MenV, which is a newly recognized cause of disease in pigs with the potential to severely affect production in naive breeding herds. To address this need, recombinant MenV nucleocapsid (N) protein was expressed in the yeast Saccharomyces cerevisiae. Using the expression vector pFGG3 under control of the GAL7 promoter, high yields of recombinant MenV N protein were obtained. Electron microscopy demonstrated that purified recombinant N protein self-assembled into nucleocapsid-like particles which were identical in density and morphology, although not in length, to authentic nucleocapsids from virus-infected cells. Electron microscopy analysis also showed that yeast-expressed N protein which lacked the C-terminal tail (amino acid residues 400-519) formed significantly longer and denser nucleocapsid-like particles. Nucleocapsid-like particles derived from the full-length recombinant protein were stable and readily purified by CsCl gradient ultracentrifugation. When used as coating antigen in an indirect ELISA, the recombinant N protein reacted with sera derived from pigs experimentally infected with MenV and a simple serological assay to detect MenV-specific antibodies in pigs, fruit bats and humans could be designed on this basis.
Collapse
|
36
|
Juozapaitis M, Serva A, Zvirbliene A, Slibinskas R, Staniulis J, Sasnauskas K, Shiell BJ, Wang LF, Michalski WP. Generation of henipavirus nucleocapsid proteins in yeast Saccharomyces cerevisiae. Virus Res 2007; 124:95-102. [PMID: 17123657 DOI: 10.1016/j.virusres.2006.10.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2006] [Revised: 10/15/2006] [Accepted: 10/20/2006] [Indexed: 11/30/2022]
Abstract
Hendra and Nipah viruses are newly emerged, zoonotic viruses and their genomes have nucleotide and predicted amino acid homologies placing them in the family Paramyxoviridae. Currently these viruses are classified in the new genus Henipavirus, within the subfamily Paramyxovirinae, family Paramyxoviridae. The genes encoding HeV and NiV nucleocapsid proteins were cloned into the yeast Saccharomyces cerevisiae expression vector pFGG3 under control of GAL7 promoter. A high level of expression of these proteins (18-20 mg l(-1) of yeast culture) was obtained. Mass spectrometric analysis confirmed the primary structure of both proteins with 92% sequence coverage obtained using MS/MS analysis. Electron microscopy demonstrated the assembly of typical herring-bone structures of purified recombinant nucleocapsid proteins, characteristic for other paramyxoviruses. The nucleocapsid proteins revealed stability in yeast and can be easily purified by cesium chloride gradient ultracentrifugation. HeV nucleocapsid protein was detected by sera derived from fruit bats, humans, horses infected with HeV, and NiV nucleocapsid protein was immunodetected with sera from, fruit bats, humans and pigs. The development of an efficient and cost-effective system for generation of henipavirus nucleocapsid proteins might help to improve reagents for diagnosis of viruses.
Collapse
|
37
|
Jones WT, Harvey D, Kirk C, Rakonjac J, Sun X, Frearson N, Samarrai TA. A novel peptide tag for detection and purification of recombinant expressed proteins. Protein Expr Purif 2007; 53:404-10. [PMID: 17317216 DOI: 10.1016/j.pep.2007.01.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2006] [Revised: 01/10/2007] [Accepted: 01/11/2007] [Indexed: 11/26/2022]
Abstract
Peptide tags have proven useful for the detection and purification of recombinant proteins. However cross reactions of antibodies raised to the tag are frequently observed due to the presence of host proteins containing all or parts of the tag. In this report we have identified a unique viral peptide sequence, R-tag, that by blast searches is absent from the commonly expression hosts Arabidopsis thaliana, Escherichia coli, Pichia pastoris and mouse myeloma cell NSO. We have prepared monoclonal antibodies to this peptide and confirmed the absence of this peptide sequence from the above genomes by Western blotting. We have also modified protein expression vectors to incorporate this sequence as a fusion tag in expressed proteins and shown its use to successfully purify recombinant proteins by immunoaffinity procedures.
Collapse
Affiliation(s)
- William T Jones
- The Horticulture and Food Research Institute of New Zealand Ltd, Private Bag 11 030, Palmerston North, New Zealand.
| | | | | | | | | | | | | |
Collapse
|
38
|
Cregg JM. Introduction: distinctions between Pichia pastoris and other expression systems. Methods Mol Biol 2007; 389:1-10. [PMID: 17951631 DOI: 10.1007/978-1-59745-456-8_1] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The construction of Pichia pastoris expression strains and the general growth and manipulation of this yeast expression system are in many ways similar to those of bacterial expression systems, particularly Escherichia coli. Because of this, it is typically easy for researches experienced with bacterial systems to make the jump to this eukaryotic system. However, because the system is similar, users can be falsely fooled into assuming that the system is completely bacterial-like and may waste time and effort performing experiments that are unlikely to yield the desired results with this yeast. To aid in preventing P. pastoris users from falling into one or more or these traps, this introduction focuses directly on key ways that the P. pastoris expression system is different.
Collapse
Affiliation(s)
- James M Cregg
- Keck Graduate Institute of Applied Life Sciences, Claremont, CA, USA
| |
Collapse
|
39
|
Kuroda K, Kobayashi K, Tsumura H, Komeda T, Chiba Y, Jigami Y. Production of Man5GlcNAc2-type sugar chain by the methylotrophic yeastOgataea minuta. FEMS Yeast Res 2006; 6:1052-62. [PMID: 17042755 DOI: 10.1111/j.1567-1364.2006.00116.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
The methylotrophic yeast Ogataea minuta IFO 10746 was selected as a suitable strain for producing human-compatible glycoproteins by means of analyses of its cell-wall mannoproteins. First, the OmURA3 gene encoding an orotidine-5'-phosphate decarboxylase was cloned and disrupted to generate a host strain with a uracil auxotrophic marker. Second, both the promoters and the terminators from the OmAOX1 gene encoding an alcohol oxidase for an inducible promoter, or those from the OmTDH1 gene encoding a glyceraldehyde-3-phosphate dehydrogenase for a constitutive promoter, were isolated to construct an expression vector system for heterologous genes. Next, the OmOCH1 gene encoding a starting enzyme with alpha-1,6-mannosyltransferase activity to form a backbone of the N-linked outer sugar chain peculiar to yeast was disrupted, and an alpha-1,2-mannosidase gene from Aspergillus saitoi with an endoplasmic reticulum retention signal (HDEL) under the control of the OmAOX1 promoter was introduced to convert the sugar chain to Man5GlcNAc2 in O. minuta. As a result, we succeeded in breeding a new methylotrophic yeast, O. minuta, producing a Man5GlcNAc2-high-mannose-type sugar chain as a prototype of a human-compatible sugar chain. We also elucidate here the usefulness of the strategy for producing human-compatible sugar chains in yeast.
Collapse
Affiliation(s)
- Kousuke Kuroda
- CMC R&D Laboratories, Pharmaceutical Division, Kirin Brewery Co. Ltd, Gunma, Japan
| | | | | | | | | | | |
Collapse
|
40
|
Quantitative characterization of the regulation of the synthesis of alcohol oxidase and of the expression of recombinant avidin in a Pichia pastoris Mut+ strain. Enzyme Microb Technol 2006. [DOI: 10.1016/j.enzmictec.2006.01.027] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
41
|
Zhang F, Wang Y. Cloning, expression, and purification of lipoprotein-associated phospholipase A(2) in Pichia pastoris. Mol Biotechnol 2006; 33:29-36. [PMID: 16691004 DOI: 10.1385/mb:33:1:29] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/1999] [Revised: 11/30/1999] [Accepted: 11/30/1999] [Indexed: 11/11/2022]
Abstract
Lipoprotein-associated phospholipase A(2) (Lp-PLA(2)) has been shown to play a crucial role in atherosclerosis, and has been proposed as a promising target for drug discovery. Here, we cloned the Lp-PLA(2) gene from differentiated THP-1 cells, and inserted a carboxy-terminal His(6)-tagged version of the gene into the pPIC9 Pichia expression vector. The Lp-PLA(2) fusion protein was successfully expressed in Pichia pastoris expression system and could be rapidly purified to apparent homogeneity using a single-step purification method. The activity of our recombinant Lp-PLA(2) was strong when [3H] PAF was used as a substrate, and the Lp-PLA(2) inhibitor SB435495 exhibited an inhibitory curve against the recombinant Lp-PLA2 (IC50 = 15.93 +/- 1 microM). This novel recombinant Lp-PLA(2) could prove useful as a screening model for Lp-PLA(2) inhibitors, and may facilitate further investigation of this protein in atherosclerosis.
Collapse
Affiliation(s)
- Fujun Zhang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Shanghai Institutes for Biological Sciences, Graduate School, Chinese Academy of Sciences, Shanghai 201203, China
| | | |
Collapse
|
42
|
Tamás L, Shewry PR. Heterologous expression and protein engineering of wheat gluten proteins. J Cereal Sci 2006. [DOI: 10.1016/j.jcs.2006.02.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
43
|
Veum TL, Bollinger DW, Buff CE, Bedford MR. A genetically engineered Escherichia coli phytase improves nutrient utilization, growth performance, and bone strength of young swine fed diets deficient in available phosphorus1. J Anim Sci 2006; 84:1147-58. [PMID: 16612017 DOI: 10.2527/2006.8451147x] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
A 28-d experiment was conducted using 126 crossbred barrows to evaluate the addition of a genetically engineered Escherichia coli phytase to diets that were 0.15% deficient in available P. Growth performance, bone strength, ash weight, and the apparent absorption of P, Ca, Mg, N, energy, DM, Zn, Fe, and Cu were the response criteria. The pigs (2 pigs/pen) averaged 7.61 kg of BW and 30 d of age initially. The low-P basal diet was supplemented with 0, 100, 500, 2,500, or 12,500 units (U) of E. coli phytase/kg of diet, or 500 U of Peniophora lycii phytase/kg of diet. The positive control (PC) diet was adequate in available P. Pigs were fed the diets in meal form. Fecal samples were collected from each pig from d 22 to 27 of the experiment. There were linear and quadratic increases (P < 0.001) in 28-d growth performance (ADFI, ADG, and G:F), bone breaking strength and ash weight, and the apparent absorption (g/d and %) of P, Ca, and Mg (P < or = 0.01 for quadratic) with increasing concentrations of E. coli phytase. Pigs fed the low-P diets containing 2,500 or 12,500 U/kg of E. coli phytase had greater (P < or = 0.01 or P < 0.001, respectively) values for growth performance, bone breaking strength and ash weight, and the apparent absorption (g/d and %) of P, Ca, and Mg than pigs fed the PC diet. The addition of E. coli phytase did not increase the apparent percentage absorption of N, GE, DM, Zn, Fe, or Cu. There were no differences in the efficacy of the E. coli or P. lycii phytase enzymes at 500 U/kg of low-P diet for any criterion measured. In conclusion, there were linear increases in growth performance, bone breaking strength and ash weight, and the apparent absorption of P, Ca, and Mg with increasing addition of E. coli phytase up to 12,500 U/kg of diet. Also, all of these criteria were greater for pigs fed the low-P diets containing 2,500 or 12,500 U of E. coli phytase/kg than for pigs fed the PC diet. The addition of 500, 2,500, or 12,500 U of E. coli phytase/kg of low-P diet reduced P excretion (g/d) in manure by 35, 42, and 61%, respectively, compared with pigs fed the PC diet.
Collapse
Affiliation(s)
- T L Veum
- Department of Animal Sciences, University of Missouri, Columbia, 65211, USA.
| | | | | | | |
Collapse
|
44
|
Cos O, Ramón R, Montesinos JL, Valero F. Operational strategies, monitoring and control of heterologous protein production in the methylotrophic yeast Pichia pastoris under different promoters: a review. Microb Cell Fact 2006; 5:17. [PMID: 16600031 PMCID: PMC1564409 DOI: 10.1186/1475-2859-5-17] [Citation(s) in RCA: 224] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2005] [Accepted: 04/06/2006] [Indexed: 01/05/2023] Open
Abstract
The methylotrophic yeast Pichia pastoris has been widely reported as a suitable expression system for heterologous protein production. The use of different phenotypes under PAOX promoter, other alternative promoters, culture medium, and operational strategies with the objective to maximize either yield or productivity of the heterologous protein, but also to obtain a repetitive product batch to batch to get a robust process for the final industrial application have been reported. Medium composition, kinetics growth, fermentation operational strategies from fed-batch to continuous cultures using different phenotypes with the most common PAOX promoter and other novel promoters (GAP, FLD, ICL), the use of mixed substrates, on-line monitoring of the key fermentation parameters (methanol) and control algorithms applied to the bioprocess are reviewed and discussed in detail.
Collapse
Affiliation(s)
- Oriol Cos
- Departament d'Enginyeria Química, Escola Tècnica Superior d'Enginyeria, Universitat Autònoma de Barcelona, 08193 Bellaterra (Barcelona), Spain.
| | | | | | | |
Collapse
|
45
|
Beaulieu L, Groleau D, Miguez CB, Jetté JF, Aomari H, Subirade M. Production of pediocin PA-1 in the methylotrophic yeast Pichia pastoris reveals unexpected inhibition of its biological activity due to the presence of collagen-like material. Protein Expr Purif 2005; 43:111-25. [PMID: 16023368 DOI: 10.1016/j.pep.2005.05.012] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2005] [Revised: 05/18/2005] [Accepted: 05/20/2005] [Indexed: 10/25/2022]
Abstract
Expression of the pedA gene from Pediococcus acidilactici, coding for mature bacteriocin Pediocin PA-1, was investigated using the yeast Pichia pastoris to obtain larger quantities of pediocin to support additional studies, including structure-function research. Following various cloning strategies, a KM71H (Mut(s)) strain was selected. A significant concentration (74 microg/ml) of extracellular recombinant pediocin was obtained but the pediocin showed no biological activity. Supernatant fluids from P. pastoris cultures, harboring or not pedA, inhibited the biological activity of natural pediocin PA-1. The recombinant pediocin appeared as a mixture of three main fractions (7-8, 11, 20 kDa vs. 4.6 kDa for natural pediocin PA-1). The recombinant pediocin was also less hydrophobic and behaved differently when subjected to isoelectric focusing. Strong evidence indicated that some "collagen-like" material was tightly associated, most probably via covalent binding, to the recombinant pediocin. The "collagen-like" material was most probably responsible for the lack of biological activity of the recombinant pediocin and for the differences observed regarding some of the physico-chemical properties. Both the recombinant pediocin and natural pediocin were sensitive to collagenase, suggesting that pediocin PA-1 may possess a somewhat "collagen-like" nature. Interestingly, recombinant pediocin preparations showed the ability to assemble into fibrils.
Collapse
Affiliation(s)
- Lucie Beaulieu
- Biotechnology Research Institute, National Research Council, 6100 Royalmount Avenue, Montreal, Que., Canada
| | | | | | | | | | | |
Collapse
|
46
|
Lu ZX, Laroche A, Huang HC. Isolation and characterization of chitinases from Verticillium lecanii. Can J Microbiol 2005; 51:1045-55. [PMID: 16462863 DOI: 10.1139/w05-088] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Degenerate PCR primers corresponding to conserved domains of fungal chitinases were designed, and PCR was performed on genomic DNA of the entomogenous fungus Verticillium lecanii (Zimmermann) Viegas. Two distinct PCR fragments, chf1 and chf2, were isolated and used to identify two DNA contigs. Analyses of these two contigs revealed that we had obtained the full-length DNA sequence including the promoter, 5′ untranslated region, open reading frame (ORF), and 3′ untranslated regions for two distinct chitinase-like genes. These two genomic DNA sequences exhibited 51% identity at the amino acid (aa) level and were designed as acidic (chi1) and basic (chi2) chitinase-like genes. The isolated cDNA for chi1 gene is 1110 bp with a predicted protein of 370 aa and molecular mass of 40.93 kDa, and its ORF was uninterrupted in its corresponding genomic DNA sequence. The cDNA for the chi2 gene is 1269 bp, a predicted ORF of 423 aa and molecular mass of 45.95 kDa. In contrast, the ORF was interrupted by three introns in its corresponding genomic DNA. The basic chitinase gene (chi2) was successfully expressed in the Pichia pastoris system; optimum enzymatic activity was observed at 22 °C and at pH 7.5. CHI1 and CHI2 were clustered into two different phylogenetic groups according to their sequence alignments with 28 other fungal chitinases. A chitin-binding domain, comprising two sub-domains that exhibit similarities at the aa level to chitin binding domains in bacteria, was identified in 30 fungal chitinase sequences examined.Key words: fungus, chitin, cloning, sequencing, transformation, Pichia sp. expression.
Collapse
Affiliation(s)
- Zhen-Xiang Lu
- Lethbridge Research Centre, Agriculture and Agri-Food Canada, AB, Canada
| | | | | |
Collapse
|
47
|
Tyshenko MG, d'Anjou M, Davies PL, Daugulis AJ, Walker VK. Challenges in the expression of disulfide bonded, threonine-rich antifreeze proteins in bacteria and yeast. Protein Expr Purif 2005; 47:152-61. [PMID: 16290006 DOI: 10.1016/j.pep.2005.10.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2005] [Revised: 10/03/2005] [Accepted: 10/05/2005] [Indexed: 10/25/2022]
Abstract
Certain freeze-intolerant insects produce antifreeze proteins (AFPs) during overwintering including the spruce budworm (Choristoneura fumiferana) and yellow mealworm (Tenebrio molitor) AFP gene families. However, only a few of the isoforms, encoded by their multiple-copy gene families, have been characterized. When expressed in bacterial systems the insect AFPs have to be denatured and refolded in vitro, a procedure that is not uniformly successful, presumably due to the beta-helix structure and the requirement for disulfide bonds. In an attempt to overcome these difficulties, bacterial vectors and hosts that have been developed to produce soluble, folded proteins, as well as a yeast expression system (Pichia pastoris) were employed. Bacterial expression resulted in low quantities of active recombinant protein for certain isoforms. In contrast, both small and large-scale fermentation of recombinant AFP in Pichia yielded substantial protein production (100 mg/L) but functional ice binding activity of protein produced in three different transformed yeast strains (KM71, X33 or GS115) was low. Inappropriate O-linked glycosylation of the Thr-rich AFPs appeared to be partially reversed by mild chemical deglycosylation, but activity remained low. Substantial quantities, as well as activity were recovered when a fish AFP, with disulfide bonds, but without potential Thr glycosylation sites was expressed in the yeast system.
Collapse
Affiliation(s)
- Michael G Tyshenko
- Department of Biology, Queen's University, Kingston, Ont., Canada K7L 3N6.
| | | | | | | | | |
Collapse
|
48
|
Brandwijk RJMGE, Nesmelova I, Dings RPM, Mayo KH, Thijssen VLJL, Griffioen AW. Cloning an artificial gene encoding angiostatic anginex: From designed peptide to functional recombinant protein. Biochem Biophys Res Commun 2005; 333:1261-8. [PMID: 15979575 DOI: 10.1016/j.bbrc.2005.06.029] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2005] [Accepted: 06/07/2005] [Indexed: 10/25/2022]
Abstract
Anginex, a designed peptide 33-mer, is a potent angiogenesis inhibitor and anti-tumor agent in vivo. Anginex functions by inhibiting endothelial cell (EC) proliferation and migration leading to detachment and apoptosis of activated EC's. To better understand tumor endothelium targeting properties of anginex and enable its use in gene therapy, we constructed an artificial gene encoding the biologically exogenous peptide and produced the protein recombinantly in Pichia pastoris. Mass spectrometry shows recombinant anginex to be a dimer and circular dichroism shows the recombinant protein folds with beta-strand structure like the synthetic peptide. Moreover, like parent anginex, the recombinant protein is active at inhibiting EC growth and migration, as well as inhibiting angiogenesis in vivo in the chorioallantoic membrane of the chick embryo. This study demonstrated that it is possible to produce a functionally active protein version of a rationally designed peptide, using an artificial gene and the recombinant protein approach.
Collapse
Affiliation(s)
- Ricardo J M G E Brandwijk
- Angiogenesis Laboratory, Research Institute for Growth and Development, Department of Pathology, Maastricht University and University Hospital, Maastricht, The Netherlands
| | | | | | | | | | | |
Collapse
|
49
|
Ozimek P, Veenhuis M, van der Klei IJ. Alcohol oxidase: a complex peroxisomal, oligomeric flavoprotein. FEMS Yeast Res 2005; 5:975-83. [PMID: 16169288 DOI: 10.1016/j.femsyr.2005.06.005] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2005] [Revised: 06/07/2005] [Accepted: 06/07/2005] [Indexed: 10/25/2022] Open
Abstract
Alcohol oxidase (AO) is the key enzyme of methanol metabolism in methylotrophic yeast species. It catalyses the first step of methanol catabolism, namely its oxidation to formaldehyde with concomitant production of hydrogen peroxide. In its mature active form, AO is a molecule of high molecular mass (600 kDa) that consists of eight identical subunits, each of which carry one non-covalently bound flavin adenine nucleotide (FAD) molecule as the prosthetic group. In vivo, the protein is compartmentalized into special cell organelles, termed peroxisomes. AO is an abundant protein and its synthesis is strictly regulated by repression/derepression and induction mechanisms that occur at the transcriptional level. Various aspects of its sorting and assembly/activation render AO a unique protein. Recent developments of AO synthesis, sorting and assembly/activation are highlighted in this paper.
Collapse
Affiliation(s)
- Paulina Ozimek
- Eukaryotic Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute (GBB), University of Groningen, P.O. Box 14, 9750 AA Haren, The Netherlands
| | | | | |
Collapse
|
50
|
Zhang W, Li ZJ, Agblevor FA. Microbubble fermentation of recombinant Pichia pastoris for human serum albumin production. Process Biochem 2005. [DOI: 10.1016/j.procbio.2004.07.022] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|