1
|
Vergaro V, Dell'Anna MM, Shahsavari HR, Baldassarre F, Migoni D, Mastrorilli P, Fanizzi FP, Ciccarella G. Synthesis of a light-responsive platinum curcumin complex, chemical and biological investigations and delivery to tumor cells by means of polymeric nanoparticles. NANOSCALE ADVANCES 2023; 5:5340-5351. [PMID: 37767039 PMCID: PMC10521244 DOI: 10.1039/d3na00200d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 08/04/2023] [Indexed: 09/29/2023]
Abstract
Platinum-based anticancer drugs are common in chemotherapy, but problems such as systemic toxicity and acquired resistance of some tumors hamper their clinical applications and therapeutic efficacy. It is necessary to synthesize Pt-based drugs and explore strategies to reduce side effects and improve pharmacokinetic profiles. Photo-responsive chemotherapeutics have emerged as an alternative strategy against several cancers, as photoactivation offers spatial selectivity and fewer side effects. Here, we combine chemical synthesis and nanotechnology to create a multifunctional platinum drug delivery system based on the novel metal complex [Pt(ppy)(curc)] (ppy = deprotonated 2-phenylpyridine, curc = deprotonated curcumin)] embodying the naturally occurring bioactive molecule, curcumin. The ultrasonication method coupled with the layer-by-layer technology was employed to produce nanocolloids, which demonstrated a good biocompatibility, higher solubility in aqueous solution, stability, large drug loading, and good biological activity in comparison with the free drug. In vitro release experiments revealed that the polymeric nanoformulation is relatively stable under physiological conditions (pH = 7.4 and 37 °C) but sensitive to acidic environments (pH = 5.6 and 37 °C) which would trigger the release of the loaded drug. Our approach modifies the bioavailability of this Pt-based drug increasing its therapeutic action in terms of both cytotoxic and anti-metastasis effects.
Collapse
Affiliation(s)
- Viviana Vergaro
- Biological and Environmental Sciences Department, UdR INSTM of Lecce University of Salento Via Monteroni 73100 Lecce Italy
- Institute of Nanotechnology, CNR NANOTEC, Consiglio Nazionale delle Ricerche Via Monteroni 73100 Lecce Italy
| | | | - Hamid R Shahsavari
- DICATECh, Politecnico di Bari via Orabona, 4 70125 Bari Italy
- Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS) Zanjan 45137-66731 Iran
| | - Francesca Baldassarre
- Biological and Environmental Sciences Department, UdR INSTM of Lecce University of Salento Via Monteroni 73100 Lecce Italy
- Institute of Nanotechnology, CNR NANOTEC, Consiglio Nazionale delle Ricerche Via Monteroni 73100 Lecce Italy
| | - Danilo Migoni
- Biological and Environmental Sciences Department, UdR INSTM of Lecce University of Salento Via Monteroni 73100 Lecce Italy
| | | | - Francesco Paolo Fanizzi
- Biological and Environmental Sciences Department, UdR INSTM of Lecce University of Salento Via Monteroni 73100 Lecce Italy
| | - Giuseppe Ciccarella
- Biological and Environmental Sciences Department, UdR INSTM of Lecce University of Salento Via Monteroni 73100 Lecce Italy
- Institute of Nanotechnology, CNR NANOTEC, Consiglio Nazionale delle Ricerche Via Monteroni 73100 Lecce Italy
| |
Collapse
|
2
|
Theoretical study of the impact of metal complexation on the reactivity properties of Curcumin and its diacetylated derivative as antioxidant agents. J Mol Model 2021; 27:192. [PMID: 34057657 DOI: 10.1007/s00894-021-04768-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Accepted: 04/20/2021] [Indexed: 10/21/2022]
Abstract
The chemical behavior of Curcumin and its derivatives as antioxidant and metal chelator has become the subject of intense experimental research. In this work, a theoretical study was conducted with the aim to investigate whether the acetylation of the aromatic group in Curcumin, which makes it more lipophilic, will alter its biological activities. Also, we selected from the literature metal complexes of Curcumin and its diacetylated derivative with Ga(III) and In(III), in order to discriminate the molecular active sites of the investigated molecules in which the oxidative process occurs and to obtain information about their antioxidation mechanisms. The geometrical structures and electronic properties of these compounds have been obtained using the density functional theory (DFT) method, known for its accurate results. As our other objective is to understand the factors driving biological behavior of all the studied compounds as well as the impact of the metal complexation of Curcumin and its diacetylated derivative, we provided here evidences to explain experimental observations from a molecular reactivity perspective.
Collapse
|
3
|
Pettinari R, Marchetti F, Tombesi A, Duan F, Zhou L, Messori L, Giacomelli C, Marchetti L, Trincavelli ML, Marzo T, La Mendola D, Balducci G, Alessio E. Ruthenium(II) 1,4,7-trithiacyclononane complexes of curcumin and bisdemethoxycurcumin: Synthesis, characterization, and biological activity. J Inorg Biochem 2021; 218:111387. [PMID: 33721720 DOI: 10.1016/j.jinorgbio.2021.111387] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 01/21/2021] [Accepted: 02/02/2021] [Indexed: 12/29/2022]
Abstract
Two cationic ruthenium(II) 1,4,7-trithiacyclononane ([9]aneS3) complexes of curcumin (curcH) and bisdemethoxycurcumin (bdcurcH), namely [Ru(curc)(dmso-S)([9]aneS3)]Cl (1) and [Ru(bdcurc)(dmso-S)([9]aneS3)]Cl (2) were prepared from the [RuCl2(dmso-S)([9]-aneS3)] precursor and structurally characterized, both in solution and in the solid state by X-ray crystallography. The corresponding PTA complexes [Ru(curc)(PTA)([9]aneS3)]Cl (3) and [Ru(bdcurc)(PTA)([9]aneS3)]Cl (4) have been also synthesized and characterized (PTA = 1,3,5-triaza-7-phosphaadamantane). Bioinorganic studies relying on mass spectrometry were performed on complexes 1-4 to assess their interactions with the model protein lysozyme. Overall, a rather limited reactivity with lysozyme was highlighted accompanied by a modest cytotoxic potency against three representative cancer cell lines. The moderate pharmacological activity is likely connected to the relatively high stability of these complexes.
Collapse
Affiliation(s)
- Riccardo Pettinari
- School of Pharmacy, University of Camerino, Via S. Agostino 1, 62032 Camerino, MC, Italy.
| | - Fabio Marchetti
- School of Science and Technology, University of Camerino, Via S. Agostino 1, 62032 Camerino, MC, Italy
| | - Alessia Tombesi
- School of Science and Technology, University of Camerino, Via S. Agostino 1, 62032 Camerino, MC, Italy
| | - Fenghe Duan
- School of Pharmacy, University of Camerino, Via S. Agostino 1, 62032 Camerino, MC, Italy
| | - Liming Zhou
- Henan Provincial Key Laboratory of Surface and Interface Science, Zhengzhou University of Light Industry, Zhengzhou, 450002, PR China
| | - Luigi Messori
- Department of Chemistry, University of Florence, Via della Lastruccia 3-13, Sesto Fiorentino, Florence, Italy
| | - Chiara Giacomelli
- Department of Pharmacy, University of Pisa, Via Bonanno Pisano, 6, 56126, Pisa, Italy
| | - Laura Marchetti
- Department of Pharmacy, University of Pisa, Via Bonanno Pisano, 6, 56126, Pisa, Italy
| | | | - Tiziano Marzo
- Department of Pharmacy, University of Pisa, Via Bonanno Pisano, 6, 56126, Pisa, Italy
| | - Diego La Mendola
- Department of Pharmacy, University of Pisa, Via Bonanno Pisano, 6, 56126, Pisa, Italy
| | - Gabriele Balducci
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Via L. Giorgieri 1, Trieste, Italy
| | - Enzo Alessio
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Via L. Giorgieri 1, Trieste, Italy
| |
Collapse
|
4
|
Pham CT, Pham TT, Nguyen HH, Trieu TN. Syntheses, Structures, and Bioactivities Evaluation of some Transition Metal Complexes with 4,4'-Diacetylcurcumin. Z Anorg Allg Chem 2020. [DOI: 10.1002/zaac.202000088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Chien Thang Pham
- Department of Inorganic Chemistry; VNU University of Science; Vietnam National University Hanoi; 19 Le Thanh Tong Hoan Kiem Hanoi Vietnam
| | - Thu Thuy Pham
- Department of Inorganic Chemistry; VNU University of Science; Vietnam National University Hanoi; 19 Le Thanh Tong Hoan Kiem Hanoi Vietnam
| | - Hung Huy Nguyen
- Department of Inorganic Chemistry; VNU University of Science; Vietnam National University Hanoi; 19 Le Thanh Tong Hoan Kiem Hanoi Vietnam
| | - Thi Nguyet Trieu
- Department of Inorganic Chemistry; VNU University of Science; Vietnam National University Hanoi; 19 Le Thanh Tong Hoan Kiem Hanoi Vietnam
| |
Collapse
|
5
|
Biancalana L, Gruchała M, Batchelor LK, Błauż A, Monti A, Pampaloni G, Rychlik B, Dyson PJ, Marchetti F. Conjugating Biotin to Ruthenium(II) Arene Units via Phosphine Ligand Functionalization. Eur J Inorg Chem 2019. [DOI: 10.1002/ejic.201900922] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Lorenzo Biancalana
- Dipartimento di Chimica e Chimica Industriale Università di Pisa Via G. Moruzzi 13 56124 Pisa Italy
| | - Martyna Gruchała
- Cytometry Lab Department of Molecular Biophysics University of Łódź ul. Pomorska 141/143 90‐236 Łódź Poland
| | - Lucinda K. Batchelor
- Institut des Sciences et Ingénierie Chimiques Ecole Polytechnique Fédérale de Lausanne (EPFL) 1015 Lausanne Switzerland
| | - Andrzej Błauż
- Cytometry Lab Department of Molecular Biophysics University of Łódź ul. Pomorska 141/143 90‐236 Łódź Poland
| | - Andrea Monti
- Dipartimento di Chimica e Chimica Industriale Università di Pisa Via G. Moruzzi 13 56124 Pisa Italy
| | - Guido Pampaloni
- Dipartimento di Chimica e Chimica Industriale Università di Pisa Via G. Moruzzi 13 56124 Pisa Italy
| | - Błażej Rychlik
- Cytometry Lab Department of Molecular Biophysics University of Łódź ul. Pomorska 141/143 90‐236 Łódź Poland
| | - Paul J. Dyson
- Institut des Sciences et Ingénierie Chimiques Ecole Polytechnique Fédérale de Lausanne (EPFL) 1015 Lausanne Switzerland
| | - Fabio Marchetti
- Dipartimento di Chimica e Chimica Industriale Università di Pisa Via G. Moruzzi 13 56124 Pisa Italy
| |
Collapse
|
6
|
Grabner S, Modec B. Zn(II) Curcuminate Complexes with 2,2'-bipyridine and Carboxylates. Molecules 2019; 24:E2540. [PMID: 31336808 PMCID: PMC6680645 DOI: 10.3390/molecules24142540] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 07/09/2019] [Accepted: 07/09/2019] [Indexed: 01/08/2023] Open
Abstract
Two novel zinc(II) compounds with curcuminate (abbreviated as cur-), [Zn(CH3COO)(cur)(bpy)](1)·CH3OH·2H2O (bpy = 2,2'-bipyridine) and [Zn(PhCOO)(cur)(bpy)] (2)·CH3OH, have been synthesized and characterized. Their composition has been determined by single-crystal X-ray structure analysis. Complexes 1 and 2 are similar: in both a five-fold coordination environment of zinc(II) consists of a monodentate carboxylate, a chelating bidentate 2,2'-bipyridine, and curcuminate, which is bound via a deprotonated 1,3-dione moiety. In 1, 2,2'-bipyridine nitrogen atoms and curcuminate oxygen atoms form the base of a square pyramid, whereas the acetate oxygen occupies its apex. The O3N2 donor set in 2 defines a polyhedron which more closely resembles a trigonal bipyramid. The packing in the crystal lattices of both compounds is governed by hydrogen-bonds. Complexes 1 and 2 display higher stability than curcumin in buffered media at pH = 7.0, however, the degradation of coordinated cur- is comparable to that of yellow pigment curcumin (curH) when the pH is raised to 7.2. Both complexes 1 and 2 in DMSO exhibit fluorescence with Stokes shifts of 5367 and 4634 cm-1, respectively.
Collapse
Affiliation(s)
- Sabina Grabner
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Večna pot 113, 1000 Ljubljana, Slovenia.
| | - Barbara Modec
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Večna pot 113, 1000 Ljubljana, Slovenia.
| |
Collapse
|
7
|
Censi V, Caballero AB, Pérez-Hernández M, Soto-Cerrato V, Korrodi-Gregório L, Pérez-Tomás R, Dell'Anna MM, Mastrorilli P, Gamez P. DNA-binding and in vitro cytotoxic activity of platinum(II) complexes of curcumin and caffeine. J Inorg Biochem 2019; 198:110749. [PMID: 31200320 DOI: 10.1016/j.jinorgbio.2019.110749] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 06/03/2019] [Accepted: 06/05/2019] [Indexed: 02/07/2023]
Abstract
Three Pt(II) complexes containing the natural ligands curcumin and caffeine, namely [Pt(curc)(PPh3)2]Cl (1), [PtCl(curc)(DMSO)] (2) (curc = deprotonated curcumin) and trans-[Pt(caffeine)Cl2(DMSO)] (3), were synthesized and fully characterized. The data obtained suggest that, for both 1 and 2, the anion of curcumin is coordinated to the platinum ion via the oxygen atoms of the β-diketonate moiety. Spectroscopic features reveal that in 2 and 3, a DMSO molecule is S-bonded to the metal centre. For 3, all data indicate a square-planar geometry formed by a 9-N bonded caffeine, two trans chloride anions and a DMSO. The three complexes undergo changes in solution upon incubation for 24 h; 1 and 2 release curcumin while 3 isomerizes from trans to cis configuration. The DNA-binding and cytotoxic properties of 1-3 were evaluated in vitro. Despite their structural similarity, curcuminate-containing 1 and 2 exhibit distinct DNA interactions. While 1 appears to intercalate between nucleobase pairs, inducing the oxidative degradation of the biomolecule, 2 behaves as a groove binder, by means of electrostatic forces. Caffeine-containing 3 exhibits a behaviour that is comparable to that of 2. Complexes 1 and 2 showed moderate to high cytotoxicity and selectivity against several cancer cell lines, while 3 is inactive. Compounds 1 and 2 can be further activated by visible-light irradiation.
Collapse
Affiliation(s)
- Valentina Censi
- Department of Inorganic and Organic Chemistry, Inorganic Chemistry Section, University of Barcelona, Martí i Franquès 1-11, 08028 Barcelona, Spain; DICATECh, Politecnico di Bari, via Orabona, 4, 70125 Bari, Italy
| | - Ana B Caballero
- Department of Inorganic and Organic Chemistry, Inorganic Chemistry Section, University of Barcelona, Martí i Franquès 1-11, 08028 Barcelona, Spain; Institute of Nanoscience and Nanotechnology (IN2UB), Universitat de Barcelona, Spain.
| | - Marta Pérez-Hernández
- Department of Pathology and Experimental Therapeutics, Faculty of Medicine, University of Barcelona, Campus Bellvitge, Feixa Llarga s/n, 08907 L'Hospitalet de Llobregat, Spain
| | - Vanessa Soto-Cerrato
- Department of Pathology and Experimental Therapeutics, Faculty of Medicine, University of Barcelona, Campus Bellvitge, Feixa Llarga s/n, 08907 L'Hospitalet de Llobregat, Spain
| | - Luís Korrodi-Gregório
- Department of Pathology and Experimental Therapeutics, Faculty of Medicine, University of Barcelona, Campus Bellvitge, Feixa Llarga s/n, 08907 L'Hospitalet de Llobregat, Spain
| | - Ricardo Pérez-Tomás
- Department of Pathology and Experimental Therapeutics, Faculty of Medicine, University of Barcelona, Campus Bellvitge, Feixa Llarga s/n, 08907 L'Hospitalet de Llobregat, Spain
| | | | | | - Patrick Gamez
- Department of Inorganic and Organic Chemistry, Inorganic Chemistry Section, University of Barcelona, Martí i Franquès 1-11, 08028 Barcelona, Spain; Institute of Nanoscience and Nanotechnology (IN2UB), Universitat de Barcelona, Spain; Catalan Institution for Research and Advanced Studies (ICREA), Passeig Lluís Companys 23, 08010 Barcelona, Spain.
| |
Collapse
|
8
|
Colombo A, Fontani M, Dragonetti C, Roberto D, Williams JAG, Scotto di Perrotolo R, Casagrande F, Barozzi S, Polo S. A Highly Luminescent Tetrahydrocurcumin Ir
III
Complex with Remarkable Photoactivated Anticancer Activity. Chemistry 2019; 25:7948-7952. [DOI: 10.1002/chem.201901527] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Indexed: 12/27/2022]
Affiliation(s)
- Alessia Colombo
- Dipartimento di Chimicadell'Università degli Studi di Milano, and UdR INSTM di Milano via Golgi 19 20133 Milan Italy
| | - Mattia Fontani
- Dipartimento di Chimicadell'Università degli Studi di Milano, and UdR INSTM di Milano via Golgi 19 20133 Milan Italy
| | - Claudia Dragonetti
- Dipartimento di Chimicadell'Università degli Studi di Milano, and UdR INSTM di Milano via Golgi 19 20133 Milan Italy
| | - Dominique Roberto
- Dipartimento di Chimicadell'Università degli Studi di Milano, and UdR INSTM di Milano via Golgi 19 20133 Milan Italy
| | | | | | - Francesca Casagrande
- IFOMFondazione Istituto FIRC di Oncologia Molecolare Via Adamello 16 20145 Milan Italy
| | - Sara Barozzi
- IFOMFondazione Istituto FIRC di Oncologia Molecolare Via Adamello 16 20145 Milan Italy
| | - Simona Polo
- IFOMFondazione Istituto FIRC di Oncologia Molecolare Via Adamello 16 20145 Milan Italy
- Dipartimento di Oncologia ed Emato-OncologiaUniversità degli Studi di Milano 20139 Milan Italy
| |
Collapse
|
9
|
Mészáros JP, Poljarevic JM, Gál GT, May NV, Spengler G, Enyedy ÉA. Comparative solution and structural studies of half-sandwich rhodium and ruthenium complexes bearing curcumin and acetylacetone. J Inorg Biochem 2019; 195:91-100. [PMID: 30928657 DOI: 10.1016/j.jinorgbio.2019.02.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 02/15/2019] [Accepted: 02/26/2019] [Indexed: 01/29/2023]
Abstract
Half-sandwich organometallic complexes of curcumin are extensively investigated as anticancer compounds. Speciation studies were performed to explore the solution stability of curcumin complexes formed with [Rh(η5-C5Me5)(H2O)3]2+. Acetylacetone (Hacac), as the simplest β-diketone ligand bearing (O,O) donor set, was involved for comparison and its Ru(η6‑p‑cymene), Ru(η6‑toluene) complexes were also studied. 1H NMR, UV-visible and pH-potentiometric titrations revealed a clear trend of stability constants of the acac complexes: Ru(η6‑p‑cymene) > Ru(η6‑toluene) > Rh(η5-C5Me5). Despite this order, the highest extent of complex formation is seen for the Rh(η5-C5Me5) complexes at pH 7.4. Formation constant of [Rh(η5-C5Me5)(H2curcumin)(H2O)]+ reveals similar solution stability to that of the acac complex. Additionally, structures of two complexes were determined by X-ray crystallography. The in vitro cytotoxicity of curcumin was not improved by the complexation with these organometallic cations.
Collapse
Affiliation(s)
- János P Mészáros
- Department of Inorganic and Analytical Chemistry, Interdisciplinary Excellence Centre, University of Szeged, Dóm tér 7, H-6720 Szeged, Hungary
| | - Jelena M Poljarevic
- Department of Inorganic and Analytical Chemistry, Interdisciplinary Excellence Centre, University of Szeged, Dóm tér 7, H-6720 Szeged, Hungary; University of Belgrade - Faculty of Chemistry, Studentski trg 12-16, 11000 Belgrade, Serbia
| | - G Tamás Gál
- Research Centre for Natural Sciences Hungarian Academy of Sciences, Magyar tudósok körútja 2, H-1117 Budapest, Hungary
| | - Nóra V May
- Research Centre for Natural Sciences Hungarian Academy of Sciences, Magyar tudósok körútja 2, H-1117 Budapest, Hungary
| | - Gabriella Spengler
- Department of Medical Microbiology and Immunobiology, University of Szeged, Dóm tér 10, H-6720 Szeged, Hungary
| | - Éva A Enyedy
- Department of Inorganic and Analytical Chemistry, Interdisciplinary Excellence Centre, University of Szeged, Dóm tér 7, H-6720 Szeged, Hungary.
| |
Collapse
|
10
|
Halevas E, Papadopoulos TA, Swanson CH, Smith GC, Hatzidimitriou A, Katsipis G, Pantazaki A, Sanakis I, Mitrikas G, Ypsilantis K, Litsardakis G, Salifoglou A. In-depth synthetic, physicochemical and in vitro biological investigation of a new ternary V(IV) antioxidant material based on curcumin. J Inorg Biochem 2018; 191:94-111. [PMID: 30476714 DOI: 10.1016/j.jinorgbio.2018.10.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 10/21/2018] [Accepted: 10/23/2018] [Indexed: 01/28/2023]
Abstract
Curcumin is a natural product with a broad spectrum of beneficial properties relating to pharmaceutical applications, extending from traditional remedies to modern cosmetics. The biological activity of such pigments, however, is limited by their solubility and bioavailability, thereby necessitating new ways of achieving optimal tissue cellular response and efficacy as drugs. Metal ion complexation provides a significant route toward improvement of curcumin stability and biological activity, with vanadium being a representative such metal ion, amply encountered in biological systems and exhibiting exogenous bioactivity through potential pharmaceuticals. Driven by the need to optimally increase curcumin bioavailability and bioactivity through complexation, synthetic efforts were launched to seek out stable species, ultimately leading to the synthesis and isolation of a new ternary V(IV)-curcumin-(2,2'-bipyridine) complex. Physicochemical characterization (elemental analysis, FT-IR, Thermogravimetry (TGA), UV-Visible, NMR, ESI-MS, Fluorescence, X-rays) portrayed the solid-state and solution properties of the ternary complex. Pulsed-EPR spectroscopy, in frozen solutions, suggested the presence of two species, cis- and trans-conformers. Density Functional Theory (DFT) calculations revealed the salient features and energetics of the two conformers, thereby complementing EPR spectroscopy. The well-described profile of the vanadium species led to its in vitro biological investigation involving toxicity, cell metabolism inhibition in S. cerevisiae cultures, Reactive Oxygen Species (ROS)-suppressing capacity, lipid peroxidation, and plasmid DNA degradation. A multitude of bio-assays and methodologies, in comparison to free curcumin, showed that it exhibits its antioxidant potential in a concentration-dependent fashion, thereby formulating a bioreactivity profile supporting development of new efficient vanado-pharmaceuticals, targeting (extra)intra-cellular processes under (patho)physiological conditions.
Collapse
Affiliation(s)
- E Halevas
- Laboratory of Inorganic Chemistry and Advanced Materials, Department of Chemical Engineering, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece; Laboratory of Materials for Electrotechnics, Department of Electrical and Computer Engineering, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece
| | - T A Papadopoulos
- Department of Natural Sciences, Thornton Science Park, University of Chester, Chester, CH3 4NU, UK
| | - C H Swanson
- Department of Natural Sciences, Thornton Science Park, University of Chester, Chester, CH3 4NU, UK
| | - G C Smith
- Department of Natural Sciences, Thornton Science Park, University of Chester, Chester, CH3 4NU, UK
| | - A Hatzidimitriou
- Laboratory of Inorganic Chemistry, Department of Chemistry, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece
| | - G Katsipis
- Laboratory of Biochemistry, Department of Chemistry, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece
| | - A Pantazaki
- Laboratory of Biochemistry, Department of Chemistry, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece
| | - I Sanakis
- Institute of Nanoscience and Nanotechnology, N.C.S.R. "Demokritos", Aghia Paraskevi 15310, Attiki, Greece
| | - G Mitrikas
- Institute of Nanoscience and Nanotechnology, N.C.S.R. "Demokritos", Aghia Paraskevi 15310, Attiki, Greece
| | - K Ypsilantis
- Department of Chemistry, University of Ioannina, Ioannina 45110, Greece
| | - G Litsardakis
- Laboratory of Materials for Electrotechnics, Department of Electrical and Computer Engineering, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece
| | - A Salifoglou
- Laboratory of Inorganic Chemistry and Advanced Materials, Department of Chemical Engineering, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece.
| |
Collapse
|
11
|
Glenister A, Chen CKJ, Tondl EM, Paterson D, Hambley TW, Renfrew AK. Targeting curcumin to specific tumour cell environments: the influence of ancillary ligands. Metallomics 2018; 9:699-705. [PMID: 28488704 DOI: 10.1039/c6mt00275g] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Tumour-activation of prodrugs has the potential to improve the efficacy of anticancer agents while minimising systemic toxicity. Cobalt complexes are of interest in this respect as chaperones to deliver and release anticancer agents in the low oxygen, reducing environment of solid tumours. In addition to being able to release a cytotoxic ligand under the conditions of the tumour microenvironment, it is fundamental that the chaperone complex must also be able to penetrate through multiple cell layers to deliver the cytotoxin to all regions of the tumour. Herein, we report an investigation of the distribution and metabolism of two chaperone complexes of the anticancer agent curcumin within monolayer tumour cells and multicellular tumour spheroids. Using a combination of X-ray fluorescence microscopy, confocal fluorescence microscopy, and X-ray absorption spectroscopy, we demonstrate how the nature of the chaperone complex can profoundly influence the cellular uptake, distribution, and release mechanism of curcumin, providing key insights into the design of this class of prodrug.
Collapse
Affiliation(s)
- A Glenister
- School of Chemistry, University of Sydney, New South Wales, 2006, Australia.
| | | | | | | | | | | |
Collapse
|
12
|
Pettinari R, Marchetti F, Di Nicola C, Pettinari C. Half-Sandwich Metal Complexes with β-Diketone-Like Ligands and Their Anticancer Activity. Eur J Inorg Chem 2018. [DOI: 10.1002/ejic.201800400] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Riccardo Pettinari
- School of Pharmacy; Chemistry Section; University of Camerino; Via S. Agostino 1 62032 Camerino MC Italy
| | - Fabio Marchetti
- School of Science and Technology; Chemistry Section; University of Camerino; Via S. Agostino 1 62032 Camerino MC Italy
| | - Corrado Di Nicola
- School of Science and Technology; Chemistry Section; University of Camerino; Via S. Agostino 1 62032 Camerino MC Italy
| | - Claudio Pettinari
- School of Pharmacy; Chemistry Section; University of Camerino; Via S. Agostino 1 62032 Camerino MC Italy
| |
Collapse
|
13
|
Ahmadi F, Vahedpour T, Alizadeh AA. The evaluation of Cr-curcumin-DNA complexation by experimental and theoretical approaches. NUCLEOSIDES NUCLEOTIDES & NUCLEIC ACIDS 2018; 37:35-52. [PMID: 29336691 DOI: 10.1080/15257770.2017.1414241] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Chromium(III) chloride mediates DNA-DNA cross-linking. Some chromium complexes promote programmed cell death in specific ligand environment through binding to DNA. One strategy that can be supposed for reduction of Cr3+ binding affinity to DNA is using curcumin as a chelator. In the current study, the [Cr(Curcumin)(EtOH)2](NO3)2 (CCC) was synthesized and characterized by UV/Vis, FT-IR, CHN and spectrophotometric titration techniques. The mole ratio plot revealed a 1:1 complex between Cr3+ and curcumin in solution. Binding interaction of this complex with calf thymus-DNA (CT-DNA) was investigated using UV/Vis, circular dichroism (CD), FT-IR and cyclic voltammetry. The intrinsic binding constants of CCC with DNA, measured by UV/Vis and cyclic voltammetry, were 1.60 × 105 and 1.13 × 105, respectively. The thermodynamic studies showed that the reaction is enthalpy and entropy favoured. CD analysis revealed that only Λ-CCC interacts with DNA and Δ-CCC form has no tendency towards DNA. Based on FT-IR studies, it was understood that CCC interacts with DNA via minor groove binding. The docking simulation was carried out for finding the binding mode of CCC to DNA, too. All of data demonstrated that the curcumin significantly reduced the affinity of Cr3+ to the DNA and the form of Δ-CCC has no interaction with DNA.
Collapse
Affiliation(s)
- Farhad Ahmadi
- a Medicinal Chemistry Department , Faculty of Pharmacy-International Campous, Iran University of Medical Sciences
| | - Teymour Vahedpour
- b Biotechnology Research Center, Tabriz University of Medical Sciences , Tabriz , Iran.,c Faculty of pharmacy, Tabriz University of Medical Sciences , Tabriz , Iran
| | - Ali Akbar Alizadeh
- b Biotechnology Research Center, Tabriz University of Medical Sciences , Tabriz , Iran
| |
Collapse
|
14
|
Etcheverry-Berríos A, Olavarría I, Perrin ML, Díaz-Torres R, Jullian D, Ponce I, Zagal JH, Pavez J, Vásquez SO, van der Zant HSJ, Dulić D, Aliaga-Alcalde N, Soler M. Multiscale Approach to the Study of the Electronic Properties of Two Thiophene Curcuminoid Molecules. Chemistry 2016; 22:12808-18. [PMID: 27458818 DOI: 10.1002/chem.201601187] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2016] [Indexed: 12/26/2022]
Abstract
We studied the electronic and conductance properties of two thiophene-curcuminoid molecules, 2-thphCCM (1) and 3-thphCCM (2), in which the only structural difference is the position of the sulfur atoms in the thiophene terminal groups. We used electrochemical techniques as well as UV/Vis absorption studies to obtain the values of the HOMO-LUMO band gap energies, showing that molecule 1 has lower values than 2. Theoretical calculations show the same trend. Self-assembled monolayers (SAMs) of these molecules were studied by using electrochemistry, showing that the interaction with gold reduces drastically the HOMO-LUMO gap in both molecules to almost the same value. Single-molecule conductance measurements show that molecule 2 has two different conductance values, whereas molecule 1 exhibits only one. Based on theoretical calculations, we conclude that the lowest conductance value, similar in both molecules, corresponds to a van der Waals interaction between the thiophene ring and the electrodes. The one order of magnitude higher conductance value for molecule 2 corresponds to a coordinate (dative covalent) interaction between the sulfur atoms and the gold electrodes.
Collapse
Affiliation(s)
- Alvaro Etcheverry-Berríos
- Departamento de Ciencia de los Materiales, Facultad de Ciencias Físicas y Matemáticas, Universidad de Chile, Beaucheff 851, Santiago, Chile
| | - Ignacio Olavarría
- Kavli Institute of Nanoscience, Delft University of Technology, Lorentzweg 1, 2628 CJ, Delft, The Netherlands
| | - Mickael L Perrin
- Kavli Institute of Nanoscience, Delft University of Technology, Lorentzweg 1, 2628 CJ, Delft, The Netherlands
| | - Raúl Díaz-Torres
- Departament de Química Inorgànica, Universitat de Barcelona-ICMAB (Institute of MaterialsScience of Barcelona)-CSIC, Diagonal 645, 08028, Barcelona, Spain
| | - Domingo Jullian
- Departamento de Ciencia de los Materiales, Facultad de Ciencias Físicas y Matemáticas, Universidad de Chile, Beaucheff 851, Santiago, Chile
| | - Ingrid Ponce
- Facultad de Química y Biología, Universidad de Santiago de Chile, Av. Libertador Bernardo Ohiggins 3363, Estación Central, Santiago, Chile
| | - José H Zagal
- Facultad de Química y Biología, Universidad de Santiago de Chile, Av. Libertador Bernardo Ohiggins 3363, Estación Central, Santiago, Chile
| | - Jorge Pavez
- Facultad de Química y Biología, Universidad de Santiago de Chile, Av. Libertador Bernardo Ohiggins 3363, Estación Central, Santiago, Chile
| | - Sergio O Vásquez
- Departamento de Ciencia de los Materiales, Facultad de Ciencias Físicas y Matemáticas, Universidad de Chile, Beaucheff 851, Santiago, Chile
| | - Herre S J van der Zant
- Kavli Institute of Nanoscience, Delft University of Technology, Lorentzweg 1, 2628 CJ, Delft, The Netherlands
| | - Diana Dulić
- Departamento de Física, Facultad de Ciencias Físicas y Matemáticas, Universidad de Chile, Av. Blanco 2008, Santiago, Chile.
| | - Núria Aliaga-Alcalde
- ICREA Researcher (Institució Catalana de Recerca i Estudis Avançats) at the ICMAB-CSIC, Campus de la Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain.
| | - Monica Soler
- Departamento de Ciencia de los Materiales, Facultad de Ciencias Físicas y Matemáticas, Universidad de Chile, Beaucheff 851, Santiago, Chile.
| |
Collapse
|
15
|
Caruso F, Pettinari R, Rossi M, Monti E, Gariboldi MB, Marchetti F, Pettinari C, Caruso A, Ramani MV, Subbaraju GV. The in vitro antitumor activity of arene-ruthenium(II) curcuminoid complexes improves when decreasing curcumin polarity. J Inorg Biochem 2016; 162:44-51. [PMID: 27293144 DOI: 10.1016/j.jinorgbio.2016.06.002] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2015] [Revised: 05/21/2016] [Accepted: 06/03/2016] [Indexed: 01/01/2023]
Abstract
The antitumor activity of ruthenium(II) arene (p-cymene, benzene, hexamethylbenzene) derivatives containing modified curcumin ligands (HCurcI=(1E,4Z,6E)-5-hydroxy-1,7-bis(3,4-dimethoxyphenyl)hepta-1,4,6-trien-3-one and HCurcII=(1E,4Z,6E)-5-hydroxy-1,7-bis(4-methoxyphenyl)hepta-1,4,6-trien-3-one) is described. These have been characterized by IR, ESI-MS and NMR spectroscopy. The X-ray crystal structure of HCurcI has been determined and compared with its related Ru complex. Four complexes have been evaluated against five tumor cell lines, whose best activities [IC50 (μM)] are: breast MCF7, 9.7; ovarian A2780, 9.4; glioblastoma U-87, 9.4; lung carcinoma A549, 13.7 and colon-rectal HCT116, 15.5; they are associated with apoptotic features. These activities are improved when compared to the already known corresponding curcumin complex, (p-cymene)Ru(curcuminato)Cl, about twice for the breast and ovarian cancer, 4.7 times stronger in the lung cancer and about 6.6 times stronger in the glioblastoma cell lines. In fact, the less active (p-cymene)Ru(curcuminato)Cl complex only shows similar activity to two novel complexes in the colon cancer cell line. Comparing antitumor activity between these novel complexes and their related curcuminoids, improvement of antiproliferative activity is seen for a complex containing CurcII in A2780, A549 and U87 cell lines, whose IC50 are halved. Therefore, after replacing OH curcumin groups with OCH3, the obtained species HCurcI and its Ru complexes have increased antitumor activity compared to curcumin and its related complex. In contrast, HCurcII is less cytotoxic than curcumin but its related complex [(p-cymene)Ru(CurcII)Cl] is twice as active as HCurcII in 3 cell lines. Results from these novel arene-Ru curcuminoid species suggest that their increased cytotoxicity on tumor cells correlate with increase of curcuminoid lipophilicity.
Collapse
Affiliation(s)
- Francesco Caruso
- Vassar College, Department of Chemistry, Poughkeepsie, NY 12604, USA.
| | - Riccardo Pettinari
- School of Science and Technology, Università di Camerino, via S. Agostino 1, 62032 Camerino, MC, Italy
| | - Miriam Rossi
- Vassar College, Department of Chemistry, Poughkeepsie, NY 12604, USA
| | - Elena Monti
- University of Insubria, Department of Structural and Functional Biology, Via A. da Giussano 10, 21052, Busto Arsizio, Varese, Italy
| | - Marzia Bruna Gariboldi
- University of Insubria, Department of Structural and Functional Biology, Via A. da Giussano 10, 21052, Busto Arsizio, Varese, Italy
| | - Fabio Marchetti
- School of Science and Technology, Università di Camerino, via S. Agostino 1, 62032 Camerino, MC, Italy
| | - Claudio Pettinari
- School of Pharmacy, Università di Camerino, via S. Agostino 1, 62032 Camerino, MC, Italy
| | - Alessio Caruso
- Vassar College, Department of Chemistry, Poughkeepsie, NY 12604, USA
| | - Modukuri V Ramani
- Natsol Laboratories Private Limited, Commercial Hub, J.N. Pharma City, Visakhapatnam 531019, India
| | - Gottumukkala V Subbaraju
- Natsol Laboratories Private Limited, Commercial Hub, J.N. Pharma City, Visakhapatnam 531019, India.
| |
Collapse
|
16
|
Fouillaud M, Venkatachalam M, Girard-Valenciennes E, Caro Y, Dufossé L. Anthraquinones and Derivatives from Marine-Derived Fungi: Structural Diversity and Selected Biological Activities. Mar Drugs 2016; 14:E64. [PMID: 27023571 PMCID: PMC4849068 DOI: 10.3390/md14040064] [Citation(s) in RCA: 100] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 02/12/2016] [Accepted: 03/08/2016] [Indexed: 12/11/2022] Open
Abstract
Anthraquinones and their derivatives constitute a large group of quinoid compounds with about 700 molecules described. They are widespread in fungi and their chemical diversity and biological activities recently attracted attention of industries in such fields as pharmaceuticals, clothes dyeing, and food colorants. Their positive and/or negative effect(s) due to the 9,10-anthracenedione structure and its substituents are still not clearly understood and their potential roles or effects on human health are today strongly discussed among scientists. As marine microorganisms recently appeared as producers of an astonishing variety of structurally unique secondary metabolites, they may represent a promising resource for identifying new candidates for therapeutic drugs or daily additives. Within this review, we investigate the present knowledge about the anthraquinones and derivatives listed to date from marine-derived filamentous fungi's productions. This overview highlights the molecules which have been identified in microorganisms for the first time. The structures and colors of the anthraquinoid compounds come along with the known roles of some molecules in the life of the organisms. Some specific biological activities are also described. This may help to open doors towards innovative natural substances.
Collapse
Affiliation(s)
- Mireille Fouillaud
- Laboratoire de Chimie des Substances Naturelles et des Sciences des Aliments-LCSNSA EA 2212, Université de la Réunion, 15 Avenue René Cassin, CS 92003, F-97744 Saint-Denis Cedex 9, Ile de la Réunion, France.
- Ecole Supérieure d'Ingénieurs Réunion Océan Indien-ESIROI, 2 Rue Joseph Wetzell, F-97490 Sainte-Clotilde, Ile de la Réunion, France.
| | - Mekala Venkatachalam
- Laboratoire de Chimie des Substances Naturelles et des Sciences des Aliments-LCSNSA EA 2212, Université de la Réunion, 15 Avenue René Cassin, CS 92003, F-97744 Saint-Denis Cedex 9, Ile de la Réunion, France.
| | - Emmanuelle Girard-Valenciennes
- Laboratoire de Chimie des Substances Naturelles et des Sciences des Aliments-LCSNSA EA 2212, Université de la Réunion, 15 Avenue René Cassin, CS 92003, F-97744 Saint-Denis Cedex 9, Ile de la Réunion, France.
| | - Yanis Caro
- Laboratoire de Chimie des Substances Naturelles et des Sciences des Aliments-LCSNSA EA 2212, Université de la Réunion, 15 Avenue René Cassin, CS 92003, F-97744 Saint-Denis Cedex 9, Ile de la Réunion, France.
- Ecole Supérieure d'Ingénieurs Réunion Océan Indien-ESIROI, 2 Rue Joseph Wetzell, F-97490 Sainte-Clotilde, Ile de la Réunion, France.
| | - Laurent Dufossé
- Laboratoire de Chimie des Substances Naturelles et des Sciences des Aliments-LCSNSA EA 2212, Université de la Réunion, 15 Avenue René Cassin, CS 92003, F-97744 Saint-Denis Cedex 9, Ile de la Réunion, France.
- Ecole Supérieure d'Ingénieurs Réunion Océan Indien-ESIROI, 2 Rue Joseph Wetzell, F-97490 Sainte-Clotilde, Ile de la Réunion, France.
| |
Collapse
|
17
|
Metal complexes of curcumin and curcumin derivatives for molecular imaging and anticancer therapy. Coord Chem Rev 2016. [DOI: 10.1016/j.ccr.2015.09.001] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
18
|
Pettinari R, Marchetti F, Pettinari C, Condello F, Petrini A, Scopelliti R, Riedel T, Dyson PJ. Organometallic rhodium(III) and iridium(III) cyclopentadienyl complexes with curcumin and bisdemethoxycurcumin co-ligands. Dalton Trans 2015; 44:20523-31. [PMID: 26548708 DOI: 10.1039/c5dt03037d] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A series of half-sandwich cyclopentadienyl rhodium(III) and iridium(III) complexes of the type [Cp*M(curc/bdcurc)Cl] and [Cp*M(curc/bdcurc)(PTA)][SO3CF3], in which Cp* = pentamethylcyclopentadienyl, curcH = curcumin and bdcurcH = bisdemethoxycurcumin as O^O-chelating ligands, and PTA = 1,3,5-triaza-7-phosphaadamantane, is described. The X-ray crystal structures of three of the complexes, i.e. [Cp*Rh(curc)(PTA)][SO3CF3] (5), [Cp*Rh(bdcurc)(PTA)][SO3CF3] (6) and [Cp*Ir(bdcurc)(PTA)][SO3CF3] (8), confirm the expected "piano-stool" geometry. With the exception of 5, the complexes are stable under pseudo-physiological conditions and are moderately cytotoxic to human ovarian carcinoma (A2780 and A2780cisR) cells and also to non-tumorigenic human embryonic kidney (HEK293) cells, but lack the cancer cell selectivity observed for related arene ruthenium(II) complexes.
Collapse
Affiliation(s)
- Riccardo Pettinari
- School of Pharmacy, University of Camerino, via S. Agostino 1, 62032 Camerino MC, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Banik B, Somyajit K, Nagaraju G, Chakravarty AR. Oxovanadium(IV) complexes of curcumin for cellular imaging and mitochondria targeted photocytotoxicity. Dalton Trans 2015; 43:13358-69. [PMID: 25069796 DOI: 10.1039/c4dt01487a] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Oxovanadium(IV) complexes [VO(R-tpy)(cur)](ClO4) (1, 2) of curcumin (Hcur) and terpyridine ligands (R-tpy) where R is phenyl (phtpy in 1) or p-triphenylphosphonium methylphenyl bromide (C6H4CH2PPh3Br) (TPP-phtpy in 2) were prepared and characterized and their DNA photocleavage activity, photocytotoxicity and cellular localization in cancer cells (HeLa and MCF-7) were studied. Acetylacetonate (acac) complexes [VO(R-tpy)(acac)](ClO4) of phtpy (3) and TPP-phtpy (4) were prepared and used as the control species. These complexes showed efficient cleavage of pUC19 DNA in visible light of 454 nm and near-IR light of 705 nm. Complexes 1 and 2 showed significant photocytotoxicity in visible light of 400-700 nm. FACS analysis showed sub-G1/G0 phase cell-cycle arrest in cancer cells when treated with 1 and 2 in visible light in comparison with the dark controls. Fluorescence microscopic studies revealed specific localization of the p-triphenylphosphonium complex 2 in the mitochondria of MCF-7 cancer cells whereas no such specificity was observed for complex 1.
Collapse
Affiliation(s)
- Bhabatosh Banik
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore 560012, India.
| | | | | | | |
Collapse
|
20
|
Wanninger S, Lorenz V, Subhan A, Edelmann FT. Metal complexes of curcumin--synthetic strategies, structures and medicinal applications. Chem Soc Rev 2015; 44:4986-5002. [PMID: 25964104 DOI: 10.1039/c5cs00088b] [Citation(s) in RCA: 247] [Impact Index Per Article: 27.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
This Tutorial Review presents an overview on the synthesis, characterization and applications of metal complexes containing curcumin (=1,7-bis(4-hydroxy-3-methoxyphenyl)-1,6-heptadiene-3,5-dione) and its derivatives as ligands. Innovative synthetic strategies leading to soluble and crystallizable metal curcumin complexes are outlined in detail. Special emphasis is placed on the highly promising and exciting medicinal applications of metal curcumin complexes, with the three most important areas being anticancer activity and selective cytotoxicity, anti-Alzheimer's disease activity, and antioxidative/neuroprotective effects. Overall, this Tutorial Review provides the first general overview of this emerging and rapidly expanding field of interdisciplinary research.
Collapse
Affiliation(s)
- Simon Wanninger
- Chemisches Institut der Otto-von-Guericke-Universität Magdeburg, Universitätsplatz 2, 39106 Magdeburg, Germany.
| | | | | | | |
Collapse
|
21
|
Synthesis and characterization of new biologically active palladium(II) complexes with (1E,6E)-1,7-bis(3,4-diethoxyphenyl)-1,6-heptadiene-3,5-dione. INORG CHEM COMMUN 2014. [DOI: 10.1016/j.inoche.2014.06.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
22
|
Ostrowski W, Dzikowska A, Frański R. Formation of curcumin molecular ion under electrospray ionisation conditions in the presence of metal cations. EUROPEAN JOURNAL OF MASS SPECTROMETRY (CHICHESTER, ENGLAND) 2014; 20:163-168. [PMID: 24895776 DOI: 10.1255/ejms.1251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Electrospray ionisation (ESI) mass spectra obtained for solutions containing curcumin, copper cation and other metal cations, namely Co2+, Ni2+, Mn2+ and Zn2+, have shown an abundant curcumin molecular ion at m/z 368. This ion was not formed for solutions containing curcumin and copper cations or for those containing curcumin and other metal cations. To the best of our knowledge, it is the first example of a system in which copper cations and other metal cations promote formation of organic radical cation under ESI conditions.
Collapse
|
23
|
Mawani Y, Orvig C. Improved separation of the curcuminoids, syntheses of their rare earth complexes, and studies of potential antiosteoporotic activity. J Inorg Biochem 2013; 132:52-8. [PMID: 24387940 DOI: 10.1016/j.jinorgbio.2013.12.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2013] [Revised: 12/09/2013] [Accepted: 12/13/2013] [Indexed: 10/25/2022]
Abstract
The first reported homogenous rare earth curcumin (HCurc; ((1E,6E)-1,7-bis(4-hydroxy-3-methoxyphenyl)hepta-1,6-diene-3,5-dione)) complexes with the formula ML3, where M(3+) is Eu(III), Gd(III) or Lu(III), were synthesized and characterized by mass spectrometry, infrared spectroscopy and, in the case of the lutetium complex, (1)H NMR spectroscopy. Most importantly an improved separation of the three curcuminoids, HCurc, HDMC ((1E,6E)-1-(4-hydroxy-3-methoxyphenyl)-7-(4-hydroxyphenyl)hepta-1,6-diene-3,5-dione) and HBDMC ((1E,6E)-1,7-bis(4-hydroxyphenyl)hepta-1,6-diene-3,5-dione) was realized using a combination of normal-phase column and phosphate-impregnated preparative-thin layer chromatographies. The toxicities of the metal curcumin complexes and ligands were investigated in MG-63 cells, an osteoblast-like cell line, for potential activity as antiosteoporotic agents.
Collapse
Affiliation(s)
- Yasmin Mawani
- Medicinal Inorganic Chemistry Group, Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada
| | - Chris Orvig
- Medicinal Inorganic Chemistry Group, Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada.
| |
Collapse
|
24
|
Hussain A, Somyajit K, Banik B, Banerjee S, Nagaraju G, Chakravarty AR. Enhancing the photocytotoxic potential of curcumin on terpyridyl lanthanide(III) complex formation. Dalton Trans 2013; 42:182-95. [PMID: 23108133 DOI: 10.1039/c2dt32042h] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Lanthanide(III) complexes [Ln(R-tpy)(cur)(NO3)2] (Ln = La(III) in 1, 2; Gd(III) in 5, 6) and [Ln(R-tpy)(scur)(NO3)2] (Ln = La(III) in 3, 4; Gd(III) in 7, 8), where R-tpy is 4′-phenyl-2,2′:6′,2′′-terpyridine (ph-tpy in 1, 3, 5, 7), 4′-(1-pyrenyl)-2,2′:6′,2′′-terpyridine (py-tpy in 2, 4, 6, 8), Hcur is curcumin (in 1, 2, 5, 6) and Hscur is diglucosylcurcumin (in 3, 4, 7, 8), were prepared and their DNA photocleavage activity and photocytotoxicity studied. Complexes [La(ph-tpy)(cur)(NO3)2] (1) and [Gd(ph-tpy)(cur)(NO3)2] (5) were structurally characterized. The complexes in aqueous-DMF showed an absorption band near 430 nm and an emission band near 515 nm when excited at 420 nm. The complexes are moderate binders to calf-thymus DNA. They cleave plasmid supercoiled DNA to its nicked circular form in UV-A (365 nm) and visible light (454 nm) via (1)O2 and ˙OH pathways. The complexes are remarkably photocytotoxic in HeLa cells in visible light (λ = 400–700 nm) and are non-toxic in the dark. FACScan analysis of the HeLa cells treated with 2 and 4 showed cell death via an apoptotic pathway. Nuclear localization of 1–4 is evidenced from confocal imaging on HeLa cells. The hydrolytic instability of curcumin gets significantly reduced upon binding to the lanthanide ions while retaining its photocytotoxic potential.
Collapse
Affiliation(s)
- Akhtar Hussain
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore-560 012, India
| | | | | | | | | | | |
Collapse
|
25
|
Refat MS. Synthesis and characterization of ligational behavior of curcumin drug towards some transition metal ions: chelation effect on their thermal stability and biological activity. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2013; 105:326-37. [PMID: 23318777 DOI: 10.1016/j.saa.2012.12.041] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2012] [Revised: 11/25/2012] [Accepted: 12/12/2012] [Indexed: 05/13/2023]
Abstract
Complexes of Cr(III), Mn(II), Fe(III), Co(II), Ni(II), Cu(II) and Zn(II) with curcumin ligand as antitumor activity were synthesized and characterized by elemental analysis, conductometry, magnetic susceptibility, UV-Vis, IR, Raman, ESR, (1)H-NMR spectroscopy, X-ray diffraction analysis of powdered samples and thermal analysis, and screened for antimicrobial activity. The IR spectral data suggested that the ligand behaves as a monobasic bidentate ligand towards the central metal ion with an oxygen's donor atoms sequence of both -OH and C=O groups under keto-enol structure. From the microanalytical data, the stoichiometry of the complexes 1:2 (metal:ligand) was found. The ligand and their metal complexes were screened for antibacterial activity against Escherichia Coli, Staphylococcus aureus, Bacillus subtilis and Pseudomonas aeruginosa and fungicidal activity against Aspergillus flavus and Candida albicans.
Collapse
Affiliation(s)
- Moamen S Refat
- Department of Chemistry, Faculty of Science, Port Said University, Egypt.
| |
Collapse
|
26
|
Menelaou M, Weyhermüller T, Soler M, Aliaga-Alcalde N. Novel paramagnetic-luminescent building blocks containing manganese(II) and anthracene-based curcuminoids. Polyhedron 2013. [DOI: 10.1016/j.poly.2012.08.061] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
27
|
Renfrew AK, Bryce NS, Hambley TW. Delivery and release of curcumin by a hypoxia-activated cobalt chaperone: a XANES and FLIM study. Chem Sci 2013. [DOI: 10.1039/c3sc51530c] [Citation(s) in RCA: 114] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
|
28
|
Caruso F, Rossi M, Benson A, Opazo C, Freedman D, Monti E, Gariboldi MB, Shaulky J, Marchetti F, Pettinari R, Pettinari C. Ruthenium-arene complexes of curcumin: X-ray and density functional theory structure, synthesis, and spectroscopic characterization, in vitro antitumor activity, and DNA docking studies of (p-cymene)Ru(curcuminato)chloro. J Med Chem 2012; 55:1072-81. [PMID: 22204522 DOI: 10.1021/jm200912j] [Citation(s) in RCA: 172] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The in vitro antiproliferative activity of the title compound on five tumor cell lines shows preference for the colon-rectal tumor HCT116, IC(50) = 13.98 μM, followed by breast MCF7 (19.58 μM) and ovarian A2780 (23.38 μM) cell lines; human glioblastoma U-87 and lung carcinoma A549 are less sensitive. A commercial curcumin reagent, also containing demethoxy and bis-demethoxy curcumin, was used to synthesize the title compound, and so (p-cymene)Ru(demethoxy-curcuminato)chloro was also isolated and chemically characterized. The crystal structure of the title compound shows (1) the chlorine atom linking two neighboring complexes through H-bonds with two O(hydroxyl), forming an infinite two-step network; (2) significant twist in the curcuminato, 20° between the planes of the two phenyl rings. This was also seen in the docking of the Ru-complex onto a rich guanine B-DNA decamer, where a Ru-N7(guanine) interaction is detected. This Ru-N7(guanine) interaction is also seen with ESI-MS on a Ru-complex-guanosine derivative.
Collapse
Affiliation(s)
- Francesco Caruso
- Istituto di Chimica Biomolecolare, Consiglio Nazionale delle Ricerche, c/o University of Rome "La Sapienza", Istituto Chimico, Piazzale Aldo Moro 5, 00185 Rome, Italy.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Pucci D, Bellini T, Crispini A, D'Agnano I, Liguori PF, Garcia-Orduña P, Pirillo S, Valentini A, Zanchetta G. DNA binding and cytotoxicity of fluorescent curcumin-based Zn(ii) complexes. MEDCHEMCOMM 2012. [DOI: 10.1039/c2md00261b] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
30
|
Aliaga-Alcalde N, Rodrı́guez L, Ferbinteanu M, Höfer P, Weyhermüller T. Crystal Structure, Fluorescence, and Nanostructuration Studies of the First ZnII Anthracene-Based Curcuminoid. Inorg Chem 2011; 51:864-73. [DOI: 10.1021/ic201420d] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Núria Aliaga-Alcalde
- ICREA (Institució Catalana de Recerca i Estudis Avançats) & Universitat de Barcelona, Facultat de Química, Martí i Franquès, 1-11, 08028 Barcelona, Spain
| | - Laura Rodrı́guez
- Facultat de Química, Universitat de Barcelona, Martí i Franquès,
1-11, 08028 barcelona, Spain
| | - Marilena Ferbinteanu
- Inorganic Chemistry Department, University of Bucharest, Dumbrava Rosie 23, Bucharest
020462, Romania
| | - Petra Höfer
- Max-Planck-Institut für Bioanorganische Chemie, P.O. Box 10 13 65,
D-45413 Mülheim an der Ruhr, Germany
| | - Thomas Weyhermüller
- Max-Planck-Institut für Bioanorganische Chemie, P.O. Box 10 13 65,
D-45413 Mülheim an der Ruhr, Germany
| |
Collapse
|
31
|
Ahmadi F, Alizadeh AA, Shahabadi N, Rahimi-Nasrabadi M. Study binding of Al-curcumin complex to ds-DNA, monitoring by multispectroscopic and voltammetric techniques. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2011; 79:1466-1474. [PMID: 21704553 DOI: 10.1016/j.saa.2011.05.002] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2011] [Revised: 04/23/2011] [Accepted: 05/01/2011] [Indexed: 05/31/2023]
Abstract
In this work a complex of Al3+ with curcumin ([Al(curcumin) (EtOH)2](NO3)2) was synthesized and characterized by UV-vis, FT-IR, elemental analysis and spectrophotometric titration techniques. The mole ratio plot revealed a 1:1 complex between Al3+ and curcumin in solution. For binding studies of this complex to calf thymus-DNA various methods such as: UV-vis, fluorescence, circular dichroism (CD), FT-IR spectroscopy and cyclic voltammetry were used. The intrinsic binding constant of ACC with DNA at 25°C was calculated by UV-vis and cyclic voltammetry as 2.1×10(4) and 2.6×10(4), respectively. The thermodynamic studies showed that the reaction is enthalpy and entropy favored. The CD results showed that only the Δ-ACC interacts with DNA and the Δ-ACC form has not any tendency to interact with DNA, also the pure curcumin has not any stereoselective interaction with CT-DNA. Fluorimetric studies showed that fluorescence enhancement was initiated by a static process in the ground state. The cyclic voltammetry showed that ACC interact with DNA with a binding site size of 2. From the FT-IR we concluded that the Δ-ACC interacts with DNA via partial electrostatic and minor groove binding. In comparison with previous works it was concluded that curcumin significantly reduced the affinity of Al3+ to the DNA.
Collapse
Affiliation(s)
- F Ahmadi
- Department of Medicinal Chemistry, Faculty of Pharmacy, Kermanshah University of Medical Sciences, Kermanshah 67145-1673, Islamic Republic of Iran.
| | | | | | | |
Collapse
|
32
|
Aliaga-Alcalde N, Marqués-Gallego P, Kraaijkamp M, Herranz-Lancho C, den Dulk H, Görner H, Roubeau O, Teat SJ, Weyhermüller T, Reedijk J. Copper curcuminoids containing anthracene groups: fluorescent molecules with cytotoxic activity. Inorg Chem 2011; 49:9655-63. [PMID: 20839841 DOI: 10.1021/ic101331c] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The coordination chemistry of the new curcuminoid ligand, 1,7-(di-9-anthracene-1,6-heptadiene-3,5-dione), abbreviated 9Accm has been studied, resulting in two new copper-9Accm compounds. Compound 1, [Cu(phen)Cl(9Accm)], was synthesized by reacting 9Accm with [Cu(phen)Cl(2)] in a 1:1 ratio (M:L) and compound 2, [Cu(9Accm)(2)], was prepared from Cu(OAc)(2) and 9Accm (1:2). UV-vis, electron paramagnetic resonance (EPR), and superconducting quantum interference device (SQUID) measurements were some of the techniques employed to portray these species; studies on single crystals of free 9Accm, [Cu(phen)Cl(9Accm)] and [Cu(9Accm)(2)(py)] provided detailed structural information about compounds 1 and 2·py, being the first two copper-curcuminoids crystallographically described. In addition the antitumor activity of the new compounds was studied and compared with free 9Accm for a number of human tumor cells. To provide more insight on the mode of action of these compounds under biological conditions, additional experiments were accomplished, including studies on the nature of their interactions with calf thymus DNA by UV-vis titration and Circular Dichroism. These experiments together with DNA-binding studies indicate electrostatic interactions between some of these species and the double helix, pointing out the weak nature of the interaction of the compounds with CT-DNA. The intrinsic fluorescence of the free ligand and both copper compounds provided valuable information over the cellular process and therefore, fluorescence microscopy studies were performed using a human osteosarcoma cell line. Studies in vitro using this technique suggest that the action of these molecules seems to occur outside the nuclei.
Collapse
Affiliation(s)
- Núria Aliaga-Alcalde
- Institut Català de Recerca i Estudis Avançats and Universitat de Barcelona, Facultat de Química, Martí i Franquès, 1-11, 08028 Barcelona, Spain.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Sagnou M, Benaki D, Triantis C, Tsotakos T, Psycharis V, Raptopoulou CP, Pirmettis I, Papadopoulos M, Pelecanou M. Curcumin as the OO bidentate ligand in "2 + 1" complexes with the [M(CO)3]+ (M = Re, 99mTc) tricarbonyl core for radiodiagnostic applications. Inorg Chem 2011; 50:1295-303. [PMID: 21250638 DOI: 10.1021/ic102228u] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The synthesis and characterization of "2 + 1" complexes of the [M(CO)(3)](+) (M = Re, (99m)Tc) core with the β-diketones acetylacetone (complexes 2, 8) and curcumin (complexes 5, 10 and 6, 11) as bidentate OO ligands, and imidazole or isocyanocyclohexane as monodentate ligands is reported. The complexes were synthesized by reacting the [NEt(4)](2)[Re(CO)(3)Br(3)] precursor with the β-diketone to generate the intermediate aqua complex fac-Re(CO)(3)(OO)(H(2)O) that was isolated and characterized, followed by replacement of the labile water by the monodentate ligand. All complexes were characterized by mass spectrometry, NMR and IR spectroscopies, and elemental analysis. In the case of complex 2, bearing imidazole as the monodentate ligand, X-ray analysis was possible. The chemistry was successfully transferred at (99m)Tc tracer level. The curcumin complexes 5 and 6, as well as their intermediate aqua complex 4, that bear potential for radiopharmaceutical applications due to the wide spectrum of pharmacological activity of curcumin, were successfully tested for selective staining of β-amyloid plaques of Alzheimer's disease. The fact that the complexes maintain the affinity of the mother compound curcumin for β-amyloid plaques prompts for further exploration of their chemistry and biological properties as radioimaging probes.
Collapse
Affiliation(s)
- Marina Sagnou
- Institute of Biology, National Centre for Scientific Research “Demokritos”, 15310 Athens, Greece
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Arezki A, Chabot G, Quentin L, Scherman D, Jaouen G, Brulé E. Synthesis and biological evaluation of novel ferrocenyl curcuminoid derivatives. MEDCHEMCOMM 2011; 2:190-195. [PMID: 23967373 DOI: 10.1039/c0md00231c] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
With the purpose to improve the biological activities of curcumin, eight novel ferrocenyl curcuminoids were synthesized by covalent anchorage of three different ferrocenyl ligands. We evaluated their cytotoxicity on B16 melanoma cells and normal NIH 3T3 cells, their inhibition of tubulin polymerization and their effect on the morphology of endothelial cells. The presence of a ferrocenyl side chain was clearly shown to improve the biological activity of most of their corresponding organic curcuminoid analogues.
Collapse
Affiliation(s)
- Anusch Arezki
- Laboratoire Charles Friedel Chimie ParisTech CNRS : UMR7223 Université Paris VI - Pierre et Marie Curie 11 rue Pierre et Marie Curie 72531 Paris Cedex 05, FR
| | | | | | | | | | | |
Collapse
|
35
|
Kühlwein F, Beck W. Metallkomplexe von Farbstoffen, XII [1], Halbsandwich-Komplexe von Ruthenium, Cobalt, Rhodium, Iridium mit Iminocarboxylaten aus 4-(4′-Nitrophenylazo)anilin (Disperse Orange 3) oder 4,4′-Diaminoazobenzol und 2-Oxocarboxylaten. Metal Complexes of Dyes, XII. Z Anorg Allg Chem 2010. [DOI: 10.1002/zaac.201000162] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
36
|
|
37
|
Song YM, Xu JP, Ding L, Hou Q, Liu JW, Zhu ZL. Syntheses, characterization and biological activities of rare earth metal complexes with curcumin and 1,10-phenanthroline-5,6-dione. J Inorg Biochem 2008; 103:396-400. [PMID: 19135257 DOI: 10.1016/j.jinorgbio.2008.12.001] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2008] [Revised: 11/30/2008] [Accepted: 12/01/2008] [Indexed: 10/21/2022]
Abstract
Three new solid complexes have been synthesized by the reaction of rare earth(III) nitrate with the first ligand curcumin (HL) and the second ligand 1,10-phenanthroline-5,6-dione (L') in alcohol solution (pH=6.5-7.0). The composition of the complexes has been characterized by elemental analysis, molar conductivity, thermogravimetric analysis, IR, UV-vis methods. The results reveal that beta-diketone group of the first ligand to coordinates with rare earth ions in bidentate mode after deprotonated. But the second ligand uses its two N atoms coordinates with rare earth ions in bidentate mode. The general formula of the complexes is REL(3)L' (RE=Sm, Eu, Dy). The results of antibacterial activity indicated that the complexes have excellent antibacterial ability for the testing bacterium than that of curcumin. The result of agarose gel electrophoresis suggested that the complex of SmL(3)L' can cleave the plasmid DNA at physiological pH and temperature. And it was found that the cleavage process of plasmid DNA was sensitive to pH, however, adding radical scavengers almost had no effect on the DNA cleavage reaction, therefore, the cleavage of DNA by SmL(3)L' does not produce diffusible hydroxyl radicals via the Fenton reaction.
Collapse
Affiliation(s)
- Yu-Min Song
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730 070, China.
| | | | | | | | | | | |
Collapse
|
38
|
Elahi MY, Mousavi M, Ghasemi S. Nano-structured Ni(II)–curcumin modified glassy carbon electrode for electrocatalytic oxidation of fructose. Electrochim Acta 2008. [DOI: 10.1016/j.electacta.2008.07.042] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
39
|
Pachhunga K, Therrien B, Kollipara MR. Synthesis of benzene ruthenium triazolato complexes by [3+2] cycloaddition reactions of activated alkynes and fumaronitrile to benzene ruthenium azido complexes. Inorganica Chim Acta 2008. [DOI: 10.1016/j.ica.2007.05.063] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
40
|
Stanić Z, Voulgaropoulos A, Girousi S. Electroanalytical Study of the Antioxidant and Antitumor Agent Curcumin. ELECTROANAL 2008. [DOI: 10.1002/elan.200804177] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
41
|
Melchart M, Habtemariam A, Parsons S, Sadler PJ. Chlorido-, aqua-, 9-ethylguanine- and 9-ethyladenine-adducts of cytotoxic ruthenium arene complexes containing O,O-chelating ligands. J Inorg Biochem 2007; 101:1903-12. [PMID: 17582501 DOI: 10.1016/j.jinorgbio.2007.04.018] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2007] [Revised: 04/24/2007] [Accepted: 04/26/2007] [Indexed: 11/25/2022]
Abstract
The synthesis and X-ray structures of a half-sandwich Ru(II)p-cymene beta-diketonato complex as chlorido-, aqua-, 9-ethylguanine- and 9-ethyladenine-adducts are reported. Structural features which contribute to stabilisation of adducts through non-covalent, weak interactions are discussed. The X-ray crystal structure of the cytotoxic complex [(eta(6)-p-cym)Ru(Ph(2)acac)Cl] (1), where Ph(2)acac=1,3-diphenyl-1,3-propanedionate and p-cym=para-cymene, shows that the phenyl rings of the acac-type ligand form a hydrophobic face, conferring lipophilic character on the complex. The structure of the aqua adduct [(eta(6)-p-cym)Ru(Ph(2)acac)H(2)O]CF(3)SO(3).H(2)O.Et(2)O (4.H(2)O.Et(2)O), a possible activated species, possesses a comparatively short Ru-OH(2) bond. In the structure of [(eta(6)-p-cym)Ru(Ph(2)acac)9EtG-N7]CF(3)SO(3).2tol (5.2tol), where tol=toluene and 9EtG=9-ethylguanine, a comparatively long Ru-N7 bond is observed in addition to weak G CH8cdots, three dots, centeredO (Ph(2)acac) H-bonds. The crystal structure of [(eta(6)-p-cym)Ru(acac)9EtA-N7]PF(6) (6), where acac=acetylacetonate and 9EtA=9-ethyladenine, a rare example of a ruthenium complex containing monodentate adenine, shows a strong H-bonding interaction between N6Hcdots, three dots, centeredO(acac), which may contribute to the selectivity of {(eta(6)-p-cym)Ru(acac)}(+) towards adenine bases.
Collapse
Affiliation(s)
- Michael Melchart
- School of Chemistry, University of Edinburgh, West Mains Road, Edinburgh EH9 3JJ, UK
| | | | | | | |
Collapse
|
42
|
Pucci D, Bloise R, Bellusci A, Bernardini S, Ghedini M, Pirillo S, Valentini A, Crispini A. Curcumin and cyclopalladated complexes: a recipe for bifunctional biomaterials. J Inorg Biochem 2007; 101:1013-22. [PMID: 17524485 DOI: 10.1016/j.jinorgbio.2007.03.006] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2007] [Revised: 03/06/2007] [Accepted: 03/14/2007] [Indexed: 11/27/2022]
Abstract
The first examples of binuclear and mononuclear ortho-palladated complexes based on a functionalized 2-phenylquinoline ligand have been synthesized and fully characterized. Conjugating cyclopalladated fragments to curcumin family biologically active beta-diketones gives in one single molecule two different functionalities. The structural variations based on the curcuminoid structure have been tested for their in vitro cytotoxic activity. The activity of complexes comprised of a cyclopalladated fragment conjugated to functionalized bioactive ligands, represents the potential of organometallic systems in generating new bifunctional biomaterials.
Collapse
Affiliation(s)
- Daniela Pucci
- Centro di Eccellenza CEMIF.CAL-LASCAMM, CR-INSTM Unità della Calabria, Dipartimento di Chimica, Università della Calabria, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Synthesis and complexation properties of two new curcuminoid molecules bearing a diphenylmethane linkage. J Mol Struct 2003. [DOI: 10.1016/s0022-2860(03)00050-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|