1
|
Majumder A, Bano S, Nayak KB. The Pivotal Role of One-Carbon Metabolism in Neoplastic Progression During the Aging Process. Biomolecules 2024; 14:1387. [PMID: 39595564 PMCID: PMC11591851 DOI: 10.3390/biom14111387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 10/29/2024] [Accepted: 10/29/2024] [Indexed: 11/28/2024] Open
Abstract
One-carbon (1C) metabolism is a complex network of metabolic reactions closely related to producing 1C units (as methyl groups) and utilizing them for different anabolic processes, including nucleotide synthesis, methylation, protein synthesis, and reductive metabolism. These pathways support the high proliferative rate of cancer cells. While drugs that target 1C metabolism (like methotrexate) have been used for cancer treatment, they often have significant side effects. Therefore, developing new drugs with minimal side effects is necessary for effective cancer treatment. Methionine, glycine, and serine are the main three precursors of 1C metabolism. One-carbon metabolism is vital not only for proliferative cells but also for non-proliferative cells in regulating energy homeostasis and the aging process. Understanding the potential role of 1C metabolism in aging is crucial for advancing our knowledge of neoplastic progression. This review provides a comprehensive understanding of the molecular complexities of 1C metabolism in the context of cancer and aging, paving the way for researchers to explore new avenues for developing advanced therapeutic interventions for cancer.
Collapse
Affiliation(s)
- Avisek Majumder
- Department of Medicine, University of California, San Francisco, CA 94158, USA
| | - Shabana Bano
- Department of Medicine, University of California, San Francisco, CA 94158, USA
| | - Kasturi Bala Nayak
- Quantitative Biosciences Institute, Department of Medicine, University of California, San Francisco, CA 94158, USA
| |
Collapse
|
2
|
Kwolek-Mirek M, Maslanka R, Bednarska S, Przywara M, Kwolek K, Zadrag-Tecza R. Strategies to Maintain Redox Homeostasis in Yeast Cells with Impaired Fermentation-Dependent NADPH Generation. Int J Mol Sci 2024; 25:9296. [PMID: 39273244 PMCID: PMC11395483 DOI: 10.3390/ijms25179296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 08/22/2024] [Accepted: 08/26/2024] [Indexed: 09/15/2024] Open
Abstract
Redox homeostasis is the balance between oxidation and reduction reactions. Its maintenance depends on glutathione, including its reduced and oxidized form, GSH/GSSG, which is the main intracellular redox buffer, but also on the nicotinamide adenine dinucleotide phosphate, including its reduced and oxidized form, NADPH/NADP+. Under conditions that enable yeast cells to undergo fermentative metabolism, the main source of NADPH is the pentose phosphate pathway. The lack of enzymes responsible for the production of NADPH has a significant impact on yeast cells. However, cells may compensate in different ways for impairments in NADPH synthesis, and the choice of compensation strategy has several consequences for cell functioning. The present study of this issue was based on isogenic mutants: Δzwf1, Δgnd1, Δald6, and the wild strain, as well as a comprehensive panel of molecular analyses such as the level of gene expression, protein content, and enzyme activity. The obtained results indicate that yeast cells compensate for the lack of enzymes responsible for the production of cytosolic NADPH by changing the content of selected proteins and/or their enzymatic activity. In turn, the cellular strategy used to compensate for them may affect cellular efficiency, and thus, the ability to grow or sensitivity to environmental acidification.
Collapse
Affiliation(s)
- Magdalena Kwolek-Mirek
- Institute of Biology, College of Natural Sciences, University of Rzeszow, 35-959 Rzeszow, Poland
| | - Roman Maslanka
- Institute of Biology, College of Natural Sciences, University of Rzeszow, 35-959 Rzeszow, Poland
| | - Sabina Bednarska
- Institute of Biology, College of Natural Sciences, University of Rzeszow, 35-959 Rzeszow, Poland
| | - Michał Przywara
- Institute of Biology, College of Natural Sciences, University of Rzeszow, 35-959 Rzeszow, Poland
| | - Kornelia Kwolek
- Department of Plant Biology and Biotechnology, Faculty of Biotechnology and Horticulture, University of Agriculture in Krakow, 31-425 Krakow, Poland
| | - Renata Zadrag-Tecza
- Institute of Biology, College of Natural Sciences, University of Rzeszow, 35-959 Rzeszow, Poland
| |
Collapse
|
3
|
Xie D, Sun Y, Li X, Zheng J, Ren S. Study of the effect of calcium signal participating in the antioxidant mechanism of yeast under high-sugar environment. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:5776-5788. [PMID: 38390983 DOI: 10.1002/jsfa.13411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 12/19/2023] [Accepted: 02/16/2024] [Indexed: 02/24/2024]
Abstract
BACKGROUND Saccharomyces cerevisiae is susceptible to high-sugar stress in the production of bioethanol, wine and bread. Calcium signal is widely involved in various physiological and metabolic activities of cells. The present study aimed to explore the effects of Ca2+ signal on the antioxidant mechanism of yeast during high-sugar fermentation. RESULTS Compared to yeast without available Ca2+, yeast in the high glucose with Ca2+ group had higher dry weight, higher ethanol output at 12 and 24 h and higher glycerol output at 24 and 36 h. During the whole growth process, the trehalose synthesis capacity of yeast in the high glucose with Ca2+ group was lower and intracellular reactive oxygen species content was higher compared to yeast without available Ca2+. Intracellular malondialdehyde content of yeast under high glucose with Ca2+ was significantly lower than yeast under high glucose without available Ca2+ except for 6 h. The superoxide dismutase and catalase activities of yeast and glutathione content were higher in the high glucose with Ca2+ group compared to yeast in high glucose without available Ca2+. The expression levels of SOD1, GSH1, GPX2 genes were higher for high glucose without available Ca2+ at 6 h, while yeast in the high glucose with Ca2+ group had a higher expression of antioxidant-related genes except SOD1 and CTT1 at 12 h. The expression levels of antioxidant-related genes of yeast for high glucose with Ca2+ were higher at 24 h, and those of genes except SOD1 of yeast in the high glucose with Ca2+ group were higher at 36 h. CONCLUSION High-glucose stress limited the growth of yeast, while a moderate extracellular Ca2+ signal could improve the antioxidant capacity of yeast in a high-glucose environment by regulating protectant metabolism and enhancing the antioxidant enzyme activity and expression of antioxidant genes in a high-sugar environment. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Dongdong Xie
- Food Engineering Technology Research Center/Key Laboratory of Henan Province, School of Food Science and Technology, Henan University of Technology, Zhengzhou, China
| | - Yingqi Sun
- Food Engineering Technology Research Center/Key Laboratory of Henan Province, School of Food Science and Technology, Henan University of Technology, Zhengzhou, China
| | - Xing Li
- Food Engineering Technology Research Center/Key Laboratory of Henan Province, School of Food Science and Technology, Henan University of Technology, Zhengzhou, China
| | - Jiaxin Zheng
- Food Engineering Technology Research Center/Key Laboratory of Henan Province, School of Food Science and Technology, Henan University of Technology, Zhengzhou, China
| | - Shuncheng Ren
- Food Engineering Technology Research Center/Key Laboratory of Henan Province, School of Food Science and Technology, Henan University of Technology, Zhengzhou, China
| |
Collapse
|
4
|
Odoh CK, Madrigal-Perez LA, Kamal R. Glucosylglycerol and proline reverse the effects of glucose on Rhodosporidium toruloides lifespan. Arch Microbiol 2024; 206:195. [PMID: 38546876 DOI: 10.1007/s00203-024-03930-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 03/11/2024] [Accepted: 03/13/2024] [Indexed: 04/02/2024]
Abstract
Rhodosporidium toruloides is a novel cell factory used to synthesis carotenoids, biosurfactants, and biofuel feedstocks. However, research on R. toruloides has generally centred on the manufacture of biochemicals, while analyses of its longevity have received scant attention. Understanding of R. toruloides longevity under different nutrient conditions could help to improve its biotechnological significance and metabolite production. Glucosylglycerol (GG) and proline are osmoprotectants that could revert the harmful effects of environmental stress. This study examined how GG and proline affect R. toruloides strain longevity under glucose nutrimental stress. Herein, we provide evidence that GG and proline enhance cell performance and viability. These compatible solutes neutralises the pro-ageing effects of high glucose (10% glucose) on the yeast cell and reverse its cellular stress. GG exhibits the greatest impact on lifespan extension at 100 mM, whereas proline exerts effect at 2 mM. Our data reveal that these compounds significantly affect the culture medium osmolarity. Moreso, GG and proline decreased ROS production and mitohormetic lifespan regulation, respectively. The data indicates that these solutes (proline and GG) support the longevity of R. toruloides at a pro-ageing high glucose culture condition.
Collapse
Affiliation(s)
- Chuks Kenneth Odoh
- Laboratory of Biotechnology, Dalian Institute of Chemical Physics, CAS, 457 Zhongshan Rd, Dalian, 116023, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| | | | - Rasool Kamal
- Laboratory of Biotechnology, Dalian Institute of Chemical Physics, CAS, 457 Zhongshan Rd, Dalian, 116023, China
- Dalian Key Laboratory of Energy Biotechnology, Dalian Institute of Chemical Physics, CAS, 457 Zhongshan Rd, Dalian, 116023, China
| |
Collapse
|
5
|
Snf1p/Hxk2p/Mig1p pathway regulates hexose transporters transcript levels, affecting the exponential growth and mitochondrial respiration of Saccharomyces cerevisiae. Fungal Genet Biol 2022; 161:103701. [DOI: 10.1016/j.fgb.2022.103701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 04/12/2022] [Accepted: 04/30/2022] [Indexed: 11/19/2022]
|
6
|
Lionaki E, Ploumi C, Tavernarakis N. One-Carbon Metabolism: Pulling the Strings behind Aging and Neurodegeneration. Cells 2022; 11:cells11020214. [PMID: 35053330 PMCID: PMC8773781 DOI: 10.3390/cells11020214] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 01/04/2022] [Accepted: 01/06/2022] [Indexed: 01/27/2023] Open
Abstract
One-carbon metabolism (OCM) is a network of biochemical reactions delivering one-carbon units to various biosynthetic pathways. The folate cycle and methionine cycle are the two key modules of this network that regulate purine and thymidine synthesis, amino acid homeostasis, and epigenetic mechanisms. Intersection with the transsulfuration pathway supports glutathione production and regulation of the cellular redox state. Dietary intake of micronutrients, such as folates and amino acids, directly contributes to OCM, thereby adapting the cellular metabolic state to environmental inputs. The contribution of OCM to cellular proliferation during development and in adult proliferative tissues is well established. Nevertheless, accumulating evidence reveals the pivotal role of OCM in cellular homeostasis of non-proliferative tissues and in coordination of signaling cascades that regulate energy homeostasis and longevity. In this review, we summarize the current knowledge on OCM and related pathways and discuss how this metabolic network may impact longevity and neurodegeneration across species.
Collapse
Affiliation(s)
- Eirini Lionaki
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, 70013 Heraklion, Crete, Greece; (E.L.); (C.P.)
| | - Christina Ploumi
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, 70013 Heraklion, Crete, Greece; (E.L.); (C.P.)
- Department of Basic Sciences, Faculty of Medicine, University of Crete, 70013 Heraklion, Crete, Greece
| | - Nektarios Tavernarakis
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, 70013 Heraklion, Crete, Greece; (E.L.); (C.P.)
- Department of Basic Sciences, Faculty of Medicine, University of Crete, 70013 Heraklion, Crete, Greece
- Correspondence: ; Tel.: +30-2810-391069
| |
Collapse
|
7
|
Canedo-Santos JC, Carrillo-Garmendia A, Mora-Martinez I, Gutierrez-Garcia IK, Ramirez-Romero MG, Regalado-Gonzalez C, Nava GM, Madrigal-Perez LA. Resveratrol shortens the chronological lifespan of Saccharomyces cerevisiae by a pro-oxidant mechanism. Yeast 2021; 39:193-207. [PMID: 34693568 DOI: 10.1002/yea.3677] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 10/19/2021] [Indexed: 12/30/2022] Open
Abstract
The antioxidant phenotype caused by resveratrol has been recognized as a key piece in the health benefits exerted by this phytochemical in diseases related to aging. It has recently been proposed that a mitochondrial pro-oxidant mechanism could be the cause of resveratrol antioxidant properties. In this regard, the hypothesis that resveratrol impedes electron transport to complex III of the electron transport chain as its main target suggests that resveratrol could increase reactive oxygen species (ROS) generation through reverse electron transport or by the semiquinones formation. This idea also explains that cells respond to resveratrol oxidative damage, inducing their antioxidant systems. Moreover, resveratrol pro-oxidant properties could accelerate the aging process, according to the free radical theory of aging, which postulates that organism's age due to the accumulation of the harmful effects of ROS in cells. Nonetheless, there is no evidence linking the chronological lifespan (CLS) shorten occasioned by resveratrol with a pro-oxidant mechanism. Hence, this study aimed to evaluate whether resveratrol shortens the CLS of Saccharomyces cerevisiae due to a pro-oxidant activity. Herein, we provide evidence that supplementation with 100 μM of resveratrol at 5% glucose: (1) shortened the CLS of ctt1Δ and yap1Δ strains; (2) decreased ROS levels and increased the catalase activity in WT strain; (3) maintained unaffected the ROS levels and did not change the catalase activity in ctt1Δ strain; and (4) lessened the exponential growth of ctt1Δ strain, which was restored with the adding of reduced glutathione. These results indicate that resveratrol decreases CLS by a pro-oxidant mechanism.
Collapse
Affiliation(s)
- Juan Carlos Canedo-Santos
- División de Ingeniería Bioquímica, Tecnológico Nacional de México/Instituto Tecnológico Superior de Ciudad Hidalgo, Ciudad Hidalgo, Mexico
| | | | - Iridian Mora-Martinez
- División de Ingeniería Bioquímica, Tecnológico Nacional de México/Instituto Tecnológico Superior de Ciudad Hidalgo, Ciudad Hidalgo, Mexico
| | - Ingrid Karina Gutierrez-Garcia
- División de Ingeniería Bioquímica, Tecnológico Nacional de México/Instituto Tecnológico Superior de Ciudad Hidalgo, Ciudad Hidalgo, Mexico
| | - Maria Guadalupe Ramirez-Romero
- División de Ingeniería Bioquímica, Tecnológico Nacional de México/Instituto Tecnológico Superior de Ciudad Hidalgo, Ciudad Hidalgo, Mexico
| | | | - Gerardo M Nava
- Facultad de Química, Universidad Autónoma de Querétaro, Santiago de Querétaro, Mexico
| | - Luis Alberto Madrigal-Perez
- División de Ingeniería Bioquímica, Tecnológico Nacional de México/Instituto Tecnológico Superior de Ciudad Hidalgo, Ciudad Hidalgo, Mexico
| |
Collapse
|
8
|
Romila CA, Townsend S, Malecki M, Kamrad S, Rodríguez-López M, Hillson O, Cotobal C, Ralser M, Bähler J. Barcode sequencing and a high-throughput assay for chronological lifespan uncover ageing-associated genes in fission yeast. MICROBIAL CELL (GRAZ, AUSTRIA) 2021; 8:146-160. [PMID: 34250083 PMCID: PMC8246024 DOI: 10.15698/mic2021.07.754] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 04/20/2021] [Accepted: 04/26/2021] [Indexed: 12/15/2022]
Abstract
Ageing-related processes are largely conserved, with simple organisms remaining the main platform to discover and dissect new ageing-associated genes. Yeasts provide potent model systems to study cellular ageing owing their amenability to systematic functional assays under controlled conditions. Even with yeast cells, however, ageing assays can be laborious and resource-intensive. Here we present improved experimental and computational methods to study chronological lifespan in Schizosaccharomyces pombe. We decoded the barcodes for 3206 mutants of the latest gene-deletion library, enabling the parallel profiling of ~700 additional mutants compared to previous screens. We then applied a refined method of barcode sequencing (Bar-seq), addressing technical and statistical issues raised by persisting DNA in dead cells and sampling bottlenecks in aged cultures, to screen for mutants showing altered lifespan during stationary phase. This screen identified 341 long-lived mutants and 1246 short-lived mutants which point to many previously unknown ageing-associated genes, including 46 conserved but entirely uncharacterized genes. The ageing-associated genes showed coherent enrichments in processes also associated with human ageing, particularly with respect to ageing in non-proliferative brain cells. We also developed an automated colony-forming unit assay to facilitate medium- to high-throughput chronological-lifespan studies by saving time and resources compared to the traditional assay. Results from the Bar-seq screen showed good agreement with this new assay. This study provides an effective methodological platform and identifies many new ageing-associated genes as a framework for analysing cellular ageing in yeast and beyond.
Collapse
Affiliation(s)
- Catalina A. Romila
- Institute of Healthy Ageing and Department of Genetics, Evolution & Environment, University College London, London WC1E 6BT, UK
- These authors contributed equally
| | - StJohn Townsend
- Institute of Healthy Ageing and Department of Genetics, Evolution & Environment, University College London, London WC1E 6BT, UK
- The Francis Crick Institute, Molecular Biology of Metabolism Laboratory, London, NW1 1AT, UK
- These authors contributed equally
| | - Michal Malecki
- Institute of Healthy Ageing and Department of Genetics, Evolution & Environment, University College London, London WC1E 6BT, UK
- Current address: Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Poland
| | - Stephan Kamrad
- Institute of Healthy Ageing and Department of Genetics, Evolution & Environment, University College London, London WC1E 6BT, UK
- The Francis Crick Institute, Molecular Biology of Metabolism Laboratory, London, NW1 1AT, UK
- Current address: Charité Universitätsmedizin Berlin, Department of Biochemistry, Germany
| | - María Rodríguez-López
- Institute of Healthy Ageing and Department of Genetics, Evolution & Environment, University College London, London WC1E 6BT, UK
| | - Olivia Hillson
- Institute of Healthy Ageing and Department of Genetics, Evolution & Environment, University College London, London WC1E 6BT, UK
| | - Cristina Cotobal
- Institute of Healthy Ageing and Department of Genetics, Evolution & Environment, University College London, London WC1E 6BT, UK
| | - Markus Ralser
- The Francis Crick Institute, Molecular Biology of Metabolism Laboratory, London, NW1 1AT, UK
- Charité Universitätsmedizin Berlin, Department of Biochemistry, Germany
| | - Jürg Bähler
- Institute of Healthy Ageing and Department of Genetics, Evolution & Environment, University College London, London WC1E 6BT, UK
| |
Collapse
|
9
|
Regulation of the one carbon folate cycle as a shared metabolic signature of longevity. Nat Commun 2021; 12:3486. [PMID: 34108489 PMCID: PMC8190293 DOI: 10.1038/s41467-021-23856-9] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 05/18/2021] [Indexed: 02/05/2023] Open
Abstract
The metabolome represents a complex network of biological events that reflects the physiologic state of the organism in health and disease. Additionally, specific metabolites and metabolic signaling pathways have been shown to modulate animal ageing, but whether there are convergent mechanisms uniting these processes remains elusive. Here, we used high resolution mass spectrometry to obtain the metabolomic profiles of canonical longevity pathways in C. elegans to identify metabolites regulating life span. By leveraging the metabolomic profiles across pathways, we found that one carbon metabolism and the folate cycle are pervasively regulated in common. We observed similar changes in long-lived mouse models of reduced insulin/IGF signaling. Genetic manipulation of pathway enzymes and supplementation with one carbon metabolites in C. elegans reveal that regulation of the folate cycle represents a shared causal mechanism of longevity and proteoprotection. Such interventions impact the methionine cycle, and reveal methionine restriction as an underlying mechanism. This comparative approach reveals key metabolic nodes to enhance healthy ageing.
Collapse
|
10
|
Raghavendran V, Marx C, Olsson L, Bettiga M. The protective role of intracellular glutathione in Saccharomyces cerevisiae during lignocellulosic ethanol production. AMB Express 2020; 10:219. [PMID: 33331971 PMCID: PMC7745091 DOI: 10.1186/s13568-020-01148-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 11/17/2020] [Indexed: 12/25/2022] Open
Abstract
To enhance the competitiveness of industrial lignocellulose ethanol production, robust enzymes and cell factories are vital. Lignocellulose derived streams contain a cocktail of inhibitors that drain the cell of its redox power and ATP, leading to a decrease in overall ethanol productivity. Many studies have attempted to address this issue, and we have shown that increasing the glutathione (GSH) content in yeasts confers tolerance towards lignocellulose inhibitors, subsequently increasing the ethanol titres. However, GSH levels in yeast are limited by feedback inhibition of GSH biosynthesis. Multidomain and dual functional enzymes exist in several bacterial genera and they catalyse the GSH biosynthesis in a single step without the feedback inhibition. To test if even higher intracellular glutathione levels could be achieved and if this might lead to increased tolerance, we overexpressed the genes from two bacterial genera and assessed the recombinants in simultaneous saccharification and fermentation (SSF) with steam pretreated spruce hydrolysate containing 10% solids. Although overexpressing the heterologous genes led to a sixfold increase in maximum glutathione content (18 µmol gdrycellmass−1) compared to the control strain, this only led to a threefold increase in final ethanol titres (8.5 g L− 1). As our work does not conclusively indicate the cause-effect of increased GSH levels towards ethanol titres, we cautiously conclude that there is a limit to cellular fitness that could be accomplished via increased levels of glutathione.
Collapse
|
11
|
Martinez-Ortiz C, Carrillo-Garmendia A, Correa-Romero BF, Canizal-García M, González-Hernández JC, Regalado-Gonzalez C, Olivares-Marin IK, Madrigal-Perez LA. SNF1 controls the glycolytic flux and mitochondrial respiration. Yeast 2019; 36:487-494. [PMID: 31074533 DOI: 10.1002/yea.3399] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 04/03/2019] [Accepted: 05/05/2019] [Indexed: 12/28/2022] Open
Abstract
The switch between mitochondrial respiration and fermentation as the main ATP production pathway through an increase glycolytic flux is known as the Crabtree effect. The elucidation of the molecular mechanism of the Crabtree effect may have important applications in ethanol production and lay the groundwork for the Warburg effect, which is essential in the molecular etiology of cancer. A key piece in this mechanism could be Snf1p, which is a protein that participates in the nutritional response including glucose metabolism. Thus, this work aimed to recognize the role of the SNF1 gene on the glycolytic flux and mitochondrial respiration through the glucose concentration variation to gain insights about its relationship with the Crabtree effect. Herein, we found that SNF1 deletion in Saccharomyces cerevisiae cells grown at 1% glucose, decreased glycolytic flux, increased NAD(P)H concentration, enhanced HXK2 gene transcription, and decreased mitochondrial respiration. Meanwhile, the same deletion increased the mitochondrial respiration of cells grown at 10% glucose. Altogether, these findings indicate that SNF1 is important to respond to glucose concentration variation and is involved in the switch between mitochondrial respiration and fermentation.
Collapse
Affiliation(s)
- Cecilia Martinez-Ortiz
- Laboratorio de Biotecnología Microbiana, Instituto Tecnológico Superior de Ciudad Hidalgo, Ciudad Hidalgo, Michoacán, Mexico
| | - Andres Carrillo-Garmendia
- Laboratorio de Biotecnología Microbiana, Instituto Tecnológico Superior de Ciudad Hidalgo, Ciudad Hidalgo, Michoacán, Mexico
| | - Blanca Flor Correa-Romero
- Laboratorio de Biotecnología Microbiana, Instituto Tecnológico Superior de Ciudad Hidalgo, Ciudad Hidalgo, Michoacán, Mexico
| | - Melina Canizal-García
- Laboratorio de Biotecnología Microbiana, Instituto Tecnológico Superior de Ciudad Hidalgo, Ciudad Hidalgo, Michoacán, Mexico
| | - Juan Carlos González-Hernández
- Ingeniería Bioquímica, Laboratorio de Bioquímica del Instituto Tecnológico de Morelia, Av. Tecnológico de Morelia, Morelia, Michoacán, Mexico
| | - Carlos Regalado-Gonzalez
- Factultad de Química, Universidad Autónoma de Querétaro, Cerro de las Campanas, Santiago de Querétaro, Qro, Mexico
| | - Ivanna Karina Olivares-Marin
- Factultad de Química, Universidad Autónoma de Querétaro, Cerro de las Campanas, Santiago de Querétaro, Qro, Mexico
| | - Luis Alberto Madrigal-Perez
- Laboratorio de Biotecnología Microbiana, Instituto Tecnológico Superior de Ciudad Hidalgo, Ciudad Hidalgo, Michoacán, Mexico
| |
Collapse
|