1
|
Uyeda K. Short- and Long-Term Adaptation to Altered Levels of Glucose: Fifty Years of Scientific Adventure. Annu Rev Biochem 2021; 90:31-55. [PMID: 34153217 DOI: 10.1146/annurev-biochem-070820-125228] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
My graduate and postdoctoral training in metabolism and enzymology eventually led me to study the short- and long-term regulation of glucose and lipid metabolism. In the early phase of my career, my trainees and I identified, purified, and characterized a variety of phosphofructokinase enzymes from mammalian tissues. These studies led us to discover fructose 2,6-P2, the most potent activator of phosphofructokinase and glycolysis. The discovery of fructose 2,6-P2 led to the identification and characterization of the tissue-specific bifunctional enzyme 6-phosphofructo-2-kinase:fructose 2,6-bisphosphatase. We discovered a glucose signaling mechanism by which the liver maintains glucose homeostasis by regulating the activities of this bifunctional enzyme. With a rise in glucose, a signaling metabolite, xylulose 5-phosphate, triggers rapid activation of a specific protein phosphatase (PP2ABδC), which dephosphorylates the bifunctional enzyme, thereby increasing fructose 2,6-P2 levels and upregulating glycolysis. These endeavors paved the way for us to initiate the later phase of my career in which we discovered a new transcription factor termed the carbohydrate response element binding protein (ChREBP). Now ChREBP is recognized as the masterregulator controlling conversion of excess carbohydrates to storage of fat in the liver. ChREBP functions as a central metabolic coordinator that responds to nutrients independently of insulin. The ChREBP transcription factor facilitates metabolic adaptation to excess glucose, leading to obesity and its associated diseases.
Collapse
Affiliation(s)
- Kosaku Uyeda
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA;
| |
Collapse
|
2
|
Mulukutla BC, Yongky A, Grimm S, Daoutidis P, Hu WS. Multiplicity of steady states in glycolysis and shift of metabolic state in cultured mammalian cells. PLoS One 2015; 10:e0121561. [PMID: 25806512 PMCID: PMC4373774 DOI: 10.1371/journal.pone.0121561] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Accepted: 02/11/2015] [Indexed: 01/23/2023] Open
Abstract
Cultured mammalian cells exhibit elevated glycolysis flux and high lactate production. In the industrial bioprocesses for biotherapeutic protein production, glucose is supplemented to the culture medium to sustain continued cell growth resulting in the accumulation of lactate to high levels. In such fed-batch cultures, sometimes a metabolic shift from a state of high glycolysis flux and high lactate production to a state of low glycolysis flux and low lactate production or even lactate consumption is observed. While in other cases with very similar culture conditions, the same cell line and medium, cells continue to produce lactate. A metabolic shift to lactate consumption has been correlated to the productivity of the process. Cultures that exhibited the metabolic shift to lactate consumption had higher titers than those which didn't. However, the cues that trigger the metabolic shift to lactate consumption state (or low lactate production state) are yet to be identified. Metabolic control of cells is tightly linked to growth control through signaling pathways such as the AKT pathway. We have previously shown that the glycolysis of proliferating cells can exhibit bistability with well-segregated high flux and low flux states. Low lactate production (or lactate consumption) is possible only at a low glycolysis flux state. In this study, we use mathematical modeling to demonstrate that lactate inhibition together with AKT regulation on glycolysis enzymes can profoundly influence the bistable behavior, resulting in a complex steady-state topology. The transition from the high flux state to the low flux state can only occur in certain regions of the steady state topology, and therefore the metabolic fate of the cells depends on their metabolic trajectory encountering the region that allows such a metabolic state switch. Insights from such switch behavior present us with new means to control the metabolism of mammalian cells in fed-batch cultures.
Collapse
Affiliation(s)
- Bhanu Chandra Mulukutla
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Andrew Yongky
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Simon Grimm
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Prodromos Daoutidis
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Wei-Shou Hu
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota, United States of America
- * E-mail:
| |
Collapse
|
3
|
Mulukutla BC, Yongky A, Daoutidis P, Hu WS. Bistability in glycolysis pathway as a physiological switch in energy metabolism. PLoS One 2014; 9:e98756. [PMID: 24911170 PMCID: PMC4049617 DOI: 10.1371/journal.pone.0098756] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Accepted: 05/07/2014] [Indexed: 12/13/2022] Open
Abstract
The flux of glycolysis is tightly controlled by feed-back and feed-forward allosteric regulations to maintain the body's glucose homeostasis and to respond to cell's growth and energetic needs. Using a mathematical model based on reported mechanisms for the allosteric regulations of the enzymes, we demonstrate that glycolysis exhibits multiple steady state behavior segregating glucose metabolism into high flux and low flux states. Two regulatory loops centering on phosphofructokinase and on pyruvate kinase each gives rise to the bistable behavior, and together impose more complex flux control. Steady state multiplicity endows glycolysis with a robust switch to transit between the two flux states. Under physiological glucose concentrations the glycolysis flux does not move between the states easily without an external stimulus such as hormonal, signaling or oncogenic cues. Distinct combination of isozymes in glycolysis gives different cell types the versatility in their response to different biosynthetic and energetic needs. Insights from the switch behavior of glycolysis may reveal new means of metabolic intervention in the treatment of cancer and other metabolic disorders through suppression of glycolysis.
Collapse
Affiliation(s)
- Bhanu Chandra Mulukutla
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Andrew Yongky
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Prodromos Daoutidis
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Wei-Shou Hu
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota, United States of America
| |
Collapse
|
4
|
Manes NP, El-Maghrabi MR. The kinase activity of human brain 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase is regulated via inhibition by phosphoenolpyruvate. Arch Biochem Biophys 2005; 438:125-36. [PMID: 15896703 DOI: 10.1016/j.abb.2005.04.011] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2004] [Revised: 04/14/2005] [Accepted: 04/14/2005] [Indexed: 12/31/2022]
Abstract
The two enzymatic activities of the highly conserved catalytic core of 6PF2K/Fru-2,6-P(2)ase are thought to be reciprocally regulated by the amino- and carboxy-terminal regions unique to each isoform. In this study, we describe the recombinant expression, purification, and kinetic characterization of two human brain 6PF2K/Fru-2,6-P(2)ase splice variants, HBP1 and HBP2. Interestingly, both lack an arginine which is highly conserved among other tissue isoforms, and which is understood to be critical to the fructose-2,6-bisphosphatase mechanism. As a result, the phosphatase activity of both HBP isoforms is negligible, but we found that it could be recovered by restoration of the arginine by site directed mutagenesis. We also found that AMP activated protein kinase and protein kinases A, B, and C catalyzed the phosphorylation of Ser-460 of HBP1, and that in addition both isoforms are phosphorylated at a second, as yet undetermined site by protein kinase C. However, none of the phosphorylations had any effect on the intrinsic kinetic characteristics of either enzymatic activity, and neither did point mutation (mimicking phosphorylation), deletion, and alternative-splice modification of the HBP1 carboxy-terminal region. Instead, these phosphorylations and mutations decreased the sensitivity of the 6PF2K to a potent allosteric inhibitor, phosphoenolpyruvate, which appears to be the major regulatory mechanism.
Collapse
Affiliation(s)
- Nathan P Manes
- Department of Physiology and Biophysics, Stony Brook University, NY 11794-8661, USA
| | | |
Collapse
|
5
|
Villadsen D, Nielsen TH. N-terminal truncation affects the kinetics and structure of fructose-6-phosphate 2-kinase/fructose-2,6-bisphosphatase from Arabidopsis thaliana. Biochem J 2001; 359:591-7. [PMID: 11672433 PMCID: PMC1222180 DOI: 10.1042/0264-6021:3590591] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The enzyme fructose-6-phosphate 2-kinase (F6P,2K; 6-phosphofructo-2-kinase)/fructose-2,6-bisphosphatase (F26BPase) catalyses the formation and degradation of the regulatory metabolite fructose 2,6-bisphosphate. A cDNA encoding the bifunctional plant enzyme isolated from Arabidopsis thaliana (AtF2KP) was expressed in yeast, and the substrate affinities and allosteric properties of the affinity-purified enzyme were characterized. In addition to the known regulators 3-phosphoglycerate, dihydroxyacetone phosphate, fructose 6-phosphate and P(i), several metabolites were identified as important new effectors. PP(i), phosphoenolpyruvate and 2-phosphoglycerate strongly inhibited F6P,2K activity, whereas fructose 1,6-bisphosphate and 6-phosphogluconate inhibited F26BPase activity. Furthermore, pyruvate was an activator of F6P,2K and an inhibitor of F26BPase. Both kinase and phosphatase activities were rapidly inactivated by mild heat treatment (42 degrees C, 10 min), but the presence of phosphate protected both enzyme activities from inactivation. In addition to the catalytic regions, the Arabidopsis enzyme comprises a 345-amino-acid N-terminus of unknown function. The role of this region was examined by the expression of a series of N-terminally truncated enzymes. The full-length and truncated enzymes were analysed by gel-filtration chromatography. The full-length enzyme was eluted as a homotetramer, whereas the truncated enzymes were eluted as monomers. Deletion of the N-terminus decreased the kinase/phosphatase activity ratio by 4-fold, and decreased the affinity for the substrate fructose 6-phosphate. The data show that the N-terminus is important both for subunit assembly and for defining the kinetic properties of the enzyme.
Collapse
Affiliation(s)
- D Villadsen
- Plant Biochemistry Laboratory, Department of Plant Biology, Royal Veterinary and Agricultural University, 40 Thorvaldsensvej, DK-1871 Frederiksberg C, Denmark
| | | |
Collapse
|
6
|
Zhu Z, Ling S, Yang QH, Li L. The difference in the carboxy-terminal sequence is responsible for the difference in the activity of chicken and rat liver fructose-2,6-bisphosphatase. Biol Chem 2000; 381:1195-202. [PMID: 11209754 DOI: 10.1515/bc.2000.147] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The fructose-2,6-bisphosphatase domain of the bifunctional chicken liver enzyme 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase shares approximately 95% amino acid sequence homology with that of the rat enzyme. However, these two enzymes are significantly different in their phosphatase activities. In this report, we show that the COOH-terminal 25 amino acids of the two enzymes are responsible for the different enzymatic activities. Although these 25 amino acids are not required for the phosphatase activity, their removal diminishes the differences in the activities between the two enzymes. In addition, two chimeric molecules (one consisting of the catalytic core of the chicken bisphosphatase domain and the rat COOH-terminal 25 amino acids, and the other consisting of most of the intact chicken enzyme and the rat COOH-terminal 25 amino acids) showed the same kinetic properties as the rat enzyme. Furthermore, substitution of the residues Pro456Pro457Ala458 of the chicken enzyme with GluAlaGlu, the corresponding sequence in the rat liver enzyme, yields a chicken enzyme that behaves like the rat enzyme. These results demonstrate that the different bisphosphatase activities of the chicken and rat liver bifunctional enzymes can be attributed to the differences in their COOH-terminal amino acid sequences, particularly the three residues.
Collapse
Affiliation(s)
- Z Zhu
- State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences
| | | | | | | |
Collapse
|
7
|
van de Werve G, Lange A, Newgard C, Méchin MC, Li Y, Berteloot A. New lessons in the regulation of glucose metabolism taught by the glucose 6-phosphatase system. EUROPEAN JOURNAL OF BIOCHEMISTRY 2000; 267:1533-49. [PMID: 10712583 DOI: 10.1046/j.1432-1327.2000.01160.x] [Citation(s) in RCA: 88] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The operation of glucose 6-phosphatase (EC 3.1.3.9) (Glc6Pase) stems from the interaction of at least two highly hydrophobic proteins embedded in the ER membrane, a heavily glycosylated catalytic subunit of m 36 kDa (P36) and a 46-kDa putative glucose 6-phosphate (Glc6P) translocase (P46). Topology studies of P36 and P46 predict, respectively, nine and ten transmembrane domains with the N-terminal end of P36 oriented towards the lumen of the ER and both termini of P46 oriented towards the cytoplasm. P36 gene expression is increased by glucose, fructose 2,6-bisphosphate (Fru-2,6-P2) and free fatty acids, as well as by glucocorticoids and cyclic AMP; the latter are counteracted by insulin. P46 gene expression is affected by glucose, insulin and cyclic AMP in a manner similar to P36. Accordingly, several response elements for glucocorticoids, cyclic AMP and insulin regulated by hepatocyte nuclear factors were found in the Glc6Pase promoter. Mutations in P36 and P46 lead to glycogen storage disease (GSD) type-1a and type-1 non a (formerly 1b and 1c), respectively. Adenovirus-mediated overexpression of P36 in hepatocytes and in vivo impairs glycogen metabolism and glycolysis and increases glucose production; P36 overexpression in INS-1 cells results in decreased glycolysis and glucose-induced insulin secretion. The nature of the interaction between P36 and P46 in controling Glc6Pase activity remains to be defined. The latter might also have functions other than Glc6P transport that are related to Glc6P metabolism.
Collapse
Affiliation(s)
- G van de Werve
- Laboratoire d'Endocrinologie Métabolique, Centre de Recherche du CHUM,Montreal, Quebec, Canada.
| | | | | | | | | | | |
Collapse
|
8
|
Wu RF, Uyeda K. Mutations in the charged residues of the amino terminus of rat liver fructose 6-phosphate,2-kinase:Fructose 2,6-bisphosphatase: effects on regulation. Arch Biochem Biophys 1999; 371:15-23. [PMID: 10525284 DOI: 10.1006/abbi.1999.1430] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Amino and carboxyl termini of the bifunctional enzyme Fru 6-P, 2-kinase:Fru 2,6-bisphosphatase regulate the relative activities of the kinase/phosphatase. The N-terminus of the rat liver bifunctional enzyme is highly basic, containing a protein kinase A phosphorylation site that regulates these enzyme activities in a reciprocal manner. To determine the role of charged residues in the N-terminal peptide, mutant enzymes were constructed in which these residues were altered to residues carrying opposite charges, and the effect on the catalytic properties, thermal lability, and susceptibility to trypsin digestion and phosphorylation by protein kinase A was determined. Most of these mutations decreased k(cat)/K(ATP) and/or k(cat)/K(Fru) (6-P) of the kinase and increased k(cat)/K(Fru 2,6-P2) of the phosphatase. These mutant enzymes were more susceptible to trypsin digestion, phosphorylation by protein kinase A, and thermal inactivation. In general, the effect was greater with amino acid residues located more distant from the N-terminus. The resulting changes were not as large as observed with the phosphorylated enzyme. Mutation of Ser22 to Pro produced large changes in the kinetic properties comparable to those of phosphorylation, suggesting that the flexible region of the N-terminus containing five serines (Ser20 to S24) is essential for the enzyme activities. These results indicated that the charged residues as well as Ser20-Ser24 in the N-terminus of the liver Fru 6-P,2-kinase:Fru 2,6-Pase are essential in the allosteric regulation and probably involved in interactions with the catalytic domains that induce a conformation that has high Fru 6-P,2-kinase and low Fru 2,6-Pase activities. Any disruption of this N-terminal interaction results in inhibition of the kinase and activation of the phosphatase.
Collapse
Affiliation(s)
- R F Wu
- Research Service, Department of Biochemistry, University of Texas Southwestern Medical Center at Dallas, 4500 South Lancaster Road, Dallas, Texas 75216, USA
| | | |
Collapse
|