1
|
Abstract
The synthesis and characterization of a series of homoleptic iron complexes [Fe(benzNHCOCO)2]2-/1-/0/1+ supported by the tridentate bis-aryloxide benzimidazolin-2-ylidene pincer ligand benzNHCOCO2- (II) is presented. While the reaction of 2 equiv of free ligand II with a ferrous iron precursor leads to the isolation of the coordination polymer [Fe(benzNHCOCOK)2]n (1), treatment of II with ferric iron salts allows for the synthesis and isolation of the mononuclear, octahedral bis-pincer compound K[Fe(benzNHCOCO)2] (2) and its crown-ether derivative [K(18c6)(THF)2][Fe(benzNHCOCO)2] (3). Electrochemical studies of 2 suggested stable products upon further one- and two-electron oxidation. Hence, treatment of 2 with 1 equiv of AgPF6 yields the charge-neutral species [Fe(benzNHCOCO)2] (4). Similarly, the cationic complex [Fe(benzNHCOCO)2]PF6 (5) is obtained by addition of 2 equiv of AgPF6. The characterization of complexes 1, 3, and 4 reveals iron-centered reduction and oxidation processes; thus, preserving the dianionic, closed-shell structure of both coordinated benzNHCOCO pincer chelates, II. This implies a stabilization of a highly Lewis acidic iron(IV) center by four phenolate anions rather than charge distribution across the ligand framework with a lower formal oxidation state at iron. Notably, the overall charge-neutral iron(IV) complex undergoes reductive elimination of the pincer ligand, providing a metal-free compound that can be described as a spirocyclic imidazolone ketal (6). In contrast, the ligand-metal bonds in 5, formally an iron(V) complex, are considerably covalent, rendering the assignment of its oxidation state challenging, if not impossible. All compounds are fully characterized, and the complexes' electronic structures were studied with a variety of spectroscopic and computational methods, including single-crystal X-ray diffraction (SC-XRD), X-band electron paramagnetic resonance (EPR), and zero-field 57Fe Mössbauer spectroscopy, variable-field and variable-temperature superconducting quantum interference device (SQUID) magnetization measurements, and multi-reference ab initio (NEVPT2/CASSCF) as well as density functional theory (DFT) studies. Taken altogether, the electronic structure of 5 is best described as an iron(IV) center antiferromagnetically coupled to a ligand-centered radical.
Collapse
Affiliation(s)
- Lisa Gravogl
- Department of Chemistry and Pharmacy, Inorganic Chemistry, Friedrich-Alexander University Erlangen-Nürnberg, Egerlandstraße 1, 91058 Erlangen, Germany
| | - Frank W Heinemann
- Department of Chemistry and Pharmacy, Inorganic Chemistry, Friedrich-Alexander University Erlangen-Nürnberg, Egerlandstraße 1, 91058 Erlangen, Germany
| | - Dominik Munz
- Department of Chemistry and Pharmacy, Inorganic Chemistry, Friedrich-Alexander University Erlangen-Nürnberg, Egerlandstraße 1, 91058 Erlangen, Germany
| | - Karsten Meyer
- Department of Chemistry and Pharmacy, Inorganic Chemistry, Friedrich-Alexander University Erlangen-Nürnberg, Egerlandstraße 1, 91058 Erlangen, Germany
| |
Collapse
|
2
|
Gascon JM, Oliveri V, McGown A, Kaya E, Chen Y, Austin C, Walker M, Platt FM, Vecchio G, Spencer J. Synthesis and Study of Multifunctional Cyclodextrin-Deferasirox Hybrids. ChemMedChem 2019; 14:1484-1492. [PMID: 31162826 PMCID: PMC6771688 DOI: 10.1002/cmdc.201900334] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Indexed: 12/20/2022]
Abstract
Metal dyshomeostasis is central to a number of disorders that result from, inter alia, oxidative stress, protein misfolding, and cholesterol dyshomeostasis. In this respect, metal deficiencies are usually readily corrected by treatment with supplements, whereas metal overload can be overcome by the use of metal-selective chelation therapy. Deferasirox, 4-[(3Z,5E)-3,5-bis(6-oxo-1-cyclohexa-2,4-dienylidene)-1,2,4-triazolidin-1-yl]benzoic acid, Exjade, or ICL670, is used clinically to treat hemosiderosis (iron overload), which often results from multiple blood transfusions. Cyclodextrins are cyclic glucose units that are extensively used in the pharmaceutical industry as formulating agents as well as for encapsulating hydrophobic molecules such as in the treatment of Niemann-Pick type C or for hypervitaminosis. We conjugated deferasirox, via an amide coupling reaction, to both 6A -amino-6A -deoxy-β-cyclodextrin and 3A -amino-3A -deoxy-2A (S),3A (S)-β-cyclodextrin, at the upper and lower rim, respectively, creating hybrid molecules with dual properties, capable of both metal chelation and cholesterol encapsulation. Our findings emphasize the importance of the conjugation of β-cyclodextrin with deferasirox to significantly improve the biological properties and to decrease the cytotoxicity of this drug.
Collapse
Affiliation(s)
- Jose Miguel Gascon
- Department of ChemistrySchool of Life SciencesUniversity of SussexFalmerBrightonEast SussexBN1 9QJUK
| | - Valentina Oliveri
- Department of ChemistrySchool of Life SciencesUniversity of SussexFalmerBrightonEast SussexBN1 9QJUK
- Dipartimento di Scienze ChimicheUniversità degli Studi di CataniaViale A. Doria 695125CataniaItaly
| | - Andrew McGown
- Department of ChemistrySchool of Life SciencesUniversity of SussexFalmerBrightonEast SussexBN1 9QJUK
| | - Ecem Kaya
- Department of PharmacologyUniversity of OxfordMansfield RoadOxfordOX1 3QTUK
| | - Yu‐Lin Chen
- Pharmaceutical ScienceKing's College LondonFranklin Wilkins BuildingLondonSE1 9NHUK
| | - Carol Austin
- Eurofins Selcia Drug DiscoveryFyfield Business & Research ParkFyfield Road, OngarEssexCM5 0GSUK
| | - Martin Walker
- Eurofins Selcia Drug DiscoveryFyfield Business & Research ParkFyfield Road, OngarEssexCM5 0GSUK
| | - Frances M. Platt
- Department of PharmacologyUniversity of OxfordMansfield RoadOxfordOX1 3QTUK
| | - Graziella Vecchio
- Dipartimento di Scienze ChimicheUniversità degli Studi di CataniaViale A. Doria 695125CataniaItaly
| | - John Spencer
- Department of ChemistrySchool of Life SciencesUniversity of SussexFalmerBrightonEast SussexBN1 9QJUK
| |
Collapse
|
3
|
Design, synthesis and evaluation of a novel metal chelator as multifunctional agents for the treatment of Alzheimer's disease. Bioorg Chem 2019; 87:720-727. [PMID: 30954836 DOI: 10.1016/j.bioorg.2019.03.064] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2018] [Revised: 02/18/2019] [Accepted: 03/23/2019] [Indexed: 11/21/2022]
Abstract
A series of compounds following the lead compounds including deferasirox and tacrine were designed, synthesized and evaluated as multifunctional agents against Alzheimer's disease (AD). In vitro studies showed that most synthesized compounds exhibited good multifunctional activities in inhibiting acetylcholinesterase (bAChE), and chelating metal ions. Especially, compound TDe demonstrated significant metal chelating property, a moderate acetylcholinesterase (AChE) inhibitory activity and an antioxidant activity. Results from the molecular modeling indicated that TD compounds were mixed-type inhibitor, binding simultaneously to the catalytic anionic site (CAS) and the peripheral anionic site (PAS) of TcAChE. Moreover, TDe showed a low cytotoxicity but a good protective activity against the injury caused by H2O2. These results suggest that TD compounds might be considered as attractive multi-target cholinesterase inhibitor and will play important roles in the treatment of AD.
Collapse
|
4
|
Sanna D, Ugone V, Sciortino G, Parker BF, Zhang Z, Leggett CJ, Arnold J, Rao L, Garribba E. V
IV
O and V
IV
Species Formed in Aqueous Solution by the Tridentate Glutaroimide–Dioxime Ligand – An Instrumental and Computational Characterization. Eur J Inorg Chem 2018. [DOI: 10.1002/ejic.201800090] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Daniele Sanna
- Istituto CNR di Chimica Biomolecolare Trav. La Crucca 3 07040 Sassari Italy
| | - Valeria Ugone
- Dipartimento di Chimica e Farmacia Università di Sassari Via Vienna 2 07100 Sassari Italy
| | - Giuseppe Sciortino
- Dipartimento di Chimica e Farmacia Università di Sassari Via Vienna 2 07100 Sassari Italy
- Departament de Química Universitat Autònoma de Barcelona Cerdanyola del Vallés 08193 Barcelona Spain
| | - Bernard F. Parker
- Chemical Sciences Division Lawrence Berkeley National Laboratory 1 Cyclotron Road 94720 Berkeley CA United States
- Department of Chemistry University of California 94720 Berkeley CA United States
| | - Zhicheng Zhang
- Chemical Sciences Division Lawrence Berkeley National Laboratory 1 Cyclotron Road 94720 Berkeley CA United States
| | - Christina J. Leggett
- Chemical Sciences Division Lawrence Berkeley National Laboratory 1 Cyclotron Road 94720 Berkeley CA United States
| | - John Arnold
- Chemical Sciences Division Lawrence Berkeley National Laboratory 1 Cyclotron Road 94720 Berkeley CA United States
- Department of Chemistry University of California 94720 Berkeley CA United States
| | - Linfeng Rao
- Chemical Sciences Division Lawrence Berkeley National Laboratory 1 Cyclotron Road 94720 Berkeley CA United States
| | - Eugenio Garribba
- Dipartimento di Chimica e Farmacia Università di Sassari Via Vienna 2 07100 Sassari Italy
| |
Collapse
|
5
|
Mankaev BN, Zaitsev KV, Karlov SS, Egorov MP, Churakov AV. Crystal structure of 2,6-bis(2-hydroxy-5-methylphenyl)-4-phenylpyridinium bromide dichloromethane hemisolvate hemihydrate. Acta Crystallogr E Crystallogr Commun 2015; 71:o953-4. [PMID: 26870547 PMCID: PMC4719919 DOI: 10.1107/s2056989015021386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Accepted: 11/11/2015] [Indexed: 11/10/2022]
Abstract
The asymmetric unit in the structure of the title compound, C25H22NO2+·Br −·0.5CH2Cl2·0.5H2O, comprises two pseudosymmetry-related cations, two bromide anions, a dichloromethane molecule and a water molecule of solvation. The two independent cations are conformationally similar with the comparative dihedral angles between the central pyridine ring and the three benzene substituent rings being 3.0 (2), 36.4 (1) and 24.2 (1)°, and 3.7 (2), 36.5 (1) and 24.8 (1)°, respectively. In the crystal, the cations, anions and water molecules are linked through O—H⋯O and O—H⋯Br hydrogen bonds, forming an insular unit. Within the cations there are also intramolecular N—H⋯O hydrogen bonds. Adjacent centrosymmetrically related aggregates are linked by π–π stacking interactions between the pyridine ring and a benzene ring in both cations [ring-centroid separations = 3.525 (3) and 3.668 (3) Å], forming chains extending across the ac diagonal. Voids between these chains are filled by dichloromethane molecules.
Collapse
|
6
|
Kundu S, Mondal D, Bhattacharya K, Endo A, Sanna D, Garribba E, Chaudhury M. Nonoxido Vanadium(IV) Compounds Involving Dithiocarbazate-Based Tridentate ONS Ligands: Synthesis, Electronic and Molecular Structure, Spectroscopic and Redox Properties. Inorg Chem 2015; 54:6203-15. [DOI: 10.1021/acs.inorgchem.5b00359] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Sanchita Kundu
- Department
of Inorganic Chemistry, Indian Association for the Cultivation of Science, Kolkata 700032, India
| | - Dhrubajyoti Mondal
- Department
of Inorganic Chemistry, Indian Association for the Cultivation of Science, Kolkata 700032, India
| | - Kisholoy Bhattacharya
- Department
of Inorganic Chemistry, Indian Association for the Cultivation of Science, Kolkata 700032, India
| | - Akira Endo
- Department
of Materials and Life Sciences, Faculty of Science and Technology, Sophia University, 7-1 Kioi-cho, Chiyoda-ku, Tokyo 102-8554, Japan
| | - Daniele Sanna
- Istituto CNR di
Chimica
Biomolecolare, Trav. La Crucca 3, I-07040 Sassari, Italy
| | - Eugenio Garribba
- Dipartimento
di Chimica e Farmacia and Centro Interdisciplinare per lo Sviluppo
della Ricerca Biotecnologica e per lo Studio della Biodiversità
della Sardegna, Università di Sassari, Via Vienna 2, I-07100 Sassari, Italy
| | - Muktimoy Chaudhury
- Department
of Inorganic Chemistry, Indian Association for the Cultivation of Science, Kolkata 700032, India
| |
Collapse
|
7
|
Sanna D, Várnagy K, Lihi N, Micera G, Garribba E. Formation of New Non-oxido Vanadium(IV) Species in Aqueous Solution and in the Solid State by Tridentate (O, N, O) Ligands and Rationalization of Their EPR Behavior. Inorg Chem 2013; 52:8202-13. [DOI: 10.1021/ic401080q] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Daniele Sanna
- Istituto CNR di Chimica Biomolecolare,
Trav. La Crucca 3, I-07040 Sassari, Italy
| | - Katalin Várnagy
- Department of Inorganic and Analytical Chemistry,
University of Debrecen, H-4010 Debrecen, Hungary
| | - Norbert Lihi
- Department of Inorganic and Analytical Chemistry,
University of Debrecen, H-4010 Debrecen, Hungary
| | - Giovanni Micera
- Dipartimento di Chimica e Farmacia and Centro
Interdisciplinare per lo Sviluppo della Ricerca Biotecnologica e per
lo Studio della Biodiversità della Sardegna, Università
di Sassari, Via Vienna 2, I-07100 Sassari, Italy
| | - Eugenio Garribba
- Dipartimento di Chimica e Farmacia and Centro
Interdisciplinare per lo Sviluppo della Ricerca Biotecnologica e per
lo Studio della Biodiversità della Sardegna, Università
di Sassari, Via Vienna 2, I-07100 Sassari, Italy
| |
Collapse
|
8
|
Pisano L, Várnagy K, Timári S, Hegetschweiler K, Micera G, Garribba E. VIVO Versus VIV Complex Formation by Tridentate (O, Narom, O) Ligands: Prediction of Geometry, EPR 51V Hyperfine Coupling Constants, and UV–Vis Spectra. Inorg Chem 2013; 52:5260-72. [DOI: 10.1021/ic400186x] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Luisa Pisano
- Dipartimento di Chimica
e Farmacia, Università di Sassari, Via Vienna 2, I-07100 Sassari, Italy
| | - Katalin Várnagy
- Department of Inorganic and Analytical Chemistry, University of Debrecen, H-4010 Debrecen, Hungary
| | - Sarolta Timári
- Department of Inorganic and Analytical Chemistry, University of Debrecen, H-4010 Debrecen, Hungary
| | - Kaspar Hegetschweiler
- Fachrichtung Chemie, Universität des Saarlandes, Postfach 151150,
D-66041 Saarbrücken, Germany
| | - Giovanni Micera
- Dipartimento di Chimica
e Farmacia, Università di Sassari, Via Vienna 2, I-07100 Sassari, Italy
- Centro Interdisciplinare per lo Sviluppo della Ricerca Biotecnologica e per lo Studio della Biodiversità della Sardegna, I-07100 Sassari, Italy
| | - Eugenio Garribba
- Dipartimento di Chimica
e Farmacia, Università di Sassari, Via Vienna 2, I-07100 Sassari, Italy
- Centro Interdisciplinare per lo Sviluppo della Ricerca Biotecnologica e per lo Studio della Biodiversità della Sardegna, I-07100 Sassari, Italy
| |
Collapse
|
9
|
A boronate prochelator built on a triazole framework for peroxide-triggered tridentate metal binding. Inorganica Chim Acta 2012; 393:294-303. [PMID: 23439614 DOI: 10.1016/j.ica.2012.06.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Iron chelating agents have the potential to minimize damage associated with oxidative stress in a range of diseases; however, this potential is countered by risks of indiscriminant metal binding or iron depletion in conditions not associated with systemic iron overload. Deferasirox is a chelator used clinically for iron overload, but also is cytotoxic to cells in culture. In order to test whether a prodrug version of deferasirox could minimize its cytotoxicity but retain its protective properties against iron-induced oxidative damage, we synthesized a prochelator that contains a self-immolative boronic ester masking group that is removed upon exposure to hydrogen peroxide to release the bis-hydroxyphenyltriazole ligand deferasirox. We present here the synthesis and characterization of this triazole-based, self-immolative prochelator: TIP (4-(5-(2-((4-boronobenzyl)oxy)phenyl)-3-(2-hydroxyphenyl)-1H-1,2,4-triazol-1-yl)benzoic acid). TIP does not coordinate to Fe(3+) and shows only weak affinity for Cu(2+) or Zn(2+), in stark contrast to deferasirox, which avidly binds all three metal ions. TIP converts efficiently in vitro upon reaction with hydrogen peroxide to deferasirox. In cell culture, TIP protects retinal pigment epithelial cells from death induced by hydrogen peroxide; however, TIP itself is more cytotoxic than deferasirox in unstressed cells. These results imply that the cytotoxicity of deferasirox may not derive exclusively from its iron withholding properties.
Collapse
|
10
|
Broomfield LM, Bochmann M, Wright JA. Tris[3,6-di-tert-butyl-1-(isoquinolin-1-yl)naphthalen-2-olato-κ2N,O]aluminium(III) toluene sesquisolvate. Acta Crystallogr C 2012; 68:m226-8. [PMID: 22850848 DOI: 10.1107/s0108270112031952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2012] [Accepted: 07/12/2012] [Indexed: 11/10/2022] Open
Abstract
The central Al(III) atom of the title compound, [Al(C(27)H(28)NO)(3)]·1.5C(7)H(8), has octahedral geometry in which the three N atoms are arranged in a meridional fashion. One of the toluene solvent molecules is located on a general position, while the second is disordered around a centre of inversion. The ligand molecule has axial chirality, and two of the three ligands in the complex exhibit the same stereochemistry. The three independent chelate rings exhibit significantly different bite angles at the metal atom, with one [83.72 (8)°] notably smaller than the other two [87.22 (8) and 87.13 (8)°]. Calculation of the solid angle covered by the ligands at the metal atom reveals that coverage is greatest for the ligand group with the shortest Al-O bond distance.
Collapse
Affiliation(s)
- Lewis M Broomfield
- Wolfson Materials and Catalysis Centre, School of Chemistry, University of East Anglia, Norwich Research Park, Norwich, England, UK.
| | | | | |
Collapse
|
11
|
Tonks IA, Tofan D, Weintrob EC, Agapie T, Bercaw JE. Zirconium and Titanium Propylene Polymerization Precatalysts Supported by a Fluxional C2-Symmetric Bis(anilide)pyridine Ligand. Organometallics 2012. [DOI: 10.1021/om201262h] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Ian A. Tonks
- Arnold and Mabel Beckman Laboratories of Chemical Synthesis, California Institute of Technology, Pasadena, California
91125, United States
| | - Daniel Tofan
- Arnold and Mabel Beckman Laboratories of Chemical Synthesis, California Institute of Technology, Pasadena, California
91125, United States
| | - Edward C. Weintrob
- Arnold and Mabel Beckman Laboratories of Chemical Synthesis, California Institute of Technology, Pasadena, California
91125, United States
| | - Theodor Agapie
- Arnold and Mabel Beckman Laboratories of Chemical Synthesis, California Institute of Technology, Pasadena, California
91125, United States
| | - John E. Bercaw
- Arnold and Mabel Beckman Laboratories of Chemical Synthesis, California Institute of Technology, Pasadena, California
91125, United States
| |
Collapse
|
12
|
|
13
|
Kalita L, Walawalkar MG, Murugavel R. Synthesis and structural characterization of dinuclear complexes of trivalent aluminum, gallium, indium and chromium derived from pyrazole-2-ethanol. Inorganica Chim Acta 2011. [DOI: 10.1016/j.ica.2011.07.047] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
14
|
Sangtrirutnugul P, Haesuwannakij S, Sooksimuang T, Prabpai S, Kongsaeree P. Bis[2,6-bis-(2-meth-oxy-phen-yl)pyridinium] di-μ-bromido-bis-[dibromidocuprate(II)]. Acta Crystallogr Sect E Struct Rep Online 2011; 67:m299-300. [PMID: 21522239 PMCID: PMC3051932 DOI: 10.1107/s1600536811003588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2011] [Accepted: 01/27/2011] [Indexed: 11/25/2022]
Abstract
The title salt, (C19H18NO2)2[Cu2Br6], was obtained from an attempt to synthesize the copper(II) complex of 2,6-bis(2-methoxyphenyl)pyridine (L) from a reaction between CuBr2 and one equivalent of L in CH2Cl2 at room temperature. The resulting compound is the salt of the 2,6-bis(2-methoxyphenyl)pyridinium cation and 0.5 equivalents of a hexabromidodicuprate(II) dianion. Both methoxy groups of the cationic pyridinium moiety are directed towards the N atom of the pyridine ring as a result of intramolecular N—H⋯O hydrogen bonds. The centrosymmetric hexabromidodicuprate dianion possesses a distorted tetrahedral geometry at the copper ion. The Cu—Br bond lengths are 2.3385 (7) and 2.3304 (7) Å for the terminal bromides, whereas the bond length between the Cu atom and two bridging bromides is slightly longer [2.4451 (6) Å].
Collapse
|
15
|
Klein A, Butsch K, Neudörfl J. Electron transfer studies on Cu(II) complexes bearing phenoxy-pincer ligands. Inorganica Chim Acta 2010. [DOI: 10.1016/j.ica.2010.06.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
16
|
Bachrach SM, Wilbanks CC. Using the Pyridine and Quinuclidine Scaffolds for Superbases: A DFT Study. J Org Chem 2010; 75:2651-60. [DOI: 10.1021/jo100295s] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Steven M. Bachrach
- Department of Chemistry, Trinity University, 1 Trinity Place, San Antonio, Texas 78212
| | - Cecily C. Wilbanks
- Department of Chemistry, Trinity University, 1 Trinity Place, San Antonio, Texas 78212
| |
Collapse
|
17
|
Grunova E, Kirillov E, Roisnel T, Carpentier JF. Group 3 metal complexes supported by tridentate pyridine- and thiophene-linked bis(naphtholate) ligands: synthesis, structure, and use in stereoselective ring-opening polymerization of racemic lactide and β-butyrolactone. Dalton Trans 2010; 39:6739-52. [DOI: 10.1039/b920283h] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
18
|
Agapie T, Day MW, Bercaw JE. Synthesis and Reactivity of Tantalum Complexes Supported by Bidentate X2 and Tridentate LX2 Ligands with Two Phenolates Linked to Pyridine, Thiophene, Furan, and Benzene Connectors: Mechanistic Studies of the Formation of a Tantalum Benzylidene and Insertion Chemistry for Tantalum−Carbon Bonds. Organometallics 2008. [DOI: 10.1021/om8002653] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Theodor Agapie
- Arnold and Mabel Beckman Laboratories of Chemical Synthesis, California Institute of Technology, Pasadena, California 91125
| | - Michael W. Day
- Arnold and Mabel Beckman Laboratories of Chemical Synthesis, California Institute of Technology, Pasadena, California 91125
| | - John E. Bercaw
- Arnold and Mabel Beckman Laboratories of Chemical Synthesis, California Institute of Technology, Pasadena, California 91125
| |
Collapse
|
19
|
Agapie T, Henling LM, DiPasquale AG, Rheingold AL, Bercaw JE. Zirconium and Titanium Complexes Supported by Tridentate LX2 Ligands Having Two Phenolates Linked to Furan, Thiophene, and Pyridine Donors: Precatalysts for Propylene Polymerization and Oligomerization. Organometallics 2008. [DOI: 10.1021/om800136y] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Theodor Agapie
- Arnold and Mabel Beckman Laboratories of Chemical Synthesis, California Institute of Technology, Pasadena, California 91125, and University of California, San Diego, California 92093
| | - Lawrence M. Henling
- Arnold and Mabel Beckman Laboratories of Chemical Synthesis, California Institute of Technology, Pasadena, California 91125, and University of California, San Diego, California 92093
| | - Antonio G. DiPasquale
- Arnold and Mabel Beckman Laboratories of Chemical Synthesis, California Institute of Technology, Pasadena, California 91125, and University of California, San Diego, California 92093
| | - Arnold L. Rheingold
- Arnold and Mabel Beckman Laboratories of Chemical Synthesis, California Institute of Technology, Pasadena, California 91125, and University of California, San Diego, California 92093
| | - John E. Bercaw
- Arnold and Mabel Beckman Laboratories of Chemical Synthesis, California Institute of Technology, Pasadena, California 91125, and University of California, San Diego, California 92093
| |
Collapse
|
20
|
|
21
|
Sreerama SG, Mukhopadhyay A, Pal S. Tridentate facial coordination mode of an unsymmetrical tetradentate diazine ligand in an iron(III) complex. INORG CHEM COMMUN 2006. [DOI: 10.1016/j.inoche.2006.07.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
22
|
Garribba E, Micera G, Lodyga-Chruscinska E, Sanna D. Oxovanadium(IV) Complexes with Pyrazinecarboxylic Acids:The Coordinating Properties of Ligands with the (Naromatic, COO–) Donor Set. Eur J Inorg Chem 2006. [DOI: 10.1002/ejic.200600230] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|