Foster JD, Wiedemann JM, Pan CJ, Chou JY, Nordlie RC. Discriminant responses of the catalytic unit and glucose 6-phosphate transporter components of the hepatic glucose-6-phosphatase system in Ehrlich ascites-tumor-bearing mice.
Arch Biochem Biophys 2001;
393:117-22. [PMID:
11516168 DOI:
10.1006/abbi.2001.2481]
[Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The effect of Ehrlich ascites tumor cells, in vivo, on the hepatic glucose-6-phosphatase (G6Pase) system was examined. The V(max) for glucose 6-phosphate hydrolysis by G6Pase was reduced by 40% and a greater than 15-fold decrease in mRNA encoding the catalytic unit of the G6Pase system was observed 8 days after injection with tumor cells. Blood glucose concentration was decreased from 169 +/- 17 to 105 +/- 9 mg/dl in tumor-bearing mice. There was no change in the G6P transporter (G6PT) mRNA level. However, there was a significant decrease in G6P accumulation into hepatic microsomal vesicles derived from tumor-bearing mice. Decreased G6P accumulation was also associated with a decrease in G6Pase hydrolytic activity in the presence of vanadate, a potent catalytic-unit inhibitor. In addition, G6P accumulation was nearly abolished in microsomes treated with N-bromoacetylethanolamine phosphate, an irreversible inhibitor of the G6PT. These results demonstrate that the catalytic unit and G6PT components of the G6Pase system can be discriminantly regulated, and that microsomal glucose 6-phosphate uptake is dependent on catalytic unit activity as well as G6PT action.
Collapse