1
|
Liang C, Lin L, Xu T, Kang G, Liu ZH, Li BZ. The Pseudomonas ligninolytic catalytic network reveals the importance of auxiliary enzymes in lignin biocatalysts. Proc Natl Acad Sci U S A 2025; 122:e2417343122. [PMID: 39854233 DOI: 10.1073/pnas.2417343122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Accepted: 11/18/2024] [Indexed: 01/26/2025] Open
Abstract
Lignin degradation by biocatalysts is a key strategy to develop a plant-based sustainable carbon economy and thus alleviate global climate change. This process involves synergy between ligninases and auxiliary enzymes. However, auxiliary enzymes within secretomes, which are composed of thousands of enzymes, remain enigmatic, although several ligninolytic enzymes have been well characterized. Moreover, it is a challenge to understand synergistic lignin degradation via a diverse array of enzymes, especially in bacterial systems. In this study, the coexpression network of the periplasmic proteome uncovers potential accessory enzymes for B-type dye-decolorizing peroxidases (DypBs) in Pseudomonas putida A514. The catalytic network of the DypBs-based multienzyme complex is characterized. DypBs couple with quinone reductases and nitroreductase to participate in quinone redox cycling. They work with superoxide dismutase to induce Fenton reaction for lignin oxidation. A synthetic enzyme cocktail (SEC), recruiting 15 enzymes, was consequently designed with four functions. It overcomes the limitation of lignin repolymerization, exhibiting a capacity comparable to that of the native periplasmic secretome. Importantly, we reveal the synergistic mechanism of a SEC-A514 cell system, which incorporates the advantages of in vitro enzyme catalysis and in vivo microbial catabolism. Chemical analysis shows that this system significantly reduces the molecular weight of lignin, substantially extends the degradation spectra for lignin functional groups, and efficiently metabolizes lignin derivatives. As a result, 25% of lignin is utilized, and its average molecular weight is reduced by 27%. Our study advances the knowledge of bacterial lignin-degrading multienzymes and provides a viable lignin degradation strategy.
Collapse
Affiliation(s)
- Congying Liang
- Institute of Marine Science and Technology, Shandong University, Qingdao 266237, People's Republic of China
| | - Lu Lin
- Institute of Marine Science and Technology, Shandong University, Qingdao 266237, People's Republic of China
| | - Tao Xu
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, People's Republic of China
| | - Guoqiang Kang
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, People's Republic of China
| | - Zhi-Hua Liu
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, People's Republic of China
| | - Bing-Zhi Li
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, People's Republic of China
| |
Collapse
|
2
|
Ivanova D, Nikolova G, Karamalakova Y, Semkova S, Marutsova V, Yaneva Z. Water-Soluble Alkali Lignin as a Natural Radical Scavenger and Anticancer Alternative. Int J Mol Sci 2023; 24:12705. [PMID: 37628882 PMCID: PMC10454704 DOI: 10.3390/ijms241612705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 08/09/2023] [Accepted: 08/10/2023] [Indexed: 08/27/2023] Open
Abstract
Several phytochemicals, which display antioxidant activity and inhibit cancer cell phenotypes, could be used for cancer treatment and prevention. Lignin, as a part of plant biomass, is the second most abundant natural biopolymer worldwide, and represents approximately 30% of the total organic carbon content of the biosphere. Historically, lignin-based products have been viewed as waste materials of limited industrial usefulness, but modern technologies highlight the applicability of lignin in a variety of industrial branches, including biomedicine. The aims of our preliminary study were to compare the antioxidant properties of water-soluble alkali lignin solutions, before and after UV-B irradiation, as well as to clarify their effect on colon cancer cell viability (Colon 26), applied at low (tolerable) concentrations. The results showed a high antioxidant capacity of lignin solutions, compared to a water-soluble control antioxidant standard (Trolox) and remarkable radical scavenging activity was observed after their UV-B irradiation. Diminishment of cell viability as well as inhibition of the proliferative activity of the colon cancer cell line with an increase in alkali lignin concentrations were observed. Our results confirmed that, due to its biodegradable and biocompatible nature, lignin could be a potential agent for cancer therapy, especially in nanomedicine as a drug delivery system.
Collapse
Affiliation(s)
- Donika Ivanova
- Department of Pharmacology, Animal Physiology, Biochemistry and Chemistry, Faculty of Veterinary Medicine, Trakia University, Student Campus, 6000 Stara Zagora, Bulgaria;
- Department of Medical Chemistry and Biochemistry, Medical Faculty, Trakia University, 11 “Armeyska” St., 6000 Stara Zagora, Bulgaria; (G.N.); (Y.K.)
| | - Galina Nikolova
- Department of Medical Chemistry and Biochemistry, Medical Faculty, Trakia University, 11 “Armeyska” St., 6000 Stara Zagora, Bulgaria; (G.N.); (Y.K.)
| | - Yanka Karamalakova
- Department of Medical Chemistry and Biochemistry, Medical Faculty, Trakia University, 11 “Armeyska” St., 6000 Stara Zagora, Bulgaria; (G.N.); (Y.K.)
| | - Severina Semkova
- Department of Electroinduced and Adhesive Properties, Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, 1040 Sofia, Bulgaria;
| | - Vania Marutsova
- Department of Internal Diseases, Faculty of Veterinary Medicine, Trakia University, Student Campus, 6000 Stara Zagora, Bulgaria;
| | - Zvezdelina Yaneva
- Department of Pharmacology, Animal Physiology, Biochemistry and Chemistry, Faculty of Veterinary Medicine, Trakia University, Student Campus, 6000 Stara Zagora, Bulgaria;
| |
Collapse
|
3
|
Xu L, Yang W, Qiu T, Gao X, Zhang H, Zhang S, Cui H, Guo L, Yu H, Yu H. Complete genome sequences and comparative secretomic analysis for the industrially cultivated edible mushroom Lyophyllum decastes reveals insights on evolution and lignocellulose degradation potential. Front Microbiol 2023; 14:1137162. [PMID: 37032898 PMCID: PMC10078946 DOI: 10.3389/fmicb.2023.1137162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 02/15/2023] [Indexed: 04/11/2023] Open
Abstract
Lyophyllum decastes, also known as Luronggu in China, is a culinary edible and medicinal mushroom that was widely cultivated in China in recent years. In the present study, the complete high-quality genome of two mating compatible L. decastes strain was sequenced. The L. decastes LRG-d1-1 genome consists of 47.7 Mb in 15 contigs with a contig N90 of 2.08 Mb and 14,499 predicted gene models. Phylogenetic analysis revealed that L. decastes exhibits a close evolutionary relationship to the Termitomyces and Hypsizygus genus and was diverged from H. marmoreus ~ 45.53 Mya ago. Mating A loci of L. decastes compose of five and four HD genes in two monokaryotic strains, respectively. Mating B loci compose of five STE genes in both two monokaryotic strains. To accelerate the cross-breeding process, we designed four pairs of specific primers and successfully detected both mating types in L. decastes. As a wood-rotting mushroom, a total of 541 genes accounting for 577 CAZymes were identified in the genome of L. decastes. Proteomic analysis revealed that 1,071 proteins including 182 CAZymes and 258 secreted enzymes were identified from four groups (PDB, PDB + bran, PDB + cotton hull, and PDB + sawdust). Two laccases and a quinone reductase were strongly overproduced in lignin-rich cultures, and the laccases were among the top-3 secreted proteins, suggesting an important role in the synergistic decomposition of lignin. These results revealed the robustness of the lignocellulose degradation capacity of L. decastes. This is the first study to provide insights into the evolution and lignocellulose degradation of L. decastes.
Collapse
Affiliation(s)
- Lili Xu
- Shandong Provincial Key Laboratory of Applied Mycology, School of Life Sciences, Qingdao Agricultural University, Qingdao, Shandong, China
- National Engineering Research Center of Edible Fungi, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Wujie Yang
- Shandong Agricultural Technology Extending Station, Jinan, Shandong, China
| | - Tianmei Qiu
- Shandong Provincial Key Laboratory of Applied Mycology, School of Life Sciences, Qingdao Agricultural University, Qingdao, Shandong, China
| | - Xia Gao
- Shandong Agricultural Technology Extending Station, Jinan, Shandong, China
| | - Hongyong Zhang
- Dezhou Academy of Agricultural Sciences, Dezhou, Shandong, China
| | - Shuliang Zhang
- Dezhou Academy of Agricultural Sciences, Dezhou, Shandong, China
| | - Hui Cui
- Shandong Agricultural Technology Extending Station, Jinan, Shandong, China
| | - Lizhong Guo
- Shandong Provincial Key Laboratory of Applied Mycology, School of Life Sciences, Qingdao Agricultural University, Qingdao, Shandong, China
| | - Hailong Yu
- National Engineering Research Center of Edible Fungi, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai, China
- *Correspondence: Hailong Yu,
| | - Hao Yu
- Shandong Provincial Key Laboratory of Applied Mycology, School of Life Sciences, Qingdao Agricultural University, Qingdao, Shandong, China
- Hao Yu,
| |
Collapse
|
4
|
Oxygen levels are key to understanding "Anaerobic" protozoan pathogens with micro-aerophilic lifestyles. Adv Microb Physiol 2021; 79:163-240. [PMID: 34836611 DOI: 10.1016/bs.ampbs.2021.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Publications abound on the physiology, biochemistry and molecular biology of "anaerobic" protozoal parasites as usually grown under "anaerobic" culture conditions. The media routinely used are poised at low redox potentials using techniques that remove O2 to "undetectable" levels in sealed containers. However there is growing understanding that these culture conditions do not faithfully resemble the O2 environments these organisms inhabit. Here we review for protists lacking oxidative energy metabolism, the oxygen cascade from atmospheric to intracellular concentrations and relevant methods of measurements of O2, some well-studied parasitic or symbiotic protozoan lifestyles, their homeodynamic metabolic and redox balances, organism-drug-oxygen interactions, and the present and future prospects for improved drugs and treatment regimes.
Collapse
|
5
|
Li F, Zhang J, Ma F, Chen Q, Xiao Q, Zhang X, Xie S, Yu H. Lytic polysaccharide monooxygenases promote oxidative cleavage of lignin and lignin-carbohydrate complexes during fungal degradation of lignocellulose. Environ Microbiol 2021; 23:4547-4560. [PMID: 34169632 DOI: 10.1111/1462-2920.15648] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 06/16/2021] [Accepted: 06/17/2021] [Indexed: 01/06/2023]
Abstract
Overcoming lignocellulosic biomass recalcitrance, especially the cleavage of cross-linkages in lignin-carbohydrate complexes (LCCs) and lignin, is essential for both the carbon cycle and industrial biorefinery. Lytic polysaccharide monooxygenases (LPMOs) are copper-containing enzymes that play a key role in fungal polysaccharide oxidative degradation. Nevertheless, comprehensive analysis showed that LPMOs from a white-rot fungus, Pleurotus ostreatus, correlated well with the Fenton reaction and were involved in the degradation of recalcitrant nonpolysaccharide fractions in this research. Thus, LPMOs participated in the extracellular Fenton reaction by enhancing iron reduction in quinone redox cycling. A Fenton reaction system consisting of LPMOs, hydroquinone, and ferric iron can efficiently produce hydroxy radicals and then cleave LCCs or lignin linkages. This finding indicates that LPMOs are underestimated auxiliary enzymes in eliminating biomass recalcitrance.
Collapse
Affiliation(s)
- Fei Li
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Jialong Zhang
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Fuying Ma
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Qing Chen
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Qiuyun Xiao
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Xiaoyu Zhang
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Shangxian Xie
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Hongbo Yu
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| |
Collapse
|
6
|
Li F, Zhao H, Shao R, Zhang X, Yu H. Enhanced Fenton Reaction for Xenobiotic Compounds and Lignin Degradation Fueled by Quinone Redox Cycling by Lytic Polysaccharide Monooxygenases. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:7104-7114. [PMID: 34130454 DOI: 10.1021/acs.jafc.1c01684] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The Fenton reaction is considered to be of great significance in the initial attack of lignocellulose in wood-decaying fungi. Quinone redox cycling is the main way to induce the Fenton reaction in fungi. We show that lytic polysaccharide monooxygenases (LPMOs), through LPMO-catalyzed oxidation of hydroquinone, can efficiently cooperate with glucose dehydrogenase (GDH) to achieve quinone redox cycling. The LPMO/GDH system can enhance Fe3+-reducing activity, H2O2 production, and hydroxyl radical generation, resulting in a fueled Fenton reaction. The system-generated hydroxyl radicals exhibited a strong capacity to decolorize different synthetic dyes and degrade lignin. Our results reveal a potentially critical connection between LPMOs and the Fenton reaction, suggesting that LPMOs could be involved in xenobiotic compound and lignin degradation in fungi. This new role of LPMOs may be exploited for application in biorefineries.
Collapse
Affiliation(s)
- Fei Li
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Honglu Zhao
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Ruijian Shao
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Xiaoyu Zhang
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Hongbo Yu
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| |
Collapse
|
7
|
Schlosser D. Cultivation of filamentous fungi for attack on synthetic polymers via biological Fenton chemistry. Methods Enzymol 2020; 648:71-94. [PMID: 33579418 DOI: 10.1016/bs.mie.2020.12.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Environmental pollution with synthetic polymers (commonly named plastics) nowadays poses serious threats to the environment and human health. Unfortunately, most conventional plastics are highly recalcitrant even under conditions known to be favorable for microbial degradation. Expanding the knowledge regarding opportunities and limitations of the microbial degradability of plastics would largely contribute to the development of adequate decontamination and management strategies for plastic pollution. This chapter provides cultivation approaches to be applied for the characterization of eco-physiologically diverse asco- and basidiomycete fungi with respect to their ability to attack solid and water-soluble synthetic polymers with the help of quinone redox cycling-based Fenton-type reactions, which result in the production of highly reactive hydroxyl radicals. These reactive oxygen species are the strongest oxidants known from biological systems. However, their potential employment by fungi dwelling in diverse habitats as a biodegradation tool to attack synthetic polymers is still insufficiently explored.
Collapse
Affiliation(s)
- Dietmar Schlosser
- Department of Environmental Microbiology, Helmholtz Centre for Environmental Research-UFZ, Leipzig, Germany.
| |
Collapse
|
8
|
Gonçalves CC, Bruce T, Silva CDOG, Fillho EXF, Noronha EF, Carlquist M, Parachin NS. Bioprospecting Microbial Diversity for Lignin Valorization: Dry and Wet Screening Methods. Front Microbiol 2020; 11:1081. [PMID: 32582068 PMCID: PMC7295907 DOI: 10.3389/fmicb.2020.01081] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 04/30/2020] [Indexed: 01/02/2023] Open
Abstract
Lignin is an abundant cell wall component, and it has been used mainly for generating steam and electricity. Nevertheless, lignin valorization, i.e. the conversion of lignin into high value-added fuels, chemicals, or materials, is crucial for the full implementation of cost-effective lignocellulosic biorefineries. From this perspective, rapid screening methods are crucial for time- and resource-efficient development of novel microbial strains and enzymes with applications in the lignin biorefinery. The present review gives an overview of recent developments and applications of a vast arsenal of activity and sequence-based methodologies for uncovering novel microbial strains with ligninolytic potential, novel enzymes for lignin depolymerization and for unraveling the main metabolic routes during growth on lignin. Finally, perspectives on the use of each of the presented methods and their respective advantages and disadvantages are discussed.
Collapse
Affiliation(s)
- Carolyne Caetano Gonçalves
- Department of Genomic Science and Biotechnology, Universidade Católica de Brasília - UCB, Brasília, Brazil
| | - Thiago Bruce
- Department of Genomic Science and Biotechnology, Universidade Católica de Brasília - UCB, Brasília, Brazil
| | | | | | - Eliane Ferreira Noronha
- Laboratory of Enzymology, Department of Cellular Biology, University of Brasília, Brasília, Brazil
| | - Magnus Carlquist
- Division of Applied Microbiology, Department of Chemistry, Faculty of Engineering, Lund University, Lund, Sweden
| | - Nádia Skorupa Parachin
- Department of Genomic Science and Biotechnology, Universidade Católica de Brasília - UCB, Brasília, Brazil
| |
Collapse
|
9
|
Kumar A, Chandra R. Ligninolytic enzymes and its mechanisms for degradation of lignocellulosic waste in environment. Heliyon 2020; 6:e03170. [PMID: 32095645 PMCID: PMC7033530 DOI: 10.1016/j.heliyon.2020.e03170] [Citation(s) in RCA: 180] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Revised: 10/04/2019] [Accepted: 12/31/2019] [Indexed: 12/30/2022] Open
Abstract
Ligninolytic enzymes play a key role in degradation and detoxification of lignocellulosic waste in environment. The major ligninolytic enzymes are laccase, lignin peroxidase, manganese peroxidase, and versatile peroxidase. The activities of these enzymes are enhanced by various mediators as well as some other enzymes (feruloyl esterase, aryl-alcohol oxidase, quinone reductases, lipases, catechol 2, 3-dioxygenase) to facilitate the process for degradation and detoxification of lignocellulosic waste in environment. The structurally laccase is isoenzymes with monomeric or dimeric and glycosylation levels (10–45%). This contains four copper ions of three different types. The enzyme catalyzes the overall reaction: 4 benzenediol + O2 to 4 benzosemiquinone + 2H2O. While, lignin peroxidase is a glycoprotein molecular mass of 38–46 kDa containing one mole of iron protoporphyrin IX per one mol of protein, catalyzes the H2O2 dependent oxidative depolymerization of lignin. The manganese peroxidase is a glycosylated heme protein with molecular mass of 40–50kDa. It depolymerizes the lignin molecule in the presence of manganese ion. The versatile peroxidase has broad range substrate sharing typical features of the manganese and lignin peroxidase families. Although ligninolytic enzymes have broad range of industrial application specially the degradation and detoxification of lignocellulosic waste discharged from various industrial activities, its large scale application is still limited due to lack of limited production. Further, the extremophilic properties of ligninolytic enzymes indicated their broad prospects in varied environmental conditions. Therefore it needs more extensive research for understanding its structure and mechanisms for broad range commercial applications.
Collapse
Affiliation(s)
- Adarsh Kumar
- Department of Environmental Microbiology, School for Environmental Sciences, Babasaheb Bhimrao Ambedkar (A Central) University, Vidya Vihar, Raebareli Road, Lucknow, Uttar Pradesh, 226025, India
| | - Ram Chandra
- Department of Environmental Microbiology, School for Environmental Sciences, Babasaheb Bhimrao Ambedkar (A Central) University, Vidya Vihar, Raebareli Road, Lucknow, Uttar Pradesh, 226025, India
| |
Collapse
|
10
|
Sharma A, Arambula JF, Koo S, Kumar R, Singh H, Sessler JL, Kim JS. Hypoxia-targeted drug delivery. Chem Soc Rev 2019; 48:771-813. [PMID: 30575832 PMCID: PMC6361706 DOI: 10.1039/c8cs00304a] [Citation(s) in RCA: 324] [Impact Index Per Article: 54.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Hypoxia is a state of low oxygen tension found in numerous solid tumours. It is typically associated with abnormal vasculature, which results in a reduced supply of oxygen and nutrients, as well as impaired delivery of drugs. The hypoxic nature of tumours often leads to the development of localized heterogeneous environments characterized by variable oxygen concentrations, relatively low pH, and increased levels of reactive oxygen species (ROS). The hypoxic heterogeneity promotes tumour invasiveness, metastasis, angiogenesis, and an increase in multidrug-resistant proteins. These factors decrease the therapeutic efficacy of anticancer drugs and can provide a barrier to advancing drug leads beyond the early stages of preclinical development. This review highlights various hypoxia-targeted and activated design strategies for the formulation of drugs or prodrugs and their mechanism of action for tumour diagnosis and treatment.
Collapse
Affiliation(s)
- Amit Sharma
- Department of Chemistry, Korea University, Seoul, 02841, Korea.
| | | | | | | | | | | | | |
Collapse
|
11
|
Endophytic Fungi: Biodiversity, Ecological Significance, and Potential Industrial Applications. RECENT ADVANCEMENT IN WHITE BIOTECHNOLOGY THROUGH FUNGI 2019. [DOI: 10.1007/978-3-030-10480-1_1] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
12
|
Andlar M, Rezić T, Marđetko N, Kracher D, Ludwig R, Šantek B. Lignocellulose degradation: An overview of fungi and fungal enzymes involved in lignocellulose degradation. Eng Life Sci 2018; 18:768-778. [PMID: 32624871 PMCID: PMC6999254 DOI: 10.1002/elsc.201800039] [Citation(s) in RCA: 212] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 04/03/2018] [Accepted: 04/17/2018] [Indexed: 11/10/2022] Open
Abstract
This review aims to present current knowledge of the fungi involved in lignocellulose degradation with an overview of the various classes of lignocellulose-acting enzymes engaged in the pretreatment and saccharification step. Fungi have numerous applications and biotechnological potential for various industries including chemicals, fuel, pulp, and paper. The capability of fungi to degrade lignocellulose containing raw materials is due to their highly effective enzymatic system. Along with the hydrolytic enzymes consisting of cellulases and hemicellulases, responsible for polysaccharide degradation, they have a unique nonenzymatic oxidative system which together with ligninolytic enzymes is responsible for lignin modification and degradation. An overview of the enzymes classification is given by the Carbohydrate-Active enZymes (CAZy) database as the major database for the identification of the lignocellulolytic enzymes by their amino acid sequence similarity. Finally, the recently discovered novel class of recalcitrant polysaccharide degraders-lytic polysaccharide monooxygenases (LPMOs) are presented, because of these enzymes importance in the cellulose degradation process.
Collapse
Affiliation(s)
- Martina Andlar
- Department of Biochemical EngineeringFaculty of Food Technology and BiotechnologyUniversity of ZagrebZagrebCroatia
| | - Tonči Rezić
- Department of Biochemical EngineeringFaculty of Food Technology and BiotechnologyUniversity of ZagrebZagrebCroatia
| | - Nenad Marđetko
- Department of Biochemical EngineeringFaculty of Food Technology and BiotechnologyUniversity of ZagrebZagrebCroatia
| | - Daniel Kracher
- Department of Food Sciences and TechnologyUniversity of Natural Resources and Life SciencesViennaAustria
| | - Roland Ludwig
- Department of Food Sciences and TechnologyUniversity of Natural Resources and Life SciencesViennaAustria
| | - Božidar Šantek
- Department of Biochemical EngineeringFaculty of Food Technology and BiotechnologyUniversity of ZagrebZagrebCroatia
| |
Collapse
|
13
|
Cong Y, Ge Y, Zhang T, Wang Q, Shao M, Zhang Y. Fabrication of Z-Scheme Fe2O3–MoS2–Cu2O Ternary Nanofilm with Significantly Enhanced Photoelectrocatalytic Performance. Ind Eng Chem Res 2018. [DOI: 10.1021/acs.iecr.7b04089] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Yanqing Cong
- School
of Environmental Science and Engineering and ‡Institute of Urban Aquatic Environment, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Yaohua Ge
- School
of Environmental Science and Engineering and ‡Institute of Urban Aquatic Environment, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Tongtong Zhang
- School
of Environmental Science and Engineering and ‡Institute of Urban Aquatic Environment, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Qi Wang
- School
of Environmental Science and Engineering and ‡Institute of Urban Aquatic Environment, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Meiling Shao
- School
of Environmental Science and Engineering and ‡Institute of Urban Aquatic Environment, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Yi Zhang
- School
of Environmental Science and Engineering and ‡Institute of Urban Aquatic Environment, Zhejiang Gongshang University, Hangzhou 310018, China
| |
Collapse
|
14
|
Afrin S, Karim Z. Isolation and Surface Modification of Nanocellulose: Necessity of Enzymes over Chemicals. CHEMBIOENG REVIEWS 2017. [DOI: 10.1002/cben.201600001] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Sadaf Afrin
- Aligarh Muslim University; Faculty of Science; Department of Chemistry; 202002 Aligarh India
| | - Zoheb Karim
- MoRe Research Örnsköldsvik AB; Box 70 891 22 Örnsköldsvik Sweden
| |
Collapse
|
15
|
Krueger MC, Seiwert B, Prager A, Zhang S, Abel B, Harms H, Schlosser D. Degradation of polystyrene and selected analogues by biological Fenton chemistry approaches: Opportunities and limitations. CHEMOSPHERE 2017; 173:520-528. [PMID: 28131922 DOI: 10.1016/j.chemosphere.2017.01.089] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Revised: 12/21/2016] [Accepted: 01/17/2017] [Indexed: 05/28/2023]
Abstract
Conventional synthetic polymers typically are highly resistant to microbial degradation, which is beneficial for their intended purpose but highly detrimental when such polymers get lost into the environment. Polystyrene is one of the most widespread of such polymers, but knowledge about its biological degradability is scarce. In this study, we investigated the ability of the polymer-degrading brown-rot fungus Gloeophyllum trabeum to attack polystyrene via Fenton chemistry driven by the redox-cycling of quinones. Indications of superficial oxidation were observed, but the overall effects on the polymer were weak. To assess factors constraining biodegradation of polystyrene, the small water-soluble model compounds ethylbenzene and isopropylbenzene (cumene) were also subjected to biodegradation by G. trabeum. Likewise, ethylbenzene sulfonate, cumene sulfonate and the dimer 1,3-diphenylbutane sulfonate were used as model compounds for comparison with polystyrene sulfonate, which G. trabeum can substantially depolymerise. All model compounds but cumene were degraded by G. trabeum and yielded a large variety of oxidised metabolites, suggesting that both the very poor bioavailability of polystyrene and its inert basic structure play important roles constraining biodegradability via biologically driven Fenton chemistry.
Collapse
Affiliation(s)
- Martin C Krueger
- Department of Environmental Microbiology, Helmholtz Centre for Environmental Research - UFZ, 04318, Leipzig, Germany
| | - Bettina Seiwert
- Department of Analytical Chemistry, Helmholtz Centre for Environmental Research - UFZ, 04318, Leipzig, Germany
| | - Andrea Prager
- Leibniz Institute of Surface Modification (IOM), Chemical Department, 04318, Leipzig, Germany
| | - Shangwei Zhang
- Department of Ecological Chemistry, Helmholtz Centre for Environmental Research - UFZ, 04318, Leipzig, Germany; Institute for Organic Chemistry, Technische Universität (TU) Bergakademie Freiberg, Leipziger Strasse 29, 09596, Freiberg, Germany
| | - Bernd Abel
- Leibniz Institute of Surface Modification (IOM), Chemical Department, 04318, Leipzig, Germany
| | - Hauke Harms
- Department of Environmental Microbiology, Helmholtz Centre for Environmental Research - UFZ, 04318, Leipzig, Germany
| | - Dietmar Schlosser
- Department of Environmental Microbiology, Helmholtz Centre for Environmental Research - UFZ, 04318, Leipzig, Germany.
| |
Collapse
|
16
|
|
17
|
Recovery and Utilization of Lignin Monomers as Part of the Biorefinery Approach. ENERGIES 2016. [DOI: 10.3390/en9100808] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
18
|
Ensafi AA, Jamei HR, Heydari-Bafrooei E, Rezaei B. Electrochemical study of quinone redox cycling: A novel application of DNA-based biosensors for monitoring biochemical reactions. Bioelectrochemistry 2016; 111:15-22. [DOI: 10.1016/j.bioelechem.2016.04.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Revised: 04/26/2016] [Accepted: 04/26/2016] [Indexed: 01/09/2023]
|
19
|
Abdel-Hamid AM, Solbiati JO, Cann IKO. Insights into lignin degradation and its potential industrial applications. ADVANCES IN APPLIED MICROBIOLOGY 2016; 82:1-28. [PMID: 23415151 DOI: 10.1016/b978-0-12-407679-2.00001-6] [Citation(s) in RCA: 165] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Lignocellulose is an abundant biomass that provides an alternative source for the production of renewable fuels and chemicals. The depolymerization of the carbohydrate polymers in lignocellulosic biomass is hindered by lignin, which is recalcitrant to chemical and biological degradation due to its complex chemical structure and linkage heterogeneity. The role of fungi in delignification due to the production of extracellular oxidative enzymes has been studied more extensively than that of bacteria. The two major groups of enzymes that are involved in lignin degradation are heme peroxidases and laccases. Lignin-degrading peroxidases include lignin peroxidase (LiP), manganese peroxidase (MnP), versatile peroxidase (VP), and dye-decolorizing peroxidase (DyP). LiP, MnP, and VP are class II extracellular fungal peroxidases that belong to the plant and microbial peroxidases superfamily. LiPs are strong oxidants with high-redox potential that oxidize the major non-phenolic structures of lignin. MnP is an Mn-dependent enzyme that catalyzes the oxidation of various phenolic substrates but is not capable of oxidizing the more recalcitrant non-phenolic lignin. VP enzymes combine the catalytic activities of both MnP and LiP and are able to oxidize Mn(2+) like MnP, and non-phenolic compounds like LiP. DyPs occur in both fungi and bacteria and are members of a new superfamily of heme peroxidases called DyPs. DyP enzymes oxidize high-redox potential anthraquinone dyes and were recently reported to oxidize lignin model compounds. The second major group of lignin-degrading enzymes, laccases, are found in plants, fungi, and bacteria and belong to the multicopper oxidase superfamily. They catalyze a one-electron oxidation with the concomitant four-electron reduction of molecular oxygen to water. Fungal laccases can oxidize phenolic lignin model compounds and have higher redox potential than bacterial laccases. In the presence of redox mediators, fungal laccases can oxidize non-phenolic lignin model compounds. In addition to the peroxidases and laccases, fungi produce other accessory oxidases such as aryl-alcohol oxidase and the glyoxal oxidase that generate the hydrogen peroxide required by the peroxidases. Lignin-degrading enzymes have attracted the attention for their valuable biotechnological applications especially in the pretreatment of recalcitrant lignocellulosic biomass for biofuel production. The use of lignin-degrading enzymes has been studied in various applications such as paper industry, textile industry, wastewater treatment and the degradation of herbicides.
Collapse
Affiliation(s)
- Ahmed M Abdel-Hamid
- Energy Biosciences Institute, University of Illinois, IL, USA; Institute for Genomic Biology, University of Illinois, IL, USA
| | | | | |
Collapse
|
20
|
Krueger MC, Bergmann M, Schlosser D. Widespread ability of fungi to drive quinone redox cycling for biodegradation. FEMS Microbiol Lett 2016; 363:fnw105. [DOI: 10.1093/femsle/fnw105] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/17/2016] [Indexed: 11/13/2022] Open
|
21
|
Redhead M, Satchell R, Morkūnaitė V, Swift D, Petrauskas V, Golding E, Onions S, Matulis D, Unitt J. A combinatorial biophysical approach; FTSA and SPR for identifying small molecule ligands and PAINs. Anal Biochem 2015; 479:63-73. [PMID: 25837771 DOI: 10.1016/j.ab.2015.03.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Revised: 03/06/2015] [Accepted: 03/11/2015] [Indexed: 10/23/2022]
Abstract
Biophysical methods have emerged as attractive screening techniques in drug discovery both as primary hit finding methodologies, as in the case of weakly active compounds such as fragments, and as orthogonal methods for hit validation for compounds discovered through conventional biochemical or cellular assays. Here we describe a dual method employing fluorescent thermal shift assay (FTSA), also known as differential scanning fluorimetry (DSF) and surface plasmon resonance (SPR), to interrogate ligands of the kinase p38α as well as several known pan-assay interference compounds (PAINs) such as aggregators, redox cyclers, and fluorescence quenchers. This combinatorial approach allows for independent verification of several biophysical parameters such as KD, kon, koff, ΔG, ΔS, and ΔH, which may further guide chemical development of a ligand series. Affinity values obtained from FTSA curves allow for insight into compound binding compared with reporting shifts in melting temperature. Ligand-p38 interaction data were in good agreement with previous literature. Aggregators and fluorescence quenchers appeared to reduce fluorescence signal in the FTSAs, causing artificially high shifts in Tm values, whereas redox compounds caused either shifts in affinity that did not agree between FTSA and SPR or a depression of FTSA signal.
Collapse
Affiliation(s)
- M Redhead
- Bioscience Department, Sygnature Discovery, BioCity, Nottingham NG1 1GF, UK.
| | - R Satchell
- Bioscience Department, Sygnature Discovery, BioCity, Nottingham NG1 1GF, UK
| | - V Morkūnaitė
- Department of Biothermodynamics and Drug Design, Institute of Biotechnology, Vilnius University, Vilnius LT-02241, Lithuania; Department of Neurobiology and Biophysics, Faculty of Natural Sciences, Vilnius University, Vilnius 03101, Lithuania
| | - D Swift
- Bioscience Department, Sygnature Discovery, BioCity, Nottingham NG1 1GF, UK
| | - V Petrauskas
- Department of Biothermodynamics and Drug Design, Institute of Biotechnology, Vilnius University, Vilnius LT-02241, Lithuania
| | - E Golding
- Bioscience Department, Sygnature Discovery, BioCity, Nottingham NG1 1GF, UK
| | - S Onions
- Chemistry Department, Sygnature Discovery, BioCity, Nottingham NG1 1GF, UK
| | - D Matulis
- Department of Biothermodynamics and Drug Design, Institute of Biotechnology, Vilnius University, Vilnius LT-02241, Lithuania.
| | - J Unitt
- Bioscience Department, Sygnature Discovery, BioCity, Nottingham NG1 1GF, UK.
| |
Collapse
|
22
|
Pollegioni L, Tonin F, Rosini E. Lignin-degrading enzymes. FEBS J 2015; 282:1190-213. [DOI: 10.1111/febs.13224] [Citation(s) in RCA: 289] [Impact Index Per Article: 28.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Revised: 12/29/2014] [Accepted: 01/30/2015] [Indexed: 11/26/2022]
Affiliation(s)
- Loredano Pollegioni
- Dipartimento di Biotecnologie e Scienze della Vita; Università degli studi dell'Insubria; Varese Italy
- The Protein Factory; Centro Interuniversitario di Biotecnologie Proteiche; Politecnico di Milano; ICRM CNR Milano; Università degli Studi dell'Insubria; Italy
| | - Fabio Tonin
- Dipartimento di Biotecnologie e Scienze della Vita; Università degli studi dell'Insubria; Varese Italy
| | - Elena Rosini
- Dipartimento di Biotecnologie e Scienze della Vita; Università degli studi dell'Insubria; Varese Italy
- The Protein Factory; Centro Interuniversitario di Biotecnologie Proteiche; Politecnico di Milano; ICRM CNR Milano; Università degli Studi dell'Insubria; Italy
| |
Collapse
|
23
|
Copper radical oxidases and related extracellular oxidoreductases of wood-decay Agaricomycetes. Fungal Genet Biol 2014; 72:124-130. [DOI: 10.1016/j.fgb.2014.05.011] [Citation(s) in RCA: 82] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2014] [Revised: 05/27/2014] [Accepted: 05/28/2014] [Indexed: 11/20/2022]
|
24
|
Moreno AD, Ibarra D, Alvira P, Tomás-Pejó E, Ballesteros M. A review of biological delignification and detoxification methods for lignocellulosic bioethanol production. Crit Rev Biotechnol 2014; 35:342-54. [DOI: 10.3109/07388551.2013.878896] [Citation(s) in RCA: 121] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
25
|
|
26
|
Rohr CO, Levin LN, Mentaberry AN, Wirth SA. A first insight into Pycnoporus sanguineus BAFC 2126 transcriptome. PLoS One 2013; 8:e81033. [PMID: 24312521 PMCID: PMC3846667 DOI: 10.1371/journal.pone.0081033] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2013] [Accepted: 10/09/2013] [Indexed: 12/12/2022] Open
Abstract
Fungi of the genus Pycnoporus are white-rot basidiomycetes widely studied because of their ability to synthesize high added-value compounds and enzymes of industrial interest. Here we report the sequencing, assembly and analysis of the transcriptome of Pycnoporus sanguineus BAFC 2126 grown at stationary phase, in media supplemented with copper sulfate. Using the 454 pyrosequencing platform we obtained a total of 226,336 reads (88,779,843 bases) that were filtered and de novo assembled to generate a reference transcriptome of 7,303 transcripts. Putative functions were assigned for 4,732 transcripts by searching similarities of six-frame translated sequences against a customized protein database and by the presence of conserved protein domains. Through the analysis of translated sequences we identified transcripts encoding 178 putative carbohydrate active enzymes, including representatives of 15 families with roles in lignocellulose degradation. Furthermore, we found many transcripts encoding enzymes related to lignin hydrolysis and modification, including laccases and peroxidases, as well as GMC oxidoreductases, copper radical oxidases and other enzymes involved in the generation of extracellular hydrogen peroxide and iron homeostasis. Finally, we identified the transcripts encoding all of the enzymes involved in terpenoid backbone biosynthesis pathway, various terpene synthases related to the biosynthesis of sesquiterpenoids and triterpenoids precursors, and also cytochrome P450 monooxygenases, glutathione S-transferases and epoxide hydrolases with potential functions in the biodegradation of xenobiotics and the enantioselective biosynthesis of biologically active drugs. To our knowledge this is the first report of a transcriptome of genus Pycnoporus and a resource for future molecular studies in P. sanguineus.
Collapse
Affiliation(s)
- Cristian O. Rohr
- Instituto de Ecología, Genética y Evolución, Consejo Nacional de Investigaciones Científicas y Técnicas, Ciudad de Buenos Aires, Buenos Aires, Argentina
| | - Laura N. Levin
- Laboratorio de Micología Experimental, Departamento de Biodiversidad y Biología Experimental, Universidad de Buenos Aires, Ciudad de Buenos Aires, Buenos Aires, Argentina
| | - Alejandro N. Mentaberry
- Laboratorio de Agrobiotecnología, Universidad de Buenos Aires, Ciudad de Buenos Aires, Buenos Aires, Argentina
| | - Sonia A. Wirth
- Laboratorio de Agrobiotecnología, Universidad de Buenos Aires, Ciudad de Buenos Aires, Buenos Aires, Argentina
- * E-mail:
| |
Collapse
|
27
|
Yakovlev IA, Hietala AM, Courty PE, Lundell T, Solheim H, Fossdal CG. Genes associated with lignin degradation in the polyphagous white-rot pathogen Heterobasidion irregulare show substrate-specific regulation. Fungal Genet Biol 2013; 56:17-24. [PMID: 23665189 DOI: 10.1016/j.fgb.2013.04.011] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2012] [Revised: 04/26/2013] [Accepted: 04/29/2013] [Indexed: 11/15/2022]
Abstract
The pathogenic white-rot basidiomycete Heterobasidion irregulare is able to remove lignin and hemicellulose prior to cellulose during the colonization of root and stem xylem of conifer and broadleaf trees. We identified and followed the regulation of expression of genes belonging to families encoding ligninolytic enzymes. In comparison with typical white-rot fungi, the H. irregulare genome has exclusively the short-manganese peroxidase type encoding genes (6 short-MnPs) and thereby a slight contraction in the pool of class II heme-containing peroxidases, but an expansion of the MCO laccases with 17 gene models. Furthermore, the genome shows a versatile set of other oxidoreductase genes putatively involved in lignin oxidation and conversion, including 5 glyoxal oxidases, 19 quinone-oxidoreductases and 12 aryl-alcohol oxidases. Their genetic multiplicity and gene-specific regulation patterns on cultures based on defined lignin, cellulose or Norway spruce lignocellulose substrates suggest divergent specificities and physiological roles for these enzymes. While the short-MnP encoding genes showed similar transcript levels upon fungal growth on heartwood and reaction zone (RZ), a xylem defense tissue rich in phenolic compounds unique to trees, a subset of laccases showed higher gene expression in the RZ cultures. In contrast, other oxidoreductases depending on initial MnP activity showed generally lower transcript levels on RZ than on heartwood. These data suggest that the rate of fungal oxidative conversion of xylem lignin differs between spruce RZ and heartwood. It is conceivable that in RZ part of the oxidoreductase activities of laccases are related to the detoxification of phenolic compounds involved in host-defense. Expression of the several short-MnP enzymes indicated an important role for these enzymes in effective delignification of wood by H. irregulare.
Collapse
Affiliation(s)
- Igor A Yakovlev
- Norwegian Forest and Landscape Institute, PO Box 115, N-1431 Ås, Norway
| | | | | | | | | | | |
Collapse
|
28
|
Gasser CA, Hommes G, Schäffer A, Corvini PFX. Multi-catalysis reactions: new prospects and challenges of biotechnology to valorize lignin. Appl Microbiol Biotechnol 2012; 95:1115-34. [PMID: 22782247 DOI: 10.1007/s00253-012-4178-x] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2012] [Revised: 05/15/2012] [Accepted: 05/15/2012] [Indexed: 11/28/2022]
Abstract
Considerable effort has been dedicated to the chemical depolymerization of lignin, a biopolymer constituting a possible renewable source for aromatic value-added chemicals. However, these efforts yielded limited success up until now. Efficient lignin conversion might necessitate novel catalysts enabling new types of reactions. The use of multiple catalysts, including a combination of biocatalysts, might be necessary. New perspectives for the combination of bio- and inorganic catalysts in one-pot reactions are emerging, thanks to green chemistry-driven advances in enzyme engineering and immobilization and new chemical catalyst design. Such combinations could offer several advantages, especially by reducing time and yield losses associated with the isolation and purification of the reaction products, but also represent a big challenge since the optimal reaction conditions of bio- and chemical catalysis reactions are often different. This mini-review gives an overview of bio- and inorganic catalysts having the potential to be used in combination for lignin depolymerization. We also discuss key aspects to consider when combining these catalysts in one-pot reactions.
Collapse
Affiliation(s)
- Christoph A Gasser
- Institute for Ecopreneurship, School of Life Sciences, University of Applied Sciences and Arts Northwestern Switzerland, Gründenstrasse 40, Muttenz, 4132, Switzerland
| | | | | | | |
Collapse
|
29
|
Paliwal R, Rawat AP, Rawat M, Rai JPN. Bioligninolysis: recent updates for biotechnological solution. Appl Biochem Biotechnol 2012; 167:1865-89. [PMID: 22639362 DOI: 10.1007/s12010-012-9735-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2012] [Accepted: 05/10/2012] [Indexed: 10/28/2022]
Abstract
Bioligninolysis involves living organisms and/or their products in degradation of lignin, which is highly resistant, plant-originated polymer having three-dimensional network of dimethoxylated (syringyl), monomethoxylated (guaiacyl), and non-methoxylated (p-hydroxyphenyl) phenylpropanoid and acetylated units. As a major repository of aromatic chemical structures on earth, lignin bears paramount significance for its removal owing to potential application of bioligninolytic systems in industrial production. Early reports illustrating the discovery and cloning of ligninolytic biocatalysts in fungi was truly a landmark in the field of enzymatic delignification. However, the enzymology for bacterial delignification is hitherto poorly understood. Moreover, the lignin-degrading bacterial genes are still unknown and need further exploration. This review deals with the current knowledge about ligninolytic enzyme families produced by fungi and bacteria, their mechanisms of action, and genetic regulation and reservations, which render them attractive candidates in biotechnological applications.
Collapse
Affiliation(s)
- Rashmi Paliwal
- Ecotechnology Laboratory, Department of Environmental Science, G.B.Pant. University of Agriculture and Technology, Pantnagar 263145, India
| | | | | | | |
Collapse
|
30
|
Degradation of Chloro-organic Pollutants by White Rot Fungi. ENVIRONMENTAL SCIENCE AND ENGINEERING 2012. [DOI: 10.1007/978-3-642-23789-8_2] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
31
|
Luna-Acosta A, Saulnier D, Pommier M, Haffner P, De Decker S, Renault T, Thomas-Guyon H. First evidence of a potential antibacterial activity involving a laccase-type enzyme of the phenoloxidase system in Pacific oyster Crassostrea gigas haemocytes. FISH & SHELLFISH IMMUNOLOGY 2011; 31:795-800. [PMID: 21802516 DOI: 10.1016/j.fsi.2011.07.016] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2011] [Revised: 07/04/2011] [Accepted: 07/10/2011] [Indexed: 05/31/2023]
Abstract
Phenoloxidases (POs) are a group of copper proteins including tyrosinase, catecholase and laccase. In several insects and crustaceans, antibacterial substances are produced through the PO cascade, participating in the direct killing of invading microorganisms. However, although POs are widely recognised as an integral part of the invertebrate immune defence system, experimental evidence is lacking that these properties are conserved in molluscs, and more particularly in the Pacific oyster Crassostrea gigas. In the present study, Vibrio splendidus LGP32 and Vibrio aestuarianus 02/041 growths were affected, after being treated with C. gigas haemocyte lysate supernatant (HLS), and either a common substrate of POs, l-3,4-dihydroxyphenylalanine (L-DOPA), to detect catecholase-type PO activity, or a specific substrate of laccase, p-phenylenediamine (PPD), to detect laccase-type PO activity. Interestingly, a higher bacterial growth inhibition was observed in the presence of PPD than in the presence of L-DOPA. These effects were suppressed when the specific PO inhibitor, phenylthiourea (PTU), was added to the medium. Results of the present study suggest, for the first time in a mollusc species, that antibacterial activities of HLS from C. gigas potentially involve POs, and more particularly laccase catalysed reactions.
Collapse
Affiliation(s)
- Andrea Luna-Acosta
- Littoral Environnement et Sociétés (LIENSs), UMR 6250, CNRS-Université de La Rochelle, 2 rue Olympe de Gouges, F-17042 La Rochelle Cedex 01, France.
| | | | | | | | | | | | | |
Collapse
|
32
|
Yelle DJ, Wei D, Ralph J, Hammel KE. Multidimensional NMR analysis reveals truncated lignin structures in wood decayed by the brown rot basidiomycete Postia placenta. Environ Microbiol 2011; 13:1091-100. [PMID: 21261800 DOI: 10.1111/j.1462-2920.2010.02417.x] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Lignocellulose biodegradation, an essential step in terrestrial carbon cycling, generally involves removal of the recalcitrant lignin barrier that otherwise prevents infiltration by microbial polysaccharide hydrolases. However, fungi that cause brown rot of wood, a major route for biomass recycling in coniferous forests, utilize wood polysaccharides efficiently while removing little of the lignin. The mechanism by which these basidiomycetes breach the lignin remains unclear. We used recently developed methods for solubilization and multidimensional (1) H-(13) C solution-state NMR spectroscopy of ball-milled lignocellulose to analyse aspen wood degraded by Postia placenta. The results showed that decay decreased the content of the principal arylglycerol-β-aryl ether interunit linkage in the lignin by more than half, while increasing the frequency of several truncated lignin structures roughly fourfold over the level found in sound aspen. These new end-groups, consisting of benzaldehydes, benzoic acids and phenylglycerols, accounted for 6-7% of all original lignin subunits. Our results provide evidence that brown rot by P. placenta results in significant ligninolysis, which might enable infiltration of the wood by polysaccharide hydrolases even though the partially degraded lignin remains in situ. Recent work has revealed that the P. placenta genome encodes no ligninolytic peroxidases, but has also shown that this fungus produces an extracellular Fenton system. It is accordingly likely that P. placenta employs electrophilic reactive oxygen species such as hydroxyl radicals to disrupt lignin in wood.
Collapse
|
33
|
Role of copper in poly R-478 decolorization by the marine cyanobacterium Phormidium valderianum BDU140441. World J Microbiol Biotechnol 2010. [DOI: 10.1007/s11274-010-0505-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
34
|
Comparative transcriptome and secretome analysis of wood decay fungi Postia placenta and Phanerochaete chrysosporium. Appl Environ Microbiol 2010; 76:3599-610. [PMID: 20400566 DOI: 10.1128/aem.00058-10] [Citation(s) in RCA: 210] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cellulose degradation by brown rot fungi, such as Postia placenta, is poorly understood relative to the phylogenetically related white rot basidiomycete, Phanerochaete chrysosporium. To elucidate the number, structure, and regulation of genes involved in lignocellulosic cell wall attack, secretome and transcriptome analyses were performed on both wood decay fungi cultured for 5 days in media containing ball-milled aspen or glucose as the sole carbon source. Using liquid chromatography-tandem mass spectrometry (LC-MS/MS), a total of 67 and 79 proteins were identified in the extracellular fluids of P. placenta and P. chrysosporium cultures, respectively. Viewed together with transcript profiles, P. chrysosporium employs an array of extracellular glycosyl hydrolases to simultaneously attack cellulose and hemicelluloses. In contrast, under these same conditions, P. placenta secretes an array of hemicellulases but few potential cellulases. The two species display distinct expression patterns for oxidoreductase-encoding genes. In P. placenta, these patterns are consistent with an extracellular Fenton system and include the upregulation of genes involved in iron acquisition, in the synthesis of low-molecular-weight quinones, and possibly in redox cycling reactions.
Collapse
|
35
|
Luna-Acosta A, Rosenfeld E, Amari M, Fruitier-Arnaudin I, Bustamante P, Thomas-Guyon H. First evidence of laccase activity in the Pacific oyster Crassostrea gigas. FISH & SHELLFISH IMMUNOLOGY 2010; 28:719-726. [PMID: 20109560 DOI: 10.1016/j.fsi.2010.01.008] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2009] [Revised: 01/13/2010] [Accepted: 01/20/2010] [Indexed: 05/28/2023]
Abstract
Phenoloxidases (POs) are a family of enzymes including tyrosinases, catecholases and laccases, which play an important role in immune defence mechanisms in various invertebrates. The aim of this study was to thoroughly identify the PO-like activity present in the hemolymph of the Pacific oyster Crassostrea gigas, by using different substrates (i.e. dopamine and p-phenylenediamine, PPD) and different PO inhibitors. In order to go deeper in this analysis, we considered separately plasma and hemocyte lysate supernatant (HLS). In crude plasma, oxygraphic assays confirmed the presence of true oxidase activities. Moreover, the involvement of peroxidase(s) was excluded. In contrast to other molluscs, no tyrosinase-like activity was detected. With dopamine as substrate, PO-like activity was inhibited by the PO inhibitors tropolone, phenylthiourea (PTU), salicylhydroxamic acid and diethyldithio-carbamic acid, by a specific inhibitor of tyrosinases and catecholases, i.e. 4-hexylresorcinol (4-HR), and by a specific inhibitor of laccases, i.e. cetyltrimethylammonium bromide (CTAB). With PPD as substrate, PO-like activity was inhibited by PTU and CTAB. In precipitated protein fractions from plasma, and with dopamine and PPD as substrates, PTU and 4-HR, and PTU and CTAB inhibited PO-like activity, respectively. In precipitated protein fractions from hemocyte lysate supernatant, PTU and CTAB inhibited PO-like activity, independently of the substrate. Taken together, these results suggest the presence of both catecholase- and laccase-like activities in plasma, and the presence of a laccase-like activity in HLS. To the best of our knowledge, this is the first time that a laccase-like activity is identified in a mollusc by using specific substrates and inhibitors for laccase, opening new perspectives for studying the implication of this enzyme in immune defence mechanisms of molluscs of high economic value such as C. gigas.
Collapse
Affiliation(s)
- Andrea Luna-Acosta
- Littoral Environnement et Sociétés, UMR 6250, CNRS-Université de La Rochelle, 2 rue Olympe de Gouges, F-17042 La Rochelle Cedex 01, France.
| | | | | | | | | | | |
Collapse
|
36
|
Laccase and its role in production of extracellular reactive oxygen species during wood decay by the brown rot basidiomycete Postia placenta. Appl Environ Microbiol 2010; 76:2091-7. [PMID: 20154118 DOI: 10.1128/aem.02929-09] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Brown rot basidiomycetes initiate wood decay by producing extracellular reactive oxygen species that depolymerize the structural polysaccharides of lignocellulose. Secreted fungal hydroquinones are considered one contributor because they have been shown to reduce Fe(3+), thus generating perhydroxyl radicals and Fe(2+), which subsequently react further to produce biodegradative hydroxyl radicals. However, many brown rot fungi also secrete high levels of oxalate, which chelates Fe(3+) tightly, making it unreactive with hydroquinones. For hydroquinone-driven hydroxyl radical production to contribute in this environment, an alternative mechanism to oxidize hydroquinones is required. We show here that aspen wood undergoing decay by the oxalate producer Postia placenta contained both 2,5-dimethoxyhydroquinone and laccase activity. Mass spectrometric analysis of proteins extracted from the wood identified a putative laccase (Joint Genome Institute P. placenta protein identification number 111314), and heterologous expression of the corresponding gene confirmed this assignment. Ultrafiltration experiments with liquid pressed from the biodegrading wood showed that a high-molecular-weight component was required for it to oxidize 2,5-dimethoxyhydroquinone rapidly and that this component was replaceable by P. placenta laccase. The purified laccase oxidized 2,5-dimethoxyhydroquinone with a second-order rate constant near 10(4) M(-1) s(-1), and measurements of the H(2)O(2) produced indicated that approximately one perhydroxyl radical was generated per hydroquinone supplied. Using these values and a previously developed computer model, we estimate that the quantity of reactive oxygen species produced by P. placenta laccase in wood is large enough that it likely contributes to incipient decay.
Collapse
|
37
|
Peterbauer CK, Volc J. Pyranose dehydrogenases: biochemical features and perspectives of technological applications. Appl Microbiol Biotechnol 2009; 85:837-48. [PMID: 19768457 DOI: 10.1007/s00253-009-2226-y] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2009] [Revised: 08/24/2009] [Accepted: 08/24/2009] [Indexed: 11/25/2022]
Abstract
Pyranose dehydrogenase is a fungal flavin-dependent sugar oxidoreductase which is structurally and catalytically related to fungal pyranose oxidase and cellobiose dehydrogenase and probably fulfills similar biological functions in lignocellulose breakdown. It is a monomeric secretory glycoprotein and is limited to a rather small group of litter-decomposing basidiomycetes. Compared with pyranose oxidase, it displays broader substrate specificity and a variable regioselectivity and is unable to utilize oxygen as electron acceptor using substituted benzoquinones and (organo) metallic ions instead. Depending on the structure of the sugar in pyranose form (mono/di/oligosaccharide or glycoside) and the enzyme source, selective monooxidations at C-1, C-2, C-3, or dioxidations at C-2,3 or C-3,4 of the molecule to the corresponding aldonolactones (C-1), or (di)dehydrosugars (aldos(di)uloses) can be performed. These features make pyranose dehydrogenase a promising and versatile biocatalyst for production of highly reactive, sometimes unique, di- and tri-carbonyl sugar derivatives that may serve as interesting chiral intermediates for the synthesis of rare sugars, novel drugs, and fine chemicals.
Collapse
Affiliation(s)
- Clemens K Peterbauer
- Department of Food Sciences and Technology, BOKU-University of Natural Resources and Applied Life Sciences, Vienna, Austria.
| | | |
Collapse
|
38
|
Fragner D, Zomorrodi M, Kües U, Majcherczyk A. Optimized protocol for the 2-DE of extracellular proteins from higher basidiomycetes inhabiting lignocellulose. Electrophoresis 2009; 30:2431-41. [DOI: 10.1002/elps.200800770] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
39
|
Response to oxidative stress ofCoriolus versicolor induced by exogenous hydrogen peroxide and paraquat. ANN MICROBIOL 2009. [DOI: 10.1007/bf03178320] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
40
|
Enhancing the production of hydroxyl radicals by Pleurotus eryngii via quinone redox cycling for pollutant removal. Appl Environ Microbiol 2009; 75:3954-62. [PMID: 19376890 DOI: 10.1128/aem.02138-08] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The induction of hydroxyl radical (OH) production via quinone redox cycling in white-rot fungi was investigated to improve pollutant degradation. In particular, we examined the influence of 4-methoxybenzaldehyde (anisaldehyde), Mn(2+), and oxalate on Pleurotus eryngii OH generation. Our standard quinone redox cycling conditions combined mycelium from laccase-producing cultures with 2,6-dimethoxy-1,4-benzoquinone (DBQ) and Fe(3+)-EDTA. The main reactions involved in OH production under these conditions have been shown to be (i) DBQ reduction to hydroquinone (DBQH(2)) by cell-bound dehydrogenase activities; (ii) DBQH(2) oxidation to semiquinone (DBQ(-)) by laccase; (iii) DBQ(-) autoxidation, catalyzed by Fe(3+)-EDTA, producing superoxide (O(2)(-)) and Fe(2+)-EDTA; (iv) O(2)(-) dismutation, generating H(2)O(2); and (v) the Fenton reaction. Compared to standard quinone redox cycling conditions, OH production was increased 1.2- and 3.0-fold by the presence of anisaldehyde and Mn(2+), respectively, and 3.1-fold by substituting Fe(3+)-EDTA with Fe(3+)-oxalate. A 6.3-fold increase was obtained by combining Mn(2+) and Fe(3+)-oxalate. These increases were due to enhanced production of H(2)O(2) via anisaldehyde redox cycling and O(2)(-) reduction by Mn(2+). They were also caused by the acceleration of the DBQ redox cycle as a consequence of DBQH(2) oxidation by both Fe(3+)-oxalate and the Mn(3+) generated during O(2)(-) reduction. Finally, induction of OH production through quinone redox cycling enabled P. eryngii to oxidize phenol and the dye reactive black 5, obtaining a high correlation between the rates of OH production and pollutant oxidation.
Collapse
|
41
|
Induction of extracellular hydroxyl radical production by white-rot fungi through quinone redox cycling. Appl Environ Microbiol 2009; 75:3944-53. [PMID: 19376892 DOI: 10.1128/aem.02137-08] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A simple strategy for the induction of extracellular hydroxyl radical (OH) production by white-rot fungi is presented. It involves the incubation of mycelium with quinones and Fe(3+)-EDTA. Succinctly, it is based on the establishment of a quinone redox cycle catalyzed by cell-bound dehydrogenase activities and the ligninolytic enzymes (laccase and peroxidases). The semiquinone intermediate produced by the ligninolytic enzymes drives OH production by a Fenton reaction (H(2)O(2) + Fe(2+) --> OH + OH(-) + Fe(3+)). H(2)O(2) production, Fe(3+) reduction, and OH generation were initially demonstrated with two Pleurotus eryngii mycelia (one producing laccase and versatile peroxidase and the other producing just laccase) and four quinones, 1,4-benzoquinone (BQ), 2-methoxy-1,4-benzoquinone (MBQ), 2,6-dimethoxy-1,4-benzoquinone (DBQ), and 2-methyl-1,4-naphthoquinone (menadione [MD]). In all cases, OH radicals were linearly produced, with the highest rate obtained with MD, followed by DBQ, MBQ, and BQ. These rates correlated with both H(2)O(2) levels and Fe(3+) reduction rates observed with the four quinones. Between the two P. eryngii mycelia used, the best results were obtained with the one producing only laccase, showing higher OH production rates with added purified enzyme. The strategy was then validated in Bjerkandera adusta, Phanerochaete chrysosporium, Phlebia radiata, Pycnoporus cinnabarinus, and Trametes versicolor, also showing good correlation between OH production rates and the kinds and levels of the ligninolytic enzymes expressed by these fungi. We propose this strategy as a useful tool to study the effects of OH radicals on lignin and organopollutant degradation, as well as to improve the bioremediation potential of white-rot fungi.
Collapse
|
42
|
Sánchez C. Lignocellulosic residues: Biodegradation and bioconversion by fungi. Biotechnol Adv 2009; 27:185-94. [DOI: 10.1016/j.biotechadv.2008.11.001] [Citation(s) in RCA: 950] [Impact Index Per Article: 59.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2008] [Revised: 11/12/2008] [Accepted: 11/15/2008] [Indexed: 11/29/2022]
|
43
|
Fungal secretomes—nature’s toolbox for white biotechnology. Appl Microbiol Biotechnol 2008; 80:381-8. [DOI: 10.1007/s00253-008-1572-5] [Citation(s) in RCA: 117] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2008] [Revised: 06/09/2008] [Accepted: 06/09/2008] [Indexed: 10/21/2022]
|
44
|
|
45
|
Chapter 2 Enzymes of saprotrophic basidiomycetes. BRITISH MYCOLOGICAL SOCIETY SYMPOSIA SERIES 2008. [DOI: 10.1016/s0275-0287(08)80004-5] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
46
|
Johnson HA, Tebo BM. In vitro studies indicate a quinone is involved in bacterial Mn(II) oxidation. Arch Microbiol 2007; 189:59-69. [PMID: 17673976 PMCID: PMC2721854 DOI: 10.1007/s00203-007-0293-y] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2007] [Revised: 06/25/2007] [Accepted: 07/11/2007] [Indexed: 11/26/2022]
Abstract
Manganese(II)-oxidizing bacteria play an integral role in the cycling of Mn as well as other metals and organics. Prior work with Mn(II)-oxidizing bacteria suggested that Mn(II) oxidation involves a multicopper oxidase, but whether this enzyme directly catalyzes Mn(II) oxidation is unknown. For a clearer understanding of Mn(II) oxidation, we have undertaken biochemical studies in the model marine alpha-proteobacterium, Erythrobacter sp. strain SD21. The optimum pH for Mn(II)-oxidizing activity was 8.0 with a specific activity of 2.5 nmol x min(-1) x mg(-1) and a K (m) = 204 microM. The activity was soluble suggesting a cytoplasmic or periplasmic protein. Mn(III) was an intermediate in the oxidation of Mn(II) and likely the primary product of enzymatic oxidation. The activity was stimulated by pyrroloquinoline quinone (PQQ), NAD(+), and calcium but not by copper. In addition, PQQ rescued Pseudomonas putida MnB1 non Mn(II)-oxidizing mutants with insertions in the anthranilate synthase gene. The substrate and product of anthranilate synthase are intermediates in various quinone biosyntheses. Partially purified Mn(II) oxidase was enriched in quinones and had a UV/VIS absorption spectrum similar to a known quinone requiring enzyme but not to multicopper oxidases. These studies suggest that quinones may play an integral role in bacterial Mn(II) oxidation.
Collapse
Affiliation(s)
- Hope A Johnson
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA 92093-0202, USA.
| | | |
Collapse
|
47
|
Valderrama JA, Espinoza O, González MF, Tapia RA, Rodríguez JA, Theoduloz C, Schmeda-Hirschmann G. Studies on quinones. Part 40: Synthesis and cytotoxicity evaluation of anthraquinone epoxides and isomerization products. Tetrahedron 2006. [DOI: 10.1016/j.tet.2005.12.038] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
48
|
Bohuslavek J, Chanama S, Crawford RL, Xun L. Identification and characterization of hydroxyquinone hydratase activities from Sphingobium chlorophenolicum ATCC 39723. Biodegradation 2005; 16:353-62. [PMID: 15865340 DOI: 10.1007/s10532-004-2058-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Hydroxyquinol, a common metabolite of aromatic compounds, is readily auto-oxidized to hydroxyquinone. Enzymatic activities that metabolized hydroxyquinone were observed from the cell extracts of Sphingobium chlorophenolicum ATCC 39723. An enzyme capable of transforming hydroxyquinone was partially purified, and its activities were characterized. The end product was confirmed to be 2,5-dihydroxyquinone by comparing UV/Vis absorption spectra, electrospray mass spectra, and gas chromatography-mass spectra of the end product and the authentic compound. We have proposed that the enzyme adds a H2O molecule to hydroxyquinone to produce 2,5-dihydroxycyclohex-2-ene-1, 4-dione, which spontaneously rearranges to 1, 2,4,5-tetrahydroxybenzene. The latter is auto-oxidized by O2 to 2,5-dihydroxyquinone. The proposed pathway was supported by the overall reaction stoichiometry. Thus, the transformation of hydroxyquinol to 2,5-dihydroxyquinone involves two auto-oxidation of quinols and one enzymatic reaction catalyzed by a hydratase. The specific enzymatic step did not require O2, further supporting the assignment as a hydratase. To our knowledge, this is the first identification of a quinone hydratase, enhancing the knowledge on microbial metabolism of hydroxyquinone and possibly leading to the development of enzymatic method for the production of 2,5-dihydroxyquinone, a widely used chemical in various industrial applications.
Collapse
Affiliation(s)
- Jan Bohuslavek
- School of Molecular Biosciences, Washington State University, Pullman, WA99164-4234, USA
| | | | | | | |
Collapse
|
49
|
Curreli N, Rescigno A, Rinaldi A, Pisu B, Sollai F, Sanjust E. Degradation of juglone by Pleurotus sajor-caju. ACTA ACUST UNITED AC 2004; 108:913-8. [PMID: 15449596 DOI: 10.1017/s0953756204000632] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The toxic naphthoquinone juglone (5-hydroxy-1,4-naphthoquinone) is efficiently degraded by the ligninolytic fungus Pleurotus sajor-caju, as demonstrated by the total bleaching within 9 d of a conventional liquid culture medium supplemented with 0.6 mM juglone. The oxidative degradation involves the production of hydrogen peroxide arising from both enzymic and non-enzymic oxidation reactions, promoted by the fungus. Juglone is not directly attacked by the oxidative enzymes of the ligninolytic machinery of P. sajor-caju, such as laccase, manganese peroxidase and arylalcohol oxidase. On the other hand, this naphthoquinone is a good substrate for a reductase, which triggers an auto-oxidative process producing reactive oxygen species and leading to juglone degradation. The degradation process continues to completion by means of a direct, presumably non-catalysed reaction with hydrogen peroxide.
Collapse
Affiliation(s)
- Nicoletta Curreli
- Dipartimento di Scienze e Tecnologie Biomediche, Sezione di Chimica Biologica e Biotecnologie Biochimiche, Università di Cagliari, Cittadella Universitaria, 09042 Monserrato, Cagliari, Italy
| | | | | | | | | | | |
Collapse
|
50
|
Hallberg BM, Leitner C, Haltrich D, Divne C. Crystal Structure of the 270 kDa Homotetrameric Lignin-degrading Enzyme Pyranose 2-Oxidase. J Mol Biol 2004; 341:781-96. [PMID: 15288786 DOI: 10.1016/j.jmb.2004.06.033] [Citation(s) in RCA: 103] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2004] [Revised: 06/01/2004] [Accepted: 06/06/2004] [Indexed: 10/26/2022]
Abstract
Pyranose 2-oxidase (P2Ox) is a 270 kDa homotetramer localized preferentially in the hyphal periplasmic space of lignocellulolytic fungi and has a proposed role in lignocellulose degradation to produce the essential co-substrate, hydrogen peroxide, for lignin peroxidases. P2Ox oxidizes D-glucose and other aldopyranoses regioselectively at C2 to the corresponding 2-keto sugars; however, for some substrates, the enzyme also displays specificity for oxidation at C3. The crystal structure of P2Ox from Trametes multicolor has been determined using single anomalous dispersion with mercury as anomalous scatterer. The model was refined at 1.8A resolution to R and Rfree values of 0.134 and 0.171, respectively. The overall fold of the P2Ox subunit resembles that of members of the glucose-methanol-choline family of long-chain oxidoreductases, featuring a flavin-binding Rossmann domain of class alpha/beta and a substrate-binding subdomain with a six-stranded central beta sheet and three alpha helices. The homotetramer buries a large internal cavity of roughly 15,000 A3, from which the four active sites are accessible. Four solvent channels lead from the surface into the cavity through which substrate must enter before accessing the active site. The present structure shows an acetate molecule bound in the active site with the carboxylate group positioned immediately below the flavin N5 atom, and with one carboxylate oxygen atom interacting with the catalytic residues His548 and Asn593. The entrance to the active site is blocked by a loop (residues 452 to 461) with excellent electron density but elevated temperature factors. We predict that this loop is dynamic and opens to allow substrate entry and exit. In silico docking of D-glucose in the P2Ox active site shows that with the active-site loop in the closed conformation, monosaccharides cannot be accommodated; however, after removing the loop from the model, a tentative set of protein-substrate interactions for beta-D-glucose have been outlined.
Collapse
Affiliation(s)
- B Martin Hallberg
- Department of Biotechnology, KTH, Albanova University Center, SE-106 91 Stockholm, Sweden
| | | | | | | |
Collapse
|