1
|
Phimsen W, Kopitak N, Boontawon T, Theeranan T, Boonchird C, Pongtharangkul T. Optimizing the production of recombinant human papilloma virus type 52 major capsid protein L1 in Hansenula polymorpha. Sci Rep 2024; 14:28555. [PMID: 39558031 PMCID: PMC11574089 DOI: 10.1038/s41598-024-79764-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Accepted: 11/12/2024] [Indexed: 11/20/2024] Open
Abstract
Cervical cancer is the fourth most prevalent cancer among women globally, with Thai women ranking it as the third most common. At present, a prophylactic vaccine, containing virus-like particles (VLPs) of HPV L1 capsid protein, is widely recognized as one of the major prevention strategies for cervical cancer. Unfortunately, due to a low cross-protection among subtypes, protection against each HPV subtype requires vaccination with VLPs of that specific subtype. This study aimed to optimize the cultivation medium and conditions to maximize the volumetric yield of HPV52 L1 protein produced by the recombinant H. polymorpha HPV52. The results revealed that supplementation of a complex organic nitrogen source HySoy (at 10 g/L) into SYN6 medium resulted in a significantly higher specific HPV52 L1 yield and the maximum specific and volumetric HPV52 L1 protein yield were obtained at 30℃. In this study, the volumetric yield of HPV52 L1 could be increased from 50.9 mg/L in flask-scale cultivation to 2728 mg/L in High Cell Density Cultivation or HCDC (53-folds) with a significant improvement in terms of productivity, from 0.85 mg/L.h in flask-scale cultivation to 22.7 mg/L.h in HCDC (27-folds).
Collapse
Affiliation(s)
- Wichittra Phimsen
- Department of Biotechnology, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
| | - Natsima Kopitak
- Department of Biotechnology, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
| | - Tatpong Boontawon
- Department of Biotechnology, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
| | - Thantawat Theeranan
- Department of Biotechnology, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
| | - Chuenchit Boonchird
- Department of Biotechnology, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
| | | |
Collapse
|
2
|
Xie L, Yu W, Gao J, Wang H, Zhou YJ. Ogataea polymorpha as a next-generation chassis for industrial biotechnology. Trends Biotechnol 2024; 42:1363-1378. [PMID: 38622041 DOI: 10.1016/j.tibtech.2024.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 03/15/2024] [Accepted: 03/18/2024] [Indexed: 04/17/2024]
Abstract
Ogataea (Hansenula) polymorpha is a nonconventional yeast with some unique characteristics, including fast growth, thermostability, and broad substrate spectrum. Other than common applications for protein production, O. polymorpha is attracting interest for chemical and protein production from methanol; a promising feedstock for the next-generation biomanufacturing due to its abundant sources and excellent characteristics. Benefiting from the development of synthetic biology, it has been engineered to produce value-added chemicals by extensively rewiring cellular metabolism. This Review discusses recently developed synthetic biology tools of O. polymorpha. The advances of chemicals production and systems biology were reviewed comprehensively. Finally, we look ahead to the developments of biomanufacturing in O. polymorpha to make an overall understanding of this chassis for academia and industry.
Collapse
Affiliation(s)
- Linfeng Xie
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wei Yu
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China; CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; Dalian Key Laboratory of Energy Biotechnology, Dalian Institute of Chemical Physics, CAS, 457 Zhongshan Road, Dalian 116023, China
| | - Jiaoqi Gao
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China; CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; Dalian Key Laboratory of Energy Biotechnology, Dalian Institute of Chemical Physics, CAS, 457 Zhongshan Road, Dalian 116023, China
| | - Haoyu Wang
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yongjin J Zhou
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China; CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; Dalian Key Laboratory of Energy Biotechnology, Dalian Institute of Chemical Physics, CAS, 457 Zhongshan Road, Dalian 116023, China.
| |
Collapse
|
3
|
Chauhan S, Khasa YP. Challenges and Opportunities in the Process Development of Chimeric Vaccines. Vaccines (Basel) 2023; 11:1828. [PMID: 38140232 PMCID: PMC10747103 DOI: 10.3390/vaccines11121828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/22/2023] [Accepted: 08/04/2023] [Indexed: 12/24/2023] Open
Abstract
Vaccines are integral to human life to protect them from life-threatening diseases. However, conventional vaccines often suffer limitations like inefficiency, safety concerns, unavailability for non-culturable microbes, and genetic variability among pathogens. Chimeric vaccines combine multiple antigen-encoding genes of similar or different microbial strains to protect against hyper-evolving drug-resistant pathogens. The outbreaks of dreadful diseases have led researchers to develop economical chimeric vaccines that can cater to a large population in a shorter time. The process development begins with computationally aided omics-based approaches to design chimeric vaccines. Furthermore, developing these vaccines requires optimizing upstream and downstream processes for mass production at an industrial scale. Owing to the complex structures and complicated bioprocessing of evolving pathogens, various high-throughput process technologies have come up with added advantages. Recent advancements in high-throughput tools, process analytical technology (PAT), quality-by-design (QbD), design of experiments (DoE), modeling and simulations, single-use technology, and integrated continuous bioprocessing have made scalable production more convenient and economical. The paradigm shift to innovative strategies requires significant attention to deal with major health threats at the global scale. This review outlines the challenges and emerging avenues in the bioprocess development of chimeric vaccines.
Collapse
Affiliation(s)
| | - Yogender Pal Khasa
- Department of Microbiology, University of Delhi South Campus, New Delhi 110021, India;
| |
Collapse
|
4
|
Rosmeita CN, Budiarti S, Mustopa AZ, Novianti E, Swasthikawati S, Chairunnisa S, Hertati A, Nurfatwa M, Ekawati N, Hasan N. Expression, purification, and characterization of self-assembly virus-like particles of capsid protein L1 HPV 52 in Pichia pastoris GS115. J Genet Eng Biotechnol 2023; 21:126. [PMID: 37981617 PMCID: PMC10657913 DOI: 10.1186/s43141-023-00571-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 10/26/2023] [Indexed: 11/21/2023]
Abstract
BACKGROUND Cervical cancer caused by the human papillomavirus (HPV) is one of the most frequent malignances globally. HPV 52 is a high-risk cancer-causing genotype that has been identified as the most prevalent type in Indonesia. Virus-like particles (VLP)-based vaccinations against HPV infection could benefit from self-assembled VLP of L1 capsid protein. RESULT The recombinant HPV 52 L1 was expressed in Pichia pastoris on a shake-flask scale with 0.5% methanol induction in this study. The copy number was used to compare the expression level and stability. The colony that survived on a solid medium containing 2000 μg/ml of Zeocin was selected and cultured to express HPV 52 L1. DNA was extracted from the chosen colony, and the copy was determined using qPCR. HPV 52 L1 protein was then purified through fast performance liquid chromatography. Transmission electron microscopy (TEM) evaluation confirmed the VLP self-assembly. The genomic DNA remained intact after 100 generations of serial cultivation under no selective pressure medium conditions, and the protein produced was relatively stable. However, the band intensity was slightly lower than in the parental colony. In terms of copy number, a low copy transformant resulted in low expression but produced a highly stable recombinant clone. Eventually, the L1 protein expressed in Pichia pastoris can self-assemble into VLP. Therefore, recombinant HPV possesses a stable clone and the ability to self-assemble into VLP. CONCLUSION The recombinant L1 HPV 52 protein is successfully expressed in P. pastoris within a size range of approximately 55 kDa and demonstrated favorable stability. The L1 protein expressed in Pichia pastoris successful self-assembled of HPV VLPs, thereby establishing their potential efficacy as a prophylactic vaccine.
Collapse
Affiliation(s)
- Chindy Nur Rosmeita
- Research Center for Genetic Engineering, Research Organization for Life Sciences and Environment, National Research and Innovation Agency (BRIN), Bogor, 16911, Indonesia
- Program of Biotechnology, Graduate School, IPB University, Bogor, Indonesia
| | - Sri Budiarti
- Program of Biotechnology, Graduate School, IPB University, Bogor, Indonesia
- Indonesia Research Center for Bioresources and Biotechnology, IPB University, Bogor, Indonesia
| | - Apon Zaenal Mustopa
- Research Center for Genetic Engineering, Research Organization for Life Sciences and Environment, National Research and Innovation Agency (BRIN), Bogor, 16911, Indonesia.
| | - Ela Novianti
- Research Center for Genetic Engineering, Research Organization for Life Sciences and Environment, National Research and Innovation Agency (BRIN), Bogor, 16911, Indonesia
| | - Sri Swasthikawati
- Research Center for Genetic Engineering, Research Organization for Life Sciences and Environment, National Research and Innovation Agency (BRIN), Bogor, 16911, Indonesia
| | - Sheila Chairunnisa
- Research Center for Genetic Engineering, Research Organization for Life Sciences and Environment, National Research and Innovation Agency (BRIN), Bogor, 16911, Indonesia
| | - Ai Hertati
- Research Center for Genetic Engineering, Research Organization for Life Sciences and Environment, National Research and Innovation Agency (BRIN), Bogor, 16911, Indonesia
| | - Maritsa Nurfatwa
- Research Center for Genetic Engineering, Research Organization for Life Sciences and Environment, National Research and Innovation Agency (BRIN), Bogor, 16911, Indonesia
| | - Nurlaili Ekawati
- Research Center for Genetic Engineering, Research Organization for Life Sciences and Environment, National Research and Innovation Agency (BRIN), Bogor, 16911, Indonesia
| | - Nurhasni Hasan
- Faculty of Pharmacy, Universitas Hasanuddin, Jl. Perintis Kemerdekaan Km 10, Makassar, 90245, Republic of Indonesia
| |
Collapse
|
5
|
Hosseini SHR, Pashapour S, Farhadi M, Zabihi A. Human papillomavirus infection and its relationship with common polymorphism of HLA gene by PCR method. GENE REPORTS 2023. [DOI: 10.1016/j.genrep.2023.101767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2023]
|
6
|
Enhancing Antimicrobial Peptide Productivity in Pichia pastoris (Muts Strain) by Improving the Fermentation Process Based on Increasing the Volumetric Methanol Consumption Rate. FERMENTATION-BASEL 2023. [DOI: 10.3390/fermentation9030277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Abstract
The instability of the protein expression in Pichia pastoris strains has been an issue for various peptide productions. Some modifications to the traditional fermentation process could potentially solve the problem. Here, we consider a four-stage fermentation process to express the CAP2 (cell-penetrating antimicrobial peptide 2) candidate in P. pastoris KM71H, a slow methanol utilization strain. During the fermentation process, CAP2 productivity is limited (6.15 ± 0.21 mg/L·h) by the low overall methanol consumption (approximately 645 g), which is mainly the result of the slow methanol utilization of the P. pastoris KM71H. To overcome this limitation, we increased the cell concentration two-fold prior to the induction stage. A fed-batch process with exponential and dissolved oxygen tension (DOT) stat feeding strategies was deployed to control the glycerol feed, resulting in an increase in cell concentration and enhancement of the volumetric methanol consumption rate. The improved fermentation process increased the overall methanol consumption (approximately 1070 g) and the CAP2 productivity (13.59 ± 0.24 mg/L·h) by 1.66 and 2.21 times, respectively. In addition, the CAP3 (cell-penetrating antimicrobial peptide 3) candidate could also be produced using this improved fermentation process at a high yield of 3.96 ± 0.02 g/L without any further optimization. Note that there was no oxygen limitation during the improved fermentation process operating at high cell density. This could be due to the controlled substrate addition via the DOT stat system.
Collapse
|
7
|
Silva AJD, Rocha CKDS, de Freitas AC. Standardization and Key Aspects of the Development of Whole Yeast Cell Vaccines. Pharmaceutics 2022; 14:pharmaceutics14122792. [PMID: 36559285 PMCID: PMC9781213 DOI: 10.3390/pharmaceutics14122792] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 12/07/2022] [Accepted: 12/12/2022] [Indexed: 12/15/2022] Open
Abstract
In the context of vaccine development, improving antigenic presentation is critical for the activation of specific immune responses and the success of immunization, in addition to selecting an appropriate target. In this sense, different strategies have been developed and improved. Among them is the use of yeast cells as vehicles for the delivery of recombinant antigens. These vaccines, named whole yeast vaccines (WYVs), can induce humoral and cellular immune responses, with the additional advantage of dispensing with the use of adjuvants due to the immunostimulatory properties of their cell wall components. However, there are some gaps in the methodologies for obtaining and validating recombinant strains and vaccine formulations. The standardization of these parameters is an important factor for WYVs approval by regulatory agencies and, consequently, their licensing. This review aimed to provide an overview of the main parameters to consider when developing a yeast-based vaccine, addressing some available tools, and highlighting the main variables that can influence the vaccine production process.
Collapse
Affiliation(s)
- Anna Jéssica Duarte Silva
- Laboratory of Molecular Studies and Experimental Therapy—LEMTE, Department of Genetics, Federal University of Pernambuco, Recife 50670-901, Brazil
| | | | - Antonio Carlos de Freitas
- Laboratory of Molecular Studies and Experimental Therapy—LEMTE, Department of Genetics, Federal University of Pernambuco, Recife 50670-901, Brazil
- Correspondence: ; Tel.: +55-81996067671
| |
Collapse
|
8
|
How CW, Ong YS, Low SS, Pandey A, Show PL, Foo JB. How far have we explored fungi to fight cancer? Semin Cancer Biol 2022; 86:976-989. [PMID: 33737109 DOI: 10.1016/j.semcancer.2021.03.009] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 02/21/2021] [Accepted: 03/13/2021] [Indexed: 01/01/2023]
Abstract
The use of fungal cultures have been well documented in human history. Although its used in healthcare, like penicillin and statins, have saved countless of lives, but there is still no fungal products that are specifically indicated for cancers. Research into fungal-derived materials to curb cancers in the recent decades have made a considerable progress in terms of drug delivery vehicles, anticancer active ingredients and cancer immunotherapy. Various parts of the organisms have successfully been exploited to achieve specific tasks. Apart from the identification of novel anticancer compound from fungi, its native capsular structure can also be used as drug cargo to achieve higher oral bioavailability. This review summarises the anticancer potential of fungal-derived materials, highlighting the role of capsular polysaccharides, proteins, and other structures in variety of innovative utilities to fit the current pharmaceutical technology. Many bioactive compounds isolated from fungi have also been formulated into nanoparticles to achieve greater anticancer activity. The progress of fungal compounds and their analogues in clinical trials is also highlighted. In addition, the potential of various fungal species to be developed for anticancer immunotherapy are also discussed.
Collapse
Affiliation(s)
- Chee Wun How
- School of Pharmacy, Monash University Malaysia, 47500, Bandar Sunway, Selangor, Malaysia
| | - Yong Sze Ong
- School of Pharmacy, Monash University Malaysia, 47500, Bandar Sunway, Selangor, Malaysia
| | - Sze Shin Low
- Department of Chemical and Environmental Engineering, Faculty of Engineering, University of Nottingham Malaysia Campus, Jalan Broga, 43500 Semenyih, Selangor Darul Ehsan, Malaysia
| | - Ashok Pandey
- Centre for Innovation and Translational Research, CSIR-Indian Institute of Toxicology Research, Lucknow, 226 001, India
| | - Pau Loke Show
- Department of Chemical and Environmental Engineering, Faculty of Engineering, University of Nottingham Malaysia Campus, Jalan Broga, 43500 Semenyih, Selangor Darul Ehsan, Malaysia.
| | - Jhi Biau Foo
- School of Pharmacy, Faculty of Health & Medical Sciences, Taylor's University, 1, Jalan Taylors, 47500, Subang Jaya, Selangor, Malaysia; Centre for Drug Discovery and Molecular Pharmacology (CDDMP), Faculty of Health & Medical Sciences, Taylor's University, 1, Jalan Taylors, 47500, Subang Jaya, Selangor, Malaysia.
| |
Collapse
|
9
|
Expanding the promoter toolbox for metabolic engineering of methylotrophic yeasts. Appl Microbiol Biotechnol 2022; 106:3449-3464. [PMID: 35538374 DOI: 10.1007/s00253-022-11948-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 04/28/2022] [Accepted: 04/29/2022] [Indexed: 01/31/2023]
Abstract
Methylotrophic yeasts have been widely recognized as a promising host for production of recombinant proteins and value-added chemicals. Promoters for controlled gene expression are critical for construction of efficient methylotrophic yeasts cell factories. Here, we summarized recent advances in characterizing and engineering promoters in methylotrophic yeasts, such as Komagataella phaffii and Ogataea polymorpha. Constitutive and inducible promoters controlled by methanol or other inducers/repressors were introduced to demonstrate their applications in production of proteins and chemicals. Furthermore, efforts of promoter engineering, including site-directed mutagenesis, hybrid promoter, and transcription factor regulation to expand the promoter toolbox were also summarized. This mini-review also provides useful information on promoters for the application of metabolic engineering in methylotrophic yeasts. KEY POINTS: • The characteristics of six methylotrophic yeasts and their promoters are described. • The applications of Komagataella phaffii and Ogataea polymorpha in metabolic engineeringare expounded. • Three promoter engineering strategies are introduced in order to expand the promoter toolbox.
Collapse
|
10
|
Shan L, Dai Z, Wang Q. Advances and Opportunities of CRISPR/Cas Technology in Bioengineering Non-conventional Yeasts. Front Bioeng Biotechnol 2021; 9:765396. [PMID: 34708030 PMCID: PMC8542773 DOI: 10.3389/fbioe.2021.765396] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 09/27/2021] [Indexed: 12/26/2022] Open
Abstract
Non-conventional yeasts have attracted a growing interest on account of their excellent characteristics. In recent years, the emerging of CRISPR/Cas technology has improved the efficiency and accuracy of genome editing. Utilizing the advantages of CRISPR/Cas in bioengineering of non-conventional yeasts, quite a few advancements have been made. Due to the diversity in their genetic background, the ways for building a functional CRISPR/Cas system of various species non-conventional yeasts were also species-specific. Herein, we have summarized the different strategies for optimizing CRISPR/Cas systems in different non-conventional yeasts and their biotechnological applications in the construction of cell factories. In addition, we have proposed some potential directions for broadening and improving the application of CRISPR/Cas technology in non-conventional yeasts.
Collapse
Affiliation(s)
- Lu Shan
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China.,National Center of Technology Innovation for Synthetic Biology, Tianjin, China
| | - Zongjie Dai
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China.,National Center of Technology Innovation for Synthetic Biology, Tianjin, China
| | - Qinhong Wang
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China.,National Center of Technology Innovation for Synthetic Biology, Tianjin, China
| |
Collapse
|
11
|
Modifications in the Kex2 P1' cleavage site in the α-MAT secretion signal lead to higher production of human granulocyte colony-stimulating factor in Pichia pastoris. World J Microbiol Biotechnol 2021; 37:197. [PMID: 34654975 DOI: 10.1007/s11274-021-03167-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 10/05/2021] [Indexed: 10/20/2022]
Abstract
The human granulocyte colony-stimulating factor (G-CSF) is one of the hematopoietic growth factors administered for chemotherapy induced neutropenia and is currently produced through recombinant route in Escherichia coli. The methylotrophic unicellular yeast Pichia pastoris (syn. Komagataella phaffii) makes a good host for production of human therapeutics as the proteins are low-mannose glycosylated, disulfide bonded and correctly folded on their way to the cell exterior. Given the low level of production of G-CSF in P. pastoris, the present study examined modification of the Saccharomyces cerevisiae derived α-mating type secretory signal sequence to enhance its production. The substitution of Glu, at the P1' position of the Kex2 cleavage site, by Val/Ala led to extracellular production of ~ 60 mg/L of G-CSF in the extracellular medium. Production was further increased to ~ 100 mg/L by putting these mutations against rarely occurring methanol slow utilization P. pastoris X-33 host. Analysis of the modelled structure of the signal peptide indicated exposed loop structures, created by presence of Val/Ala, that favour cleavage by the Kex2 peptidase thereby leading to enhanced production of G-CSF. The conformational changes, induced on account of binding between the signal sequence and the cargo protein (G-CSF), also appear to play an important role in the final yield of the extracellular protein.
Collapse
|
12
|
Customized yeast cell factories for biopharmaceuticals: from cell engineering to process scale up. Microb Cell Fact 2021; 20:124. [PMID: 34193127 PMCID: PMC8246677 DOI: 10.1186/s12934-021-01617-z] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 06/22/2021] [Indexed: 02/06/2023] Open
Abstract
The manufacture of recombinant therapeutics is a fastest-developing section of therapeutic pharmaceuticals and presently plays a significant role in disease management. Yeasts are established eukaryotic host for heterologous protein production and offer distinctive benefits in synthesising pharmaceutical recombinants. Yeasts are proficient of vigorous growth on inexpensive media, easy for gene manipulations, and are capable of adding post translational changes of eukaryotes. Saccharomyces cerevisiae is model yeast that has been applied as a main host for the manufacture of pharmaceuticals and is the major tool box for genetic studies; nevertheless, numerous other yeasts comprising Pichia pastoris, Kluyveromyces lactis, Hansenula polymorpha, and Yarrowia lipolytica have attained huge attention as non-conventional partners intended for the industrial manufacture of heterologous proteins. Here we review the advances in yeast gene manipulation tools and techniques for heterologous pharmaceutical protein synthesis. Application of secretory pathway engineering, glycosylation engineering strategies and fermentation scale-up strategies in customizing yeast cells for the synthesis of therapeutic proteins has been meticulously described.
Collapse
|
13
|
Contribution of yeast models to virus research. Appl Microbiol Biotechnol 2021; 105:4855-4878. [PMID: 34086116 PMCID: PMC8175935 DOI: 10.1007/s00253-021-11331-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 04/27/2021] [Accepted: 05/03/2021] [Indexed: 12/14/2022]
Abstract
Abstract Time and again, yeast has proven to be a vital model system to understand various crucial basic biology questions. Studies related to viruses are no exception to this. This simple eukaryotic organism is an invaluable model for studying fundamental cellular processes altered in the host cell due to viral infection or expression of viral proteins. Mechanisms of infection of several RNA and relatively few DNA viruses have been studied in yeast to date. Yeast is used for studying several aspects related to the replication of a virus, such as localization of viral proteins, interaction with host proteins, cellular effects on the host, etc. The development of novel techniques based on high-throughput analysis of libraries, availability of toolboxes for genetic manipulation, and a compact genome makes yeast a good choice for such studies. In this review, we provide an overview of the studies that have used yeast as a model system and have advanced our understanding of several important viruses. Key points • Yeast, a simple eukaryote, is an important model organism for studies related to viruses. • Several aspects of both DNA and RNA viruses of plants and animals are investigated using the yeast model. • Apart from the insights obtained on virus biology, yeast is also extensively used for antiviral development.
Collapse
|
14
|
Progress in L2-Based Prophylactic Vaccine Development for Protection against Diverse Human Papillomavirus Genotypes and Associated Diseases. Vaccines (Basel) 2020; 8:vaccines8040568. [PMID: 33019516 PMCID: PMC7712070 DOI: 10.3390/vaccines8040568] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 09/17/2020] [Accepted: 09/21/2020] [Indexed: 12/13/2022] Open
Abstract
The human papillomaviruses (HPVs) are a family of small DNA tumor viruses including over 200 genotypes classified by phylogeny into several genera. Different genera of HPVs cause ano-genital and oropharyngeal cancers, skin cancers, as well as benign diseases including skin and genital warts. Licensed vaccines composed of L1 virus-like particles (VLPs) confer protection generally restricted to the ≤9 HPV types targeted. Here, we examine approaches aimed at broadening the protection against diverse HPV types by targeting conserved epitopes of the minor capsid protein, L2. Compared to L1 VLP, L2 is less immunogenic. However, with appropriate presentation to the immune system, L2 can elicit durable, broadly cross-neutralizing antibody responses and protection against skin and genital challenge with diverse HPV types. Such approaches to enhance the strength and breadth of the humoral response include the display of L2 peptides on VLPs or viral capsids, bacteria, thioredoxin and other platforms for multimerization. Neither L2 nor L1 vaccinations elicit a therapeutic response. However, fusion of L2 with early viral antigens has the potential to elicit both prophylactic and therapeutic immunity. This review of cross-protective HPV vaccines based on L2 is timely as several candidates have recently entered early-phase clinical trials.
Collapse
|
15
|
Karbalaei M, Rezaee SA, Farsiani H. Pichia pastoris: A highly successful expression system for optimal synthesis of heterologous proteins. J Cell Physiol 2020; 235:5867-5881. [PMID: 32057111 PMCID: PMC7228273 DOI: 10.1002/jcp.29583] [Citation(s) in RCA: 296] [Impact Index Per Article: 59.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 01/09/2020] [Indexed: 01/09/2023]
Abstract
One of the most important branches of genetic engineering is the expression of recombinant proteins using biological expression systems. Nowadays, different expression systems are used for the production of recombinant proteins including bacteria, yeasts, molds, mammals, plants, and insects. Yeast expression systems such as Saccharomyces cerevisiae (S. cerevisiae) and Pichia pastoris (P. pastoris) are more popular. P. pastoris expression system is one of the most popular and standard tools for the production of recombinant protein in molecular biology. Overall, the benefits of protein production by P. pastoris system include appropriate folding (in the endoplasmic reticulum) and secretion (by Kex2 as signal peptidase) of recombinant proteins to the external environment of the cell. Moreover, in the P. pastoris expression system due to its limited production of endogenous secretory proteins, the purification of recombinant protein is easy. It is also considered a unique host for the expression of subunit vaccines which could significantly affect the growing market of medical biotechnology. Although P. pastoris expression systems are impressive and easy to use with well‐defined process protocols, some degree of process optimization is required to achieve maximum production of the target proteins. Methanol and sorbitol concentration, Mut forms, temperature and incubation time have to be adjusted to obtain optimal conditions, which might vary among different strains and externally expressed protein. Eventually, optimal conditions for the production of a recombinant protein in P. pastoris expression system differ according to the target protein.
Collapse
Affiliation(s)
- Mohsen Karbalaei
- Department of Microbiology and Virology, School of Medicine, Jiroft University of Medical Sciences, Jiroft, Iran
| | - Seyed A Rezaee
- School of Medicine, Mashhad University of Medical Sciences, Inflammation and Inflammatory Diseases Research Centre, Mashhad, Iran
| | - Hadi Farsiani
- Mashhad University of Medical Sciences, Antimicrobial Resistance Research Center, Mashhad, Iran
| |
Collapse
|
16
|
Kumar R, Kumar P. Yeast-based vaccines: New perspective in vaccine development and application. FEMS Yeast Res 2019; 19:5298404. [PMID: 30668686 DOI: 10.1093/femsyr/foz007] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Accepted: 01/18/2019] [Indexed: 12/11/2022] Open
Abstract
In presently licensed vaccines, killed or attenuated organisms act as a source of immunogens except for peptide-based vaccines. These conventional vaccines required a mass culture of associated or related organisms and long incubation periods. Special requirements during storage and transportation further adds to the cost of vaccine preparations. Availability of complete genome sequence, well-established genetic, inherent natural adjuvant and non-pathogenic nature of yeast species viz. Saccharomyces cerevisiae, Pichia pastoris makes them an ideal model system for the development of vaccines both for public health and for on-farm consumption. In this review, we compile the work in this emerging field during last two decades with major emphases on S. cerevisiae and P. pastoris which are routinely used worldwide for expression of heterologous proteins with therapeutic value against infectious diseases along with possible use in cancer therapy. We also pointed towards the developments in use of whole recombinant yeast, yeast surface display and virus-like particles as a novel strategy in the fight against infectious diseases and cancer along with other aspects including suitability of yeast in vaccines preparations, yeast cell wall component as an immune stimulator or modulator and present status of yeast-based vaccines in clinical trials.
Collapse
Affiliation(s)
- Ravinder Kumar
- Section of Molecular Biology, Division of Biological Sciences, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Piyush Kumar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai 400 076, Maharashtra, India
| |
Collapse
|
17
|
Theron CW, Berrios J, Steels S, Telek S, Lecler R, Rodriguez C, Fickers P. Expression of recombinant enhanced green fluorescent protein provides insight into foreign gene‐expression differences betweenMut+andMutSstrains ofPichia pastoris. Yeast 2019; 36:285-296. [DOI: 10.1002/yea.3388] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2018] [Revised: 03/04/2019] [Accepted: 03/19/2019] [Indexed: 12/13/2022] Open
Affiliation(s)
- Chrispian W. Theron
- Microbial Processes and Interactions, TERRA Teaching and Research Centre, Gembloux AgroBio TechUniversity of Liège Gembloux Belgium
| | - Julio Berrios
- Escuela de Ingeniería BioquímicaPontificia Universidad Católica de Valparaíso Valparaíso Chile
| | - Sébastien Steels
- Microbial Processes and Interactions, TERRA Teaching and Research Centre, Gembloux AgroBio TechUniversity of Liège Gembloux Belgium
| | - Samuel Telek
- Microbial Processes and Interactions, TERRA Teaching and Research Centre, Gembloux AgroBio TechUniversity of Liège Gembloux Belgium
| | | | | | - Patrick Fickers
- Microbial Processes and Interactions, TERRA Teaching and Research Centre, Gembloux AgroBio TechUniversity of Liège Gembloux Belgium
| |
Collapse
|
18
|
Manfrão-Netto JHC, Gomes AMV, Parachin NS. Advances in Using Hansenula polymorpha as Chassis for Recombinant Protein Production. Front Bioeng Biotechnol 2019; 7:94. [PMID: 31119131 PMCID: PMC6504786 DOI: 10.3389/fbioe.2019.00094] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 04/16/2019] [Indexed: 11/13/2022] Open
Abstract
The methylotrophic yeast Hansenula polymorpha, known as a non-conventional yeast, is used for the last 30 years for the production of recombinant proteins, including enzymes, vaccines, and biopharmaceuticals. Although a large number of reviews have been published elucidating the applications of this yeast as a cell factory, the latest was released about 10 years ago. Therefore, this review aimed at summarizing available information on the use of H. polymorpha as a host for recombinant protein production in the last decade. Examples of chemicals and virus-like particles produced using this yeast also are discussed. Firstly, the aspects that feature this yeast as a host for recombinant protein production are highlighted including the techniques available for its genetic manipulation as well as strategies for cultivation in bioreactors. Special attention is given to the novel genomic editing tools, mainly CRISPR/Cas9 that was recently established in this yeast. Finally, recent examples of using H. polymorpha as an expression platform are presented and discussed. The production of human Parathyroid Hormone (PTH) and Staphylokinase (SAK) in H. polymorpha are described as case studies for process establishment in this yeast. Altogether, this review is a guideline for this yeast utilization as an expression platform bringing a thorough analysis of the genetic aspects and fermentation protocols used up to date, thus encouraging the production of novel biomolecules in H. polymorpha.
Collapse
Affiliation(s)
| | - Antônio Milton Vieira Gomes
- Grupo Engenharia de Biocatalisadores, Instituto de Ciências Biológicas, Universidade de Brasília, Brasília, Brazil
| | - Nádia Skorupa Parachin
- Grupo Engenharia de Biocatalisadores, Instituto de Ciências Biológicas, Universidade de Brasília, Brasília, Brazil
| |
Collapse
|
19
|
Cai P, Gao J, Zhou Y. CRISPR-mediated genome editing in non-conventional yeasts for biotechnological applications. Microb Cell Fact 2019; 18:63. [PMID: 30940138 PMCID: PMC6444819 DOI: 10.1186/s12934-019-1112-2] [Citation(s) in RCA: 90] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Accepted: 03/20/2019] [Indexed: 12/21/2022] Open
Abstract
Non-conventional yeasts are playing important roles as cell factories for bioproduction of biofuels, food additives and proteins with outstanding natural characteristics. However, the precise genome editing is challenging in non-conventional yeasts due to lack of efficient genetic tools. In the past few years, CRISPR-based genome editing worked as a revolutionary tool for genetic engineering and showed great advantages in cellular metabolic engineering. Here, we review the current advances and barriers of CRISPR-Cas9 for genome editing in non-conventional yeasts and propose the possible solutions in enhancing its efficiency for precise genetic engineering.
Collapse
Affiliation(s)
- Peng Cai
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023 People’s Republic of China
- School of Life Science and Biotechnology, Dalian University of Technology, Dalian, 116023 People’s Republic of China
| | - Jiaoqi Gao
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023 People’s Republic of China
| | - Yongjin Zhou
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023 People’s Republic of China
| |
Collapse
|
20
|
Yang P, Jiang S, Wu Y, Hou Z, Zheng Z, Cao L, Du M, Jiang S. Recombinant Expression of Serratia marcescens Outer Membrane Phospholipase A (A1) in Pichia pastoris and Immobilization With Graphene Oxide-Based Fe 3O 4 Nanoparticles for Rapeseed Oil Degumming. Front Microbiol 2019; 10:334. [PMID: 30846983 PMCID: PMC6393389 DOI: 10.3389/fmicb.2019.00334] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Accepted: 02/08/2019] [Indexed: 11/13/2022] Open
Abstract
Enzymatic degumming is an effective approach to produce nutritional, safe, and healthy refined oil. However, the high cost and low efficiency of phospholipase limit the application of enzymatic degumming. In this study, an 879 bp outer membrane phospholipase A (A1) (OM-PLA1) gene encoding 292 amino acid residues was isolated from the genome of Serratia marcescens. The recombinant OM-PLA1 profile of appropriately 33 KDa was expressed by the engineered Pichia pastoris GS115. The OM-PLA1 activity was 21.2 U/mL with the induction of 1 mM methanol for 72 h. The expression efficiencies of OM-PLA1 were 0.29 U/mL/h and 1.06 U/mL/OD600. A complex of magnetic graphene oxide (MGO) and OM-PLA1 (MGO-OM-PLA1) was prepared by immobilizing OM-PLA1 with graphene oxide-based Fe3O4 nanoparticles by cross-linking with glutaraldehyde. The content of phosphorus decreased to 5.1 mg/kg rapeseed oil from 55.6 mg/kg rapeseed oil with 0.02% MGO-OM-PLA1 (w/w) at 50°C for 4 h. MGO-OM-PLA1 retained 51.7% of the initial activity after 13 times of continuous recycling for the enzymatic degumming of rapeseed oil. This study provided an effective approach for the enzymatic degumming of crude vegetable oil by developing a novel phospholipase and improving the degumming technology.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Shaotong Jiang
- Anhui Key Laboratory of Intensive Processing of Agricultural Products, College of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| |
Collapse
|