1
|
Jiang X, Li M, Wang Z, Ye C, Gao J, Ai X, Bao J, Cheng J, Lian J. CRISPR-Mediated rDNA Integration and Fluorescence Screening for Pathway Optimization in Pichia pastoris. CHEM & BIO ENGINEERING 2024; 1:940-951. [PMID: 39975573 PMCID: PMC11835257 DOI: 10.1021/cbe.4c00104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 06/24/2024] [Accepted: 06/30/2024] [Indexed: 02/21/2025]
Abstract
Gene dosage amplification is an effective strategy to improve the performance of heterologous genes and pathways. Pichia pastoris is an excellent recombinant protein expression host with high efficiency in protein folding and glycosylation. However, the traditional iterative multicopy integration method typically faces challenges such as being time-consuming and having high cost and potential gene mutations. Accordingly, we established CRISPR-mediated rDNA integration and fluorescence screening for pathway optimization (CRISPO) for multicopy pathway integration in a single-step and antibiotic-free manner. With geraniol biosynthesis as a case study, we designed CRISPO based on the use of glycerol-induced and glucose-repressed promoters (CRISPOi) or strong constitutive promoters (CRISPOc) to drive the expression of the red fluorescent protein mCherry as the screening marker. We employed CRISPOi for stable strain construction by multicopy integration of the geraniol synthase encoding gene, achieving a 19.5-fold increase in geraniol production. We demonstrated CRISPOc for visualizing and determining the rate-limiting steps of the mevalonate pathway, with HMG1 and ERG12 identified as the major rate-limiting enzymes through two rounds of exploration. Ultimately, CRISPO enabled us to construct an engineered P. pastoris strain producing 1.66 g/L geraniol (with a total of 2.12 g/L monoterpenoids) and 6.27 g/L geraniol (with a total of 6.48 g/L monoterpenoids) in 24-well plates and 5 L fermenters, respectively, representing the highest titer and productivity of geraniol ever reported. CRISPO is an important addition to the synthetic biology toolbox for the construction and optimization of P. pastoris cell factories.
Collapse
Affiliation(s)
- Xiaojing Jiang
- Key
Laboratory of Biomass Chemical Engineering of Ministry of Education
& State Key Laboratory of Biobased Transportation Fuel Technology,
College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Mengxin Li
- Key
Laboratory of Biomass Chemical Engineering of Ministry of Education
& State Key Laboratory of Biobased Transportation Fuel Technology,
College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Zhijiao Wang
- Key
Laboratory of Biomass Chemical Engineering of Ministry of Education
& State Key Laboratory of Biobased Transportation Fuel Technology,
College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Cuifang Ye
- Key
Laboratory of Biomass Chemical Engineering of Ministry of Education
& State Key Laboratory of Biobased Transportation Fuel Technology,
College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Jucan Gao
- Key
Laboratory of Biomass Chemical Engineering of Ministry of Education
& State Key Laboratory of Biobased Transportation Fuel Technology,
College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
- ZJU-Hangzhou
Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 310000, China
| | - Xiaowei Ai
- Key
Laboratory of Biomass Chemical Engineering of Ministry of Education
& State Key Laboratory of Biobased Transportation Fuel Technology,
College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Jingfei Bao
- Key
Laboratory of Biomass Chemical Engineering of Ministry of Education
& State Key Laboratory of Biobased Transportation Fuel Technology,
College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Jintao Cheng
- Key
Laboratory of Biomass Chemical Engineering of Ministry of Education
& State Key Laboratory of Biobased Transportation Fuel Technology,
College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
- ZJU-Hangzhou
Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 310000, China
| | - Jiazhang Lian
- Key
Laboratory of Biomass Chemical Engineering of Ministry of Education
& State Key Laboratory of Biobased Transportation Fuel Technology,
College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
- ZJU-Hangzhou
Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 310000, China
| |
Collapse
|
2
|
Wang S, Wu X, Qiao Z, He X, Li Y, Zhang T, Liu W, Wang M, Zhou X, Yu Y. Systematic Evaluation and Application of IDR Domain-Mediated Transcriptional Activation of NUP98 in Saccharomyces cerevisiae. ACS Synth Biol 2024; 13:3765-3773. [PMID: 39469753 DOI: 10.1021/acssynbio.4c00376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/30/2024]
Abstract
Implementing dynamic control over gene transcription to decouple cell growth is essential for regulating protein expression in microbial cells. However, the availability of efficient regulatory elements in Saccharomyces cerevisiae remains limited. In this study, we present a novel β-estradiol-inducible gene expression system, termed DEN. This system combines a DNA-binding domain with an estradiol-binding domain and an intrinsically disordered region (IDR) from NUP98. Comparative analysis shows that the DEN system outperforms IDRs from other proteins, achieving an approximately 60-fold increase in EGFP expression upon β-estradiol induction. Moreover, our system is tightly controlled; nontoxic gene expression makes it a powerful tool for rapid and precise modulation of target gene expression. This system holds great potential for unlocking new functionalities from existing proteins in future research.
Collapse
Affiliation(s)
- Sheng Wang
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision, and Brain Health), Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Xueming Wu
- Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Zhenghao Qiao
- Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, China
| | - Xuan He
- Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, China
| | - Yu Li
- Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Tianyu Zhang
- Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Weiwei Liu
- Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, China
| | - Ming Wang
- Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, China
| | - Xiangtian Zhou
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision, and Brain Health), Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Yang Yu
- Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, China
| |
Collapse
|
3
|
Zhang S, Zhang J, Lin R, Lu C, Fang B, Shi J, Jiang T, Zhou M. Design and construction of light-regulated gene transcription and protein translation systems in yeast P. Pastoris. J Adv Res 2024:S2090-1232(24)00330-8. [PMID: 39117107 DOI: 10.1016/j.jare.2024.08.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 04/17/2024] [Accepted: 08/04/2024] [Indexed: 08/10/2024] Open
Abstract
INTRODUCTION P. pastoris is a common host for effective biosynthesis of heterologous proteins as well as small molecules. Accurate regulation of gene transcription and protein synthesis is necessary to coordinate synthetic gene circuits and optimize cellular energy distribution. Traditional methanol or other inducible promoters, natural or engineered, have defects in either fermentation safety or expression capacity. The utilization of chemical inducers typically adds complexity to the product purification process, but there is no other well-controlled protein synthesis system than promoters yet. OBJECTIVE The study aimed to address the aforementioned challenges by constructing light-regulated gene transcription and protein translation systems with excellent expression capacity and light sensitivity. METHODS Trans-acting factors were designed by linking the N. crassa blue-light sensor WC-1 with the activation domain of endogenous transcription factors. Light inducible or repressive promoters were then constructed through chimeric design of cis-elements (light-responsive elements, LREs) and endogenous promoters. Various configurations of trans-acting factor/LRE pairs, along with different LRE positions and copy numbers were tested for optimal promoter performance. In addition to transcription, a light-repressive translation system was constructed through the "rare codon brake" design. Rare codons were deliberately utilized to serve as brakes during protein synthesis, which were switched on and off through the light-regulated changes in the expression of the corresponding pLRE-tRNA. RESULTS As demonstrated with GFP, the light-inducible promoter 4pLRE-cPAOX1 was 70 % stronger than the constitutive promoter PGAP, with L/D ratio = 77. The light-repressive promoter PGAP-pLRE was strictly suppressed by light, with expression capacity comparable with PGAP in darkness. As for the light-repressive translation system, the "triple brake" design successfully eliminated leakage and achieved light repression on protein synthesis without any impact on mRNA expression. CONCLUSION The newly designed light-regulated transcription and translation systems offer innovative tools that optimize the application of P. pastoris in biotechnology and synthetic biology.
Collapse
Affiliation(s)
- Siyu Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Jiazhen Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Ru Lin
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Chaoyu Lu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Bohao Fang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Jiacheng Shi
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Tianyi Jiang
- China Innovation Center of Roche, Shanghai 201203, China
| | - Mian Zhou
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China.
| |
Collapse
|
4
|
Zhang S, Lin R, Cui L, Jiang T, Shi J, Lu C, Li P, Zhou M. Alter codon bias of the P. pastoris genome to overcome a bottleneck in codon optimization strategy development and improve protein expression. Microbiol Res 2024; 282:127629. [PMID: 38330819 DOI: 10.1016/j.micres.2024.127629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 12/27/2023] [Accepted: 01/21/2024] [Indexed: 02/10/2024]
Abstract
Apart from its role in translation, codon bias is also an important mechanism to regulate mRNA levels. The traditional frequency-based codon optimization strategy is rather efficient in organisms such as N. crassa, but much less in yeast P. pastoris which is a popular host for heterologous protein expression. This is because that unlike N. crassa, the preferred codons of P. pastoris are actually AU-rich and hence codon optimization for extremely low GC content comes with issues of pre-mature transcriptional termination or low RNA stability in spite of translational advantages. To overcome this bottleneck, we focused on three reporter genes in P. pastoris first and confirmed the great advantage of GC-prone codon optimization on mRNA levels. Then we altered the codon bias profile of P. pastoris by introducing additional rare tRNA gene copies. Prior to that we constructed IPTG-regulated tRNA species to enable chassis cells to switch between different codon bias status. As demonstrated again with reporter genes, protein yield of luc and 0788 was successfully increased by 4-5 folds in chassis cells. In summary, here we provide an alternative codon optimization strategy for genes with unsatisfactory performance under traditional codon frequency-based optimization.
Collapse
Affiliation(s)
- Siyu Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Ru Lin
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Luyao Cui
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Tianyi Jiang
- China Innovation Center of Roche, Shanghai 201203, China
| | - Jiacheng Shi
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Chaoyu Lu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Pengfei Li
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Mian Zhou
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China.
| |
Collapse
|
5
|
Rajak N, Dey T, Sharma Y, Bellad V, Rangarajan PN. Unlocking Nature's Toolbox: glutamate-inducible recombinant protein production from the Komagatella phaffii PEPCK promoter. Microb Cell Fact 2024; 23:66. [PMID: 38402195 PMCID: PMC10893637 DOI: 10.1186/s12934-024-02340-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 02/17/2024] [Indexed: 02/26/2024] Open
Abstract
BACKGROUND Komagataella phaffii (a.k.a. Pichia pastoris) harbors a glutamate utilization pathway in which synthesis of glutamate dehydrogenase 2 and phosphoenolpyruvate carboxykinase (PEPCK) is induced by glutamate. Glutamate-inducible synthesis of these enzymes is regulated by Rtg1p, a cytosolic, basic helix-loop-helix protein. Here, we report food-grade monosodium glutamate (MSG)-inducible recombinant protein production from K. phaffii PEPCK promoter (PPEPCK) using green fluorescent protein (GFP) and receptor binding domain of SARS-CoV-2 virus (RBD) as model proteins. RESULTS PPEPCK-RBD/GFP expression cassette was integrated at two different sites in the genome to improve recombinant protein yield from PPEPCK. The traditional, methanol-inducible alcohol oxidase 1 promoter (PAOX1) was used as the benchmark. Initial studies carried out with MSG as the inducer resulted in low recombinant protein yield. A new strategy employing MSG/ethanol mixed feeding improved biomass generation as well as recombinant protein yield. Cell density of 100-120 A600 units/ml was achieved after 72 h of induction in shake flask cultivations, resulting in recombinant protein yield from PPEPCK that is comparable or even higher than that from PAOX1. CONCLUSIONS We have designed an induction medium for recombinant protein production from K. phaffii PPEPCK in shake flask cultivations. It consists of 1.0% yeast extract, 2.0% peptone, 0.17% yeast nitrogen base with ammonium sulfate, 100 mM potassium phosphate (pH 6.0), 0.4 mg/L biotin, 2.0% MSG, and 2% ethanol. Substitution of ammonium sulphate with 0.5% urea is optional. Carbon source was replenished every 24 h during 72 h induction period. Under these conditions, GFP and RBD yields from PPEPCK equaled and even surpassed those from PAOX1. Compared to the traditional methanol-inducible expression system, the inducers of glutamate-inducible expression system are non-toxic and their metabolism does not generate toxic metabolites such as formaldehyde and hydrogen peroxide. This study sets the stage for MSG-inducible, industrial scale recombinant protein production from K. phaffii PPEPCK in bioreactors.
Collapse
Affiliation(s)
- Neetu Rajak
- Department of Biochemistry, Indian Institute of Science, Bangalore, 560012, India
| | - Trishna Dey
- Department of Biochemistry, Indian Institute of Science, Bangalore, 560012, India
| | - Yash Sharma
- Department of Biochemistry, Indian Institute of Science, Bangalore, 560012, India
| | - Vedanth Bellad
- Department of Biochemistry, Indian Institute of Science, Bangalore, 560012, India
| | - Pundi N Rangarajan
- Department of Biochemistry, Indian Institute of Science, Bangalore, 560012, India.
| |
Collapse
|
6
|
Li T, Cai H, Lai Y, Yao H, Li D. A simple and effective method to remove pigments from heterologous secretory proteins expressed in Pichia pastoris. ADVANCED BIOTECHNOLOGY 2024; 2:5. [PMID: 39883296 PMCID: PMC11740859 DOI: 10.1007/s44307-024-00013-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/13/2024] [Accepted: 01/19/2024] [Indexed: 01/31/2025]
Abstract
Pichia pastoris is a popular yeast host for high-level heterologous expression of proteins on an industrial scale owing to its reliable expression, robust growth, high fermentation density, and easy genetic manipulation and cultivation at a relatively low cost. Of particular interest is its high secretion efficiency for small proteins including insulin, human serum albumin, vaccines, enzymes, and llama-derived heavy-chain only antibodies (nanobodies) for pharmaceutical and research applications. However, a recurring challenge in using P. pastoris heterologous secretory proteins is the co-purification of a sticky, yellow pigment which has been identified as a tetra-benzoyl disaccharide. Current methods for pigment removal involve crystallization of the heterologous secretory protein, active carbon absorption, and chromatography using cation exchange and hydrophobic interaction. Here, we present a simple and effective method to remove the yellow pigment, demonstrated with divalent nanobodies targeting SARS-CoV-2. The method entails capturing the nanobody on an affinity column and subsequent washing with the zwitterionic detergent lauryldimethylamine N-oxide (LDAO). We anticipate the method become generally useful to remove pigments from secretion proteins produced in P. pastoris, offering a practical solution to enhance the purity of heterologous proteins in various biotechnological applications.
Collapse
Affiliation(s)
- Tingting Li
- CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, 200030, China.
| | - Hongmin Cai
- CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, 200030, China
| | - Yanling Lai
- CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, 200030, China
| | - Hebang Yao
- CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, 200030, China
| | - Dianfan Li
- CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, 200030, China.
| |
Collapse
|
7
|
Wu X, Cai P, Yao L, Zhou YJ. Genetic tools for metabolic engineering of Pichia pastoris. ENGINEERING MICROBIOLOGY 2023; 3:100094. [PMID: 39628915 PMCID: PMC11611016 DOI: 10.1016/j.engmic.2023.100094] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 05/11/2023] [Accepted: 05/11/2023] [Indexed: 12/06/2024]
Abstract
The methylotrophic yeast Pichia pastoris (also known as Komagataella phaffii) is widely used as a yeast cell factory for producing heterologous proteins. Recently, it has gained attention for its potential in producing chemicals from inexpensive feedstocks, which requires efficient genetic engineering platforms. This review provides an overview of the current advances in developing genetic tools for metabolic engineering of P. pastoris. The topics cover promoters, terminators, plasmids, genome integration sites, and genetic editing systems, with a special focus on the development of CRISPR/Cas systems and their comparison to other genome editing tools. Additionally, this review highlights the prospects of multiplex genome integration, fine-tuning gene expression, and single-base editing systems. Overall, the aim of this review is to provide valuable insights into current genetic engineering and discuss potential directions for future efforts in developing efficient genetic tools in P. pastoris.
Collapse
Affiliation(s)
- Xiaoyan Wu
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- Dalian Key Laboratory of Energy Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Peng Cai
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- Dalian Key Laboratory of Energy Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Lun Yao
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- Dalian Key Laboratory of Energy Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of7 Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Yongjin J Zhou
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- Dalian Key Laboratory of Energy Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of7 Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| |
Collapse
|
8
|
Cloning, protein expression and biochemical characterization of Carica papaya esterase. ELECTRON J BIOTECHN 2022. [DOI: 10.1016/j.ejbt.2022.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
9
|
Isolation and evaluation of strong endogenous promoters for the heterologous expression of proteins in Pichia pastoris. World J Microbiol Biotechnol 2022; 38:226. [PMID: 36121482 DOI: 10.1007/s11274-022-03412-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 09/08/2022] [Indexed: 10/14/2022]
Abstract
BACKGROUND The heterologous expression of biosynthetic pathway genes for pharmaceutical or fine chemical production usually requires to express more than one gene in the host cells. In eukaryotes, the pathway flux is typically balanced by controlling the transcript levels of the genes involved. It is difficult to balance the stoichiometric fine-tuning of the reaction steps of the pathway by acting on one or two promoters. Furthermore, the promoter used should not be identical to avoid loss of inserted genes by recombination or dilute its transcription factors. RESULTS Based on RNA-seq data, 18 candidate genes with the highest transcription levels at three carbon sources (glucose, glycerol and methanol) were selected and their promoter regions were isolated from GS115 genome. The performance of these promoters on the level of protein production was evaluated using LacZ and EGFP genes as the reporters, respectively. These isolated promoters all exhibited activity to express LacZ gene. Using LacZ as a reporter, of the 18 promoter candidates, 9 promoters showed higher expression levels for the reporter compare to pGAP, a strong promoter widely used for constitutive expression of heterologous proteins in Pichia pastoris. These promoters with high expression levels were further employed to evaluate secreted expression using EGFP as a reporter. 6 promoters exhibited stronger protein expression compare to pGAP. Interestingly, the protein expression driven by pFDH1 was slightly higher than that of commonly used pAOX1 at methanol, and methanol-induced expression of pFDH1 was not repressed by glycerol. CONCLUSION The various promoters identified in this study could be used for heterologous expression of biosynthetic pathway genes for pharmaceutical or fine chemical production. the methanol-induced pFDH1 that is not repressed by glycerol is an attractive alternative to pAOX1 and may provide a novel way to produce heterologous proteins in Pichia pastoris.
Collapse
|
10
|
Zhu Q, Liu Q, Yao C, Zhang Y, Cai M. Yeast transcriptional device libraries enable precise synthesis of value-added chemicals from methanol. Nucleic Acids Res 2022; 50:10187-10199. [PMID: 36095129 PMCID: PMC9508829 DOI: 10.1093/nar/gkac765] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 08/08/2022] [Accepted: 08/25/2022] [Indexed: 11/16/2022] Open
Abstract
Natural methylotrophs are attractive methanol utilization hosts, but lack flexible expression tools. In this study, we developed yeast transcriptional device libraries for precise synthesis of value-added chemicals from methanol. We synthesized transcriptional devices by fusing bacterial DNA-binding proteins (DBPs) with yeast transactivation domains, and linking bacterial binding sequences (BSs) with the yeast core promoter. Three DBP–BS pairs showed good activity when working with transactivation domains and the core promoter of PAOX1 in the methylotrophic yeast, Pichia pastoris. Fine-tuning of the tandem BSs, spacers and differentiated input promoters further enabled a constitutive transcriptional device library (cTRDL) composed of 126 transcriptional devices with an expression strength of 16–520% and an inducible TRDL (iTRDL) composed of 162 methanol-inducible transcriptional devices with an expression strength of 30–500%, compared with PAOX1. Selected devices from iTRDL were adapted to the dihydromonacolin L biosynthetic pathway by orthogonal experimental design, reaching 5.5-fold the production from the PAOX1-driven pathway. The full factorial design of the selected devices from the cTRDL was adapted to the downstream pathway of dihydromonacolin L to monacolin J. Monacolin J production from methanol reached 3.0-fold the production from the PAOX1-driven pathway. Our engineered toolsets ensured multilevel pathway control of chemical synthesis in methylotrophic yeasts.
Collapse
Affiliation(s)
- Qiaoyun Zhu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Qi Liu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Chaoying Yao
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Yuanxing Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China.,Shanghai Collaborative Innovation Center for Biomanufacturing, 130 Meilong Road, Shanghai 200237, China
| | - Menghao Cai
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China.,Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| |
Collapse
|
11
|
Liu B, Zhao Y, Zhou H, Zhang J. Enhancing xylanase expression of Komagataella phaffii induced by formate through Mit1 co-expression. Bioprocess Biosyst Eng 2022; 45:1515-1525. [PMID: 35881246 DOI: 10.1007/s00449-022-02760-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Accepted: 07/16/2022] [Indexed: 11/02/2022]
Abstract
Komagataella phaffii (K. phaffii) is a famous microbial cell of heterologous protein and value-added chemicals production because of its strict and strong promoter (alcohol oxidase 1 promoter, PAOX1). Formate is an attractive substitute of traditional inducer methanol because methanol is toxic and explosive. To obtain high level of Aspergillus niger ATCC1015 xylanase as a model of heterologous protein by K. phaffii at formate induction, insertion of three-copy cis-acting element W3A into PAOX1 additionally, and co-expression of transcription factor Mit1 under another PAOX1 were carried out separately and simultaneously. The yield of xylanase increased by 41% at formate induction when Mit1 was co-expressed. Furtherly, the yield of xylanase increased by 42% using sorbitol as supplemental carbon source with the result of 408.3 × 103 U‧L-1 xylanase. Therefore, a non-methanol needed and inducible heterologous protein expression system of Komagataella phaffii was developed successfully.
Collapse
Affiliation(s)
- Bing Liu
- Shanghai Engineering Research Center for Food Rapid DetectionInstitute of Food Science and EngineeringSchool of Health Science and Engineering, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai, People's Republic of China, 200093
| | - Yixin Zhao
- Shanghai Engineering Research Center for Food Rapid DetectionInstitute of Food Science and EngineeringSchool of Health Science and Engineering, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai, People's Republic of China, 200093
| | - Hualan Zhou
- Shanghai Engineering Research Center for Food Rapid DetectionInstitute of Food Science and EngineeringSchool of Health Science and Engineering, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai, People's Republic of China, 200093
| | - Jianguo Zhang
- Shanghai Engineering Research Center for Food Rapid DetectionInstitute of Food Science and EngineeringSchool of Health Science and Engineering, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai, People's Republic of China, 200093.
| |
Collapse
|
12
|
Engineered Production of Isobutanol from Sugarcane Trash Hydrolysates in Pichia pastoris. J Fungi (Basel) 2022; 8:jof8080767. [PMID: 35893135 PMCID: PMC9330720 DOI: 10.3390/jof8080767] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 07/14/2022] [Accepted: 07/17/2022] [Indexed: 12/10/2022] Open
Abstract
Concerns over climate change have led to increased interest in renewable fuels in recent years. Microbial production of advanced fuels from renewable and readily available carbon sources has emerged as an attractive alternative to the traditional production of transportation fuels. Here, we engineered the yeast Pichia pastoris, an industrial powerhouse in heterologous enzyme production, to produce the advanced biofuel isobutanol from sugarcane trash hydrolysates. Our strategy involved overexpressing a heterologous xylose isomerase and the endogenous xylulokinase to enable the yeast to consume both C5 and C6 sugars in biomass. To enable the yeast to produce isobutanol, we then overexpressed the endogenous amino acid biosynthetic pathway and the 2-keto acid degradation pathway. The engineered strains produced isobutanol at a titer of up to 48.2 ± 1.7 mg/L directly from a minimal medium containing sugarcane trash hydrolysates as the sole carbon source. To our knowledge, this is the first demonstration of advanced biofuel production using agricultural waste-derived hydrolysates in the yeast P. pastoris. We envision that our work will pave the way for a scalable route to this advanced biofuel and further establish P. pastoris as a versatile production platform for fuels and high-value chemicals.
Collapse
|
13
|
Potential of the Signal Peptide Derived from the PAS_chr3_0030 Gene Product for Secretory Expression of Valuable Enzymes in Pichia pastoris. Appl Environ Microbiol 2022; 88:e0029622. [PMID: 35435711 DOI: 10.1128/aem.00296-22] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Pichia pastoris is widely used for the production of valuable recombinant proteins. An advantage of P. pastoris over other expression systems is that it secretes low levels of endogenous proteins, which facilitates the purification processes if the desired recombinant proteins are efficiently secreted into the culture medium. However, not all recombinant proteins can be successfully secreted by P. pastoris, especially enzymes that are located in intracellular compartments in their native hosts. Few studies have reported strategies for releasing recombinant proteins which cannot be secreted by standard protocols. Here, we investigated whether this challenge can be addressed using novel secretion leaders. Analysis of the secretome and transcriptome of P. pastoris indicated that the four genes with the highest protein-to-transcript ratios were EPX1, PAS_chr3_0030, SCW10, and UTH1, suggesting that their gene products contain efficient secretion leaders. Our data revealed that the signal peptide derived from the PAS_chr3_0030 gene product conferred secretion competence to certain industrial enzymes, e.g., a nitrilase of Alcaligenes faecalis ZJUTB10, a ribosylnicotinamide kinase of P. pastoris, and a glucose dehydrogenase of Exiguobacterium sibiricum. Therefore, the signal peptide derived from the PAS_chr3_0030 gene product represents a novel secretion sequence for the secretory expression of recombinant enzymes in P. pastoris. IMPORTANCE Although P. pastoris is widely used for the secretory production of pharmaceutical proteins, its successful applications in the secretory production of industrial enzymes are limited. The α-mating factor pre-pro leader is the most widely used secretion signal in P. pastoris, but numerous industrial enzymes cannot be secreted using it. The importance of this study is that we identified a signal peptide derived from the PAS_chr3_0030 gene product which conferred secretion competence to three-quarters of the enzymes tested. This signal peptide derived from the PAS_chr3_0030 gene product may facilitate the application of P. pastoris in industrial biocatalysis.
Collapse
|
14
|
Gao J, Xu J, Zuo Y, Ye C, Jiang L, Feng L, Huang L, Xu Z, Lian J. Synthetic Biology Toolkit for Marker-Less Integration of Multigene Pathways into Pichia pastoris via CRISPR/Cas9. ACS Synth Biol 2022; 11:623-633. [PMID: 35080853 DOI: 10.1021/acssynbio.1c00307] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Pichia pastoris, an important methylotrophic yeast, is currently mainly used for the expression of recombinant proteins and has great potential applications in the production of value-added compounds (e.g., chemical and natural products). However, the construction of P. pastoris cell factories is largely hindered by the lack of genetic tools for the manipulation of multigene biosynthetic pathways. Therefore, the present study aimed to establish a CRISPR-based synthetic biology toolkit for the integration and assembly of multigene biosynthetic pathways into the chromosome of P. pastoris. First, 23 intergenic regions were selected and characterized as potential integration sites, with a focus on the integration efficiency and heterologous gene expression levels. In addition, a panel of constitutive and methanol-inducible promoters with different strengths (weak, medium, and strong promoters) were characterized to control the expression of biosynthetic pathway genes to the desirable levels. With a series of gRNA plasmids (for single-locus, two-loci, and three-loci integration) and donor plasmids (containing homology arms for integration and promoters and terminators for driving heterologous gene expression) as major components, a CRISPR-based synthetic biology toolkit was established, which enabled the integration of one locus, two loci, and three loci with efficiencies as high as ∼100, ∼93, and ∼75%, respectively, in P. pastoris GS115 strain. Finally, the application of the toolkit was demonstrated by the construction of a series of P. pastoris cell factories, which could produce 2,3-butanediol, β-carotene, zeaxanthin, and astaxanthin with methanol as the sole carbon and energy source. The P. pastoris synthetic biology toolkit is highly standardized and can be employed to construct P. pastoris cell factories with high efficiency.
Collapse
Affiliation(s)
- Jucan Gao
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
- Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 310027, China
| | - Junhao Xu
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
- Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 310027, China
| | - Yimeng Zuo
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
- Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 310027, China
| | - Cuifang Ye
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
- Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 310027, China
| | - Leijie Jiang
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Linjuan Feng
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
- Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 310027, China
| | - Lei Huang
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
- Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 310027, China
| | - Zhinan Xu
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Jiazhang Lian
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
- Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
15
|
Zhang X, Zhang C, Zhou M, Xia Q, Fan L, Zhao L. Enhanced bioproduction of chitin in engineered Pichia pastoris. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.101606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
16
|
Improved Production of Streptomyces sp. FA1 Xylanase in a Dual-Plasmid Pichia pastoris System. Curr Issues Mol Biol 2021; 43:2289-2304. [PMID: 34940135 PMCID: PMC8928940 DOI: 10.3390/cimb43030161] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 12/16/2021] [Accepted: 12/16/2021] [Indexed: 12/18/2022] Open
Abstract
Methanol is considered as a potential hazard in the methanol-induced yeast expression of food-related enzymes. To increase the production efficiency of recombinant proteins in Pichia pastoris without methanol induction, a novel dual-plasmid system was constructed, for the first time, by a combining the strategies of genomic integration and episomal expression. To obtain a high copy number of the target gene, the autonomously replicating sequence derived from Kluyveromyces lactis (PARS) was used to construct episomal vectors carrying the constitutive promoters PGAP and PGCW14. In addition, an integrative vector carrying the PGCW14 promoter was constructed by replacing the PGAP promoter sequence with a partial PGCW14 promoter. Next, using xylanase XynA from Streptomyces sp. FA1 as the model enzyme, recombination strains were transformed with different combinations of integrating and episomal vectors that were constructed to investigate the changes in the protein yield. Results in shake flasks indicated that the highest enzyme yield was achieved when integrated PGAP and episomal PGCW14 were simultaneously transformed into the host strain. Meanwhile, the copy number of xynA increased from 1.14 ± 0.46 to 3.06 ± 0.35. The yield of XynA was successfully increased to 3925 U·mL-1 after 102 h of fermentation in a 3.6 L fermenter, which was 16.7-fold and 2.86-fold of the yields that were previously reported for the constitutive expression and methanol-induced expression of the identical protein, respectively. Furthermore, the high-cell-density fermentation period was shortened from 132 h to 102 h compared to that of methanol-induced system. Since the risk of methanol toxicity is removed, this novel expression system would be suitable for the production of proteins related to the food and pharmaceutical industries.
Collapse
|
17
|
Naseri G, Prause K, Hamdo HH, Arenz C. Artificial Transcription Factors for Tuneable Gene Expression in Pichia pastoris. Front Bioeng Biotechnol 2021; 9:676900. [PMID: 34434924 PMCID: PMC8381338 DOI: 10.3389/fbioe.2021.676900] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Accepted: 06/30/2021] [Indexed: 11/13/2022] Open
Abstract
The non-conventional yeast Pichia pastoris (syn. Komagataella phaffii) has become a powerful eukaryotic expression platform for biopharmaceutical and biotechnological applications on both laboratory and industrial scales. Despite the fundamental role that artificial transcription factors (ATFs) play in the orthogonal control of gene expression in synthetic biology, a limited number of ATFs are available for P. pastoris. To establish orthogonal regulators for use in P. pastoris, we characterized ATFs derived from Arabidopsis TFs. The plant-derived ATFs contain the binding domain of TFs from the plant Arabidopsis thaliana, in combination with the activation domains of yeast GAL4 and plant EDLL and a synthetic promoter harboring the cognate cis-regulatory motifs. Chromosomally integrated ATFs and their binding sites (ATF/BSs) resulted in a wide spectrum of inducible transcriptional outputs in P. pastoris, ranging from as low as 1- to as high as ∼63-fold induction with only small growth defects. We demonstrated the application of ATF/BSs by generating P. pastoris cells that produce β-carotene. Notably, the productivity of β-carotene in P. pastoris was ∼4.8-fold higher than that in S. cerevisiae, reaching ∼59% of the β-carotene productivity obtained in a S. cerevisiae strain optimized for the production of the β-carotene precursor, farnesyl diphosphate, by rewiring the endogenous metabolic pathways using plant-derived ATF/BSs. Our data suggest that plant-derived regulators have a high degree of transferability from S. cerevisiae to P. pastoris. The plant-derived ATFs, together with their cognate binding sites, powerfully increase the repertoire of transcriptional regulatory modules for the tuning of protein expression levels required in metabolic engineering or synthetic biology in P. pastoris.
Collapse
Affiliation(s)
- Gita Naseri
- Institute of Biology, Humboldt Universität zu Berlin, Berlin, Germany
| | - Kevin Prause
- Institute of Chemistry, Humboldt Universität zu Berlin, Berlin, Germany
| | - Housam Haj Hamdo
- Institute of Chemistry, Humboldt Universität zu Berlin, Berlin, Germany
| | - Christoph Arenz
- Institute of Chemistry, Humboldt Universität zu Berlin, Berlin, Germany
| |
Collapse
|
18
|
Dou W, Zhu Q, Zhang M, Jia Z, Guan W. Screening and evaluation of the strong endogenous promoters in Pichia pastoris. Microb Cell Fact 2021; 20:156. [PMID: 34372831 PMCID: PMC8351359 DOI: 10.1186/s12934-021-01648-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 07/31/2021] [Indexed: 01/29/2023] Open
Abstract
Background Due to its ability to perform fast and high-density fermentation, Pichia pastoris is not only used as an excellent host for heterologous protein expression but also exhibits good potential for efficient biosynthesis of small-molecule compounds. However, basic research on P. pastoris lags far behind Saccharomyces cerevisiae, resulting in a lack of available biological elements. Especially, fewer strong endogenous promoter elements available for foreign protein expression or construction of biosynthetic pathways were carefully evaluated in P. pastoris. Thus, it will be necessary to identify more available endogenous promoters from P. pastoris. Results Based on RNA-seq and LacZ reporter system, eight strong endogenous promoters contributing to higher transcriptional expression levels and β-galactosidase activities in three frequently-used media were screened out. Among them, the transcriptional expression level contributed by P0019, P0107, P0230, P0392, or P0785 was basically unchanged during the logarithmic phase and stationary phase of growth. And the transcriptional level contributed by P0208 or P0627 exhibited a growth-dependent characteristic (a lower expression level during the logarithmic phase and a higher expression level during the stationary phase). After 60 h growth, the β-galactosidase activity contributed by P0208, P0627, P0019, P0407, P0392, P0230, P0785, or P0107 was relatively lower than PGAP but higher than PACT1. To evaluate the availability of these promoters, several of them were randomly applied to a heterogenous β-carotene biosynthetic pathway in P. pastoris, and the highest yield of β-carotene from these mutants was up to 1.07 mg/g. In addition, simultaneously using the same promoter multiple times could result in a notable competitive effect, which might significantly lower the transcriptional expression level of the target gene. Conclusions The novel strong endogenous promoter identified in this study adds to the number of promoter elements available in P. pastoris. And the competitive effect observed here suggests that a careful pre-evaluation is needed when simultaneously and multiply using the same promoter in one yeast strain. This work also provides an effective strategy to identify more novel biological elements for engineering applications in P. pastoris. Supplementary Information The online version contains supplementary material available at 10.1186/s12934-021-01648-6.
Collapse
Affiliation(s)
- Weiwang Dou
- Institute of Pharmaceutical Biotechnology and The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Quanchao Zhu
- Institute of Pharmaceutical Biotechnology and The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Meihua Zhang
- Department of Pharmacy, The First Affiliated Hospital, Zhejiang University, Hangzhou, 310003, China
| | - Zuyuan Jia
- Institute of Pharmaceutical Biotechnology and The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Wenjun Guan
- Institute of Pharmaceutical Biotechnology and The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China.
| |
Collapse
|
19
|
Gao J, Jiang L, Lian J. Development of synthetic biology tools to engineer Pichia pastoris as a chassis for the production of natural products. Synth Syst Biotechnol 2021; 6:110-119. [PMID: 33997361 PMCID: PMC8113645 DOI: 10.1016/j.synbio.2021.04.005] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 03/13/2021] [Accepted: 04/26/2021] [Indexed: 01/12/2023] Open
Abstract
The methylotrophic yeast Pichia pastoris (a.k.a. Komagataella phaffii) is one of the most commonly used hosts for industrial production of recombinant proteins. As a non-conventional yeast, P. pastoris has unique biological characteristics and its expression system has been well developed. With the advances in synthetic biology, more efforts have been devoted to developing P. pastoris into a chassis for the production of various high-value compounds, such as natural products. This review begins with the introduction of synthetic biology tools for the engineering of P. pastoris, including vectors, promoters, and terminators for heterologous gene expression as well as Clustered Regularly Interspaced Short Palindromic Repeats/CRISPR-associated System (CRISPR/Cas) for genome editing. This review is then followed by examples of the production of value-added natural products in metabolically engineered P. pastoris strains. Finally, challenges and outlooks in developing P. pastoris as a synthetic biology chassis are prospected.
Collapse
Affiliation(s)
- Jucan Gao
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Lihong Jiang
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Jiazhang Lian
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
- Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 310027, China
| |
Collapse
|
20
|
Raschmanová H, Weninger A, Knejzlík Z, Melzoch K, Kovar K. Engineering of the unfolded protein response pathway in Pichia pastoris: enhancing production of secreted recombinant proteins. Appl Microbiol Biotechnol 2021; 105:4397-4414. [PMID: 34037840 PMCID: PMC8195892 DOI: 10.1007/s00253-021-11336-5] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 04/30/2021] [Accepted: 05/06/2021] [Indexed: 12/14/2022]
Abstract
Folding and processing of proteins in the endoplasmic reticulum (ER) are major impediments in the production and secretion of proteins from Pichia pastoris (Komagataella sp.). Overexpression of recombinant genes can overwhelm the innate secretory machinery of the P. pastoris cell, and incorrectly folded proteins may accumulate inside the ER. To restore proper protein folding, the cell naturally triggers an unfolded protein response (UPR) pathway, which upregulates the expression of genes coding for chaperones and other folding-assisting proteins (e.g., Kar2p, Pdi1, Ero1p) via the transcription activator Hac1p. Unfolded/misfolded proteins that cannot be repaired are degraded via the ER-associated degradation (ERAD) pathway, which decreases productivity. Co-expression of selected UPR genes, along with the recombinant gene of interest, is a common approach to enhance the production of properly folded, secreted proteins. Such an approach, however, is not always successful and sometimes, protein productivity decreases because of an unbalanced UPR. This review summarizes successful chaperone co-expression strategies in P. pastoris that are specifically related to overproduction of foreign proteins and the UPR. In addition, it illustrates possible negative effects on the cell's physiology and productivity resulting from genetic engineering of the UPR pathway. We have focused on Pichia's potential for commercial production of valuable proteins and we aim to optimize molecular designs so that production strains can be tailored to suit a specific heterologous product. KEY POINTS: • Chaperones co-expressed with recombinant genes affect productivity in P. pastoris. • Enhanced UPR may impair strain physiology and promote protein degradation. • Gene copy number of the target gene and the chaperone determine the secretion rate.
Collapse
Affiliation(s)
- Hana Raschmanová
- Department of Biotechnology, University of Chemistry and Technology Prague, Prague, Czech Republic.
- Institute of Chemistry and Biotechnology, Zurich University of Applied Sciences ZHAW, Wädenswil, Switzerland.
| | - Astrid Weninger
- Institute of Molecular Biotechnology, Graz University of Technology, Graz, Austria
| | - Zdeněk Knejzlík
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic
| | - Karel Melzoch
- Department of Biotechnology, University of Chemistry and Technology Prague, Prague, Czech Republic
| | - Karin Kovar
- Institute of Chemistry and Biotechnology, Zurich University of Applied Sciences ZHAW, Wädenswil, Switzerland
- daspool Association, Wädenswil, Switzerland
| |
Collapse
|
21
|
Xu Y, Liu K, Han Y, Xing Y, Zhang Y, Yang Q, Zhou M. Codon usage bias regulates gene expression and protein conformation in yeast expression system P. pastoris. Microb Cell Fact 2021; 20:91. [PMID: 33902585 PMCID: PMC8077831 DOI: 10.1186/s12934-021-01580-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 04/13/2021] [Indexed: 11/30/2022] Open
Abstract
Background Protein synthesis is one of the extremely important anabolic pathways in the yeast expression system Pichia pastoris. Codon optimization is a commonly adopted strategy for improved protein expression, although unexpected failures did appear sometimes waiting for further exploration. Recently codon bias has been studied to regulate protein folding and activity in many other organisms. Results Here the codon bias profile of P. pastoris genome was examined first and a direct correlation between codon translation efficiency and usage frequency was identified. By manipulating the codon choices of both endogenous and heterologous signal peptides, secretion abilities of N-terminal signal peptides were shown to be tolerant towards codon changes. Then two gene candidates with different levels of structural disorder were studied, and full-length codon optimization was found to affect their expression profiles differentially. Finally, more evidences were provided to support possible protein conformation change brought by codon optimization in structurally disordered proteins. Conclusion Our results suggest that codon bias regulates gene expression by modulating several factors including transcription and translation efficiency, protein folding and activity. Because of sequences difference, the extent of affection may be gene specific. For some genes, special codon optimization strategy should be adopted to ensure appropriate expression and conformation. Supplementary Information The online version contains supplementary material available at 10.1186/s12934-021-01580-9.
Collapse
Affiliation(s)
- Yichun Xu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Kunshan Liu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Yu Han
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Yanzi Xing
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Yuanxing Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Qiuying Yang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Hubei, 430062, China
| | - Mian Zhou
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China.
| |
Collapse
|
22
|
Shen Q, Yu Z, Zhou XT, Zhang SJ, Zou SP, Xiong N, Xue YP, Liu ZQ, Zheng YG. Identification of a novel promoter for driving antibiotic-resistant genes to reduce the metabolic burden during protein expression and effectively select multiple integrations in Pichia Pastoris. Appl Microbiol Biotechnol 2021; 105:3211-3223. [PMID: 33818673 DOI: 10.1007/s00253-021-11195-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 02/10/2021] [Accepted: 02/24/2021] [Indexed: 01/07/2023]
Abstract
Routine approaches for the efficient expression of heterogenous proteins in Pichia pastoris include using the strong methanol-regulated alcohol oxidase (AOX1) promoter and multiple inserts of expression cassettes. To screen the transformants harboring multiple integrations, antibiotic-resistant genes such as the Streptoalloteichus hindustanus bleomycin gene are constructed into expression vectors, given that higher numbers of insertions of antibiotic-resistant genes on the expression vector confer resistance to higher concentrations of the antibiotic for transformants. The antibiotic-resistant genes are normally driven by the strong constitutive translational elongation factor 1a promoter (PTEF1). However, antibiotic-resistant proteins are necessary only for the selection process. Their production during the heterogenous protein expression process may increase the burden in cells, especially for the high-copy strains which harbor multiple copies of the expression cassette of antibiotic-resistant genes. Besides, a high concentration of the expensive antibiotic is required for the selection of multiple inserts because of the effective expression of the antibiotic-resistant gene by the TEF1 promoter. To address these limitations, we replaced the TEF1 promoter with a weaker promoter (PDog2p300) derived from the potential promoter region of 2-deoxyglucose-6-phosphate phosphatase gene for driving the antibiotic-resistant gene expression. Importantly, the PDog2p300 has even lower activity under carbon sources (glycerol and methanol) used for the AOX1 promoter-based production of recombinant proteins compared with glucose that is usually used for the selection process. This strategy has proven to be successful in screening of transformants harboring more than 3 copies of the gene of interest by using plates containing 100 μg/ml of Zeocin. Meanwhile, levels of Zeocin resistance protein were undetectable by immunoblotting in these multiple-copy strains during expression of heterogenous proteins.Key points• PDog2p300 was identified as a novel glucose-regulated promoter.• The expression of antibiotic-resistant gene driven by PDog2p300 was suppressed during the recombinant protein expression, resulting in reducing the metabolic burden.• The transformants harboring multiple integrations were cost-effectively selected by using the PDog2p300 for driving antibiotic-resistant genes.
Collapse
Affiliation(s)
- Qi Shen
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China.,Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| | - Zhuang Yu
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China.,Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| | - Xiao-Ting Zhou
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China.,Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| | - Shi-Jia Zhang
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China.,Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| | - Shu-Ping Zou
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China.,Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| | - Neng Xiong
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China.,Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| | - Ya-Ping Xue
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China.,Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| | - Zhi-Qiang Liu
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China. .,Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China.
| | - Yu-Guo Zheng
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China.,Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| |
Collapse
|
23
|
Advances in Recombinant Lipases: Production, Engineering, Immobilization and Application in the Pharmaceutical Industry. Catalysts 2020. [DOI: 10.3390/catal10091032] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Lipases are one of the most used enzymes in the pharmaceutical industry due to their efficiency in organic syntheses, mainly in the production of enantiopure drugs. From an industrial viewpoint, the selection of an efficient expression system and host for recombinant lipase production is highly important. The most used hosts are Escherichia coli and Komagataella phaffii (previously known as Pichia pastoris) and less often reported Bacillus and Aspergillus strains. The use of efficient expression systems to overproduce homologous or heterologous lipases often require the use of strong promoters and the co-expression of chaperones. Protein engineering techniques, including rational design and directed evolution, are the most reported strategies for improving lipase characteristics. Additionally, lipases can be immobilized in different supports that enable improved properties and enzyme reuse. Here, we review approaches for strain and protein engineering, immobilization and the application of lipases in the pharmaceutical industry.
Collapse
|
24
|
Prattipati M, Ramakrishnan K, Sankaranarayanan M. Pichia pastoris Protein Disulfide Isomerase (PDI1) promoter for heterologous protein production and its sequence characterization. Enzyme Microb Technol 2020; 140:109633. [PMID: 32912692 DOI: 10.1016/j.enzmictec.2020.109633] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 07/07/2020] [Accepted: 07/14/2020] [Indexed: 12/11/2022]
Abstract
Pichia pastoris (syn. Komagataella phaffii) expression system has been widely used in heterologous protein production. PDI1 is the structural gene for Protein Disulfide Isomerase (PDI) and one of the main proteins in the endoplasmic reticulum (ER). It serves as a chaperone and helps in the formation, restoration and isomerization of disulfide bonds in nascent proteins. Overexpression of chaperone genes like PDI1, is one of the approaches to alleviate unfolded protein response (UPR) in multicopy clones of P. pastoris. However, it is not in a general scheme and these approaches are protein specific. The complete understanding of promoter region of PDI1 can give insights for better regulation of UPR. The aim of our work was to characterize promoter region of PDI1 gene and evaluate the possibility of their use for efficient expression of heterologous proteins. For this purpose, we used a reporter system based on the Candida antarctica lipase B (CalB) gene. The efficiency of PDI1 promoter was also compared with that of inducible promoter, AOX1, and the constitutive promoter, GAP, under different carbon sources like glucose, glycerol and methanol. The results appear that the PDI1 promoter may act as an UPR inducible promoter at high copy numbers of target gene. Therefore, we propose that the PDI1 promoter can be used for moderate expression of heterologous proteins in pathway engineering applications and also for overexpression of molecular chaperones.
Collapse
|
25
|
Wiseman DN, Otchere A, Patel JH, Uddin R, Pollock NL, Routledge SJ, Rothnie AJ, Slack C, Poyner DR, Bill RM, Goddard AD. Expression and purification of recombinant G protein-coupled receptors: A review. Protein Expr Purif 2020; 167:105524. [PMID: 31678667 PMCID: PMC6983937 DOI: 10.1016/j.pep.2019.105524] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 10/28/2019] [Accepted: 10/29/2019] [Indexed: 01/15/2023]
Abstract
Given their extensive role in cell signalling, GPCRs are significant drug targets; despite this, many of these receptors have limited or no available prophylaxis. Novel drug design and discovery significantly rely on structure determination, of which GPCRs are typically elusive. Progress has been made thus far to produce sufficient quantity and quality of protein for downstream analysis. As such, this review highlights the systems available for recombinant GPCR expression, with consideration of their advantages and disadvantages, as well as examples of receptors successfully expressed in these systems. Additionally, an overview is given on the use of detergents and the styrene maleic acid (SMA) co-polymer for membrane solubilisation, as well as purification techniques.
Collapse
Affiliation(s)
- Daniel N Wiseman
- School of Life and Health Sciences, Aston University, Aston Triangle, Birmingham, B4 7ET, UK.
| | - Abigail Otchere
- School of Life and Health Sciences, Aston University, Aston Triangle, Birmingham, B4 7ET, UK.
| | - Jaimin H Patel
- School of Life and Health Sciences, Aston University, Aston Triangle, Birmingham, B4 7ET, UK.
| | - Romez Uddin
- School of Life and Health Sciences, Aston University, Aston Triangle, Birmingham, B4 7ET, UK.
| | | | - Sarah J Routledge
- School of Life and Health Sciences, Aston University, Aston Triangle, Birmingham, B4 7ET, UK.
| | - Alice J Rothnie
- School of Life and Health Sciences, Aston University, Aston Triangle, Birmingham, B4 7ET, UK.
| | - Cathy Slack
- School of Life and Health Sciences, Aston University, Aston Triangle, Birmingham, B4 7ET, UK.
| | - David R Poyner
- School of Life and Health Sciences, Aston University, Aston Triangle, Birmingham, B4 7ET, UK.
| | - Roslyn M Bill
- School of Life and Health Sciences, Aston University, Aston Triangle, Birmingham, B4 7ET, UK.
| | - Alan D Goddard
- School of Life and Health Sciences, Aston University, Aston Triangle, Birmingham, B4 7ET, UK.
| |
Collapse
|
26
|
Sarsaiya S, Shi J, Chen J. Bioengineering tools for the production of pharmaceuticals: current perspective and future outlook. Bioengineered 2019; 10:469-492. [PMID: 31656120 PMCID: PMC6844412 DOI: 10.1080/21655979.2019.1682108] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2019] [Revised: 09/08/2019] [Accepted: 10/11/2019] [Indexed: 01/18/2023] Open
Abstract
The bioengineering tools have significant advantages through less time-consuming and utilized as a promising stage for the production of pharmaceutical bioproducts under the single platform. This review highlighted the advantages and current improvement in the plant, animal and microbial bioengineering tools and outlines feasible approaches by biological and process's bioengineering levels for advancing the economic feasibility of pharmaceutical's production. The critical analysis results revealed that system biology and synthetic biology along with advanced bioengineering tools like transcriptome, proteome, metabolome and nano bioengineering tools have shown a promising impact on the development of pharmaceutical's bioproducts. Tools to overcome and resolve the accompanying encounters of pharmaceutical's production that include nano bioengineering tools are also discussed. As a summary and prospect, it also gives new insight into the challenges and possible breakthrough of the development of pharmaceutical's bioproducts through bioengineering tools.
Collapse
Affiliation(s)
- Surendra Sarsaiya
- Key Laboratory of Basic Pharmacology and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China
- Bioresource Institute for Healthy Utilization, Zunyi Medical University, Zunyi, China
| | - Jingshan Shi
- Key Laboratory of Basic Pharmacology and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China
| | - Jishuang Chen
- Bioresource Institute for Healthy Utilization, Zunyi Medical University, Zunyi, China
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
| |
Collapse
|
27
|
Coexpression of Kex2 Endoproteinase and Hac1 Transcription Factor to Improve the Secretory Expression of Bovine Lactoferrin in Pichia pastoris. BIOTECHNOL BIOPROC E 2019. [DOI: 10.1007/s12257-019-0176-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
28
|
Fischer JE, Glieder A. Current advances in engineering tools for Pichia pastoris. Curr Opin Biotechnol 2019; 59:175-181. [DOI: 10.1016/j.copbio.2019.06.002] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 06/02/2019] [Accepted: 06/18/2019] [Indexed: 12/13/2022]
|
29
|
Wang J, Zhang T, Li Y, Li L, Wang Y, Yang B, Wang Y. High-level expression of Thermomyces dupontii thermo-alkaline lipase in Pichia pastoris under the control of different promoters. 3 Biotech 2019; 9:33. [PMID: 30622871 DOI: 10.1007/s13205-018-1531-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 12/05/2018] [Indexed: 01/19/2023] Open
Abstract
In this study, 15 methanol-inducible and 9 constitutive promoters were used to drive the expression of Thermomyces dupontii lipase (TDL) in Pichia pastoris. Of the 15 methanol-inducible promoters, formaldehyde dehydrogenase promoter (PFLD1) showed the highest efficiency in driving lipase production, followed by alcohol oxidase 1 (PAOX1) and dihydroxyacetone synthase (PDAS1) promoters. The maximum lipase activity of transformants with PFLD1, PAOX1 and PDAS1 promoters in 5-l bioreactor was 27,076, 24,159 and 22,342 U/ml, respectively. For the nine constitutive promoters, glycosyl phosphatidyl inositol-anchored protein promoter (PGCW14) produced the highest amount of lipases in a medium containing glucose or glycerol as the only carbon source, followed by mitochondrial alcohol dehydrogenase isozyme (P0472) and glyceraldehyde-3-phosphate dehydrogenase (PGAP) promoters. The maximum lipase yields in 5-l bioreactors under the control of PGCW14, P0472 and PGAP promoters were 17,353, 15,046 and 14,276 U/ml, respectively. The result of this study not only identifies a few highly efficient promoters for the heterologous expression of TDL in P. pastoris, but also casts some insight into the optimization of protein production in heterologous systems.
Collapse
|