1
|
Liu X, Wang X, Zhang Q, Ze L, Zhang H, Lu M. Knockdown of tyrosine hydroxylase gene affects larval survival, pupation and adult eclosion in Plagiodera versicolora. INSECT MOLECULAR BIOLOGY 2024. [PMID: 39470728 DOI: 10.1111/imb.12967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 10/10/2024] [Indexed: 11/01/2024]
Abstract
In insects, tyrosine hydroxylase (TH) plays essential roles in cuticle tanning and cuticle pigmentation. Plagiodera versicolora (Coleoptera: Chrysomelidae) is a leaf-eating forest pest in salicaceous trees worldwide. However, the function of PverTH in P. versicolora is still unknown. In this study, we obtained a PverTH gene from transcriptome analysis. The expression analysis of PverTH showed that the highest expression was found in epidermis of larvae. In this study, we used RNA interference (RNAi) technology to knockdown the PverTH gene. The results showed that ingestion of dsTH led to cuticle coloration became lighter in larvae, pupae and adults. Knockdown of PverTH gene inhibited larval growth, and consequently caused higher mortality. In addition, RNAi of TH disrupted the cuticle tanning, caused lower pupation rate, lower eclosion rate and higher deformity rate. This study indicates that PverTH is vital for the cuticular pigments and cuticle tanning. Moreover, this research suggested that the development of PverTH gene as a potential target gene to control P. versicolora.
Collapse
Affiliation(s)
- Xiaolong Liu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, China
| | - Xin Wang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, China
| | - Qi Zhang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, China
| | - Longji Ze
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Food and Safety (State Key Laboratory Cultivation Base of Ministry of Science and Technology), Nanjing, China
| | - Hainan Zhang
- College of Plant Protection, Yangzhou University, Yangzhou, China
| | - Min Lu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, China
| |
Collapse
|
2
|
Turck D, Bohn T, Castenmiller J, De Henauw S, Hirsch‐Ernst KI, Maciuk A, Mangelsdorf I, McArdle HJ, Naska A, Pelaez C, Pentieva K, Siani A, Thies F, Tsabouri S, Vinceti M, Aguilera‐Gómez M, Cubadda F, Frenzel T, Heinonen M, Marchelli R, Neuhäuser‐Berthold M, Poulsen M, Maradona MP, Siskos A, Schlatter JR, van Loveren H, Zakidou P, Ververis E, Knutsen HK. Safety of UV-treated powder of whole yellow mealworm ( Tenebrio molitor larva) as a novel food pursuant to Regulation (EU) 2015/2283. EFSA J 2023; 21:e08009. [PMID: 37274457 PMCID: PMC10233460 DOI: 10.2903/j.efsa.2023.8009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023] Open
Abstract
Following a request from the European Commission, the EFSA Panel on Nutrition, Novel Foods and Food Allergens (NDA) was asked to deliver an opinion on UV-treated powder of whole yellow mealworm (Tenebrio molitor larva) as a novel food (NF) pursuant to Regulation (EU) 2015/2283. The term yellow mealworm refers to the larval form of the insect species T. molitor. The NF is the UV-treated powder of the whole, thermally dried yellow mealworm. The NF consists mainly of crude protein, fat, digestible carbohydrates and fibre (chitin). The Panel notes that the levels of contaminants in the NF highly depend on the occurrence levels of these substances in the insect feed. The Panel notes furthermore that there are no safety concerns regarding the stability of the NF if the NF complies with the proposed specification limits during its entire shelf life. The NF has a high protein content, although the true protein content in the NF is overestimated when using the nitrogen-to-protein conversion factor of 6.25, due to the presence of non-protein nitrogen. The applicant proposed to use the NF as an ingredient in various food products, such as bakery products, pasta, compotes of fruit/vegetables and cheese. The target population is the general population. The Panel notes that considering the composition of the NF, the proposed conditions of use and that the NF will not be the sole source of dietary protein, the consumption of the NF is not nutritionally disadvantageous. Despite the UV treatment, the Panel notes that the NF is not a significant dietary contributor of vitamin D3. The submitted toxicity studies from the literature did not raise safety concerns. The Panel considers that the consumption of the NF may induce primary sensitisation and allergic reactions to yellow mealworm proteins and may cause allergic reactions in subjects with allergies to crustaceans and dust mites. Additionally, allergens from the feed may end up in the NF. With the exception of possible allergenicity, the Panel concludes that the NF is safe under the proposed uses and use levels.
Collapse
|
3
|
Marieshwari BN, Bhuvaragavan S, Sruthi K, Mullainadhan P, Janarthanan S. Insect phenoloxidase and its diverse roles: melanogenesis and beyond. J Comp Physiol B 2023; 193:1-23. [PMID: 36472653 DOI: 10.1007/s00360-022-01468-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 11/02/2022] [Accepted: 11/04/2022] [Indexed: 12/12/2022]
Abstract
Insect life on earth is greatly diversified despite being exposed to several infectious agents due to their diverse habitats and ecological niche. One of the major factors responsible for their successful establishment is having a powerful innate immune system. The most common and effective method used by insects in recognizing pathogen and non-self-substances is the melanization process among others. The key enzyme involved in melanin biosynthesis is the copper containing humoral defense enzyme, phenoloxidase (PO). This review focused on understanding about PO and that had been in research for nearly a century. The review elaborates about evolutionary significance of PO in arthropods, its relationship with mammalian tyrosinases, various substrates, activators and inhibitors involved in the activation of phenoloxidase cascade, as it requires an integrated system of activation that vary among insect species. The enzyme also plays a vital role in insect immunity by involving in several other immune functions like sclerotization, wound healing, opsonization, encapsulation and nodule formation. Further, gene knock down or knock out of PO genes and inhibition of PO-melanization cascade by several mechanisms can also be considered as promising future alternative to control serious pests by making them highly susceptible to any targeted attack.
Collapse
Affiliation(s)
| | | | - Kannan Sruthi
- Department of Zoology, University of Madras, Guindy Campus, Chennai, 600025, India
| | | | - Sundaram Janarthanan
- Department of Zoology, University of Madras, Guindy Campus, Chennai, 600025, India.
| |
Collapse
|
4
|
Turck D, Bohn T, Castenmiller J, De Henauw S, Hirsch‐Ernst KI, Maciuk A, Mangelsdorf I, McArdle HJ, Naska A, Pelaez C, Pentieva K, Siani A, Thies F, Tsabouri S, Vinceti M, Cubadda F, Frenzel T, Heinonen M, Marchelli R, Neuhäuser‐Berthold M, Poulsen M, Prieto Maradona M, Schlatter JR, van Loveren H, Ververis E, Knutsen HK. Safety of frozen and freeze-dried formulations of the lesser mealworm ( Alphitobius diaperinus larva) as a Novel food pursuant to Regulation (EU) 2015/2283. EFSA J 2022; 20:e07325. [PMID: 35814920 PMCID: PMC9251881 DOI: 10.2903/j.efsa.2022.7325] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Following a request from the European Commission, the EFSA Panel on Nutrition, Novel Foods and Food Allergens (NDA) was asked to deliver an opinion on frozen and dried formulations from whole lesser mealworm (Alphitobius diaperinus larva) as a novel food (NF) pursuant to Regulation (EU) 2015/2283. The term lesser mealworm refers to the larval form of the insect species Alphitobius diaperinus. The NF comprises the frozen and freeze-dried formulations of the lesser mealworm as whole or in the form of a paste or powder. Apart from water in the frozen formulations (whole, paste), the main components of the NF are crude protein and fat, besides smaller amounts of digestible carbohydrates and fibre (chitin). The Panel notes that the levels of contaminants in the NF depend on the concentration of such substances in the insect feed. The Panel notes furthermore that the true protein levels in the NF are overestimated when using the nitrogen-to-protein conversion factor of 6.25, due to the presence of non-protein nitrogen from chitin. The applicant proposed to use the NF formulations added as an ingredient to various food products such as cereal bars, pasta, meat imitates and bakery products. The target population is the general population. Additionally, the applicant proposed to use the NF as a food supplement in adults. The Panel notes that, considering that the NF will not be the sole source of dietary protein, and the composition of the NF and the proposed conditions of use, the consumption of the NF is not nutritionally disadvantageous. The submitted subchronic 90-day toxicity study with the NF as testing material did not raise safety concerns. The Panel considers that the consumption of the NF may induce primary sensitisation and allergic reactions to lesser mealworm proteins and may cause allergic reactions in subjects with allergy to crustaceans and dust mites. Additionally, allergens from the feed may end up in the NF. Allergenicity aside, the Panel concludes that the NF is safe under the proposed uses and use levels.
Collapse
|
5
|
Letendre C, Duffield KR, Sadd BM, Sakaluk SK, House CM, Hunt J. Genetic covariance in immune measures and pathogen resistance in decorated crickets is sex and pathogen specific. J Anim Ecol 2022; 91:1471-1488. [PMID: 35470433 PMCID: PMC9545791 DOI: 10.1111/1365-2656.13709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Accepted: 03/21/2022] [Indexed: 12/05/2022]
Abstract
Insects are important models for studying immunity in an ecological and evolutionary context. Yet, most empirical work on the insect immune system has come from phenotypic studies meaning we have a limited understanding of the genetic architecture of immune function in the sexes. We use nine highly inbred lines to thoroughly examine the genetic relationships between a suite of commonly used immune assays (haemocyte count, implant encapsulation, total phenoloxidase activity, antibacterial zone of inhibition and pathogen clearance) and resistance to infection by three generalist insect pathogens (the gram‐negative bacterium Serratia marcescens, the gram‐positive bacterium Bacillus cereus and the fungus Metarhizium robertsii) in male and female Gryllodes sigillatus. There were consistent positive genetic correlations between haemocyte count, antibacterial and phenoloxidase activity and resistance to S. marcescens in both sexes, but these relationships were less consistent for resistance to B. cereus and M. robertsii. In addition, the clearance of S. marcescens was genetically correlated with the resistance to all three pathogens in both sexes. Genetic correlations between resistances to the different pathogen species were inconsistent, indicating that resistance to one pathogen does not necessarily mean resistance to another. Finally, while there is ample genetic (co)variance in immune assays and pathogen resistance, these genetic estimates differed across the sexes and many of these measures were not genetically correlated across the sexes, suggesting that these measures could evolve independently in the sexes. Our finding that the genetic architecture of immune function is sex and pathogen specific suggests that the evolution of immune function in male and female G. sigillatus is likely to be complex. Similar quantitative genetic studies that measure a large number of assays and resistance to multiple pathogens in both sexes are needed to ascertain if this complexity extends to other species.
Collapse
Affiliation(s)
- Corinne Letendre
- School of Science, Western Sydney University, Hawkesbury Campus, Locked Bag 1797, Richmond, New South Wales, Australia
| | - Kristin R Duffield
- School of Biological Sciences, Illinois State University, Normal, Illinois, United States of America.,Crop Bioprotection Research Unit, National Center for Agricultural Utilization Research, Peoria, IL, United States of America
| | - Ben M Sadd
- School of Biological Sciences, Illinois State University, Normal, Illinois, United States of America
| | - Scott K Sakaluk
- School of Biological Sciences, Illinois State University, Normal, Illinois, United States of America
| | - Clarissa M House
- School of Science, Western Sydney University, Hawkesbury Campus, Locked Bag 1797, Richmond, New South Wales, Australia
| | - John Hunt
- School of Science, Western Sydney University, Hawkesbury Campus, Locked Bag 1797, Richmond, New South Wales, Australia.,Centre for Ecology and Conservation, College of Life and Environmental Sciences, University of Exeter, Tremough Campus, Penryn, Cornwall, United Kingdom
| |
Collapse
|
6
|
Tian M, Zhang F, Wang L, Dong X, Zhang L, Guo X. Activity of Polyphenoloxidase in red Fuji Apples Promoted with Cationic Surfactant – Role of Surfactant Structure. TENSIDE SURFACT DET 2021. [DOI: 10.1515/tsd-2020-2322] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
In this study, we observed the activity of polyphenoloxidase (PPO) in red Fuji apples in the presence of single-chained surfactants (including cetyl trimethyl ammonium bromide (CTAB), and dodecyl trimethyl ammonium bromide (DTAB)) and gemini surfactants (pentamethylene-α,ω-bis(dodecyl dimethyl ammonium bromide), octamethylene-α,ω-bis(dodecyl dimethyl ammonium bromide, dodecamethylene-α,ω-bis(dodecyl dimethyl ammonium bromide), pentamethylene-α,ω-bis(cetyl dimethyl ammonium bromide), and octamethylene-α,ω-bis(cetyl dimethyl ammonium bromide)). It was found that all these surfactants enhanced the activity of PPO in a wide range of temperature at low content. When PPO was denatured by incubating at high temperature, the surfactants caused reactivation of PPO. Compared to the single-chained surfactants, the gemini surfactants increased PPO activity at a much lower concentration. Moreover, the single-chained surfactant and the gemini surfactant acted together to further increase PPO activity, and the synergistic effect reduced the amount of surfactant used. In addition, the Michaelis-Menten constant for PPO did not change in the presence of the surfactants, suggesting the active site should remain well with the surfactants.
Collapse
Affiliation(s)
- Maozhang Tian
- State Key Laboratory of Enhanced Oil Recovery, Research Institute of Petroleum Exploration and Development, CNPC , Beijing 100083 , P.R.China
| | - Fan Zhang
- State Key Laboratory of Enhanced Oil Recovery, Research Institute of Petroleum Exploration and Development, CNPC , Beijing 100083 , P.R.China
| | - Lu Wang
- State Key Laboratory of Enhanced Oil Recovery, Research Institute of Petroleum Exploration and Development, CNPC , Beijing 100083 , P.R.China
| | - Xing Dong
- NO.2 Produce Plant, Xinjiang Oilfield Company, Petro China , Karamay 834008 , P. R. China
| | - Lifei Zhang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou , Jiangsu , 225002 , P.R.China
| | - Xia Guo
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou , Jiangsu , 225002 , P.R.China
| |
Collapse
|
7
|
Turck D, Bohn T, Castenmiller J, De Henauw S, Hirsch‐Ernst KI, Maciuk A, Mangelsdorf I, McArdle HJ, Naska A, Pelaez C, Pentieva K, Siani A, Thies F, Tsabouri S, Vinceti M, Cubadda F, Frenzel T, Heinonen M, Marchelli R, Neuhäuser‐Berthold M, Poulsen M, Prieto Maradona M, Schlatter JR, van Loveren H, Ververis E, Knutsen HK. Safety of frozen and dried formulations from whole yellow mealworm ( Tenebrio molitor larva) as a novel food pursuant to Regulation (EU) 2015/2283. EFSA J 2021; 19:e06778. [PMID: 34466159 PMCID: PMC8385682 DOI: 10.2903/j.efsa.2021.6778] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Following a request from the European Commission, the EFSA Panel on Nutrition, Novel Foods and Food Allergens (NDA) was asked to deliver an opinion on frozen and dried formulations from whole yellow mealworm (Tenebrio molitor larva) as a novel food (NF) pursuant to Regulation (EU) 2015/2283. The term yellow mealworm refers to the larval form of the insect species Tenebrio molitor. The NF comprises the frozen and freeze-dried formulations of the yellow mealworm, whole or in the form of powder. The frozen formulation consists mainly of water, crude protein and fat whereas the freeze-dried formulations of crude protein, fat, digestible carbohydrates and fibre (chitin). The Panel notes that the levels of contaminants in the NF depend on the occurrence levels of these substances in the insect feed. The Panel notes furthermore that there are no safety concerns regarding the stability of the NF if the NF complies with the proposed specification limits during its entire shelf-life. The dried formulations of the NF have a high protein content, although the true protein levels in the NF are overestimated when using the nitrogen-to-protein conversion factor of 6.25, due to the presence of non-protein nitrogen from chitin. The applicant proposed to use the NF as whole frozen or whole dried insect, or in the form of powder, added as an ingredient to various food products such as cereal bars, pasta, meat imitates and bakery products. The target population is the general population. The Panel notes that, considering that the NF will not be the sole source of dietary protein, and the composition of the NF and the proposed conditions of use, the consumption of the NF is not nutritionally disadvantageous. The submitted toxicity studies from the literature did not raise safety concerns. The Panel considers that the consumption of the NF may induce primary sensitisation and allergic reactions to yellow mealworm proteins and may cause allergic reactions in subjects with allergy to crustaceans and dust mites. Additionally, allergens from the feed may end up in the NF. The Panel concludes that the NF is safe under the proposed uses and use levels.
Collapse
|
8
|
Turck D, Castenmiller J, De Henauw S, Hirsch‐Ernst KI, Kearney J, Maciuk A, Mangelsdorf I, McArdle HJ, Naska A, Pelaez C, Pentieva K, Siani A, Thies F, Tsabouri S, Vinceti M, Cubadda F, Frenzel T, Heinonen M, Marchelli R, Neuhäuser‐Berthold M, Poulsen M, Prieto Maradona M, Schlatter JR, van Loveren H, Ververis E, Knutsen HK. Safety of dried yellow mealworm ( Tenebrio molitor larva) as a novel food pursuant to Regulation (EU) 2015/2283. EFSA J 2021; 19:e06343. [PMID: 33488808 PMCID: PMC7805300 DOI: 10.2903/j.efsa.2021.6343] [Citation(s) in RCA: 80] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Following a request from the European Commission, the EFSA Panel on Nutrition, Novel Foods and Food Allergens (NDA) was asked to deliver an opinion on dried yellow mealworm (Tenebrio molitor larva) as a novel food (NF) pursuant to Regulation (EU) 2015/2283. The term yellow mealworm refers to the larval form of the insect species Tenebrio molitor. The NF is the thermally dried yellow mealworm, either as whole dried insect or in the form of powder. The main components of the NF are protein, fat and fibre (chitin). The Panel notes that the levels of contaminants in the NF depend on the occurrence levels of these substances in the insect feed. The Panel notes that there are no safety concerns regarding the stability of the NF if the NF complies with the proposed specification limits during its entire shelf life. The NF has a high protein content, although the true protein levels in the NF are overestimated when using the nitrogen-to-protein conversion factor of 6.25, due to the presence of non-protein nitrogen from chitin. The applicant proposed to use the NF as whole, dried insect in the form of snacks, and as a food ingredient in a number of food products. The target population proposed by the applicant is the general population. The Panel notes that considering the composition of the NF and the proposed conditions of use, the consumption of the NF is not nutritionally disadvantageous. The submitted toxicity studies from the literature did not raise safety concerns. The Panel considers that the consumption of the NF may induce primary sensitisation and allergic reactions to yellow mealworm proteins and may cause allergic reactions in subjects with allergy to crustaceans and dust mites. Additionally, allergens from the feed may end up in the NF. The Panel concludes that the NF is safe under the proposed uses and use levels.
Collapse
|
9
|
Male and female genotype and a genotype-by-genotype interaction mediate the effects of mating on cellular but not humoral immunity in female decorated crickets. Heredity (Edinb) 2020; 126:477-490. [PMID: 33219366 DOI: 10.1038/s41437-020-00384-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 10/22/2020] [Accepted: 10/26/2020] [Indexed: 12/12/2022] Open
Abstract
Sexually antagonistic coevolution is predicted to lead to the divergence of male and female genotypes related to the effects of substances transferred by males at mating on female physiology. The outcome of mating should thus depend on the specific combination of mating genotypes. Although mating has been shown to influence female immunity in diverse insect taxa, a male-female genotype-by-genotype effect on female immunity post mating remains largely unexplored. Here, we investigate the effects of mating on female decorated cricket baseline immunity and the potential for a male-genotype-by-female-genotype interaction affecting this response. Females from three distinct genotypic backgrounds were left unmated or singly mated in a fully reciprocal design to males from the same three genotypic backgrounds. Hemocytes and hemocyte microaggregations were quantified for female cellular immunity, and phenoloxidase, involved in melanization, and antibacterial activity for humoral immunity. In this system, female cellular immunity was more reactive to mating, and mating effects were genotype-dependent. Specifically, for hemocytes, a genotype-by-mating status interaction mediated the effect of mating per se, and a significant male-female genotype-by-genotype interaction determined hemocyte depletion post mating. Microaggregations were influenced by the female's genotype or that of her mate. Female humoral immune measures were unaffected, indicating that the propensity for post-mating effects on females is dependent on the component of baseline immunity. The genotype-by-genotype effect on hemocytes supports a role of sexual conflict in post-mating immune suppression, suggesting divergence of male genotypes with respect to modification of female post-mating immunity, and divergence of female genotypes in resistance to these effects.
Collapse
|
10
|
Janusz G, Pawlik A, Świderska-Burek U, Polak J, Sulej J, Jarosz-Wilkołazka A, Paszczyński A. Laccase Properties, Physiological Functions, and Evolution. Int J Mol Sci 2020; 21:ijms21030966. [PMID: 32024019 PMCID: PMC7036934 DOI: 10.3390/ijms21030966] [Citation(s) in RCA: 269] [Impact Index Per Article: 67.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 01/29/2020] [Accepted: 01/30/2020] [Indexed: 01/16/2023] Open
Abstract
Discovered in 1883, laccase is one of the first enzymes ever described. Now, after almost 140 years of research, it seems that this copper-containing protein with a number of unique catalytic properties is widely distributed across all kingdoms of life. Laccase belongs to the superfamily of multicopper oxidases (MCOs)—a group of enzymes comprising many proteins with different substrate specificities and diverse biological functions. The presence of cupredoxin-like domains allows all MCOs to reduce oxygen to water without producing harmful byproducts. This review describes structural characteristics and plausible evolution of laccase in different taxonomic groups. The remarkable catalytic abilities and broad substrate specificity of laccases are described in relation to other copper-containing MCOs. Through an exhaustive analysis of laccase roles in different taxa, we find that this enzyme evolved to serve an important, common, and protective function in living systems.
Collapse
Affiliation(s)
- Grzegorz Janusz
- Department of Biochemistry and Biotechnology, Maria Curie-Skłodowska University, Akademicka 19 Street, 20-033 Lublin, Poland; (A.P.); (J.P.); (J.S.); (A.J.-W.)
- Correspondence: ; Tel.: +48-81-537-5521
| | - Anna Pawlik
- Department of Biochemistry and Biotechnology, Maria Curie-Skłodowska University, Akademicka 19 Street, 20-033 Lublin, Poland; (A.P.); (J.P.); (J.S.); (A.J.-W.)
| | - Urszula Świderska-Burek
- Department of Botany, Mycology and Ecology, Maria Curie-Skłodowska University, Akademicka 19 Street, 20-033 Lublin, Poland;
| | - Jolanta Polak
- Department of Biochemistry and Biotechnology, Maria Curie-Skłodowska University, Akademicka 19 Street, 20-033 Lublin, Poland; (A.P.); (J.P.); (J.S.); (A.J.-W.)
| | - Justyna Sulej
- Department of Biochemistry and Biotechnology, Maria Curie-Skłodowska University, Akademicka 19 Street, 20-033 Lublin, Poland; (A.P.); (J.P.); (J.S.); (A.J.-W.)
| | - Anna Jarosz-Wilkołazka
- Department of Biochemistry and Biotechnology, Maria Curie-Skłodowska University, Akademicka 19 Street, 20-033 Lublin, Poland; (A.P.); (J.P.); (J.S.); (A.J.-W.)
| | - Andrzej Paszczyński
- Professor Emeritus, School of Food Science, University of Idaho, Moscow, ID 83844, USA;
| |
Collapse
|
11
|
Understanding the Evolutionary Ecology of host--pathogen Interactions Provides Insights into the Outcomes of Insect Pest Biocontrol. Viruses 2020; 12:v12020141. [PMID: 31991772 PMCID: PMC7077243 DOI: 10.3390/v12020141] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 01/15/2020] [Accepted: 01/17/2020] [Indexed: 01/07/2023] Open
Abstract
The use of viral pathogens to control thepopulation size of pest insects has produced both successful and unsuccessful outcomes. Here, we investigate whether those biocontrol successes and failures can be explained by key ecological and evolutionary processes between hosts and pathogens. Specifically, we examine how heterogeneity inpathogen transmission, ecological and evolutionary tradeoffs, andpathogen diversity affect insect population density and thus successful control. Wefirst review theexisting literature and then use numerical simulations of mathematical models to further explore these processes. Our results show that thecontrol of insect densities using viruses depends strongly on theheterogeneity of virus transmission among insects. Overall, increased heterogeneity of transmission reduces theeffect of viruses on insect densities and increases thelong-term stability of insect populations. Lower equilibrium insect densities occur when transmission is heritable and when there is atradeoff between mean transmission and insect fecundity compared to when theheterogeneity of transmission arises from non-genetic sources. Thus, theheterogeneity of transmission is akey parameter that regulates thelong-term population dynamics of insects and their pathogens. Wealso show that both heterogeneity of transmission and life-history tradeoffs modulate characteristics of population dynamics such as thefrequency and intensity of ``boom--bust" population cycles. Furthermore, we show that because of life-history tradeoffs affecting thetransmission rate, theuse of multiple pathogen strains is more effective than theuse of asingle strain to control insect densities only when thepathogen strains differ considerably intheir transmission characteristics. By quantifying theeffects of ecology and evolution on population densities, we are able to offer recommendations to assess thelong-term effects of classical biocontrol.
Collapse
|
12
|
Vigneron A, Jehan C, Rigaud T, Moret Y. Immune Defenses of a Beneficial Pest: The Mealworm Beetle, Tenebrio molitor. Front Physiol 2019; 10:138. [PMID: 30914960 PMCID: PMC6422893 DOI: 10.3389/fphys.2019.00138] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Accepted: 02/07/2019] [Indexed: 12/04/2022] Open
Abstract
The mealworm beetle, Tenebrio molitor, is currently considered as a pest when infesting stored grains or grain products. However, mealworms are now being promoted as a beneficial insect because their high nutrient content makes them a viable food source and because they are capable of degrading polystyrene and plastic waste. These attributes make T. molitor attractive for mass rearing, which may promote disease transmission within the insect colonies. Disease resistance is of paramount importance for both the control and the culture of mealworms, and several biotic and abiotic environmental factors affect the success of their anti-parasitic defenses, both positively and negatively. After providing a detailed description of T. molitor's anti-parasitic defenses, we review the main biotic and abiotic environmental factors that alter their presentation, and we discuss their implications for the purpose of controlling the development and health of this insect.
Collapse
Affiliation(s)
- Aurélien Vigneron
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, United States
| | - Charly Jehan
- UMR CNRS 6282 BioGéoSciences, Équipe Écologie Évolutive, Université Bourgogne-Franche Comté, Dijon, France
| | - Thierry Rigaud
- UMR CNRS 6282 BioGéoSciences, Équipe Écologie Évolutive, Université Bourgogne-Franche Comté, Dijon, France
| | - Yannick Moret
- UMR CNRS 6282 BioGéoSciences, Équipe Écologie Évolutive, Université Bourgogne-Franche Comté, Dijon, France
| |
Collapse
|
13
|
Barek H, Evans J, Sugumaran M. Unraveling complex molecular transformations of N-β-alanyldopamine that account for brown coloration of insect cuticle. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2017; 31:1363-1373. [PMID: 28557057 DOI: 10.1002/rcm.7914] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Revised: 05/24/2017] [Accepted: 05/25/2017] [Indexed: 06/07/2023]
Abstract
RATIONALE N-β-Alanyldopamine (NBAD) and N-acetyldopamine (NADA) are catecholamines that are used by insects as sclerotizing precursors to harden their cuticle. They share a common pathway utilizing the same set of sclerotizing enzymes. Yet, cuticles using NBAD are brown, while cuticles using NADA are colorless. To identify the cause of this major unresolved color difference, molecular transformations of NBAD with cuticular enzymes were investigated. METHODS Reactions of NBAD and NADA with native cuticle isolated from the wandering stages of Sarcophaga bullata larvae as well as the reactions of NBAD with cuticular sclerotization enzymes - phenoloxidase, quinone isomerase and quinone methide isomerase - were investigated using UV-Vis spectroscopy, high-performance liquid chromatography (HPLC), and mass spectrometry (MS). In addition, the reactivity of enzymatically generated NBAD quinone was investigated by MS. RESULTS Reactions of NBAD with sclerotizing enzymes isolated from Sarcophaga bullata larvae generate colorless products such as N-β-alanylnorepinephrine, N-β-alanylarterenone, dehydro NBAD, the benzodioxan dimers of dehydro NBAD and other minor adducts, the same kind of compounds generated by NADA reaction with cuticular enzymes. However, oxidation of NBAD produces colored quinone adducts, in addition. NADA, which lacks the amino group, did not produce these quinone adducts. CONCLUSIONS LC/MS analysis of the reaction mixture of NBAD-cuticular enzyme reactions reveals the novel production of colored quinone adducts that are not possible for NADA. Therefore, our results suggest that the brown coloration of cuticle formed through NBAD crosslinking is likely due to the formation and accumulation of NBAD quinone and its adducts, while NADA quinone adducts tend not to form during NADA crosslinking, producing a nearly colorless cuticle.
Collapse
Affiliation(s)
- Hanine Barek
- Department of Biology, University of Massachusetts Boston, Boston, MA, 02125, USA
| | - Jason Evans
- Department of Chemistry, University of Massachusetts Boston, Boston, MA, 02125, USA
| | - Manickam Sugumaran
- Department of Biology, University of Massachusetts Boston, Boston, MA, 02125, USA
| |
Collapse
|
14
|
Dhinaut J, Chogne M, Moret Y. Immune priming specificity within and across generations reveals the range of pathogens affecting evolution of immunity in an insect. J Anim Ecol 2017; 87:448-463. [DOI: 10.1111/1365-2656.12661] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Accepted: 01/18/2017] [Indexed: 12/21/2022]
Affiliation(s)
- Julien Dhinaut
- UMR CNRS 6282 BioGéoSciences; Équipe Écologie Évolutive; Université Bourgogne-Franche Comté; Dijon France
| | - Manon Chogne
- UMR CNRS 6282 BioGéoSciences; Équipe Écologie Évolutive; Université Bourgogne-Franche Comté; Dijon France
| | - Yannick Moret
- UMR CNRS 6282 BioGéoSciences; Équipe Écologie Évolutive; Université Bourgogne-Franche Comté; Dijon France
| |
Collapse
|
15
|
Li X, Liu Q, Lewis EE, Tarasco E. Activity changes of antioxidant and detoxifying enzymes in Tenebrio molitor (Coleoptera: Tenebrionidae) larvae infected by the entomopathogenic nematode Heterorhabditis beicherriana (Rhabditida: Heterorhabditidae). Parasitol Res 2016; 115:4485-4494. [PMID: 27637224 DOI: 10.1007/s00436-016-5235-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Accepted: 08/24/2016] [Indexed: 11/26/2022]
Abstract
Entomopathogenic nematodes (EPNs) of the genera Steinernema and Heterorhabditis are lethal parasites of many insect species. To investigate defensive mechanisms towards EPNs in relation to antioxidative and detoxifying enzymes, we chose Tenebrio molitor (Coleoptera: Tenebrionidae) as experimental insect. We studied the activity changes of superoxide dismutases (SODs), peroxidases (PODs), and catalases (CATs), as well as tyrosinase (TYR), acetylcholinesterase (AChE), carboxylesterase (CarE), and glutathione S-transferase (GSTs) for 40 h in T. molitor larvae infected with Heterorhabditis beicherriana infective juveniles (IJs) at 5 rates (0, 20, 40, 80, and 160 IJs/larva). We found that when T. molitor larvae infected with H. beicherriana at higher rates (80 and 160 IJs/larva), SOD activity quickly increased to more than 70 % higher than that control levels. The activities of POD and CAT increased after 24 h. TYR activity increased slowly at lower rates of infection for 16 h, followed by a slight decrease, and then increasing from 32 to 40 h. The other detoxifying enzymes (GST, CarE, and AChE) were enhanced at lower infection rates, but were inhibited at higher rates. Our results suggested that host antioxidative response and detoxification reactions played a central role in the defensive reaction to EPNs, and that this stress which was reflected by the higher level enzymes activity contributed to the death of hosts. Further study should explore the exact function of these enzymes using different species of EPNs and investigate the links between enzyme activity and host susceptibility to EPNs.
Collapse
Affiliation(s)
- Xingyue Li
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing, 100193, China
- Institute of Plant Protection, Sichuan Academy of Agricultural Science, Chengdu, 610066, China
| | - Qizhi Liu
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing, 100193, China.
| | - Edwin E Lewis
- Department of Entomology and Nematology, University of California-Davis, Davis, 95616, CA, USA
| | - Eustachio Tarasco
- Department of Soil, Plant and Food Science, University of Bari "Aldo Moro", Bari, 70126, Italy
| |
Collapse
|
16
|
Reinkensmeier A, Steinbrenner K, Homann T, Bußler S, Rohn S, Rawel HM. Monitoring the apple polyphenol oxidase-modulated adduct formation of phenolic and amino compounds. Food Chem 2016; 194:76-85. [DOI: 10.1016/j.foodchem.2015.07.145] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Revised: 07/28/2015] [Accepted: 07/29/2015] [Indexed: 10/23/2022]
|
17
|
Clark KF, Acorn AR, Wang H, Greenwood SJ. Comparative tissue expression of American lobster (Homarus americanus) immune genes during bacterial and scuticociliate challenge. FISH & SHELLFISH IMMUNOLOGY 2015; 47:1054-1066. [PMID: 26551049 DOI: 10.1016/j.fsi.2015.10.035] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Revised: 10/19/2015] [Accepted: 10/23/2015] [Indexed: 06/05/2023]
Abstract
The American lobster (Homarus americanus) fishery is the most economically significant fishery in Canada; although comparatively little is known about the lobsters' response to pathogenic challenge. This is the first study to investigate the expression of immune genes in tissues outside of the lobster hepatopancreas in response to challenges by the Gram-positive bacteria, Aerococcus viridans var. homari or the scuticociliate parasite, Anophryoides haemophila. The hepatopancreas has been regarded as the major humoral immune organ in crustaceans, but the contribution of other organs and tissues to the molecular immune response has largely been overlooked. This study used RT-qPCR to monitor the gene expression of several immune genes including three anti-lipopolysaccharide isoforms (ALF) Homame ALF-B1, Homame ALF-C1 and ALFHa-1, acute phase serum amyloid protein A (SAA), as well as thioredoxin and hexokinase, in antennal gland and gill tissues. Our findings indicate that the gene expression of the SAA and all ALF isoforms in the antennal gland and gill tissues increased in response to pathogenic challenge. However, there was differential expression of individual ALF isoforms that were dependent on both the tissue, and the pathogen used in the challenge. The gene expression changes of several immune genes were found to be higher in the antennal gland than have been previously reported for the hepatopancreas. This study demonstrates that increased immune gene expression from the gill and antennal gland over the course of pathogen induced disease contributes to the immune response of H. americanus.
Collapse
Affiliation(s)
- K Fraser Clark
- Department of Biomedical Sciences, Faculty of Veterinary Medicine, University of Prince Edward Island, 550 University Ave., Charlottetown, PEI, C1A 4P3, Canada; AVC Lobster Science Centre, Faculty of Veterinary Medicine, University of Prince Edward Island, 550 University Ave., Charlottetown, PEI, C1A 4P3, Canada; Department of Plant and Animal Sciences, Faculty of Agriculture, Dalhousie University, PO Box 500, Truro, Nova Scotia, B2N 5E3, Canada.
| | - Adam R Acorn
- Department of Biomedical Sciences, Faculty of Veterinary Medicine, University of Prince Edward Island, 550 University Ave., Charlottetown, PEI, C1A 4P3, Canada; AVC Lobster Science Centre, Faculty of Veterinary Medicine, University of Prince Edward Island, 550 University Ave., Charlottetown, PEI, C1A 4P3, Canada.
| | - Haili Wang
- Department of Biomedical Sciences, Faculty of Veterinary Medicine, University of Prince Edward Island, 550 University Ave., Charlottetown, PEI, C1A 4P3, Canada; AVC Lobster Science Centre, Faculty of Veterinary Medicine, University of Prince Edward Island, 550 University Ave., Charlottetown, PEI, C1A 4P3, Canada.
| | - Spencer J Greenwood
- Department of Biomedical Sciences, Faculty of Veterinary Medicine, University of Prince Edward Island, 550 University Ave., Charlottetown, PEI, C1A 4P3, Canada; AVC Lobster Science Centre, Faculty of Veterinary Medicine, University of Prince Edward Island, 550 University Ave., Charlottetown, PEI, C1A 4P3, Canada.
| |
Collapse
|
18
|
Reavey CE, Silva FWS, Cotter SC. Bacterial Infection Increases Reproductive Investment in Burying Beetles. INSECTS 2015; 6:926-42. [PMID: 26529021 PMCID: PMC4693179 DOI: 10.3390/insects6040926] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Revised: 10/22/2015] [Accepted: 10/26/2015] [Indexed: 11/16/2022]
Abstract
The Nicrophorus genus lives and breeds in a microbe rich environment. As such, it would be expected that strategies should be in place to counter potentially negative effects of the microbes common to this environment. In this study, we show the response of Nicrophorus vespilloides to the common soil bacterium, Bacillus subtilis. Phenoloxidase (PO) levels are not upregulated in response to the challenge and the bacteria are observed to multiply within the haemolymph of the host. Despite the growth of B. subtilis, survival is not affected, either in virgin or in breeding beetles. Some limit on bacterial growth in the haemolymph does seem to be occurring, suggesting mechanisms of resistance, in addition to tolerance mechanisms. Despite limited detrimental effects on the individual, the challenge by Bacillus subtilis appears to act as a cue to increase reproductive investment. The challenge may indicate a suite of negative environmental conditions that could compromise future breeding opportunities. This could act as a cue to increase parental investment in the current bout.
Collapse
Affiliation(s)
- Catherine E Reavey
- School of Biological Sciences, Queen's University Belfast, MBC, 97 Lisburn Road, Belfast BT9 7BL, UK.
- Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, UK.
| | - Farley W S Silva
- School of Biological Sciences, Queen's University Belfast, MBC, 97 Lisburn Road, Belfast BT9 7BL, UK.
- Department of Entomology, Universidade Federal de Viçosa, Viçosa 36570-900, Brazil.
| | - Sheena C Cotter
- School of Biological Sciences, Queen's University Belfast, MBC, 97 Lisburn Road, Belfast BT9 7BL, UK.
- School of Life Sciences, University of Lincoln, Brayford Pool, Lincoln LN6 7TS, UK.
| |
Collapse
|
19
|
Reavey CE, Warnock ND, Garbett AP, Cotter SC. Aging in personal and social immunity: do immune traits senesce at the same rate? Ecol Evol 2015; 5:4365-75. [PMID: 26664685 PMCID: PMC4667822 DOI: 10.1002/ece3.1668] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Accepted: 07/22/2015] [Indexed: 11/17/2022] Open
Abstract
How much should an individual invest in immunity as it grows older? Immunity is costly and its value is likely to change across an organism's lifespan. A limited number of studies have focused on how personal immune investment changes with age in insects, but we do not know how social immunity, immune responses that protect kin, changes across lifespan, or how resources are divided between these two arms of the immune response. In this study, both personal and social immune functions are considered in the burying beetle, Nicrophorus vespilloides. We show that personal immune function declines (phenoloxidase levels) or is maintained (defensin expression) across lifespan in nonbreeding beetles but is maintained (phenoloxidase levels) or even upregulated (defensin expression) in breeding individuals. In contrast, social immunity increases in breeding burying beetles up to middle age, before decreasing in old age. Social immunity is not affected by a wounding challenge across lifespan, whereas personal immunity, through PO, is upregulated following wounding to a similar extent across lifespan. Personal immune function may be prioritized in younger individuals in order to ensure survival until reproductive maturity. If not breeding, this may then drop off in later life as state declines. As burying beetles are ephemeral breeders, breeding opportunities in later life may be rare. When allowed to breed, beetles may therefore invest heavily in “staying alive” in order to complete what could potentially be their final reproductive opportunity. As parental care is important for the survival and growth of offspring in this genus, staying alive to provide care behaviors will clearly have fitness payoffs. This study shows that all immune traits do not senesce at the same rate. In fact, the patterns observed depend upon the immune traits measured and the breeding status of the individual.
Collapse
Affiliation(s)
- Catherine E Reavey
- School of Biological Sciences Queen's University Belfast MBC 97 Lisburn Road Belfast BT9 7BL UK ; Lancaster Environment Centre Lancaster University Lancaster LA1 4YQ UK
| | - Neil D Warnock
- School of Biological Sciences Queen's University Belfast MBC 97 Lisburn Road Belfast BT9 7BL UK
| | - Amy P Garbett
- School of Biological Sciences Queen's University Belfast MBC 97 Lisburn Road Belfast BT9 7BL UK
| | - Sheena C Cotter
- School of Biological Sciences Queen's University Belfast MBC 97 Lisburn Road Belfast BT9 7BL UK ; School of Life Sciences University of Lincoln Brayford Pool Lincoln LN6 7TS UK
| |
Collapse
|
20
|
Differential water mite parasitism, phenoloxidase activity, and resistance to mites are unrelated across pairs of related damselfly species. PLoS One 2015; 10:e0115539. [PMID: 25658982 PMCID: PMC4319886 DOI: 10.1371/journal.pone.0115539] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Accepted: 11/25/2014] [Indexed: 01/05/2023] Open
Abstract
Related host species often demonstrate differences in prevalence and/or intensity of infection by particular parasite species, as well as different levels of resistance to those parasites. The mechanisms underlying this interspecific variation in parasitism and resistance expression are not well understood. Surprisingly, few researchers have assessed relations between actual levels of parasitism and resistance to parasites seen in nature across multiple host species. The main goal of this study was to determine whether interspecific variation in resistance against ectoparasitic larval water mites either was predictive of interspecific variation in parasitism for ten closely related species of damselflies (grouped into five “species pairs”), or was predicted by interspecific variation in a commonly used measure of innate immunity (total Phenoloxidase or potential PO activity). Two of five species pairs had interspecific differences in proportions of individuals resisting larval Arrenurus water mites, only one of five species pairs had species differences in prevalence of larval Arrenurus water mites, and another two of five species pairs showed species differences in mean PO activity. Within the two species pairs where species differed in proportion of individuals resisting mites the species with the higher proportion did not have correspondingly higher PO activity levels. Furthermore, the proportion of individuals resisting mites mirrored prevalence of parasitism in only one species pair. There was no interspecific variation in median intensity of mite infestation within any species pair. We conclude that a species’ relative ability to resist particular parasites does not explain interspecific variation in parasitism within species pairs and that neither resistance nor parasitism is reflected by interspecific variation in total PO or potential PO activity.
Collapse
|
21
|
Reavey CE, Warnock ND, Vogel H, Cotter SC. Trade-offs between personal immunity and reproduction in the burying beetle, Nicrophorus vespilloides. Behav Ecol 2014. [DOI: 10.1093/beheco/art127] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
|
22
|
Krams I, Daukste J, Kivleniece I, Krama T, Rantala MJ. Previous encapsulation response enhances within individual protection against fungal parasite in the mealworm beetle Tenebrio molitor. INSECT SCIENCE 2013; 20:771-777. [PMID: 23956033 DOI: 10.1111/j.1744-7917.2012.01574.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 07/05/2012] [Indexed: 06/02/2023]
Abstract
Immune defenses of insects show either broad reactions or specificity and durability of induced protection against attacking parasites and pathogens. In this study, we tested whether encapsulation response against nylon monofilament increases between two attempts of activation of immune system in mealworm beetles Tenebrio molitor, and whether previous exposure to nylon monofilament may also increase protection against an entomopathogenic fungus. We found that survival of beetles subjected to immune activation by nylon implant and subsequent fungal exposure a week later was significantly higher than survival of beetles which had been subjected to fungal infection only. This result suggests that previous immune activation by the nylon implant may be considered as broad spectrum "immune priming" which helps to fight not only the same intruder but also other parasites.
Collapse
Affiliation(s)
- Indrikis Krams
- Institute of Ecology and Earth Sciences, University of Tartu, Tartu, Estonia; Institute of Systematic Biology, University of Daugavpils, Daugavpils
| | | | | | | | | |
Collapse
|
23
|
Ruiz-Guzmán G, Canales-Lazcano J, Jiménez-Cortés JG, Contreras-Garduño J. Sexual dimorphism in immune response: testing the hypothesis in an insect species with two male morphs. INSECT SCIENCE 2013; 20:620-628. [PMID: 23956189 DOI: 10.1111/j.1744-7917.2012.01551.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 06/25/2012] [Indexed: 06/02/2023]
Abstract
It has been proposed that given that males should invest in sexual traits at the expense of their investment in immune response, females are better immunocompetent than males. Typically, this idea has been tested in monomorphic species, but rarely has been evaluated in polymorphic male species. We used Paraphlebia zoe, a damselfly with two male morphs: the black-winged morph (Black-W) develop black spots as sexual traits and the hyaline-winged morph (Hyaline-W) resembles a female in size and wings color. We predicted that Black-W should have a lower immune response than Hyaline-W, but that the latter males should not differ from females in this respect. Nitric oxide (NO) and phenoloxidase (PO) production, as well as hemolymph protein content, were used as immune markers. Body size (wing length) was used as an indicator of the male condition. The results show that, as we predicted, females and Hyaline-W had higher values of NO than Black-W, corresponding to differences in size. However, the opposite was found in relation to PO production. Females had the highest levels of hemolymph protein content, whereas no differences were found between Black-W and Hyaline-W. These results partially support the sexual selection hypothesis and are discussed in the context of the life history of this species. Black-W, Hyaline-W, and females could express the immune markers that are prioritized by their particular condition, and probably neither of them could express all immune markers in an elevated manner, as this would result in an excessive accumulation of free radicals.
Collapse
Affiliation(s)
- Gloria Ruiz-Guzmán
- Centro de Investigación Sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública, Av. Universidad No. 655, C. P. 62100, Cuernavaca, Morelos
| | | | | | | |
Collapse
|
24
|
Clark KD, Strand MR. Hemolymph melanization in the silkmoth Bombyx mori involves formation of a high molecular mass complex that metabolizes tyrosine. J Biol Chem 2013; 288:14476-14487. [PMID: 23553628 DOI: 10.1074/jbc.m113.459222] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The phenoloxidase (PO) cascade regulates the melanization of blood (hemolymph) in insects and other arthropods. Most studies indicate that microbial elicitors activate the PO cascade, which results in processing of the zymogen PPO to PO. PO is then thought to oxidize tyrosine and o-diphenols to quinones, which leads to melanin. However, different lines of investigation raise questions as to whether these views are fully correct. Here we report that hemolymph from the silkmoth, Bombyx mori, rapidly melanizes after collection from a wound site. Prior studies indicated that in vitro activated PPO hydroxylates Tyr inefficiently. Measurement of in vivo substrate titers, however, suggested that Tyr was the only PO substrate initially present in B. mori plasma and that it is rapidly metabolized by PO. Fractionation of plasma by gel filtration chromatography followed by bioassays indicated that melanization activity was primarily associated with a high mass complex (~670 kDa) that contained PO. The prophenoloxidase-activating protease inhibitor Egf1.0 blocked formation of this complex and Tyr metabolism, but the addition of phenylthiourea to plasma before fractionation enhanced complex formation and Tyr metabolism. Mass spectrometry analysis indicated that the complex contained PO plus other proteins. Taken together, our results indicate that wounding alone activates the PO cascade in B. mori. They also suggest that complex formation is required for efficient use of Tyr as a substrate.
Collapse
Affiliation(s)
- Kevin D Clark
- Department of Entomology, University of Georgia, Athens, Georgia 30602.
| | - Michael R Strand
- Department of Entomology, University of Georgia, Athens, Georgia 30602.
| |
Collapse
|
25
|
Salawu MO, Oloyede OB. Endotoxin-induced coagulation reactions and phenoloxidase activity modulation inSudanonautes africanushemolymph fractions. J Immunotoxicol 2011; 8:324-32. [DOI: 10.3109/1547691x.2011.607475] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
26
|
Kuballa AV, Holton TA, Paterson B, Elizur A. Moult cycle specific differential gene expression profiling of the crab Portunus pelagicus. BMC Genomics 2011; 12:147. [PMID: 21396120 PMCID: PMC3062621 DOI: 10.1186/1471-2164-12-147] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2010] [Accepted: 03/12/2011] [Indexed: 11/24/2022] Open
Abstract
Background Crustacean moulting is a complex process involving many regulatory pathways. A holistic approach to examine differential gene expression profiles of transcripts relevant to the moulting process, across all moult cycle stages, was used in this study. Custom cDNA microarrays were constructed for Portunus pelagicus. The printed arrays contained 5000 transcripts derived from both the whole organism, and from individual organs such as the brain, eyestalk, mandibular organ and Y-organ from all moult cycle stages. Results A total of 556 clones were sequenced from the cDNA libraries used to construct the arrays. These cDNAs represented 175 singletons and 62 contigs, resulting in 237 unique putative genes. The gene sequences were classified into the following biological functions: cuticular proteins associated with arthropod exoskeletons, farnesoic acid O-methyltransferase (FaMeT), proteins belonging to the hemocyanin gene family, lectins, proteins relevant to lipid metabolism, mitochondrial proteins, muscle related proteins, phenoloxidase activators and ribosomal proteins. Moult cycle-related differential expression patterns were observed for many transcripts. Of particular interest were those relating to the formation and hardening of the exoskeleton, and genes associated with cell respiration and energy metabolism. Conclusions The expression data presented here provide a chronological depiction of the molecular events associated with the biological changes that occur during the crustacean moult cycle. Tracing the temporal expression patterns of a large variety of transcripts involved in the moult cycle of P. pelagicus can provide a greater understanding of gene function, interaction, and regulation of both known and new genes with respect to the moulting process.
Collapse
Affiliation(s)
- Anna V Kuballa
- Faculty of Science, Health and Education, University of the Sunshine Coast, Sippy Downs, Queensland, Australia
| | | | | | | |
Collapse
|
27
|
Saejeng A, Tidbury H, Siva-Jothy MT, Boots M. Examining the relationship between hemolymph phenoloxidase and resistance to a DNA virus, Plodia interpunctella granulosis virus (PiGV). JOURNAL OF INSECT PHYSIOLOGY 2010; 56:1232-1236. [PMID: 20380834 DOI: 10.1016/j.jinsphys.2010.03.025] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2009] [Revised: 03/20/2010] [Accepted: 03/20/2010] [Indexed: 05/29/2023]
Abstract
We have a detailed understanding of invertebrate immune responses to bacteria and fungal pathogens, but we know less about how insects respond to virus challenge. Phenoloxidase (PO) functions as an important immune response against many parasites and pathogens and is routinely used as a measure of immune competance. We examine the role of haemolymph PO activity in Plodia interpuncetella's response to its natural granulosis virus (PiGV). Larvae were challenged with virus by both oral inoculation of occluded virus (the natural infection route) and direct intrahaemocoelic injection of budded virus. Haemolymph was collected at time points post-viral challenge using a novel method that allows the volume of haemolymph to be quanitified. The haemolmyph was collected without killing the larvae so that haemolymph samples from individuals that developed viral disease could be distinguished from samples collected from those that fought off infection. The level of haemolymph PO activity in resistant larvae did not differ from control larvae. Therefore we have no evidence that PO is involved in resistance to virus in the haemocoel whether larvae are challenged naturally by oral innoculation or directly by intraheamocoelic injection. Phenoloxidase may therefore not be a relevant metric of immunocompetence for viral infection.
Collapse
Affiliation(s)
- A Saejeng
- The Office of Diseases Control and Prevention Region 10, Chiang Mai, Thailand
| | | | | | | |
Collapse
|
28
|
Moret Y, Schmid-Hempel P. Immune responses of bumblebee workers as a function of individual and colony age: senescence versus plastic adjustment of the immune function. OIKOS 2009. [DOI: 10.1111/j.1600-0706.2008.17187.x] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
29
|
Conidiation color mutants of Aspergillus fumigatus are highly pathogenic to the heterologous insect host Galleria mellonella. PLoS One 2009; 4:e4224. [PMID: 19156203 PMCID: PMC2625396 DOI: 10.1371/journal.pone.0004224] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2008] [Accepted: 12/11/2008] [Indexed: 11/19/2022] Open
Abstract
The greater wax moth Galleria mellonella has been widely used as a heterologous host for a number of fungal pathogens including Candida albicans and Cryptococcus neoformans. A positive correlation in pathogenicity of these yeasts in this insect model and animal models has been observed. However, very few studies have evaluated the possibility of applying this heterologous insect model to investigate virulence traits of the filamentous fungal pathogen Aspergillus fumigatus, the leading cause of invasive aspergillosis. Here, we have examined the impact of mutations in genes involved in melanin biosynthesis on the pathogenicity of A. fumigatus in the G. mellonella model. Melanization in A. fumigatus confers bluish-grey color to conidia and is a known virulence factor in mammal models. Surprisingly, conidial color mutants in B5233 background that have deletions in the defined six-gene cluster required for DHN-melanin biosynthesis caused enhanced insect mortality compared to the parent strain. To further examine and confirm the relationship between melanization defects and enhanced virulence in the wax moth model, we performed random insertional mutagenesis in the Af293 genetic background to isolate mutants producing altered conidia colors. Strains producing conidia of previously identified colors and of novel colors were isolated. Interestingly, these color mutants displayed a higher level of pathogenicity in the insect model compared to the wild type. Although some of the more virulent color mutants showed increased resistance to hydrogen peroxide, overall phenotypic characterizations including secondary metabolite production, metalloproteinase activity, and germination rate did not reveal a general mechanism accountable for the enhanced virulence of these color mutants observed in the insect model. Our observations indicate instead, that exacerbated immune response of the wax moth induced by increased exposure of PAMPs (pathogen-associated molecular patterns) may cause self-damage that results in increased mortality of larvae infected with the color mutants. The current study underscores the limitations of using this insect model for inferring the pathogenic potential of A. fumigatus strains in mammals, but also points to the importance of understanding the innate immunity of the insect host in providing insights into the pathogenicity level of different fungal strains in this model. Additionally, our observations that melanization defective color mutants demonstrate increased virulence in the insect wax moth, suggest the potential of using melanization defective mutants of native insect fungal pathogens in the biological control of insect populations.
Collapse
|
30
|
Cornet S, Biard C, Moret Y. Variation in immune defence among populations of Gammarus pulex (Crustacea: Amphipoda). Oecologia 2008; 159:257-69. [PMID: 18989705 DOI: 10.1007/s00442-008-1211-y] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2008] [Accepted: 10/13/2008] [Indexed: 12/01/2022]
Abstract
Despite intensive studies in ecological immunology, few have investigated variation in immune defence among natural populations; in particular, there is a lack of knowledge of the sources of spatial variability in immune defence in the wild. Here we documented variation among twelve populations of the freshwater crustacean Gammarus pulex in the activity of the prophenoloxidase (ProPO) system, which is an important component of invertebrate immunity. We then tested for trade-offs between investment in immune defence and fitness-related traits such as survival and fecundity, as well as for environmental causes of variability (water temperature and conductivity, parasite prevalence). Levels of immune defence differed among populations, with environment partly explaining this population effect, as immune activities were negatively related to water conductivity and acanthocephalan parasite prevalence. There was a strong variation among populations for the maintenance of the ProPO system, while variation in its use was relatively weak. Such a pattern could be partly explained by the relative costs associated with the maintenance and/or the use of the ProPO system. Investment in the ProPO system was negatively correlated to survival, whereas it was positively related to female fecundity and resource storage. However, variation in immunity did not predict resistance to bacterial infection among populations, suggesting that measuring the activity of the ProPO system might not be sufficient to estimate immunocompetence at the population level. These results suggest that investment in immune function is a variable trait, which might be locally optimized as a result of both life history trade-offs and environmental conditions, highlighting the need to combine them in a common framework.
Collapse
Affiliation(s)
- Stéphane Cornet
- UMR CNRS 5561 Biogéosciences, Equipe Ecologie Evolutive, Université de Bourgogne, 6 Bd Gabriel, 21000 Dijon, France.
| | | | | |
Collapse
|
31
|
Cornet S, Biard C, Moret Y. Is there a role for antioxidant carotenoids in limiting self-harming immune response in invertebrates? Biol Lett 2008; 3:284-8. [PMID: 17374587 PMCID: PMC2464685 DOI: 10.1098/rsbl.2007.0003] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Innate immunity relies on effectors, which produce cytotoxic molecules that have not only the advantage of killing pathogens but also the disadvantage of harming host tissues and organs. Although the role of dietary antioxidants in invertebrate immunity is still unknown, it has been shown in vertebrates that carotenoids scavenge cytotoxic radicals generated during the immune response. Carotenoids may consequently decrease the self-harming cost of immunity. A positive relationship between the levels of innate immune defence and circulating carotenoid might therefore be expected. Consistent with this hypothesis, we show that the maintenance and use of the prophenoloxidase system strongly correlate with carotenoid concentration in haemolymph within and among natural populations of the crustacean Gammarus pulex.
Collapse
|
32
|
Li D, Schellhorn N, Schmidt O. Detection of parasitism in diamondback moth, Plutella xylostella (L.), using differential melanization and coagulation reactions. BULLETIN OF ENTOMOLOGICAL RESEARCH 2007; 97:399-405. [PMID: 17645821 DOI: 10.1017/s0007485307005123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Diamondback moth (DBM), Plutella xylostella, is known for causing damage to Brassica crops and developing resistance to chemical and biological pesticides; it has become one of the most difficult pests to manage in many regions around the world. The only way to reduce reliance on pesticides is to maximize the role of natural control agents for integrated pest management programs and be able to incorporate the mortality from control agents into pest control decision-making. More than 90 hymenopterous parasitoids are associated with DBM worldwide; among them, Diadegma semiclausum, is a major endoparasitoid of P. xylostella. To optimize parasitism of pests in pest control decision-making, it is necessary to develop rapid and simple methods for distinguishing parasitized from non-parasitized larvae in the field. Here we report on a number of diagnostic tools to identify parasitized larvae. One is based on differential melanization reactions in hemolymph due to immune suppression in parasitized larvae. The lack of coagulation reactions in hemolymph provides a simple initial test, where squashing a non-parasitized larva onto nitrocellulose membrane traps chlorophyll-containing gut content on the membrane leaving a green dot of clotted gut material. However, in immune-suppressed parasitized larvae, the gut content was washed away in absence of coagulation reactions and the membrane lacks a green dot. This tool alone or combined with others, allows quick detection of parasitized caterpillars in the field. We further showed that the antibody MAb 9A5 can be used to detect D. semiclausum parasitized larvae of DBM in Western blots.
Collapse
Affiliation(s)
- D Li
- Entomology Unit, South Australian Research and Development Institute, Glen Osmond, SA 5064, Australia.
| | | | | |
Collapse
|
33
|
Franceschi N, Rigaud T, Moret Y, Hervant F, Bollache L. Behavioural and physiological effects of the trophically transmitted cestode parasite, Cyathocephalus truncatus, on its intermediate host, Gammarus pulex. Parasitology 2007; 134:1839-47. [PMID: 17640401 DOI: 10.1017/s0031182007003228] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Some parasites with complex life-cycles are able to manipulate the behaviour of their intermediate hosts in a way that increases their transmission to the next host. Gammarids infected by the tapeworm Cyathocephalus truncatus (Cestoda: Spathebothriidea) are known to be more predated by fish than uninfected ones, but potential behavioural manipulation by the parasite has never been investigated. In this study, we tested the hypothesis that C. truncatus is able to manipulate the behaviour of one of its intermediate hosts, Gammarus pulex (Crustacea: Amphipoda). To assess if any behavioural change was linked to other phenotypic alterations, we also measured the immunity of infected and uninfected individuals and investigated the pathogenic effects of the parasite. Infected gammarids were significantly less photophobic than uninfected ones, but no effect of infection on the level of immune defence was found. The results on survival, swimming activity and oxygen consumption suggest that the parasite also has various pathogenic effects. However, the alteration in host phototaxis was not correlated to some of these pathogenic effects. Therefore, we propose that the modification in host reaction to light is a behavioural manipulation, explaining the previously observed increase of gammarid predation rate.
Collapse
Affiliation(s)
- N Franceschi
- Equipe Ecologie Evolutive, UMR CNRS Biogéosciences 5561, Université de Bourgogne, 6 Boulevard Gabriel, 21000 Dijon, France
| | | | | | | | | |
Collapse
|
34
|
Lee KA, Klasing KC. A role for immunology in invasion biology. Trends Ecol Evol 2007; 19:523-9. [PMID: 16701317 DOI: 10.1016/j.tree.2004.07.012] [Citation(s) in RCA: 170] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2004] [Revised: 06/25/2004] [Accepted: 07/22/2004] [Indexed: 10/26/2022]
Abstract
Invasive species are of increasing conservation and economic concern, yet mechanisms underlying invasions remain poorly understood. We propose that variation in immune defences might help explain why only some introduced populations become invasive. Introduced species escape many of their native diseases, but also face novel pathogens that can induce costly, and sometimes deadly, immune responses in naïve hosts. Therefore, favouring less resource-demanding and dangerous defence mechanisms and allocating a greater proportion of resources to growth and reproduction should favour invasion. Specifically, we argue that successful invaders should reduce costly systemic inflammatory responses, which are associated with fever and metabolic and behavioural changes, and rely more heavily on less expensive antibody-mediated immunity. Here we provide supporting arguments for this hypothesis and generate predictions that are testable using tools from the growing field of ecological immunology.
Collapse
Affiliation(s)
- Kelly A Lee
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ 08544, USA.
| | | |
Collapse
|
35
|
Abstract
It has been a long-held assumption that the innate immune system of insects causes self-harm when used to combat an immune insult. We show empirically that this assumption is correct. Invertebrate innate immunity relies heavily on effector systems which, on activation, produce cytotoxins that kill pathogens. Reliance on these robust, fast-acting, generic killing mechanisms ensures a potent and rapid response to pathogen invasion, but has the potential disadvantage of causing self-damage. We show that the innate immune response against an immune insult produces measurable phenotypic and functional damage to self-tissue in the beetle Tenebrio molitor. This type of self-harm (autoreactivity) and the life-history implications that arise from it are important to understand evolutionary phenomena such as the dynamics between hosts and parasites as well as the nature of immune system costs.
Collapse
|
36
|
|
37
|
Moret Y. "Trans-generational immune priming": specific enhancement of the antimicrobial immune response in the mealworm beetle, Tenebrio molitor. Proc Biol Sci 2006; 273:1399-405. [PMID: 16777729 PMCID: PMC1560290 DOI: 10.1098/rspb.2006.3465] [Citation(s) in RCA: 174] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Encounters with parasites and pathogens are often unpredictable in time. However, experience of an infection may provide the host with reliable cues about the future risk of infection for the host itself or for its progeny. If the parental environment predicts the quality of the progeny's environment, then parents may further enhance their net reproductive success by differentially providing their offspring with phenotypes to cope with potential hazards such as pathogen infection. Here, I test for the occurrence of such an adaptive transgenerational phenotypic plasticity in the mealworm beetle, Tenebrio molitor. A pathogenic environment was mimicked by injection of bacterial lipopolysaccharides for two generations of insects. I found that parental challenge enhanced offspring immunity through the inducible production of antimicrobial peptides in the haemolymph.
Collapse
Affiliation(s)
- Yannick Moret
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield S10 2TN, UK.
| |
Collapse
|
38
|
Bezemer B, Butt D, Nell J, Adlard R, Raftos D. Breeding for QX disease resistance negatively selects one form of the defensive enzyme, phenoloxidase, in Sydney rock oysters. FISH & SHELLFISH IMMUNOLOGY 2006; 20:627-36. [PMID: 16230026 DOI: 10.1016/j.fsi.2005.08.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2005] [Revised: 07/22/2005] [Accepted: 08/26/2005] [Indexed: 05/04/2023]
Abstract
QX disease in Sydney rock oysters (Saccostrea glomerata) is caused by the paramyxean protozoan, Marteilia sydneyi. Disease outbreaks occur during summer (January to May) and can result in up to 95% mortality. The New South Wales Department of Primary Industries has been selectively breeding S. glomerata for resistance to QX disease since 1996. Previous work suggests that this breeding program has specifically affected the defensive phenoloxidase enzyme system of oysters. The current study more thoroughly characterises the effect of selection on the different forms of phenoloxidase found in oyster populations. Native polyacrylamide gel electrophoresis (native-PAGE) identified five discrete types of phenoloxidase in non-selected (wild type) and fourth generation QX disease resistant (QXR4) oysters. One electrophoretically distinct form of phenoloxidase, POb, is significantly less frequent in resistant oysters when compared to the wild type population. The frequency of POb also decreased in both the wild type and QXR4 populations over the course of a QX disease outbreak. This suggests that possession of POb makes oysters susceptible to QX disease and that breeding for resistance has resulted in negative selection against this form of phenoloxidase.
Collapse
Affiliation(s)
- Britt Bezemer
- Department of Biological Sciences, Macquarie University, North Ryde, NSW 2109, Australia
| | | | | | | | | |
Collapse
|
39
|
Rivero A. Nitric oxide: an antiparasitic molecule of invertebrates. Trends Parasitol 2006; 22:219-25. [PMID: 16545612 DOI: 10.1016/j.pt.2006.02.014] [Citation(s) in RCA: 134] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2005] [Revised: 02/02/2006] [Accepted: 02/28/2006] [Indexed: 11/26/2022]
Abstract
Since Furchgott, Ignarro and Murad won the Nobel prize in 1998 for their work on the role of nitric oxide (NO) as a signaling molecule, many reports have shown the seemingly limitless range of body functions controlled by this compound. In vertebrates, the role of NO as a defense against infection caused by viruses, bacteria, and protozoan and metazoan parasites has been known for several years. New evidence, however, shows that NO is also important in defending invertebrates against parasites. This discovery is a breakthrough in the understanding of how the invertebrate immune system works, and it has implications for the emerging field of invertebrate ecological immunology.
Collapse
Affiliation(s)
- Ana Rivero
- Museo Nacional de Ciencias Naturales, Consejo Superior de Investigaciones Científicas, 28006 Madrid, Spain and Génetique et Evolution des Maladies Infectieuses (CNRS UMR-IRD 2724), Montpellier 34394, France.
| |
Collapse
|
40
|
Schwarzenbach GA, Ward PI. RESPONSES TO SELECTION ON PHENOLOXIDASE ACTIVITY IN YELLOW DUNG FLIES. Evolution 2006. [DOI: 10.1554/06-090.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
41
|
Abstract
Carotenoid reserves in copepods seem costly in terms of predation risk because they make individuals conspicuous. However, carotenoids also seem to play an important role in immune defence as free radical scavengers. To test whether predation risk influences carotenoid levels and whether changes in carotenoid levels are related to changes in immune defence, I examined individual changes in large carotenoid and other lipid droplets upon exposure to predation risk and subsequent exposure to parasites in the copepod Macrocyclops albidus. Copepods reduced carotenoid reserves upon exposure to predators, through which they potentially avoided the costs of being conspicuous under predation risk. Thus, the size of carotenoid reserves is a plastic trait. Such a decrease in carotenoid reserves may also have a negative impact on the copepods' immune system as individuals that decreased their reserves suffered higher parasite prevalence upon exposure to the cestode Schistocephalus solidus. These results suggest that carotenoid reserves may be individually optimized to trade-off each individual's unique costs (predation risk) and benefits (immune defence) of having these reserves.
Collapse
Affiliation(s)
- I T van Der Veen
- Department of Evolutionary Ecology, Max-Planck-Institute for Limnology, Plön, Germany.
| |
Collapse
|
42
|
Jacot A, Scheuber H, Kurtz J, Brinkhof MWG. Juvenile immune system activation induces a costly upregulation of adult immunity in field crickets Gryllus campestris. Proc Biol Sci 2005; 272:63-9. [PMID: 15875571 PMCID: PMC1634936 DOI: 10.1098/rspb.2004.2919] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Inducible immune defence may allow organisms a state-dependent upregulation of costly immunity in order to minimize the risk of anticipated future parasitism. The basic costs of elevated immune activity might involve a reduction in other fitness-related traits as well as an increased risk of immunopathology. In male field crickets Gryllus campestris we experimentally investigated the condition-dependent effects of immune system activation in nymphs on immunity and physiological condition during adulthood. Following a nymphal injection of bacterial lipopolysaccharides, adult males showed significantly elevated levels of two major immune parameters, i.e. haemolymph antibacterial activity and the concentration of prophenoloxidase (proPO). By contrast, the active enzyme, phenoloxidase (PO), did not increase, suggesting a strategic long-term upregulation of the inactive proenzyme proPO only. This may help avoid the cytotoxic effects associated with high standing levels of the active enzyme. The nymphal immune insult further caused a reduction in adult haemolymph protein load, suggesting a long-term decline in overall metabolic condition. Nymphal food availability positively affected adult lysozyme activity, while PO and proPO concentrations were not affected. Our data thus suggest the long-term upregulation of immunity in response to antigenic cues as an adaptive, yet costly, invertebrate strategy to improve resistance to future parasitism.
Collapse
Affiliation(s)
- Alain Jacot
- University of Bern, Zoological Institute, Division of Evolutionary Ecology, Wohlenstrasse 50a, CH-3032 Hinterkappelen, Switzerland.
| | | | | | | |
Collapse
|
43
|
Nematollahi D, Tammari E. Electrooxidation of 4-methylcatechol in the presence of barbituric acid derivatives. Electrochim Acta 2005. [DOI: 10.1016/j.electacta.2005.01.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
44
|
Moret Y, Siva-Jothy MT. Adaptive innate immunity? Responsive-mode prophylaxis in the mealworm beetle, Tenebrio molitor. Proc Biol Sci 2004; 270:2475-80. [PMID: 14667338 PMCID: PMC1691523 DOI: 10.1098/rspb.2003.2511] [Citation(s) in RCA: 198] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
A primary infection by a parasite may indicate a higher risk of being reinfected in the near future (since infection may indicate that enemies are becoming more abundant). Acquired immunity does not exist in invertebrates despite the fact that they also face increased risks of reinfection following primary exposure. However, when subjected to immune insult, insects can produce immune responses that persist for long enough to provide prophylaxis. Because these immune responses are costly, persistence must be maintained through a selective advantage. We tested for the possibility that these long-lasting immune responses provided increased resistance to later infections by experimentally mimicking a primary immune insult (pre-challenge) in larvae of the mealworm beetle, Tenebrio molitor, with lipopolysaccharides (LPS) prior to early or late exposure to spores of the entomopathogenic fungus Metarhizium anisopliae. We found that pre-challenged larvae produced a long-lasting antimicrobial response, which provided a survival benefit when the larvae were exposed to fungal infection. These results suggest that the observed response is functionally "adaptive".
Collapse
Affiliation(s)
- Yannick Moret
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield S10 2TN, UK.
| | | |
Collapse
|
45
|
Moret Y. Explaining variable costs of the immune response: selection for specific versus non-specific immunity and facultative life history change. OIKOS 2003. [DOI: 10.1034/j.1600-0706.2003.12496.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|