1
|
Vullien A, Amiel AR, Baduel L, Diken D, Renaud C, Krasovec G, Vervoort M, Röttinger E, Gazave E. The Rich Evolutionary History of the Reactive Oxygen Species Metabolic Arsenal Shapes Its Mechanistic Plasticity at the Onset of Metazoan Regeneration. Mol Biol Evol 2025; 42:msae254. [PMID: 39673176 PMCID: PMC11721785 DOI: 10.1093/molbev/msae254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 11/14/2024] [Accepted: 12/05/2024] [Indexed: 12/16/2024] Open
Abstract
Regeneration, the ability to restore body parts after injury, is widespread in metazoans; however, the underlying molecular and cellular mechanisms involved in this process remain largely unknown, and its evolutionary history is consequently unresolved. Recently, reactive oxygen species (ROS) have been shown in several metazoan models to be triggers of apoptosis and cell proliferation that drive regenerative success. However, it is not known whether the contribution of ROS to regeneration relies on conserved mechanisms. Here we performed a comparative genomic analysis of ROS metabolism actors across metazoans, and carried out a comparative study of the deployment and roles of ROS during regeneration in two different metazoan models: the annelid Platynereis dumerilii and the cnidarian Nematostella vectensis. We established that the vast majority of metazoans encode a core redox kit allowing for the production and detoxification of ROS, and overall regulation of ROS levels. However, the precise composition of the redox arsenal can vary significantly from species to species, suggesting that evolutionary constraints apply to ROS metabolism functions rather than precise actors. We found that while ROS are necessary for regeneration in both Platynereis and Nematostella, the two species deploy different enzymatic activities controlling ROS dynamics, and display distinct effects of ROS signaling on injury-induced apoptosis and cell proliferation. We conclude that, while ROS are a common feature of metazoan regeneration, their production and contribution to this phenomenon may depend on different molecular mechanisms highlighting the overall plasticity of the machinery.
Collapse
Affiliation(s)
- Aurore Vullien
- Université Paris Cité, CNRS, Institut Jacques Monod, F-75013 Paris, France
- Université Côte d’Azur, CNRS, INSERM, Institute for Research on Cancer and Aging, Nice (IRCAN), Nice, France
| | - Aldine R Amiel
- Université Côte d’Azur, CNRS, INSERM, Institute for Research on Cancer and Aging, Nice (IRCAN), Nice, France
| | - Loeiza Baduel
- Université Paris Cité, CNRS, Institut Jacques Monod, F-75013 Paris, France
| | - Dilara Diken
- Université Côte d’Azur, CNRS, INSERM, Institute for Research on Cancer and Aging, Nice (IRCAN), Nice, France
| | - Cécile Renaud
- Université Paris Cité, CNRS, Institut Jacques Monod, F-75013 Paris, France
| | - Gabriel Krasovec
- Université Paris Cité, CNRS, Institut Jacques Monod, F-75013 Paris, France
| | - Michel Vervoort
- Université Paris Cité, CNRS, Institut Jacques Monod, F-75013 Paris, France
| | - Eric Röttinger
- Université Côte d’Azur, CNRS, INSERM, Institute for Research on Cancer and Aging, Nice (IRCAN), Nice, France
| | - Eve Gazave
- Université Paris Cité, CNRS, Institut Jacques Monod, F-75013 Paris, France
| |
Collapse
|
2
|
Chen X, Li D, Guo J, Wang Q, Zhang K, Wang X, Shao L, Luo C, Xia Y, Zhang J. Identification and Analysis of the Superoxide Dismutase (SOD) Gene Family and Potential Roles in High-Temperature Stress Response of Herbaceous Peony ( Paeonia lactiflora Pall.). Antioxidants (Basel) 2024; 13:1128. [PMID: 39334787 PMCID: PMC11428480 DOI: 10.3390/antiox13091128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 09/12/2024] [Accepted: 09/16/2024] [Indexed: 09/30/2024] Open
Abstract
The herbaceous peony (Paeonia lactiflora Pall.) plant is world-renowned for its ornamental, medicinal, edible, and oil values. As global warming intensifies, its growth and development are often affected by high-temperature stress, especially in low-latitude regions. Superoxide dismutase (SOD) is an important enzyme in the plant antioxidant systems and plays vital roles in stress response by maintaining the dynamic balance of reactive oxygen species (ROS) concentrations. To reveal the members of then SOD gene family and their potential roles under high-temperature stress, we performed a comprehensive identification of the SOD gene family in the low-latitude cultivar 'Hang Baishao' and analyzed the expression patterns of SOD family genes (PlSODs) in response to high-temperature stress and exogenous hormones. The present study identified ten potential PlSOD genes, encoding 145-261 amino acids, and their molecular weights varied from 15.319 to 29.973 kDa. Phylogenetic analysis indicated that PlSOD genes were categorized into three sub-families, and members within each sub-family exhibited similar conserved motifs. Gene expression analysis suggested that SOD genes were highly expressed in leaves, stems, and dormancy buds. Moreover, RNA-seq data revealed that PlCSD1-1, PlCSD3, and PlFSD1 may be related to high-temperature stress response. Finally, based on the Quantitative Real-time PCR (qRT-PCR) results, seven SOD genes were significantly upregulated in response to high-temperature stress, and exogenous EBR and ABA treatments can enhance high-temperature tolerance in P. lactiflora. Overall, these discoveries lay the foundation for elucidating the function of PlSOD genes for the thermotolerance of herbaceous peony and facilitating the genetic breeding of herbaceous peony cultivars with strong high-temperature resistance.
Collapse
Affiliation(s)
- Xiaoxuan Chen
- Genomics and Genetic Engineering Laboratory of Ornamental Plants, Department of Horticulture, Institute of Landscape Architecture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China; (X.C.); (J.G.); (Q.W.); (K.Z.); (X.W.); (L.S.); (C.L.); (Y.X.)
| | - Danqing Li
- Department of Landscape Architecture, School of Civil Engineering and Architecture, Zhejiang Sci-Tech University, Hangzhou 310018, China;
| | - Junhong Guo
- Genomics and Genetic Engineering Laboratory of Ornamental Plants, Department of Horticulture, Institute of Landscape Architecture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China; (X.C.); (J.G.); (Q.W.); (K.Z.); (X.W.); (L.S.); (C.L.); (Y.X.)
| | - Qiyao Wang
- Genomics and Genetic Engineering Laboratory of Ornamental Plants, Department of Horticulture, Institute of Landscape Architecture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China; (X.C.); (J.G.); (Q.W.); (K.Z.); (X.W.); (L.S.); (C.L.); (Y.X.)
| | - Kaijing Zhang
- Genomics and Genetic Engineering Laboratory of Ornamental Plants, Department of Horticulture, Institute of Landscape Architecture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China; (X.C.); (J.G.); (Q.W.); (K.Z.); (X.W.); (L.S.); (C.L.); (Y.X.)
| | - Xiaobin Wang
- Genomics and Genetic Engineering Laboratory of Ornamental Plants, Department of Horticulture, Institute of Landscape Architecture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China; (X.C.); (J.G.); (Q.W.); (K.Z.); (X.W.); (L.S.); (C.L.); (Y.X.)
| | - Lingmei Shao
- Genomics and Genetic Engineering Laboratory of Ornamental Plants, Department of Horticulture, Institute of Landscape Architecture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China; (X.C.); (J.G.); (Q.W.); (K.Z.); (X.W.); (L.S.); (C.L.); (Y.X.)
| | - Cheng Luo
- Genomics and Genetic Engineering Laboratory of Ornamental Plants, Department of Horticulture, Institute of Landscape Architecture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China; (X.C.); (J.G.); (Q.W.); (K.Z.); (X.W.); (L.S.); (C.L.); (Y.X.)
| | - Yiping Xia
- Genomics and Genetic Engineering Laboratory of Ornamental Plants, Department of Horticulture, Institute of Landscape Architecture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China; (X.C.); (J.G.); (Q.W.); (K.Z.); (X.W.); (L.S.); (C.L.); (Y.X.)
| | - Jiaping Zhang
- Genomics and Genetic Engineering Laboratory of Ornamental Plants, Department of Horticulture, Institute of Landscape Architecture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China; (X.C.); (J.G.); (Q.W.); (K.Z.); (X.W.); (L.S.); (C.L.); (Y.X.)
| |
Collapse
|
3
|
Colas S, Le Faucheur S. How do biomarkers dance? Specific moves of defense and damage biomarkers for biological interpretation of dose-response model trends. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133180. [PMID: 38104522 DOI: 10.1016/j.jhazmat.2023.133180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 11/13/2023] [Accepted: 12/03/2023] [Indexed: 12/19/2023]
Abstract
Omics studies are currently increasingly used in ecotoxicology to highlight the induction of known or novel biomarkers when organisms are exposed to contaminants. Although it is virtually impossible to identify all biomarkers from all organisms, biomarkers can be grouped as defense or damage biomarkers, exhibiting a limited number of response trends. Our working hypothesis is that defense and damage biomarkers follow different dose-response patterns. A meta-analysis of 156 articles and 2595 observations of dose-response curves of defense and damage biomarkers was carried out in order to characterize the response trends of these biological parameters in a large panel of living organisms (18 phyla) exposed to inorganic or organic contaminants (176 in total). Using multinomial logistic regression models, defense biomarkers were found to describe biphasic responses (bell- and U-shaped) to a greater extent (2.5 times) than damage biomarkers. In contrast, damage biomarkers varied mainly monotonically (decreasing or increasing), representing 85% of the observations. Neither the nature of the contaminant nor the type of organisms belonging to 4 kingdoms, influence these specific responses. This result suggests that cellular defense and damage mechanisms are not specific to stressors and are conserved throughout life. Trend analysis of dose-response models as a biological interpretation of biomarkers could thus be a valuable way to exploit large omics datasets.
Collapse
Affiliation(s)
- Simon Colas
- Universite de Pau et des Pays de l'Adour, E2S-UPPA, CNRS, IPREM, Pau, France.
| | | |
Collapse
|
4
|
Espinosa-Vellarino FL, Garrido I, Casimiro I, Silva AC, Espinosa F, Ortega A. Enzymes Involved in Antioxidant and Detoxification Processes Present Changes in the Expression Levels of Their Coding Genes under the Stress Caused by the Presence of Antimony in Tomato. PLANTS (BASEL, SWITZERLAND) 2024; 13:609. [PMID: 38475456 DOI: 10.3390/plants13050609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 02/09/2024] [Accepted: 02/19/2024] [Indexed: 03/14/2024]
Abstract
Currently, there is an increasing presence of heavy metals and metalloids in soils and water due to anthropogenic activities. However, the biggest problem caused by this increase is the difficulty in recycling these elements and their high permanence in soils. There are plants with great capacity to assimilate these elements or make them less accessible to other organisms. We analyzed the behavior of Solanum lycopersicum L., a crop with great agronomic interest, under the stress caused by antimony (Sb). We evaluated the antioxidant response throughout different exposure times to the metalloid. Our results showed that the enzymes involved in the AsA-GSH cycle show changes in their expression level under the stress caused by Sb but could not find a relationship between the NITROSOGLUTATHIONE REDUCTASE (GSNOR) expression data and nitric oxide (NO) content in tomato roots exposed to Sb. We hypothesize that a better understanding of how these enzymes work could be key to develop more tolerant varieties to this kind of abiotic stress and could explain a greater or lesser phytoremediation capacity. Moreover, we deepened our knowledge about Glutathione S-transferase (GST) and Glutathione Reductase (GR) due to their involvement in the elimination of the xenobiotic component.
Collapse
Affiliation(s)
- Francisco Luis Espinosa-Vellarino
- Grupo Investigación Fisiología y Biología Celular y Molecular de Plantas (BBB015), Facultad de Ciencias, Campus Avenida de Elvas s/n, Universidad de Extremadura, 06071 Badajoz, Spain
| | - Inmaculada Garrido
- Grupo Investigación Fisiología y Biología Celular y Molecular de Plantas (BBB015), Facultad de Ciencias, Campus Avenida de Elvas s/n, Universidad de Extremadura, 06071 Badajoz, Spain
| | - Ilda Casimiro
- Grupo Investigación Fisiología y Biología Celular y Molecular de Plantas (BBB015), Facultad de Ciencias, Campus Avenida de Elvas s/n, Universidad de Extremadura, 06071 Badajoz, Spain
| | - Ana Cláudia Silva
- Centro Tecnológico Nacional Agroalimentario "Extremadura" (CTAEX), Ctra. Villafranco-Balboa 1.2, 06195 Badajoz, Spain
| | - Francisco Espinosa
- Grupo Investigación Fisiología y Biología Celular y Molecular de Plantas (BBB015), Facultad de Ciencias, Campus Avenida de Elvas s/n, Universidad de Extremadura, 06071 Badajoz, Spain
| | - Alfonso Ortega
- Grupo Investigación Fisiología y Biología Celular y Molecular de Plantas (BBB015), Facultad de Ciencias, Campus Avenida de Elvas s/n, Universidad de Extremadura, 06071 Badajoz, Spain
| |
Collapse
|
5
|
Zheng L, Assane Hamidou A, Zhao X, Ouyang Z, Lin H, Li J, Zhang X, Luo K, Chen Y. Superoxide dismutase gene family in cassava revealed their involvement in environmental stress via genome-wide analysis. iScience 2023; 26:107801. [PMID: 37954140 PMCID: PMC10638475 DOI: 10.1016/j.isci.2023.107801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 07/29/2023] [Accepted: 08/29/2023] [Indexed: 11/14/2023] Open
Abstract
Superoxide dismutase (SOD) is a crucial metal-containing enzyme that plays a vital role in catalyzing the dismutation of superoxide anions, converting them into molecular oxygen and hydrogen peroxide, essential for enhancing plant stress tolerance. We identified 8 SOD genes (4 CSODs, 2 FSODs, and 2 MSODs) in cassava. Bioinformatics analyses provided insights into chromosomal location, phylogenetic relationships, gene structure, conserved motifs, and gene ontology annotations. MeSOD genes were classified into two groups through phylogenetic analysis, revealing evolutionary connections. Promoters of these genes harbored stress-related cis-elements. Duplication analysis indicated the functional significance of MeCSOD2/MeCSOD4 and MeMSOD1/MeMSOD2. Through qRT-PCR, MeCSOD2 responded to salt stress, MeMSOD2 to drought, and cassava bacterial blight. Silencing MeMSOD2 increased XpmCHN11 virulence, indicating MeMSOD2 is essential for cassava's defense against XpmCHN11 infection. These findings enhance our understanding of the SOD gene family's role in cassava and contribute to strategies for stress tolerance improvement.
Collapse
Affiliation(s)
- Linling Zheng
- Sanya Nanfan Research Institute of Hainan University, School of Life Sciences, Hainan University, Sanya 572025, China
| | - Abdoulaye Assane Hamidou
- Sanya Nanfan Research Institute of Hainan University, School of Life Sciences, Hainan University, Sanya 572025, China
| | - Xuerui Zhao
- Sanya Nanfan Research Institute of Hainan University, School of Life Sciences, Hainan University, Sanya 572025, China
| | - Zhiwei Ouyang
- HNU-ASU Joint International Tourism College, Hainan University, Haikou 570228, China
| | - Hongxin Lin
- Soil Fertilizer and Resources Environment Institute, Jiangxi Academy of Agricultural Sciences, Nanchang 330200, China
| | - Junyi Li
- Sanya Nanfan Research Institute of Hainan University, School of Life Sciences, Hainan University, Sanya 572025, China
| | - Xiaofei Zhang
- Alliance of Bioversity International and the International Center for Tropical Agriculture (CIAT), Cali 763537, Colombia
| | - Kai Luo
- Sanya Nanfan Research Institute of Hainan University, School of Life Sciences, Hainan University, Sanya 572025, China
| | - Yinhua Chen
- Sanya Nanfan Research Institute of Hainan University, School of Life Sciences, Hainan University, Sanya 572025, China
| |
Collapse
|
6
|
Mishra N, Jiang C, Chen L, Paul A, Chatterjee A, Shen G. Achieving abiotic stress tolerance in plants through antioxidative defense mechanisms. FRONTIERS IN PLANT SCIENCE 2023; 14:1110622. [PMID: 37332720 PMCID: PMC10272748 DOI: 10.3389/fpls.2023.1110622] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 05/15/2023] [Indexed: 06/20/2023]
Abstract
Climate change has increased the overall impact of abiotic stress conditions such as drought, salinity, and extreme temperatures on plants. Abiotic stress adversely affects the growth, development, crop yield, and productivity of plants. When plants are subjected to various environmental stress conditions, the balance between the production of reactive oxygen species and its detoxification through antioxidant mechanisms is disturbed. The extent of disturbance depends on the severity, intensity, and duration of abiotic stress. The equilibrium between the production and elimination of reactive oxygen species is maintained due to both enzymatic and non-enzymatic antioxidative defense mechanisms. Non-enzymatic antioxidants include both lipid-soluble (α-tocopherol and β-carotene) and water-soluble (glutathione, ascorbate, etc.) antioxidants. Ascorbate peroxidase (APX), superoxide dismutase (SOD), catalase (CAT), and glutathione reductase (GR) are major enzymatic antioxidants that are essential for ROS homeostasis. In this review, we intend to discuss various antioxidative defense approaches used to improve abiotic stress tolerance in plants and the mechanism of action of the genes or enzymes involved.
Collapse
Affiliation(s)
- Neelam Mishra
- Department of Botany, St. Joseph’s University, Bangalore, KA, India
| | - Chenkai Jiang
- Institute of Sericulture and Tea, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang, China
| | - Lin Chen
- Institute of Sericulture and Tea, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang, China
| | | | | | - Guoxin Shen
- Institute of Sericulture and Tea, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang, China
| |
Collapse
|
7
|
Li S, Zhou Y, Downs CA, Yuan S, Hou M, Li Q, Zhong X, Zhong F. Proteomics and Lysine Acetylation Modification Reveal the Responses of Pakchoi ( Brassica rapa L. ssp. chinensis) to Oxybenzone Stress. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023. [PMID: 37216206 DOI: 10.1021/acs.jafc.2c07852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The broad-spectrum UV filter oxybenzone is toxic to plants at environmentally relevant concentrations. Lysine acetylation (LysAc) is one of the essential post-translational modifications (PTMs) in plant signaling responses. The goal of this study was to uncover the LysAc regulatory mechanism in response to toxic exposures to oxybenzone as a first step in elucidating xenobiotic acclimatory reactions by using the model Brassica rapa L. ssp. chinensis. A total of 6124 sites on 2497 proteins were acetylated, 63 proteins were differentially abundant, and 162 proteins were differentially acetylated under oxybenzone treatment. Bioinformatics analysis showed that a large number of antioxidant proteins were significantly acetylated under oxybenzone treatment, implying that LysAc alleviated the adverse effects of reactive oxygen species (ROS) by inducing antioxidant systems and stress-related proteins; the significant changes in acetylation modification of enzymes involved in different branches of carbon metabolism in plants under oxybenzone treatment mean that plants can change the direction of carbon flow allocation by regulating the activities of carbon metabolism-related enzymes. Our results profile the protein LysAc under oxybenzone treatment and propose an adaptive mechanism at the post-translational level of vascular plants in response to pollutants, providing a dataset reference for future related research.
Collapse
Affiliation(s)
- Shuhao Li
- College of Horticulture, Fujian Agriculture and Forestry University, Fu'zhou 350002, China
| | - Yuqi Zhou
- College of Horticulture, Fujian Agriculture and Forestry University, Fu'zhou 350002, China
| | - Craig A Downs
- Haereticus Environmental Laboratory, P.O. Box 92, Clifford, Virginia 24533, United States
| | - Song Yuan
- College of Horticulture, Fujian Agriculture and Forestry University, Fu'zhou 350002, China
| | - Maomao Hou
- College of Horticulture, Fujian Agriculture and Forestry University, Fu'zhou 350002, China
| | - Qingming Li
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Cheng'du 610299, China
| | - Xin Zhong
- Institute of Marine Science and Technology, Shandong University, Qing'dao 266237, China
| | - Fenglin Zhong
- College of Horticulture, Fujian Agriculture and Forestry University, Fu'zhou 350002, China
| |
Collapse
|
8
|
Adhikari A, Roy D, Adhikari S, Saha S, Ghosh PK, Shaw AK, Hossain Z. microRNAomic profiling of maize root reveals multifaceted mechanisms to cope with Cr (VI) stress. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 198:107693. [PMID: 37060869 DOI: 10.1016/j.plaphy.2023.107693] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 04/04/2023] [Indexed: 05/07/2023]
Abstract
Chromium (Cr) contamination of soil and water poses serious threats to agricultural crop production. MicroRNAs (miRNAs) are conserved, non-coding small RNAs that play pivotal roles in plant growth, development and stress responses through fine-tuning of post-transcriptional gene expression. To better understand the molecular circuit of Cr-responsive miRNAs, two sRNA libraries were prepared from control and Cr (VI) [100 ppm] exposed maize roots. Using deep sequencing, we identified 80 known (1 up and 79 down) and 18 downregulated novel miRNAs from Cr (VI) challenged roots. Gene ontology (GO) analysis reveals that predicted target genes of Cr (VI) responsive miRNAs are potentially involved in diverse cellular and biological processes including plant growth and development (miR159c, miR164d, miR319b-3p and zma_25.145), redox homeostasis (miR528-5p, miR396a-5p and zma_9.132), heavy metal uptake and detoxification (miR159f-5p, 164e-5p, miR408a, miR444f and zma_2.127), signal transduction (miR159f, miR160a-5p, miR393a-5p, miR408-5p and zma_43.158), cell signalling (miR156j, 159c-5p, miR166c-5p and miR398b). Higher accumulation of Cr in maize roots might be due to upregulation of ABC transporter G family member 29 targeted by miR444f. Instead of isolated increase in SOD expression, significant decline in GSH:GSSH ratio and histochemical staining strongly suggest Cr (VI) stress mediated disruption of ROS scavenging machinery thus unbalancing normal cellular homeostasis. Moreover, miR159c-mediated enhanced expression of GAMYB might be a reason for impaired root growth under Cr (VI) stress. In a nutshell, the present microRNAomic study sheds light on the miRNA-target gene regulatory network involved in adaptive responses of maize seedlings to Cr (VI) stress.
Collapse
Affiliation(s)
- Ayan Adhikari
- Plant Stress and Molecular Biology Laboratory, Department of Botany, University of Kalyani, Kalyani, 741235, West Bengal, India
| | - Doyel Roy
- Plant Stress and Molecular Biology Laboratory, Department of Botany, University of Kalyani, Kalyani, 741235, West Bengal, India
| | - Sinchan Adhikari
- Plant Stress and Molecular Biology Laboratory, Department of Botany, University of Kalyani, Kalyani, 741235, West Bengal, India
| | - Shrabani Saha
- Plant Stress and Molecular Biology Laboratory, Department of Botany, University of Kalyani, Kalyani, 741235, West Bengal, India
| | - Pratyush Kanti Ghosh
- Plant Stress and Molecular Biology Laboratory, Department of Botany, University of Kalyani, Kalyani, 741235, West Bengal, India
| | - Arun Kumar Shaw
- Plant Stress and Molecular Biology Laboratory, Department of Botany, University of Kalyani, Kalyani, 741235, West Bengal, India
| | - Zahed Hossain
- Plant Stress and Molecular Biology Laboratory, Department of Botany, University of Kalyani, Kalyani, 741235, West Bengal, India.
| |
Collapse
|
9
|
Yang H, Li M, Zhang C, Li N, Yao X, Li X, Li F, Wang J. Ecotoxicological and biochemical effects of di(2-ethylhexyl)phthalate on wheat (Jimai 22, Triticum aestivum L.). JOURNAL OF HAZARDOUS MATERIALS 2023; 447:130816. [PMID: 36680896 DOI: 10.1016/j.jhazmat.2023.130816] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 01/16/2023] [Indexed: 06/17/2023]
Abstract
Di(2-ethylhexyl)phthalate esters (DEHP) has attracted widespread attention due to its ecotoxicological effects on organisms. In this study, wheat seedlings were exposed to DEHP- contaminated soil with 4 concentration gradients (0, 1, 10, and 100 mg kg-1, respectively) for 30 days. The growth index, physiological index, oxidative damage system, and gene expression of wheat seedlings were comprehensively measured and analyzed. The results revealed that DEHP could reduce the germination rate of wheat. Only the 100 mg kg-1 treatment group significantly inhibited root length, but no effect on plant height. At the biochemical level, photosynthetic pigments of wheat seedlings were promoted first and then inhibited, while the soluble sugar content presented a trend of "inhibition - activation - inhibition". The antioxidant enzymes (SOD and POD) presented an approximate parabolic trend, while it was opposite for CAT. Whereas the corresponding antioxidant enzyme genes were up-regulated, and the Hsp70 heat-shock protein gene was down-regulated. Finally, integrated biological response index (IBR) analysis showed that the DEHP toxicity to wheat seedlings was dose dependent. Molecular docking indicated that DEHP could stably bind to GBSS and GST by intermolecular force. Overall, this study provided constructive insights for a comprehensive assessment of the toxicity risk of DEHP to wheat.
Collapse
Affiliation(s)
- Huiyan Yang
- College of Resources and Environment, Key Laboratory of Agricultural Environment, Shandong Agricultural University, Tai'an 271000, PR China
| | - Mingsheng Li
- Department of Anesthesiology, Tai'an City Central Hospital, Tai'an 271000, PR China
| | - Cui Zhang
- College of Resources and Environment, Key Laboratory of Agricultural Environment, Shandong Agricultural University, Tai'an 271000, PR China
| | - Na Li
- College of Resources and Environment, Key Laboratory of Agricultural Environment, Shandong Agricultural University, Tai'an 271000, PR China
| | - Xiangfeng Yao
- College of Resources and Environment, Key Laboratory of Agricultural Environment, Shandong Agricultural University, Tai'an 271000, PR China
| | - Xianxu Li
- College of Resources and Environment, Key Laboratory of Agricultural Environment, Shandong Agricultural University, Tai'an 271000, PR China
| | - Fang Li
- College of Economics and Management, Shandong Agricultural University, Tai'an 271000, PR China.
| | - Jun Wang
- College of Resources and Environment, Key Laboratory of Agricultural Environment, Shandong Agricultural University, Tai'an 271000, PR China.
| |
Collapse
|
10
|
Genome-Wide Identification of Superoxide Dismutase and Expression in Response to Fruit Development and Biological Stress in Akebia trifoliata: A Bioinformatics Study. Antioxidants (Basel) 2023; 12:antiox12030726. [PMID: 36978974 PMCID: PMC10045841 DOI: 10.3390/antiox12030726] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 03/07/2023] [Accepted: 03/14/2023] [Indexed: 03/18/2023] Open
Abstract
Akebia trifoliata is a newly domesticated perennial fruit tree, and the lack of molecular research on stress resistance seriously affects its genetic improvement and commercial value development. Superoxide dismutase (SOD) can effectively eliminate the accumulation of reactive oxygen species (ROS) during the rapid growth of plant organs under biotic and abiotic stresses, maintaining a steady state of physiological metabolism. In this study, 13 SODs consisting of two FeSODs (FSDs), four MnSODs (MSDs) and seven Cu/ZnSODs (CSDs) were identified in the A. trifoliata genome. Structurally, the phylogeny, intron–exon pattern and motif sequences within these three subfamilies show high conservation. Evolutionarily, segmental/wide genome duplication (WGD) and dispersed duplication form the current SOD profile of A. trifoliata. Weighted gene coexpression network analysis (WGCNA) revealed the metabolic pathways of nine (69.2%) SODs involved in fruit development, among which AktMSD4 regulates fruit development and AktCSD4 participates in the stress response. In addition, under the stress of multiple pathogens, six (46.6%) SODs were continuously upregulated in the rinds of resistant lines; of these, three SODs (AktMSD1, AktMSD2 and AktMSD3) were weakly or not expressed in susceptible lines. The results pave the way for theoretical research on SODs and afford the opportunity for genetic improvement of A. trifoliata.
Collapse
|
11
|
Tounsi S, Jemli S, Feki K, Brini F, Najib Saïdi M. Superoxide dismutase (SOD) family in durum wheat: promising candidates for improving crop resilience. PROTOPLASMA 2023; 260:145-158. [PMID: 35484428 DOI: 10.1007/s00709-022-01767-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 04/24/2022] [Indexed: 06/14/2023]
Abstract
The SOD family has been extensively analyzed at genome wide level in several crops. However, little is known about this family in durum wheat. In this study, a total of 14 TdSOD genes were identified in whole durum wheat genome including 8 TdCu-ZnSODs, 2 TdMnSODs, and 4 TdFeSODs. In silico analysis evinced that TdSOD family members displayed a closer evolutionary relationship, similar gene structure and protein features with their homologs from other plant species. Furthermore, the analysis of their promoter regions revealed the presence of a great number of cis-regulatory elements related to plant development, abiotic and biotic stresses, phytohormones, and several potential binding sites for transcription factors. Interestingly, 3D structure analysis revealed that TdCu-ZnSOD2A-2 and TdCu-ZnSOD2B-2, belonging to the Cu-Zn group, were modeled as copper chaperone for SOD like their homologs from rice and Arabidopsis. The expression profile of eight TdSOD candidate genes was investigated under salt, drought, cold, and ABA treatments. Notably, TdCu-ZnSOD2A-1, TdFeSOD4A-1, and TdFeSOD7A-1 were significantly up-regulated under all stress treatments. On the other hand, TdCu-ZnSOD7B and TdMnSOD2B were strongly expressed in roots and leaves under cold stress and TdCu-ZnSOD2B-2 was particularly up-regulated in leaves under ABA treatment. Ultimately, these findings provide valuable information for the identification of attractive candidate genes to improve wheat resilience.
Collapse
Affiliation(s)
- Sana Tounsi
- Biotechnology and Plant Improvement Laboratory, Centre of Biotechnology of Sfax (CBS), University of Sfax, B.P "1177" 3018, Sfax, Tunisia.
| | - Sonia Jemli
- Laboratory of Microbial Biotechnology Enzymatic and Biomolecules, Centre of Biotechnology of Sfax (CBS), University of Sfax, P.O Box 1177, 3018, Sfax, Tunisia
- Biology Department, Faculty of Sciences of Sfax, University of Sfax, Sfax, Tunisia
| | - Kaouthar Feki
- Laboratory of Legumes and Sustainable Agrosystem (L2AD), Center of Biotechnology of Borj-Cedria, BP901, 2050, Hammam‑Lif, Tunisia
| | - Faiçal Brini
- Biotechnology and Plant Improvement Laboratory, Centre of Biotechnology of Sfax (CBS), University of Sfax, B.P "1177" 3018, Sfax, Tunisia.
| | - Mohamed Najib Saïdi
- Biotechnology and Plant Improvement Laboratory, Centre of Biotechnology of Sfax (CBS), University of Sfax, B.P "1177" 3018, Sfax, Tunisia
| |
Collapse
|
12
|
Wu Q, Chen H, Zhang F, Wang W, Xiong F, Liu Y, Lv L, Li W, Bo Y, Yang H. Cysteamine Supplementation In Vitro Remarkably Promoted Rumen Fermentation Efficiency towards Propionate Production via Prevotella Enrichment and Enhancing Antioxidant Capacity. Antioxidants (Basel) 2022; 11:antiox11112233. [PMID: 36421419 PMCID: PMC9686782 DOI: 10.3390/antiox11112233] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/04/2022] [Accepted: 11/11/2022] [Indexed: 11/16/2022] Open
Abstract
Cysteamine (CS) is a vital antioxidant product and nutritional regulator that improves the productive performance of animals. A 2 × 4 factorial in vitro experiment was performed to determine the effect of the CS supplementation levels of 0, 20, 40, and 60 mg/g, based on substrate weight, on the ruminal fermentation, antioxidant capacity, and microorganisms of a high-forage substrate (HF, forage:corn meal = 7:3) in the Statistical Analysis System Institute. After 48 h of incubation, the in vitro dry matter disappearance and gas production in the LF group were higher when compared with a low-forage substrate (LF, forge hay:corn meal = 3:7), which was analyzed via the use of the MIXED procedure of the HF group, and these increased linearly with the increasing CS supplementation (p < 0.01). With regard to rumen fermentation, the pH and acetate were lower in the LF group compared to the HF group (p < 0.01). However, the ammonia N, microbial crude protein, total volatile fatty acids (VFA), and propionate in the LF group were greater than those in the HF group (p < 0.05). With the CS supplementation increasing, the pH, ammonia N, acetate, and A:P decreased linearly, while the microbial crude protein, total VFA, and propionate increased linearly (p < 0.01). Greater antioxidant capacity was observed in the LF group, and the increasing CS supplementation linearly increased the superoxide dismutase, catalase, glutathione peroxidase, total antioxidant capacity, glutathione, and glutathione reductase, while it decreased the malondialdehyde (p < 0.05). No difference occurred in the ruminal bacteria alpha diversity with the increasing CS supplementation, but it was higher in the LF group than in the HF group (p < 0.01). Based on the rumen bacterial community, a higher proportion of Bacteroidota, instead of Firmicutes, was in the LF group than in the HF group. Furthermore, increasing the CS supplementation linearly increased the relative abundance of Prevotella, norank_f_F082, and Prevotellaceae_UCG-001 under the two substrates (p < 0.05). Prevotella, norank_f_F082, and Prevotellaceae_UCG-001 were positively correlated with gas production, rumen fermentation, and antioxidant capacity in a Spearman correlation analysis (r > 0.31, p < 0.05). Overall, a CS supplementation of not less than 20 mg/g based on substrate weight enhanced the rumen fermentation and rumen antioxidant capacity of the fermentation system, and it guided the rumen fermentation towards glucogenic propionate by enriching the Prevotella in Bacteroidetes.
Collapse
Affiliation(s)
- Qichao Wu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agri-Cultural University, Beijing 100193, China
| | - Hewei Chen
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agri-Cultural University, Beijing 100193, China
| | - Fan Zhang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agri-Cultural University, Beijing 100193, China
| | - Weikang Wang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agri-Cultural University, Beijing 100193, China
| | - Fengliang Xiong
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agri-Cultural University, Beijing 100193, China
| | - Yingyi Liu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agri-Cultural University, Beijing 100193, China
| | - Liangkang Lv
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agri-Cultural University, Beijing 100193, China
| | - Wenjuan Li
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agri-Cultural University, Beijing 100193, China
| | - Yukun Bo
- Animal Husbandry Technology Promotion Institution of Zhangjiakou, Zhangjiakou 075000, China
| | - Hongjian Yang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agri-Cultural University, Beijing 100193, China
- Correspondence:
| |
Collapse
|
13
|
Yu W, Kong G, Chao J, Yin T, Tian H, Ya H, He L, Zhang H. Genome-wide identification of the rubber tree superoxide dismutase ( SOD) gene family and analysis of its expression under abiotic stress. PeerJ 2022; 10:e14251. [PMID: 36312747 PMCID: PMC9610661 DOI: 10.7717/peerj.14251] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 09/26/2022] [Indexed: 01/24/2023] Open
Abstract
Background The rubber tree (Hevea brasiliensis) is the only species capable of producing high-quality natural rubber for commercial use, and is often subjected to various abiotic stresses in non-traditional rubber plantation areas. Superoxide dismutase (SOD) is a vital metalloenzyme translated by a SOD gene family member and acts as a first-line of protection in plant cells by catalysing the disproportionation of reactive oxygen species (ROS) to produce H2O2 and O2. However, the SOD gene family is not reported in rubber trees. Methods Here, we used hidden markov model (HMM) and BLASTP methods to identify SOD genes in the H. brasiliensis genome. Phylogenetic tree, conserved motifs, gene structures, cis elements, and gene ontology annotation (GO) analyses were performed using MEGA 6.0, MEME, TBtools, PlantCARE, and eggNOG database, respectively. HbSOD gene expression profiles were analysed using quantitative reverse transcription polymerase chain reaction (qRT-PCR). Results We identified nine HbSOD genes in the rubber tree genome, including five HbCSDs, two HbFSDs, and two HbMSDs. Phylogenetic relationship analysis classified the SOD proteins from the rubber tree and other related species into three subfamilies. The results of gene structure and conserved motif analysis illustrated that most HbSOD genes have similar exon-intron numbers and conserved motifs in the same evolutionary branch. Five hormone-related, four stress-related, and light-responsive elements were detected in the HbSODs' promoters. HbSODs were expressed in different tissues, gradually increased with leaf development, and were abundantly expressed in mature leaves. HbCSD2 and HbCSD4 was significantly upregulated under low and high temperatures, and salt stress, except for HbCSD2, by heat. Furthermore, most HbSOD genes were significantly upregulated by drought, except HbMSD2. These findings imply that these genes may play vital roles in rubber tree stress resistance. Our results provide a basis for further studies on the functions of HbSOD genes in rubber trees and stress response mechanisms.
Collapse
Affiliation(s)
- Wencai Yu
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming, Yunnan Province, China,Yunnan Institute of Tropical Crops, Jinghong, Yunnan Province, China
| | - Guanghong Kong
- Yunnan Institute of Tropical Crops, Jinghong, Yunnan Province, China
| | - Jinquan Chao
- Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Genetic Resources of Rubber Tree, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan Province, China
| | - Tuo Yin
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming, Yunnan Province, China
| | - Hai Tian
- Yunnan Institute of Tropical Crops, Jinghong, Yunnan Province, China
| | - Huajin Ya
- Yunnan Institute of Tropical Crops, Jinghong, Yunnan Province, China
| | - Ligang He
- Yunnan Institute of Tropical Crops, Jinghong, Yunnan Province, China
| | - Hanyao Zhang
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming, Yunnan Province, China
| |
Collapse
|
14
|
Hewitt OH, Degnan SM. Distribution and diversity of ROS-generating enzymes across the animal kingdom, with a focus on sponges (Porifera). BMC Biol 2022; 20:212. [PMID: 36175868 PMCID: PMC9524095 DOI: 10.1186/s12915-022-01414-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 09/20/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Reactive derivatives of oxygen (reactive oxygen species; ROS) are essential in signalling networks of all aerobic life. Redox signalling, based on cascades of oxidation-reduction reactions, is an evolutionarily ancient mechanism that uses ROS to regulate an array of vital cellular processes. Hydrogen peroxide (H2O2) and superoxide anion (O2•-) are employed as signalling molecules that alter the oxidation state of atoms, inhibiting or activating gene activity. Here, we conduct metazoan-wide comparative genomic assessments of the two enzyme families, superoxide dismutase (SOD) and NADPH oxidases (NOX), that generate H2O2 and/or O2•- in animals. RESULTS Using the genomes of 19 metazoan species representing 10 phyla, we expand significantly on previous surveys of these two ancient enzyme families. We find that the diversity and distribution of both the SOD and NOX enzyme families comprise some conserved members but also vary considerably across phyletic animal lineages. For example, there is substantial NOX gene loss in the ctenophore Mnemiopsis leidyi and divergent SOD isoforms in the bilaterians D. melanogaster and C. elegans. We focus particularly on the sponges (phylum Porifera), a sister group to all other metazoans, from which these enzymes have not previously been described. Within Porifera, we find a unique calcium-regulated NOX, the widespread radiation of an atypical member of CuZnSOD named Rsod, and a novel endoplasmic reticulum MnSOD that is prevalent across aquatic metazoans. CONCLUSIONS Considering the precise, spatiotemporal specificity of redox signalling, our findings highlight the value of expanding redox research across a greater diversity of organisms to better understand the functional roles of these ancient enzymes within a universally important signalling mechanism.
Collapse
Affiliation(s)
- Olivia H Hewitt
- School of Biological Sciences and Centre for Marine Science, University of Queensland, St Lucia, QLD, 4072, Australia.
| | - Sandie M Degnan
- School of Biological Sciences and Centre for Marine Science, University of Queensland, St Lucia, QLD, 4072, Australia
| |
Collapse
|
15
|
Zhou G, Liu C, Cheng Y, Ruan M, Ye Q, Wang R, Yao Z, Wan H. Molecular Evolution and Functional Divergence of Stress-Responsive Cu/Zn Superoxide Dismutases in Plants. Int J Mol Sci 2022; 23:7082. [PMID: 35806085 PMCID: PMC9266695 DOI: 10.3390/ijms23137082] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 06/23/2022] [Accepted: 06/23/2022] [Indexed: 12/25/2022] Open
Abstract
Superoxide dismutases (SODs), a family of antioxidant enzymes, are the first line of defense against oxidative damage and are ubiquitous in every cell of all plant types. The Cu/Zn SOD, one of three types of SODs present in plant species, is involved in many of the biological functions of plants in response to abiotic and biotic stresses. Here, we carried out a comprehensive analysis of the Cu/Zn SOD gene family in different plant species, ranging from lower plants to higher plants, and further investigated their organization, sequence features, and expression patterns in response to biotic and abiotic stresses. Our results show that plant Cu/Zn SODs can be divided into two subfamilies (group I and group II). Group II appeared to be conserved only as single- or low-copy genes in all lineages, whereas group I genes underwent at least two duplication events, resulting in multiple gene copies and forming three different subgroups (group Ia, group Ib, and group Ic). We also found that, among these genes, two important events-the loss of introns and the loss of and variation in signal peptides-occurred over the long course of their evolution, indicating that they were involved in shifts in subcellular localization from the chloroplast to cytosol or peroxisome and underwent functional divergence. In addition, expression patterns of Cu/Zn SOD genes from Arabidopsis thaliana and Solanum lycopersicum were tested in different tissues/organs and developmental stages and under different abiotic stresses. The results indicate that the Cu/Zn SOD gene family possesses potential functional divergence and may play vital roles in ROS scavenging in response to various stresses in plants. This study will help establish a foundation for further understanding these genes' function during stress responses.
Collapse
Affiliation(s)
- Guozhi Zhou
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China;
- Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (Y.C.); (M.R.); (Q.Y.); (R.W.); (Z.Y.)
| | - Chaochao Liu
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212021, China;
| | - Yuan Cheng
- Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (Y.C.); (M.R.); (Q.Y.); (R.W.); (Z.Y.)
| | - Meiying Ruan
- Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (Y.C.); (M.R.); (Q.Y.); (R.W.); (Z.Y.)
| | - Qingjing Ye
- Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (Y.C.); (M.R.); (Q.Y.); (R.W.); (Z.Y.)
| | - Rongqing Wang
- Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (Y.C.); (M.R.); (Q.Y.); (R.W.); (Z.Y.)
| | - Zhuping Yao
- Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (Y.C.); (M.R.); (Q.Y.); (R.W.); (Z.Y.)
| | - Hongjian Wan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China;
- Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (Y.C.); (M.R.); (Q.Y.); (R.W.); (Z.Y.)
- China-Australia Research Centre for Crop Improvement, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| |
Collapse
|
16
|
Zameer R, Fatima K, Azeem F, ALgwaiz HIM, Sadaqat M, Rasheed A, Batool R, Shah AN, Zaynab M, Shah AA, Attia KA, AlKahtani MDF, Fiaz S. Genome-Wide Characterization of Superoxide Dismutase (SOD) Genes in Daucus carota: Novel Insights Into Structure, Expression, and Binding Interaction With Hydrogen Peroxide (H 2O 2) Under Abiotic Stress Condition. FRONTIERS IN PLANT SCIENCE 2022; 13:870241. [PMID: 35783965 PMCID: PMC9246500 DOI: 10.3389/fpls.2022.870241] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Accepted: 04/08/2022] [Indexed: 05/27/2023]
Abstract
Superoxide dismutase (SOD) proteins are important antioxidant enzymes that help plants to grow, develop, and respond to a variety of abiotic stressors. SOD gene family has been identified in a number of plant species but not yet in Daucus carota. A total of 9 DcSOD genes, comprising 2 FeSODs, 2 MnSODs, and 5 Cu/ZnSODs, are identified in the complete genome of D. carota, which are dispersed in five out of nine chromosomes. Based on phylogenetic analysis, SOD proteins from D. carota were categorized into two main classes (Cu/ZnSODs and MnFeSODs). It was predicted that members of the same subgroups have the same subcellular location. The phylogenetic analysis was further validated by sequence motifs, exon-intron structure, and 3D protein structures, with each subgroup having a similar gene and protein structure. Cis-regulatory elements responsive to abiotic stresses were identified in the promoter region, which may contribute to their differential expression. Based on RNA-seq data, tissue-specific expression revealed that DcCSD2 had higher expression in both xylem and phloem. Moreover, DcCSD2 was differentially expressed in dark stress. All SOD genes were subjected to qPCR analysis after cold, heat, salt, or drought stress imposition. SODs are antioxidants and play a critical role in removing reactive oxygen species (ROS), including hydrogen peroxide (H2O2). DcSODs were docked with H2O2 to evaluate their binding. The findings of this study will serve as a basis for further functional insights into the DcSOD gene family.
Collapse
Affiliation(s)
- Roshan Zameer
- Department of Bioinformatics and Biotechnology, Government College University, Faisalabad, Pakistan
| | - Kinza Fatima
- Department of Bioinformatics and Biotechnology, Government College University, Faisalabad, Pakistan
| | - Farrukh Azeem
- Department of Bioinformatics and Biotechnology, Government College University, Faisalabad, Pakistan
| | - Hussah I. M. ALgwaiz
- Department of Biology, College of Science, Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Muhammad Sadaqat
- Department of Bioinformatics and Biotechnology, Government College University, Faisalabad, Pakistan
| | - Asima Rasheed
- Department of Bioinformatics and Biotechnology, Government College University, Faisalabad, Pakistan
| | - Riffat Batool
- Department of Botany, GC Women University, Faisalabad, Pakistan
| | - Adnan Noor Shah
- Department of Agricultural Engineering, Khwaja Fareed University of Engineering and Information Technology, Rahim Yar Khan, Pakistan
| | - Madiha Zaynab
- Shenzhen Key Laboratory of Marine Bioresource and Eco-Environmental Sciences, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Anis Ali Shah
- Department of Botany, Division of Science and Technology, University of Education, Lahore, Pakistan
| | - Kotb A. Attia
- Department of Biochemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Muneera D. F. AlKahtani
- Department of Biology, College of Science, Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Sajid Fiaz
- Department of Plant Breeding and Genetics, The University of Haripur, Haripur, Pakistan
| |
Collapse
|
17
|
Sanyal RP, Prashar V, Jawali N, Sunkar R, Misra HS, Saini A. Molecular and Biochemical Analysis of Duplicated Cytosolic CuZn Superoxide Dismutases of Rice and in silico Analysis in Plants. FRONTIERS IN PLANT SCIENCE 2022; 13:864330. [PMID: 35707617 PMCID: PMC9191229 DOI: 10.3389/fpls.2022.864330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 03/21/2022] [Indexed: 06/15/2023]
Abstract
Superoxide dismutases (SODs, EC 1.15.1.1) are ubiquitous antioxidant metalloenzymes important for oxidative stress tolerance and cellular redox environment. Multiple factors have contributed toward the origin and diversity of SOD isoforms among different organisms. In plants, the genome duplication events, responsible for the generation of multiple gene copies/gene families, have also contributed toward the SOD diversity. However, the importance of such molecular events on the characteristics of SODs has not been studied well. This study investigated the effects of divergence on important characteristics of two block-duplicated rice cytosolic CuZn SODs (OsCSD1, OsCSD4), along with in silico assessment of similar events in other plants. The analysis revealed heterogeneity in gene length, regulatory regions, untranslated regions (UTRs), and coding regions of two OsCSDs. An inconsistency in the database-predicted OsCSD1 gene structure was also identified and validated experimentally. Transcript analysis showed differences in the basal levels and stress responsiveness of OsCSD1 and OsCSD4, and indicated the presence of two transcription start sites in the OsCSD1. At the amino acid level, the two OsCSDs showed differences at 18 sites; however, both exist as a homodimer, displaying typical CuZn SOD characteristics, and enhancing the oxidative stress tolerance of Escherichia coli cells. However, OsCSD4 showed higher specific activity as well as stability. The comparison of the two OsCSDs with reported thermostable CSDs from other plants identified regions likely to be associated with stability, while the homology modeling and superposition highlighted structural differences. The two OsCSDs displayed heteromeric interaction capability and forms an enzymatically active heterodimer (OsCSD1:OsCSD4) on co-expression, which may have significance as both are cytosolic. In silico analysis of 74 plant genomes revealed the prevalence of block duplications for multiple CSD copies (mostly cytosolic). The divergence and clustering analysis of CSDs suggested the possibility of an ancestral duplication event in monocots. Conserved SOD features indicating retention of SOD function among CSD duplicates were evident in few monocots and dicots. In most other species, the CSD copies lacked critical features and may not harbor SOD function; however, other feature-associated functions or novel functions might be present. These aspects of divergent CSD copies encoding co-localized CSDs may have implications in plant SOD functions in the cytosol and other organelles.
Collapse
Affiliation(s)
- Ravi Prakash Sanyal
- Molecular Biology Division, Bhabha Atomic Research Centre, Mumbai, India
- Homi Bhabha National Institute, Mumbai, India
| | - Vishal Prashar
- Radiation Biology and Health Sciences Division, Bhabha Atomic Research Centre, Mumbai, India
| | - Narendra Jawali
- Molecular Biology Division, Bhabha Atomic Research Centre, Mumbai, India
- Centre for Natural Biological Resources and Community Development, Bengaluru, India
| | - Ramanjulu Sunkar
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, OK, United States
| | - Hari Sharan Misra
- Molecular Biology Division, Bhabha Atomic Research Centre, Mumbai, India
- Homi Bhabha National Institute, Mumbai, India
| | - Ajay Saini
- Molecular Biology Division, Bhabha Atomic Research Centre, Mumbai, India
- Homi Bhabha National Institute, Mumbai, India
| |
Collapse
|
18
|
Liu Y, Bao Z, Lin Z, Xue Q. Genome-wide identification and characterization of superoxide dismutases in four oyster species reveals functional differentiation in response to biotic and abiotic stress. BMC Genomics 2022; 23:378. [PMID: 35585505 PMCID: PMC9118643 DOI: 10.1186/s12864-022-08610-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 05/05/2022] [Indexed: 11/11/2022] Open
Abstract
Background Oysters inhabit in the intertidal zone and may be suffered from environmental stresses, which can increase the production of reactive oxygen species (ROS), resulting in mass mortality. Superoxide dismutases (SODs) protect oysters from ROS damage through different mechanisms compared with vertebrates. However, the molecular and functional differentiation in oyster SODs were rarely analyzed. Result In this study, a total of 13, 13, 10, and 8 candidate SODs were identified in the genome of Crassostrea gigas, Crassostrea virginica, Crassostrea hongkongensis, and Saccostrea glomerata respectively. The domain composition, gene structure, subcellular locations, conserved ligands, and cis-elements elucidated the SODs into five groups (Mn-SODs, Cu-only-SODs, Cu/Zn ion ligand Cu/Zn-SOD with enzyme activity, Zn-only-SODs, and no ligand metal ions Cu/Zn-SODs). For single domain Cu/Zn-SODs, only one cytosolic Cu/Zn-SOD (cg_XM_034479061.1) may conserve enzymatic activity while most extracellular Cu/Zn-SOD proteins appeared to lose SOD enzyme activity according to conserved ligand amino acid analysis and expression pattern under biotic and abiotic stress in C. gigas. Further, multi-domain-SODs were identified and some of them were expressed in response to biotic and abiotic stressors in C. gigas. Moreover, the expression patterns of these genes varied in response to different stressors, which may be due to the cis-elements in the gene promoter. Conclusion These findings revealed the most extracellular Cu/Zn-SOD proteins appeared to lose SOD enzyme activity in oysters. Further, our study revealed that only one cytosolic Cu/Zn-SOD (cg_XM_034479061.1) may conserve enzymatic activity of SOD. Moreover, the expression patterns of these genes varied in response to different stressors, which may be due to the cis-elements in the promoter. This study provides important insights into the mechanisms through which oysters adapt to harsh intertidal conditions, as well as potential biomarkers of stress response in related species. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-022-08610-9.
Collapse
Affiliation(s)
- Youli Liu
- Ninghai Institute of Mariculture Breeding and Seed Industry, Zhejiang Wanli University, Ninghai, 315604, China.,Zhejiang Key Laboratory of Aquatic Germplasm Resource, Zhejiang Wanli University, Ningbo, 315100, China.,College of Marine life Sciences, Ocean University of China, Qingdao, 266100, China
| | - Zhenmin Bao
- College of Marine life Sciences, Ocean University of China, Qingdao, 266100, China
| | - Zhihua Lin
- Ninghai Institute of Mariculture Breeding and Seed Industry, Zhejiang Wanli University, Ninghai, 315604, China. .,Zhejiang Key Laboratory of Aquatic Germplasm Resource, Zhejiang Wanli University, Ningbo, 315100, China.
| | - Qinggang Xue
- Ninghai Institute of Mariculture Breeding and Seed Industry, Zhejiang Wanli University, Ninghai, 315604, China. .,Zhejiang Key Laboratory of Aquatic Germplasm Resource, Zhejiang Wanli University, Ningbo, 315100, China.
| |
Collapse
|
19
|
Huo C, He L, Yu T, Ji X, Li R, Zhu S, Zhang F, Xie H, Liu W. The Superoxide Dismutase Gene Family in Nicotiana tabacum: Genome-Wide Identification, Characterization, Expression Profiling and Functional Analysis in Response to Heavy Metal Stress. FRONTIERS IN PLANT SCIENCE 2022; 13:904105. [PMID: 35599861 PMCID: PMC9121019 DOI: 10.3389/fpls.2022.904105] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 04/11/2022] [Indexed: 05/27/2023]
Abstract
Superoxide dismutases (SODs) play an important role in protecting plants against ROS toxicity induced by biotic and abiotic stress. Recent studies have shown that the SOD gene family is involved in plant growth and development; however, knowledge of the SOD gene family in tobacco is still limited. In the present study, the SOD gene family was systematically characterized in the tobacco genome. Based on the conserved motif and phylogenetic tree, 15 NtSOD genes were identified and classified into three subgroups, including 5 NtCSDs, 7 NtFSDs and 3 NtMSDs. The predicted results of the transport peptide or signal peptide were consistent with their subcellular localization. Most NtSOD genes showed relatively well-maintained exon-intron and motif structures in the same subgroup. An analysis of cis-acting elements in SOD gene promoters showed that NtSOD expression was regulated by plant hormones, defense and stress responses, and light. In addition, multiple transcription factors and miRNAs are predicted to be involved in the regulation of NtSOD gene expression. The qPCR results indicated specific spatial and temporal expression patterns of the NtSOD gene family in different tissues and developmental stages, and this gene family played an important role in protecting against heavy metal stress. The results of functional complementation tests in the yeast mutant suggested that NtCSD1a, NtFSD1e and NtMSD1b scavenge ROS produced by heavy metal stress. This study represents the first genome-wide analysis of the NtSOD gene family, which lays a foundation for a better understanding of the function of the NtSOD gene family and improving the tolerance of plants to heavy metal toxicity.
Collapse
Affiliation(s)
- Chunsong Huo
- Chongqing Key Laboratory of Industrial Fermentation Microorganism, School of Chemistry and Chemical Engineering, Chongqing University of Science and Technology, Chongqing, China
| | - Linshen He
- Chongqing Key Laboratory of Industrial Fermentation Microorganism, School of Chemistry and Chemical Engineering, Chongqing University of Science and Technology, Chongqing, China
| | - Ting Yu
- Chongqing Key Laboratory of Industrial Fermentation Microorganism, School of Chemistry and Chemical Engineering, Chongqing University of Science and Technology, Chongqing, China
| | - Xue Ji
- Chongqing Key Laboratory of Industrial Fermentation Microorganism, School of Chemistry and Chemical Engineering, Chongqing University of Science and Technology, Chongqing, China
| | - Rui Li
- Chongqing Key Laboratory of Industrial Fermentation Microorganism, School of Chemistry and Chemical Engineering, Chongqing University of Science and Technology, Chongqing, China
| | - Shunqin Zhu
- School of Life Sciences, Southwest University, Chongqing, China
| | - Fangyuan Zhang
- School of Life Sciences, Southwest University, Chongqing, China
| | - He Xie
- Tobacco Breeding and Biotechnology Research Center, Yunnan Academy of Tobacco Agricultural Sciences, Kunming, China
| | - Wanhong Liu
- Chongqing Key Laboratory of Industrial Fermentation Microorganism, School of Chemistry and Chemical Engineering, Chongqing University of Science and Technology, Chongqing, China
| |
Collapse
|
20
|
El-Sitiny MF, M. Omar H, El-Shehawi AM, Elseehy MM, El-Tahan AM, El-Saadony MT, Selem GS. Biochemical and molecular diagnosis of different tomato cultivars susceptible and resistant to Tuta absoluta (Meyrick) infestation. Saudi J Biol Sci 2022; 29:2904-2910. [PMID: 35531183 PMCID: PMC9073022 DOI: 10.1016/j.sjbs.2022.01.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 11/29/2021] [Accepted: 01/10/2022] [Indexed: 11/03/2022] Open
Abstract
Resistant plant cultivars which used in breeding programs are considered one of the modern integrated management programs to reduce the usage of synthetic insecticides and environmental contamination the present study aimed to characterize the resistant and susceptible tomato cultivars to Tuta absoluta based on biochemical and molecular levels, in Egypt. The biochemical characters of the tested tomato cultivars (tomato- 86, tomato- Alissa, tomato- Fayarouz, tomato- Omniya, tomato- 036, tomato- GS) were determined colorimetrically and characterized by using native- polyacrylamide gel electrophoresis (PAGE) and agarose gel. Our results showed that there were variations highly significant in all biochemical constituents of the resistant tomato cultivar (tomato- 86) compared with the susceptible one (tomato- GS). Also, native-(PAGE) for peroxidase (POD) isoenzymes techniques of the tested tomato cultivars showed variations in protein band numbers and densities in tomato-86 resistant compared with tomato-GS susceptible to Tuta absoluta infestation. The correlation coefficient between total phenols and peroxidases in infested tomato leaves and percentages of damaged leaves with the tested insect pest was negative and highly significant, while in case of total proteins and reducing sugars in infested tomato leaves as well as lycopene contents in infested tomato fruits was positive, highly significant and significant, respectively. The correlation coefficient between tomato yield means and the infested fruit percentage with T. absoluta larvae was negative and highly significant. Respecting molecular diagnosis random amplified polymorphism DNA- polymerase chain reaction (RAPD- PCR), the results demonstrated that the presence of polymorphism in the resistant tomato cultivar (tomato- 86) compared with (tomato- GS), the most susceptible to the tested insect pest infestation.
Collapse
Affiliation(s)
- Mona F.A. El-Sitiny
- Plant Protection Department, Agricultural Faculty, Zagazig University, Egypt
| | - Habeba M. Omar
- Plant Protection Department, Agricultural Faculty, Zagazig University, Egypt
| | - Ahmed M. El-Shehawi
- Department of Biotechnology, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Mona M. Elseehy
- Department of Genetics, Faculty of Agriculture, University of Alexandria, Alexandria 21545, Egypt
| | - Amira M. El-Tahan
- Plant Production Department, Arid Lands Cultivation Research Institute, The City of Scientific Research and Technological Applications, SRTA-City. Borg El Arab, Alexandria, Egypt
| | - Mohamed T. El-Saadony
- Department of Agricultural Microbiology, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt
| | - Gamila Sh. Selem
- Plant Protection Department, Agricultural Faculty, Zagazig University, Egypt
| |
Collapse
|
21
|
Wang S, Wang F, Kong F, Cao Z, Wang W, Yang H, Wang Y, Bi Y, Li S. Effect of Supplementing Different Levels of L-Glutamine on Holstein Calves during Weaning. Antioxidants (Basel) 2022; 11:antiox11030542. [PMID: 35326192 PMCID: PMC8944981 DOI: 10.3390/antiox11030542] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 03/05/2022] [Accepted: 03/10/2022] [Indexed: 12/12/2022] Open
Abstract
Weaning stress affects the health and performance of calves. L-glutamine (L-Gln) is commonly used as a functional antioxidant and energy supplement in the body. However, dietary L-Gln supplementation improving weaning stress of calves is unclear. Thus, we aimed to explore the effects of L-Gln (provided by rumen-protected L-Gln) on calves during weaning. Seventy-five Holstein calves (54.0 ± 2.68 kg; 42 ± 2.1 d of age) were assigned to five groups: no supplementation and L-Gln with 1%, 2%, 3%, and 4% dry matter daily intake (DMI) supplementation groups, respectively. The experiment lasted for 28 days (42–70 d of age of calves), and the calves were weaned at 15 d of experiment. DMI and body weekly weight of all calves were recorded. Blood samples of nine healthy calves with similar body weight were collected from each group at 0, 7, 14, 16, 18, 21, and 28 d of experiment for detecting serum L-Gln, glucose, insulin, urea nitrogen, D-lactate, cortisol, haptoglobin, interleukin-8, immunoglobulin (Ig) G, IgA, IgM, total antioxidant capacity, superoxide dismutase, glutathione peroxidase, catalase, and malondialdehyde. At the end of the experiment, six healthy calves with similar body weight from each group were selected for slaughter and morphological analysis of small intestine tissue. The results showed that the L-Gln supplementation in the diets improved the negative effects of sudden weaning in calves. Furthermore, compared to the higher-level L-Gln supple-mentation (3 and 4% of DMI) groups, the dietary lower-level L-Gln supplementation (1 and 2% of DMI) had higher average daily gain, glutathione peroxidase and IgG concentration, and villus height/crypt depth of the duodenum and jejunum, as well as lower cortisol, haptoglobin, and interleukin-8 concentration of weaned calves. These results provided effective reference for relieving the negative effects of calves during weaning.
Collapse
Affiliation(s)
- Shuo Wang
- State Key Laboratory of Animal Nutrition, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (S.W.); (F.K.); (Z.C.); (W.W.); (H.Y.); (Y.W.)
| | - Fuwei Wang
- Beijing Sunlon Livestock Development Co., Ltd., Beijing 100076, China;
| | - Fanlin Kong
- State Key Laboratory of Animal Nutrition, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (S.W.); (F.K.); (Z.C.); (W.W.); (H.Y.); (Y.W.)
| | - Zhijun Cao
- State Key Laboratory of Animal Nutrition, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (S.W.); (F.K.); (Z.C.); (W.W.); (H.Y.); (Y.W.)
| | - Wei Wang
- State Key Laboratory of Animal Nutrition, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (S.W.); (F.K.); (Z.C.); (W.W.); (H.Y.); (Y.W.)
| | - Hongjian Yang
- State Key Laboratory of Animal Nutrition, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (S.W.); (F.K.); (Z.C.); (W.W.); (H.Y.); (Y.W.)
| | - Yajing Wang
- State Key Laboratory of Animal Nutrition, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (S.W.); (F.K.); (Z.C.); (W.W.); (H.Y.); (Y.W.)
| | - Yanliang Bi
- Key Laboratory of Feed Biotechnology of the Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- Correspondence: (Y.B.); (S.L.)
| | - Shengli Li
- State Key Laboratory of Animal Nutrition, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (S.W.); (F.K.); (Z.C.); (W.W.); (H.Y.); (Y.W.)
- Correspondence: (Y.B.); (S.L.)
| |
Collapse
|
22
|
Afsa S, Vieira M, Nogueira AF, Mansour HB, Nunes B. A multi-biomarker approach for the early assessment of the toxicity of hospital wastewater using the freshwater organism Daphnia magna. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:19132-19147. [PMID: 34713402 DOI: 10.1007/s11356-021-16977-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 10/06/2021] [Indexed: 06/13/2023]
Abstract
Hospital wastewater (HWW) contains different hazardous substances resulting from a combination of medical and non-medical activities of hospitals, including pharmaceutical residues. These substances may represent a threat to the aquatic environment if they do not follow specific treatment processes. Therefore, we aimed to investigate the effects of the untreated effluent collected from a general hospital in Mahdia City (Tunisia) on neonatal stages of the freshwater crustacean Daphnia magna. Test organisms were exposed to three proportions (3.12%, 6.25%, and 12.5% v/v) of HWW. After 48 h of exposure, a battery of biomarkers was measured, including the quantification of antioxidant enzymes [catalase (CAT) and total and selenium-dependent glutathione peroxidase (total GPx; Se-GPx)], phase II biotransformation isoenzymes glutathione-S-transferases (GSTs), cyclooxygenases (COX) involved in the regulation of the inflammatory process, and total cholinesterases (ChEs) activities. Lipid peroxidation (LPO) was measured to estimate oxidative damage. The here-obtained results showed significant decreases of CAT and GSTs activities and also on LPO content in daphnids, whereas Se-GPx activity was significantly increased in a dose-dependent manner. Impairment of cholinesterasic and COX activities were also observed, with a significant decrease of ChEs and an increase of COX enzymatic activities. Considering these findings, HWW was capable of inducing an imbalance of the antioxidant defense system, but without resulting in oxidative damage in test organisms, suggesting that peroxidases and alternative detoxifying pathways were able to prevent the oxidant potential of several drugs, which were found in the tested effluents. In general, this study demonstrated the toxicity of hospital effluents, measured in terms of the potential impairment of key pathways, namely neurotransmission, antioxidant defense, and inflammatory homeostasis of crustaceans.
Collapse
Affiliation(s)
- Sabrine Afsa
- Research Unit of Analysis and Process Applied to The Environment - APAE (UR17ES32) Higher Institute of Applied Sciences and Technology of Mahdia, University of Monastir, 5000, Monastir, Tunisia
| | - Madalena Vieira
- Centro de Estudos Do Ambiente E Do Mar (CESAM), Universidade de Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal
- Departamento de Biologia, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal
| | - Ana Filipa Nogueira
- Centro de Estudos Do Ambiente E Do Mar (CESAM), Universidade de Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal
- Departamento de Biologia, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal
| | - Hedi Ben Mansour
- Research Unit of Analysis and Process Applied to The Environment - APAE (UR17ES32) Higher Institute of Applied Sciences and Technology of Mahdia, University of Monastir, 5000, Monastir, Tunisia
| | - Bruno Nunes
- Centro de Estudos Do Ambiente E Do Mar (CESAM), Universidade de Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal.
- Departamento de Biologia, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal.
| |
Collapse
|
23
|
Rudić J, Dragićević MB, Momčilović I, Simonović AD, Pantelić D. In Silico Study of Superoxide Dismutase Gene Family in Potato and Effects of Elevated Temperature and Salicylic Acid on Gene Expression. Antioxidants (Basel) 2022; 11:488. [PMID: 35326138 PMCID: PMC8944489 DOI: 10.3390/antiox11030488] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/14/2022] [Accepted: 02/22/2022] [Indexed: 12/13/2022] Open
Abstract
Potato (Solanum tuberosum L.) is the most important vegetable crop globally and is very susceptible to high ambient temperatures. Since heat stress causes the accumulation of reactive oxygen species (ROS), investigations regarding major enzymatic components of the antioxidative system are of the essence. Superoxide dismutases (SODs) represent the first line of defense against ROS but detailed in silico analysis and characterization of the potato SOD gene family have not been performed thus far. We have analyzed eight functional SOD genes, three StCuZnSODs, one StMnSOD, and four StFeSODs, annotated in the updated version of potato genome (Spud DB DM v6.1). The StSOD genes and their respective proteins were analyzed in silico to determine the exon-intron organization, splice variants, cis-regulatory promoter elements, conserved domains, signals for subcellular targeting, 3D-structures, and phylogenetic relations. Quantitative PCR analysis revealed higher induction of StCuZnSODs (the major potato SODs) and StFeSOD3 in thermotolerant cultivar Désirée than in thermosensitive Agria and Kennebec during long-term exposure to elevated temperature. StMnSOD was constitutively expressed, while expression of StFeSODs was cultivar-dependent. The effects of salicylic acid (10-5 M) on StSODs expression were minor. Our results provide the basis for further research on StSODs and their regulation in potato, particularly in response to elevated temperatures.
Collapse
Affiliation(s)
| | | | | | | | - Danijel Pantelić
- Institute for Biological Research “Siniša Stanković”—National Institute of the Republic of Serbia, University of Belgrade, Bulevar despota Stefana 142, 11060 Belgrade, Serbia; (J.R.); (M.B.D.); (I.M.); (A.D.S.)
| |
Collapse
|
24
|
Rehman S, Rashid A, Manzoor MA, Li L, Sun W, Riaz MW, Li D, Zhuge Q. Genome-Wide Evolution and Comparative Analysis of Superoxide Dismutase Gene Family in Cucurbitaceae and Expression Analysis of Lagenaria siceraria Under Multiple Abiotic Stresses. Front Genet 2022; 12:784878. [PMID: 35211150 PMCID: PMC8861505 DOI: 10.3389/fgene.2021.784878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 12/30/2021] [Indexed: 11/13/2022] Open
Abstract
Superoxide dismutase (SOD) is an important enzyme that serves as the first line of defense in the plant antioxidant system and removes reactive oxygen species (ROS) under adverse conditions. The SOD protein family is widely distributed in the plant kingdom and plays a significant role in plant growth and development. However, the comprehensive analysis of the SOD gene family has not been conducted in Cucurbitaceae. Subsequently, 43 SOD genes were identified from Cucurbitaceae species [Citrullus lanatus (watermelon), Cucurbita pepo (zucchini), Cucumis sativus (cucumber), Lagenaria siceraria (bottle gourd), Cucumis melo (melon)]. According to evolutionary analysis, SOD genes were divided into eight subfamilies (I, II, III, IV, V, VI, VII, VIII). The gene structure analysis exhibited that the SOD gene family had comparatively preserved exon/intron assembly and motif as well. Phylogenetic and structural analysis revealed the functional divergence of Cucurbitaceae SOD gene family. Furthermore, microRNAs 6 miRNAs were predicted targeting 3 LsiSOD genes. Gene ontology annotation outcomes confirm the role of LsiSODs under different stress stimuli, cellular oxidant detoxification processes, metal ion binding activities, SOD activity, and different cellular components. Promoter regions of the SOD family revealed that most cis-elements were involved in plant development, stress response, and plant hormones. Evaluation of the gene expression showed that most SOD genes were expressed in different tissues (root, flower, fruit, stem, and leaf). Finally, the expression profiles of eight LsiSOD genes analyzed by qRT-PCR suggested that these genetic reserves responded to drought, saline, heat, and cold stress. These findings laid the foundation for further study of the role of the SOD gene family in Cucurbitaceae. Also, they provided the potential for its use in the genetic improvement of Cucurbitaceae.
Collapse
Affiliation(s)
- Shamsur Rehman
- Co-Innovation Center for Sustainable Forestry in Southern China, Key Laboratory of Forest Genetics and Biotechnology, College of Biology and the Environment, Nanjing Forestry University, Ministry of Education, Nanjing, China
| | - Arif Rashid
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, China
| | | | - Lingling Li
- Co-Innovation Center for Sustainable Forestry in Southern China, Key Laboratory of Forest Genetics and Biotechnology, College of Biology and the Environment, Nanjing Forestry University, Ministry of Education, Nanjing, China
| | - Weibo Sun
- Co-Innovation Center for Sustainable Forestry in Southern China, Key Laboratory of Forest Genetics and Biotechnology, College of Biology and the Environment, Nanjing Forestry University, Ministry of Education, Nanjing, China
| | - Muhammad Waheed Riaz
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, China.,Zhejiang Provincial Key Laboratory of Resources Protection and Innovation of Traditional Chinese Medicine, Zhejiang A&F University, Hangzhou, China
| | - Dawei Li
- Co-Innovation Center for Sustainable Forestry in Southern China, Key Laboratory of Forest Genetics and Biotechnology, College of Biology and the Environment, Nanjing Forestry University, Ministry of Education, Nanjing, China
| | - Qiang Zhuge
- Co-Innovation Center for Sustainable Forestry in Southern China, Key Laboratory of Forest Genetics and Biotechnology, College of Biology and the Environment, Nanjing Forestry University, Ministry of Education, Nanjing, China
| |
Collapse
|
25
|
Liu J, Xu L, Shang J, Hu X, Yu H, Wu H, Lv W, Zhao Y. Genome-wide analysis of the maize superoxide dismutase (SOD) gene family reveals important roles in drought and salt responses. Genet Mol Biol 2021; 44:e20210035. [PMID: 34606562 PMCID: PMC8493800 DOI: 10.1590/1678-4685-gmb-2021-0035] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 07/02/2021] [Indexed: 11/22/2022] Open
Abstract
Superoxide dismutase proteins (SODs) are antioxidant enzymes with important roles in abiotic stress responses. The SOD gene family has been systematically analyzed in many plants; however, it is still poorly understood in maize. Here, a bioinformatics analysis of maize SOD gene family was conducted by describing gene structure, conserved motifs, phylogenetic relationships, gene duplications, promoter cis-elements and GO annotations. In total, 13 SOD genes were identified in maize and five members were involved in segmental duplication. Phylogenetic analysis indicated that SODs from maize and other plants comprised two groups, which could be further classified into different subgroups, with most members in the same subgroup having the same subcellular localization. The ZmSOD promoters contained 2-10 stress-responsive cis-elements with different distributions. Heatmap analysis indicated that ZmSODs were expressed in most of the detected tissues and organs. The expression patterns of ZmSODs were investigated under drought and salt treatments by qRT-PCR, and most members were responsive to drought or salt stress, especially some ZmSODs with significant expression changes were identified, such as ZmCSD2 and ZmMSD2, suggesting the important roles of ZmSODs in abiotic stress responses. Our results provide an important basis for further functional study of ZmSODs in future study.
Collapse
Affiliation(s)
- Jing Liu
- Anhui Agricultural University, School of Life Sciences, National Engineering Laboratory of Crop Stress Resistance Breeding, Hefei, China.,Anhui Agricultural University, Maize Engineering Technology Research Center of Anhui Province, School of Life Sciences, Hefei, China
| | - Lijuan Xu
- Anhui Agricultural University, School of Life Sciences, National Engineering Laboratory of Crop Stress Resistance Breeding, Hefei, China.,Anhui Agricultural University, Maize Engineering Technology Research Center of Anhui Province, School of Life Sciences, Hefei, China
| | - Jian Shang
- Anhui Agricultural University, School of Life Sciences, National Engineering Laboratory of Crop Stress Resistance Breeding, Hefei, China.,Anhui Agricultural University, Maize Engineering Technology Research Center of Anhui Province, School of Life Sciences, Hefei, China
| | - Xiaolin Hu
- Anhui Agricultural University, School of Life Sciences, National Engineering Laboratory of Crop Stress Resistance Breeding, Hefei, China.,Anhui Agricultural University, Maize Engineering Technology Research Center of Anhui Province, School of Life Sciences, Hefei, China
| | - Haitao Yu
- Anhui Agricultural University, School of Life Sciences, National Engineering Laboratory of Crop Stress Resistance Breeding, Hefei, China.,Anhui Agricultural University, Maize Engineering Technology Research Center of Anhui Province, School of Life Sciences, Hefei, China
| | - Hongying Wu
- Anhui Agricultural University, School of Life Sciences, National Engineering Laboratory of Crop Stress Resistance Breeding, Hefei, China.,Anhui Agricultural University, Maize Engineering Technology Research Center of Anhui Province, School of Life Sciences, Hefei, China
| | - Wenben Lv
- Anhui Agricultural University, School of Life Sciences, National Engineering Laboratory of Crop Stress Resistance Breeding, Hefei, China
| | - Yang Zhao
- Anhui Agricultural University, School of Life Sciences, National Engineering Laboratory of Crop Stress Resistance Breeding, Hefei, China.,Anhui Agricultural University, Maize Engineering Technology Research Center of Anhui Province, School of Life Sciences, Hefei, China
| |
Collapse
|
26
|
Iqbal Qureshi AM, Sofi MU, Dar NA, Khan MH, Mahdi SS, Dar ZA, Bangroo S, El-Serehy HA, Hefft DI, Popescu SM. Insilco identification and characterization of superoxide dismutase gene family in Brassica rapa. Saudi J Biol Sci 2021; 28:5526-5537. [PMID: 34588862 PMCID: PMC8459115 DOI: 10.1016/j.sjbs.2021.08.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Revised: 07/18/2021] [Accepted: 08/01/2021] [Indexed: 01/17/2023] Open
Abstract
Superoxide Dismutase SODs are defense associated proteins that detoxify ROS and primarily serve as scavengers. They have been described in numerous plant species, but their in-depth characterization in Brassica rapa has not been reported. Therefore, the present investigation on genome wide study of SOD gene family was conducted to identify BrSOD genes, their domain-based organization, gene structure analysis, phylogenetic analysis, intron-exon structure of genes and expression analysis. The sequence characterization of Super oxide dismutase gene family in Brassica rapa, their syntenic associateship of conserved motifs and phylogenetic correlationship, prediction of cis-elements and determing the expression analysis in distinct tissues namely plant callus, root, stem, leaf, flower, and silique under abiotic conditions have been analysed using different software’s. The study on SOD gene family identified 17 BrSOD genes which were grouped into eight BrCu-ZnSODs and nine BrFe-MnSODs domain-based organization. Furthermore, the conserved character of BrSODs were confirmed by intron-exon organisation, motif arrangements and domain architectural investigations. Expression analysis using RNA Sequence data of different developmental stages proclaimed that genes were manifested in all six tissues with an exception of BrCu-ZnSOD3, which was not manifested in roots; however, whose transcript was detected in all other tested tissues. The study has genome wide insight into the occurrence and functional specifications of BrSOD gene family in Brassica rapa that can be potentially utilized in breeding program for resilience to climate change and abiotic stresses tolerance Brassica variety.
Collapse
Affiliation(s)
- Asif M Iqbal Qureshi
- ARSSSS, Pampore, Sher-e-Kashmir University of Agricultural Sciences and Technology Shalimar Kashmir, India
| | - Mehraj Uddin Sofi
- HMAARI, Leh, Sher-e-Kashmir University of Agricultural Sciences and Technology Shalimar Kashmir, India
| | - N A Dar
- ARSSSS, Pampore, Sher-e-Kashmir University of Agricultural Sciences and Technology Shalimar Kashmir, India
| | - M H Khan
- ARSSSS, Pampore, Sher-e-Kashmir University of Agricultural Sciences and Technology Shalimar Kashmir, India
| | - S S Mahdi
- Division of Agronomy, FoA Wadura, Sher-e-Kashmir University of Agricultural Sciences and Technology Shalimar Kashmir, India
| | - Zahoor A Dar
- DARS, Rangreth, Sher-e-Kashmir University of Agricultural Sciences and Technology Shalimar Kashmir, India
| | - Shabir Bangroo
- Division of Soil Sciences, FoH, Sher-e-Kashmir University of Agricultural Sciences and Technology Shalimar Kashmir, India
| | - Hamed A El-Serehy
- Department of Zoology, College of Science, King Saud University, Riyad, 11451, Saudi Arabia
| | - Daniel Ingo Hefft
- University Centre Reaseheath, Reaseheath College, Nantwich CW5 6DF, UK
| | - Simona Mariana Popescu
- Department of Biology and Environmental Engineering, University of Craiova, 200585, Romania
| |
Collapse
|
27
|
Mozzicafreddo M, Pucciarelli S, Swart EC, Piersanti A, Emmerich C, Migliorelli G, Ballarini P, Miceli C. The macronuclear genome of the Antarctic psychrophilic marine ciliate Euplotes focardii reveals new insights on molecular cold adaptation. Sci Rep 2021; 11:18782. [PMID: 34548559 PMCID: PMC8455672 DOI: 10.1038/s41598-021-98168-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 09/05/2021] [Indexed: 11/23/2022] Open
Abstract
The macronuclear (MAC) genomes of ciliates belonging to the genus Euplotes species are comprised of numerous small DNA molecules, nanochromosomes, each typically encoding a single gene. These genomes are responsible for all gene expression during vegetative cell growth. Here, we report the analysis of the MAC genome from the Antarctic psychrophile Euplotes focardii. Nanochromosomes containing bacterial sequences were not found, suggesting that phenomena of horizontal gene transfer did not occur recently, even though this ciliate species has a substantial associated bacterial consortium. As in other euplotid species, E. focardii MAC genes are characterized by a high frequency of translational frameshifting. Furthermore, in order to characterize differences that may be consequent to cold adaptation and defense to oxidative stress, the main constraints of the Antarctic marine microorganisms, we compared E. focardii MAC genome with those available from mesophilic Euplotes species. We focussed mainly on the comparison of tubulin, antioxidant enzymes and heat shock protein (HSP) 70 families, molecules which possess peculiar characteristic correlated with cold adaptation in E. focardii. We found that α-tubulin genes and those encoding SODs and CATs antioxidant enzymes are more numerous than in the mesophilic Euplotes species. Furthermore, the phylogenetic trees showed that these molecules are divergent in the Antarctic species. In contrast, there are fewer hsp70 genes in E. focardii compared to mesophilic Euplotes and these genes do not respond to thermal stress but only to oxidative stress. Our results suggest that molecular adaptation to cold and oxidative stress in the Antarctic environment may not only be due to particular amino acid substitutions but also due to duplication and divergence of paralogous genes.
Collapse
Affiliation(s)
- Matteo Mozzicafreddo
- School of Biosciences and Veterinary Medicine, University of Camerino, 62032, Camerino, MC, Italy.
| | - Sandra Pucciarelli
- School of Biosciences and Veterinary Medicine, University of Camerino, 62032, Camerino, MC, Italy
| | - Estienne C Swart
- Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Angela Piersanti
- School of Biosciences and Veterinary Medicine, University of Camerino, 62032, Camerino, MC, Italy
| | | | - Giovanna Migliorelli
- School of Biosciences and Veterinary Medicine, University of Camerino, 62032, Camerino, MC, Italy
| | - Patrizia Ballarini
- School of Biosciences and Veterinary Medicine, University of Camerino, 62032, Camerino, MC, Italy
| | - Cristina Miceli
- School of Biosciences and Veterinary Medicine, University of Camerino, 62032, Camerino, MC, Italy
| |
Collapse
|
28
|
Espina G, Atalah J, Blamey JM. Extremophilic Oxidoreductases for the Industry: Five Successful Examples With Promising Projections. Front Bioeng Biotechnol 2021; 9:710035. [PMID: 34458243 PMCID: PMC8387880 DOI: 10.3389/fbioe.2021.710035] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Accepted: 06/30/2021] [Indexed: 11/29/2022] Open
Abstract
In a global context where the development of more environmentally conscious technologies is an urgent need, the demand for enzymes for industrial processes is on the rise. Compared to conventional chemical catalysts, the implementation of biocatalysis presents important benefits including higher selectivity, increased sustainability, reduction in operating costs and low toxicity, which translate into cleaner production processes, lower environmental impact as well as increasing the safety of the operating staff. Most of the currently available commercial enzymes are of mesophilic origin, displaying optimal activity in narrow ranges of conditions, which limits their actual application under industrial settings. For this reason, enzymes from extremophilic microorganisms stand out for their specific characteristics, showing higher stability, activity and robustness than their mesophilic counterparts. Their unique structural adaptations allow them to resist denaturation at high temperatures and salinity, remain active at low temperatures, function at extremely acidic or alkaline pHs and high pressure, and participate in reactions in organic solvents and unconventional media. Because of the increased interest to replace chemical catalysts, the global enzymes market is continuously growing, with hydrolases being the most prominent type of enzymes, holding approximately two-third share, followed by oxidoreductases. The latter enzymes catalyze electron transfer reactions and are one of the most abundant classes of enzymes within cells. They hold a significant industrial potential, especially those from extremophiles, as their applications are multifold. In this article we aim to review the properties and potential applications of five different types of extremophilic oxidoreductases: laccases, hydrogenases, glutamate dehydrogenases (GDHs), catalases and superoxide dismutases (SODs). This selection is based on the extensive experience of our research group working with these particular enzymes, from the discovery up to the development of commercial products available for the research market.
Collapse
Affiliation(s)
| | | | - Jenny M. Blamey
- Fundación Biociencia, Santiago, Chile
- Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
| |
Collapse
|
29
|
Su W, Raza A, Gao A, Jia Z, Zhang Y, Hussain MA, Mehmood SS, Cheng Y, Lv Y, Zou X. Genome-Wide Analysis and Expression Profile of Superoxide Dismutase (SOD) Gene Family in Rapeseed ( Brassica napus L.) under Different Hormones and Abiotic Stress Conditions. Antioxidants (Basel) 2021; 10:1182. [PMID: 34439430 PMCID: PMC8389029 DOI: 10.3390/antiox10081182] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 07/12/2021] [Accepted: 07/22/2021] [Indexed: 01/25/2023] Open
Abstract
Superoxide dismutase (SOD) is an important enzyme that acts as the first line of protection in the plant antioxidant defense system, involved in eliminating reactive oxygen species (ROS) under harsh environmental conditions. Nevertheless, the SOD gene family was yet to be reported in rapeseed (Brassica napus L.). Thus, a genome-wide investigation was carried out to identify the rapeseed SOD genes. The present study recognized 31 BnSOD genes in the rapeseed genome, including 14 BnCSDs, 11 BnFSDs, and six BnMSDs. Phylogenetic analysis revealed that SOD genes from rapeseed and other closely related plant species were clustered into three groups based on the binding domain with high bootstrap values. The systemic analysis exposed that BnSODs experienced segmental duplications. Gene structure and motif analysis specified that most of the BnSOD genes displayed a relatively well-maintained exon-intron and motif configuration within the same group. Moreover, we identified five hormones and four stress- and several light-responsive cis-elements in the promoters of BnSODs. Thirty putative bna-miRNAs from seven families were also predicted, targeting 13 BnSODs. Gene ontology annotation outcomes confirm the BnSODs role under different stress stimuli, cellular oxidant detoxification processes, metal ion binding activities, SOD activity, and different cellular components. Twelve BnSOD genes exhibited higher expression profiles in numerous developmental tissues, i.e., root, leaf, stem, and silique. The qRT-PCR based expression profiling showed that eight genes (BnCSD1, BnCSD3, BnCSD14, BnFSD4, BnFSD5, BnFSD6, BnMSD2, and BnMSD10) were significantly up-regulated under different hormones (ABA, GA, IAA, and KT) and abiotic stress (salinity, cold, waterlogging, and drought) treatments. The predicted 3D structures discovered comparable conserved BnSOD protein structures. In short, our findings deliver a foundation for additional functional investigations on the BnSOD genes in rapeseed breeding programs.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Yan Lv
- Key Lab of Biology and Genetic Improvement of Oil Crops, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Wuhan 430062, China; (W.S.); (A.R.); (A.G.); (Z.J.); (Y.Z.); (M.A.H.); (S.S.M.); (Y.C.)
| | - Xiling Zou
- Key Lab of Biology and Genetic Improvement of Oil Crops, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Wuhan 430062, China; (W.S.); (A.R.); (A.G.); (Z.J.); (Y.Z.); (M.A.H.); (S.S.M.); (Y.C.)
| |
Collapse
|
30
|
Islam MN, Rauf A, Fahad FI, Emran TB, Mitra S, Olatunde A, Shariati MA, Rebezov M, Rengasamy KRR, Mubarak MS. Superoxide dismutase: an updated review on its health benefits and industrial applications. Crit Rev Food Sci Nutr 2021; 62:7282-7300. [PMID: 33905274 DOI: 10.1080/10408398.2021.1913400] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Many short-lived and highly reactive oxygen species, such as superoxide anion (O2-) and hydrogen peroxide (H2O2), are toxic or can create oxidative stress in cells, a response involved in the pathogenesis of numerous diseases depending on their concentration, location, and cellular conditions. Superoxide dismutase (SOD) activities as an endogenous and exogenous cell defense mechanism include the potential use in treating various diseases, improving the potential use in treating various diseases, and improving food-stuffs preparation dietary supplements human nutrition. Published work indicates that SOD regulates oxidative stress, lipid metabolism, inflammation, and oxidation in cells. It can prevent lipid peroxidation, the oxidation of low-density lipoprotein in macrophages, lipid droplets' formation, and the adhesion of inflammatory cells into endothelial monolayers. It also expresses antioxidant effects in numerous cancer-related processes. Additionally, different forms of SOD may also augment food processing and pharmaceutical applications, exhibit anticancer, antioxidant, and anti-inflammatory effects, and prevent arterial problems by protecting the proliferation of vascular smooth muscle cells. Many investigations in this review have reported the therapeutic ability and physiological importance of SOD. Because of their antioxidative effects, SODs are of great potential in the medicinal, cosmetic, food, farming and chemical industries. This review discusses the findings of human and animal studies that support the advantages of SOD enzyme regulations to reduce the formation of oxidative stress in various ways.
Collapse
Affiliation(s)
- Mohammad Nazmul Islam
- Department of Pharmacy, International Islamic University Chittagong, Chittagong, Bangladesh
| | - Abdur Rauf
- Department of Chemistry, University of Swabi, Swabi, Pakistan
| | - Fowzul Islam Fahad
- Department of Pharmacy, International Islamic University Chittagong, Chittagong, Bangladesh
| | - Talha Bin Emran
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong, Bangladesh
| | - Saikat Mitra
- Faculty of Pharmacy, Department of Pharmacy, University of Dhaka, Dhaka, Bangladesh
| | - Ahmed Olatunde
- Department of Biochemistry, Abubakar Tafawa Balewa University, Bauchi, Nigeria
| | - Mohammad Ali Shariati
- K.G. Razumovsky Moscow State University of Technologies and Management (the First Cossack University), Moscow, Russian Federation
| | - Maksim Rebezov
- V.M. Gorbatov Federal Research Center for Food Systems of Russian Academy of Sciences, Moscow, Russian Federation.,Prokhorov General Physics Institute of the Russian Academy of Science, Moscow, Russian Federation
| | - Kannan R R Rengasamy
- Green Biotechnologies Research Centre of Excellence, University of Limpopo, Polokwane, South Africa
| | | |
Collapse
|
31
|
Saini A, Rohila JS, Govindan G, Li YF, Sunkar R. Splice Variants of Superoxide Dismutases in Rice and Their Expression Profiles under Abiotic Stresses. Int J Mol Sci 2021; 22:ijms22083997. [PMID: 33924430 PMCID: PMC8068833 DOI: 10.3390/ijms22083997] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 04/11/2021] [Indexed: 01/02/2023] Open
Abstract
The superoxide dismutases (SODs) play vital roles in controlling cellular reactive oxygen species (ROS) that are generated both under optimal as well as stress conditions in plants. The rice genome harbors seven SOD genes (CSD1, CSD2, CSD3, CSD4, FSD1, FSD2, and MSD) that encode seven constitutive transcripts. Of these, five (CSD2, CSD3, CSD4, FSD1, and MSD) utilizes an alternative splicing (AS) strategy and generate seven additional splice variants (SVs) or mRNA variants, i.e., three for CSD3, and one each for CSD2, CSD4, FSD1, and MSD. The exon-intron organization of these SVs revealed variations in the number and length of exons and/or untranslated regions (UTRs). We determined the expression patterns of SVs along with their constitutive forms of SODs in rice seedlings exposed to salt, osmotic, cold, heavy metal (Cu+2) stresses, as well as copper-deprivation. The results revealed that all seven SVs were transcriptionally active in both roots and shoots. When compared to their corresponding constitutive transcripts, the profiles of five SVs were almost similar, while two specific SVs (CSD3-SV4 and MSD-SV2) differed significantly, and the differences were also apparent between shoots and roots suggesting that the specific SVs are likely to play important roles in a tissue-specific and stress-specific manner. Overall, the present study has provided a comprehensive analysis of the SVs of SODs and their responses to stress conditions in shoots and roots of rice seedlings.
Collapse
Affiliation(s)
- Ajay Saini
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, OK 74078, USA; (A.S.); (G.G.); (Y.-F.L.)
- Bhabha Atomic Research Centre, Molecular Biology Division, Trombay, Mumbai, Maharashtra 400085, India
- Homi Bhabha National Institute, Anushaktinagar, Trombay, Mumbai, Maharashtra 400094, India
| | - Jai S. Rohila
- Dale Bumpers National Rice Research Center, United States Department of Agriculture-Agricultural Research Services, Stuttgart, AR 72160, USA;
| | - Ganesan Govindan
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, OK 74078, USA; (A.S.); (G.G.); (Y.-F.L.)
| | - Yong-Fang Li
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, OK 74078, USA; (A.S.); (G.G.); (Y.-F.L.)
| | - Ramanjulu Sunkar
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, OK 74078, USA; (A.S.); (G.G.); (Y.-F.L.)
- Correspondence:
| |
Collapse
|
32
|
Zhang G, Ding Q, Wei B. Genome-wide identification of superoxide dismutase gene families and their expression patterns under low-temperature, salt and osmotic stresses in watermelon and melon. 3 Biotech 2021; 11:194. [PMID: 33927985 DOI: 10.1007/s13205-021-02726-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Accepted: 03/10/2021] [Indexed: 12/01/2022] Open
Abstract
The growth and development of watermelon and melon are affected by abiotic stresses such as cold, salinity and drought. Plant superoxide dismutase (SOD) proteins exerted great effects on plant growth, development and response to abiotic stresses. However, little is known about the characteristics of watermelon and melon SOD gene families and their expression patterns under abiotic stresses. In this study, the genome-wide identification of SOD genes and their expression patterns under abiotic stresses has been done in watermelon and melon. Seven SODs were identified in watermelon and melon, respectively. Chromosome location indicated that the SODs were dispersedly distributed on 4-6 chromosomes. Almost all the SOD proteins contained 300 amino acids or less and the intron numbers of SODs ranged from 5 to 7. On the basis of phylogenetic analysis, the SODs were classified into six sub-groups which was also verified by similar motif composition, gene structure and sub-cellular location. Gene ontology analysis displayed that many SOD proteins participated in binding, catalytic, antioxidant activity and stimulus-response. Cis-regulatory elements related to stresses and hormones were found in the promoters of the SODs. Based on the quantitative real-time PCR, most of CmSOD and ClSOD genes showed obvious up-regulation under low-temperature, NaCl and PEG6000 treatments. The abiotic stress-responsive SOD genes were identified to improve watermelon and melon tolerance against abiotic stresses. This was a preliminary study to describe the genome-wide analysis of SOD gene family in watermelon and melon, and the results would facilitate further study of gene cloning and functional verification of SOD genes response to abiotic stresses in watermelon and melon. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s13205-021-02726-7.
Collapse
Affiliation(s)
- Gaoyuan Zhang
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070 Gansu China
| | - Qian Ding
- College of Floriculture, Weifang Engineering Vocational College, Qingzhou, 262500 Shandong China
| | - Bingqiang Wei
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070 Gansu China
| |
Collapse
|
33
|
Rajput VD, Harish, Singh RK, Verma KK, Sharma L, Quiroz-Figueroa FR, Meena M, Gour VS, Minkina T, Sushkova S, Mandzhieva S. Recent Developments in Enzymatic Antioxidant Defence Mechanism in Plants with Special Reference to Abiotic Stress. BIOLOGY 2021; 10:267. [PMID: 33810535 PMCID: PMC8066271 DOI: 10.3390/biology10040267] [Citation(s) in RCA: 198] [Impact Index Per Article: 49.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 03/12/2021] [Accepted: 03/24/2021] [Indexed: 12/13/2022]
Abstract
The stationary life of plants has led to the evolution of a complex gridded antioxidant defence system constituting numerous enzymatic components, playing a crucial role in overcoming various stress conditions. Mainly, these plant enzymes are superoxide dismutase (SOD), catalase (CAT), peroxidase (POX), glutathione peroxidase (GPX), glutathione reductase (GR), glutathione S-transferases (GST), ascorbate peroxidase (APX), monodehydroascorbate reductase (MDHAR), and dehydroascorbate reductase (DHAR), which work as part of the antioxidant defence system. These enzymes together form a complex set of mechanisms to minimise, buffer, and scavenge the reactive oxygen species (ROS) efficiently. The present review is aimed at articulating the current understanding of each of these enzymatic components, with special attention on the role of each enzyme in response to the various environmental, especially abiotic stresses, their molecular characterisation, and reaction mechanisms. The role of the enzymatic defence system for plant health and development, their significance, and cross-talk mechanisms are discussed in detail. Additionally, the application of antioxidant enzymes in developing stress-tolerant transgenic plants are also discussed.
Collapse
Affiliation(s)
- Vishnu D. Rajput
- Academy of Biology and Biotechnology, Southern Federal University, 344090 Rostov-on-Don, Russia; (T.M.); (S.S.); (S.M.)
| | - Harish
- Department of Botany, Mohan Lal Sukhadia University, Udaipur, Rajasthan 313001, India;
| | - Rupesh Kumar Singh
- Centro de Química de Vila Real, Universidade de Trás-os-Montes e Alto Douro, Quinta de Prados, 5000-801 Vila Real, Portugal
| | - Krishan K. Verma
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Affairs/Guangxi Key Laboratory of Sugarcane Genetic Improvement/Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China;
| | - Lav Sharma
- Centre for the Research and Technology of Agro-Environment and Biological Sciences, Universidade de Trás-os-Montes e Alto Douro, Quinta de Prados, 5000-801 Vila Real, Portugal;
| | - Francisco Roberto Quiroz-Figueroa
- Laboratorio de Fitomejoramiento Molecular, Centro Interdisciplinario de Investigación para el Desarrollo Integral Regional Unidad Sinaloa (CIIDIR-IPN Unidad Sinaloa), Instituto Politécnico Nacional, Blvd. Juan de Dios Bátiz Paredes no. 250, Col. San Joachín, C.P., 81101 Guasave, Mexico;
| | - Mukesh Meena
- Department of Botany, Mohan Lal Sukhadia University, Udaipur, Rajasthan 313001, India;
| | - Vinod Singh Gour
- Amity Institute of Biotechnology, Amity University Rajasthan, NH 11C, Kant Kalwar, Jaipur 303002, India;
| | - Tatiana Minkina
- Academy of Biology and Biotechnology, Southern Federal University, 344090 Rostov-on-Don, Russia; (T.M.); (S.S.); (S.M.)
| | - Svetlana Sushkova
- Academy of Biology and Biotechnology, Southern Federal University, 344090 Rostov-on-Don, Russia; (T.M.); (S.S.); (S.M.)
| | - Saglara Mandzhieva
- Academy of Biology and Biotechnology, Southern Federal University, 344090 Rostov-on-Don, Russia; (T.M.); (S.S.); (S.M.)
| |
Collapse
|
34
|
Kim CH, Kim EJ, Nam YK. Superoxide Dismutase Multigene Family from a Primitive Chondrostean Sturgeon, Acipenser baerii: Molecular Characterization, Evolution, and Antioxidant Defense during Development and Pathogen Infection. Antioxidants (Basel) 2021; 10:232. [PMID: 33546486 PMCID: PMC7913737 DOI: 10.3390/antiox10020232] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 01/29/2021] [Accepted: 02/01/2021] [Indexed: 12/16/2022] Open
Abstract
Three distinct superoxide dismutases (SODs)-copper/zinc-SOD (SOD1), manganese-SOD (SOD2), and extracellular copper/zinc-SOD (SOD3)-were identified from a primitive chondrostean fish, Acipenser baerii, enabling the comparison of their transcriptional regulation patterns during development, prelarval ontogeny, and immune stimulation. Each A. baerii SOD isoform (AbSOD) shared conserved structural features with its vertebrate orthologs; however, phylogenetic analyses hypothesized a different evolutionary history for AbSOD3 relative to AbSOD1 and AbSOD2 in the vertebrate lineage. The AbSOD isoforms showed different tissue distribution patterns; AbSOD1 was predominantly expressed in most tissues. The expression of the AbSOD isoforms showed isoform-dependent dynamic modulation according to embryonic development and prelarval ontogenic behaviors. Prelarval microinjections revealed that lipopolysaccharide only induced AbSOD3 expression, while Aeromonas hydrophila induced the expression of AbSOD2 and AbSOD3. In fingerlings, the transcriptional response of each AbSOD isoform to bacterial infection was highly tissue-specific, and the three isoforms exhibited different response patterns within a given tissue type; AbSOD3 was induced the most sensitively, and its induction was the most pronounced in the kidneys and skin. Collectively, these findings suggest isoform-dependent roles for the multigene SOD family in antioxidant defenses against the oxidative stress associated with development and immune responses in these endangered sturgeon fish.
Collapse
Affiliation(s)
| | | | - Yoon Kwon Nam
- Department of Marine Bio-Materials and Aquaculture, College of Fisheries Sciences, Pukyong National University, 45 Yongso-ro, Nam-gu, Busan 48513, Korea; (C.-H.K.); (E.J.K.)
| |
Collapse
|
35
|
Hu SH, Lin SF, Huang YC, Huang CH, Kuo WY, Jinn TL. Significance of AtMTM1 and AtMTM2 for Mitochondrial MnSOD Activation in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2021; 12:690064. [PMID: 34434202 PMCID: PMC8382117 DOI: 10.3389/fpls.2021.690064] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 07/13/2021] [Indexed: 05/14/2023]
Abstract
The manganese (Mn) tracking factor for mitochondrial Mn superoxide dismutase (MnSOD) has been annotated as yMTM1 in yeast, which belongs to the mitochondrial carrier family. We confirmed that Arabidopsis AtMTM1 and AtMTM2 are functional homologs of yMTM1 as they can revive yeast MnSOD activity in yMTM1-mutant cells. Transient expression of AtMnSOD-3xFLAG in the AtMTM1 and AtMTM2-double mutant protoplasts confirmed that AtMTM1 and AtMTM2 are required for AtMnSOD activation. Our study revealed that AtMnSOD interacts with AtMTM1 and AtMTM2 in the mitochondria. The expression levels of AtMTM1, AtMTM2, and AtMnSOD respond positively to methyl viologen (MV) and metal stress. AtMTM1 and AtMTM2 are involved in Mn and Fe homeostasis, root length, and flowering time. Transient expression of chloroplast-destined AtMnSOD revealed that an evolutionarily conserved activation mechanism, like the chloroplastic-localized MnSOD in some algae, still exists in Arabidopsis chloroplasts. This study strengthens the proposition that AtMTM1 and AtMTM2 participate in the AtMnSOD activation and ion homeostasis.
Collapse
Affiliation(s)
- Shu-Hsuan Hu
- Institute of Plant Biology and Department of Life Science, National Taiwan University, Taipei, Taiwan
| | - Shu-Fan Lin
- Institute of Plant Biology and Department of Life Science, National Taiwan University, Taipei, Taiwan
| | - Ya-Chen Huang
- Institute of Plant Biology and Department of Life Science, National Taiwan University, Taipei, Taiwan
| | - Chien-Hsun Huang
- Institute of Plant Biology and Department of Life Science, National Taiwan University, Taipei, Taiwan
- Institute of Plant Biology, Center of Evolutionary Biology, School of Life Sciences, Fudan University, Shanghai, China
| | - Wen-Yu Kuo
- Institute of Plant Biology and Department of Life Science, National Taiwan University, Taipei, Taiwan
| | - Tsung-Luo Jinn
- Institute of Plant Biology and Department of Life Science, National Taiwan University, Taipei, Taiwan
- *Correspondence: Tsung-Luo Jinn,
| |
Collapse
|
36
|
Li G, Hu F, Zhang Y, Zhao Y, Wang H, Chen T, Cheng X, Cai Y. Comparative genomic analysis of superoxide dismutase ( SOD) genes in three Rosaceae species and expression analysis in Pyrus bretschneideri. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2021; 27:39-52. [PMID: 33627961 PMCID: PMC7873169 DOI: 10.1007/s12298-021-00926-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 12/30/2020] [Accepted: 01/06/2021] [Indexed: 06/01/2023]
Abstract
UNLABELLED Superoxide dismutases (SODs) are antioxidant enzymes that play a critical role in the polymerization of lignin monomers. Although current research has indicated that SODs are involved in plant growth and development, information on SODs in pear (Pyrus bretschneideri) and their function in lignin formation is scarce. In this study, 25 SODs, containing three kinds of plant SODs (Cu/Zn-SODs, Mn-SODs, and Fe-SODs), were identified from three Rosaceae species, and 11 of these genes were found in pear. According to the evolutionary analysis, the genes were divided into four subgroups, the division of which is consistent with the intron-exon and conserved motif analyses. These PbSODs were randomly scattered across 7 chromosomes. We have analysed the conserved domains and gene family evolution and predicted the cis-elements of the promoter. Ka/Ks analysis pointed that SOD genes mainly underwent purifying selection. Subsequently, the expression patterns of 11 PbSODs were examined in different tissues, at different developmental periods, in different pear varieties and under different hormone treatments. Gene expression analysis showed that PbCSD3 exhibited transcript levels consistent with the typical changes in lignin content. The changes in SOD activity and hydrogen peroxide (H2O2) content combined with the results of a spatio-temporal expression analysis showed that PbCSD3 was a candidate gene in reactive oxygen species (ROS) metabolism during the lignification of pear stone cells. Thus, our research reveals the evolutionary features of the SOD family in Rosaceae species and provide useful information for analysis of functional genome of the SOD family in pear. SUPPLEMENTARY INFORMATION The online version of this article (10.1007/s12298-021-00926-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Guohui Li
- School of Life Science, Anhui Agricultural University, No. 130, Changjiang West Road, Hefei, 230036 China
| | - Fei Hu
- Plant Protection and Agroproducts Safety Institute, Anhui Academy of Agricultural Sciences, Hefei Anhui, 230031 People’s Republic of China
| | - Yang Zhang
- School of Life Science, Anhui Agricultural University, No. 130, Changjiang West Road, Hefei, 230036 China
| | - Yu Zhao
- School of Life Science, Anhui Agricultural University, No. 130, Changjiang West Road, Hefei, 230036 China
| | - Han Wang
- School of Life Science, Anhui Agricultural University, No. 130, Changjiang West Road, Hefei, 230036 China
| | - Tianzhe Chen
- School of Life Science, Anhui Agricultural University, No. 130, Changjiang West Road, Hefei, 230036 China
| | - Xi Cheng
- School of Life Science, Anhui Agricultural University, No. 130, Changjiang West Road, Hefei, 230036 China
| | - Yongping Cai
- School of Life Science, Anhui Agricultural University, No. 130, Changjiang West Road, Hefei, 230036 China
| |
Collapse
|
37
|
Munir N, Yukun C, Xiaohui C, Nawaz MA, Iftikhar J, Rizwan HM, Xu S, Yuling L, Xuhan X, Zhongxiong L. Genome-wide identification and comprehensive analyses of NAC transcription factor gene family and expression patterns during somatic embryogenesis in Dimocarpus longan Lour. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 157:169-184. [PMID: 33120109 DOI: 10.1016/j.plaphy.2020.10.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Accepted: 10/06/2020] [Indexed: 05/23/2023]
Abstract
The NAM, ATAF1/2, and CUC2 form a huge plant-specific gene family of NAC TFs that are involved in the growth, development, and regulation of biotic and abiotic stress responses. Although the draft genome of longan (Dimocarpus longan Lour.) has been published, however the comprehensive data regarding the functions, evolution, and expression patterns of the NAC family are still unavailable. In this study, a comprehensive analysis of the NAC transcription factor family in longan was performed, and a total of 114 NAC genes were found. We investigated the NAC gene family exploring the phylogeny, domain conservation, intron/exon, motifs, cis-regulatory elements, protein-protein interaction, and expression profiles of RNA-seq samples in different tissues and early somatic embryogenesis of longan. Phylogenetic analysis showed that the genes with similar gene structure and motif distribution were clustered in the same group. Cis-element identification indicates the possible role of NAC genes in biological and physiological processes. Protein-protein interaction identified the DlNACs homologous with Arabidopsis proteins. We further investigated the expression pattern of DlNAC genes in different tissues (pulp, stem, large fruit, young fruit, and flower) during somatic embryogenesis at embryogenic callus (EC), incomplete compact pro-embryogenic cultures (ICpEC), and globular embryos (GE) stages. The qRT-PCR results showed that the DlNAC genes were expressed higher at EC and GE stage compared with ICpEC stage. In conclusion, our results provide insight into the evolution, diversity, and characterization of NAC genes in the longan and provide a base for understanding their biological roles and molecular mechanisms in plants.
Collapse
Affiliation(s)
- Nigarish Munir
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Chen Yukun
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Chen Xiaohui
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Muhammad Azher Nawaz
- Department of Horticulture, College of Agriculture, University of Sargodha, Sargodha, 40100, Pakistan
| | - Junaid Iftikhar
- Fujian Provincial Key Laboratory of Plant Functional Biology, College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Hafiz Muhammad Rizwan
- Institute of Subtropical Fruit, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Shen Xu
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Lin Yuling
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Xu Xuhan
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; Institute de la Recherché Interdisciplinary de Toulouse, IRIT-ARI, 31300, Toulouse, France.
| | - Lai Zhongxiong
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| |
Collapse
|
38
|
Zhang ML, Wu HT, Chen WJ, Xu Y, Ye QQ, Shen JX, Liu J. Involvement of glutathione peroxidases in the occurrence and development of breast cancers. J Transl Med 2020; 18:247. [PMID: 32571353 PMCID: PMC7309991 DOI: 10.1186/s12967-020-02420-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 06/17/2020] [Indexed: 02/05/2023] Open
Abstract
Glutathione peroxidases (GPxs) belong to a family of enzymes that is important in organisms; these enzymes promote hydrogen peroxide metabolism and protect cell membrane structure and function from oxidative damage. Based on the establishment and development of the theory of the pathological roles of free radicals, the role of GPxs has gradually attracted researchers' attention, and the involvement of GPxs in the occurrence and development of malignant tumors has been shown. On the other hand, the incidence of breast cancer in increasing, and breast cancer has become the leading cause of cancer-related death in females worldwide; breast cancer is thought to be related to the increased production of reactive oxygen species, indicating the involvement of GPxs in these processes. Therefore, this article focused on the molecular mechanism and function of GPxs in the occurrence and development of breast cancer to understand their role in breast cancer and to provide a new theoretical basis for the treatment of breast cancer.
Collapse
Affiliation(s)
- Man-Li Zhang
- Changjiang Scholar's Laboratory/Guangdong Provincial Key Laboratory for Diagnosis and Treatment of Breast Cancer, Shantou University Medical College, Shantou, 515041, China
| | - Hua-Tao Wu
- Department of General Surgery, the First Affiliated Hospital of Shantou University Medical College, Shantou, 515041, China
| | - Wen-Jia Chen
- Changjiang Scholar's Laboratory/Guangdong Provincial Key Laboratory for Diagnosis and Treatment of Breast Cancer, Shantou University Medical College, Shantou, 515041, China
- Department of Physiology/Cancer Research Center, Shantou University Medical College, Shantou, 515041, China
| | - Ya Xu
- Changjiang Scholar's Laboratory/Guangdong Provincial Key Laboratory for Diagnosis and Treatment of Breast Cancer, Shantou University Medical College, Shantou, 515041, China
| | - Qian-Qian Ye
- Changjiang Scholar's Laboratory/Guangdong Provincial Key Laboratory for Diagnosis and Treatment of Breast Cancer, Shantou University Medical College, Shantou, 515041, China
- Department of Physiology/Cancer Research Center, Shantou University Medical College, Shantou, 515041, China
| | - Jia-Xin Shen
- Department of Hematology, the First Affiliated Hospital of Shantou University Medical College, Shantou, People's Republic of China
| | - Jing Liu
- Changjiang Scholar's Laboratory/Guangdong Provincial Key Laboratory for Diagnosis and Treatment of Breast Cancer, Shantou University Medical College, Shantou, 515041, China.
- Department of Physiology/Cancer Research Center, Shantou University Medical College, Shantou, 515041, China.
| |
Collapse
|
39
|
Wang H, Ki JS. Molecular identification, differential expression and protective roles of iron/manganese superoxide dismutases in the green algae Closterium ehrenbergii against metal stress. Eur J Protistol 2020; 74:125689. [DOI: 10.1016/j.ejop.2020.125689] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Revised: 02/05/2020] [Accepted: 02/26/2020] [Indexed: 12/12/2022]
|
40
|
Zang Y, Chen J, Li R, Shang S, Tang X. Genome-wide analysis of the superoxide dismutase (SOD) gene family in Zostera marina and expression profile analysis under temperature stress. PeerJ 2020; 8:e9063. [PMID: 32411532 PMCID: PMC7207209 DOI: 10.7717/peerj.9063] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 04/05/2020] [Indexed: 11/25/2022] Open
Abstract
Superoxide dismutases (SODs) serve as the first line of defense in the plant antioxidant enzyme system, and play a primary role in the removal of reactive oxygen species (ROS). However, our understanding of the functions of the SOD family in Zostera marina is limited. In this study, a systematic analysis was conducted on the characteristics of the SOD genes in Z. marina at the whole-genome level. Five SOD genes were identified, consisting of two Cu/ZnSODs, two FeSODs, and one MnSOD. Phylogenetic analysis showed that ZmSOD proteins could be divided into two major categories (Cu/ZnSODs and Fe-MnSODs). Sequence motifs, gene structure, and the 3D-modeled protein structures further supported the phylogenetic analysis, with each subgroup having similar motifs, exon-intron structures, and protein structures. Additionally, several cis-elements were identified that may respond to biotic and abiotic stresses. Transcriptome analysis revealed expression diversity of ZmSODs in various tissues. Moreover, qRT-PCR analysis showed that the expression level of most ZmSOD genes trended to decreased expression with the increase of temperature, indicating that heat stress inhibits expression of ZmSODs and may result in reduced ability of ZmSODs to scavenge ROS. Our results provide a basis for further functional research on the SOD gene family in Z. marina, which will help to determine the molecular mechanism of ZmSOD genes in response to environmental stress.
Collapse
Affiliation(s)
- Yu Zang
- College of Marine Life Sciences, Ocean University of China, Qingdao, China.,Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Jun Chen
- College of Marine Life Sciences, Ocean University of China, Qingdao, China.,Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Ruoxi Li
- School of Life Science, Southwest University, Chongqing, China
| | - Shuai Shang
- College of Biological and Environmental Engineering, Binzhou University, Binzhou, China
| | - Xuexi Tang
- College of Marine Life Sciences, Ocean University of China, Qingdao, China.,Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
41
|
Silva SAF, Silva FLB, Ribas AF, de Souza SGH, dos Santos TB. Genome-wide in silico analysis of SOD genes in common bean (Phaseolus vulgaris L.). ACTA ACUST UNITED AC 2020. [DOI: 10.1007/s12892-020-00030-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
42
|
Genome-wide identification and expression analysis of the superoxide dismutase (SOD) gene family in Salvia miltiorrhiza. Gene 2020; 742:144603. [PMID: 32198126 DOI: 10.1016/j.gene.2020.144603] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Revised: 03/12/2020] [Accepted: 03/16/2020] [Indexed: 12/19/2022]
Abstract
Adverse environmental conditions, such as salinity, cold, drought, heavy metals, and pathogens affect the yield and quality of Salvia miltiorrhiza, a well-known medicinal plant used for the treatment of cardiovascular and cerebrovascular diseases. Superoxide dismutase (SOD), a key enzyme of antioxidant system in plants, plays a vital role in protecting plants against various biotic and abiotic stresses via scavenging the reactive oxygen species produced by organisms. However, little is known about the SOD gene family in S. miltiorrhiza. In this study, eight SOD genes, including three Cu/Zn-SODs, two Fe-SODs and three Mn-SODs, were identified in the S. miltiorrhiza genome. Their gene structures, promoters, protein features, phylogenetic relationships, and expression profiles were comprehensively investigated. Gene structure analysis implied that most SmSODs have different introns/exons distrbution patterns. Many cis-elements related to different stress responses or plant hormones were found in the promoter of each SmSOD. Expression profile analysis indicated that SmSODs exhibited diverse responses to cold, salt, drought, heavy metal, and plant hormones. Additionally, 31 types of TFs regulating SmSODs were predicted and analyzed. These findings provided valuable information for further researches on the functions and applications of SmSODs in S. miltiorrhiza growth and adaptation to stress.
Collapse
|
43
|
Tan K, Zhang H, Lim LS, Ma H, Li S, Zheng H. Roles of Carotenoids in Invertebrate Immunology. Front Immunol 2020; 10:3041. [PMID: 32010132 PMCID: PMC6979042 DOI: 10.3389/fimmu.2019.03041] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 12/11/2019] [Indexed: 12/29/2022] Open
Abstract
Carotenoids are biologically active pigments that are well-known to enhance the defense and immunity of the vertebrate system. However, in invertebrates, the role of carotenoids in immunity is not clear. Therefore, this study aims to review the scientific evidence for the role of carotenoids in invertebrate immunization. From the analysis of published literatures and recent studies from our laboratory, it is obvious that carotenoids are involved in invertebrate immunity in two ways. On the one hand, carotenoids can act as antioxidant enzymes to remove singlet oxygen, superoxide anion radicals, and hydroxyl radicals, thereby reducing SOD activity and reducing the cost of immunity. In some organisms, carotenoids have been shown to promote SOD activity by up-regulating the expression of the ZnCuSOD gene. Carotenoids, on the other hand, play a role in the expression and regulation of many genes involved in invertebrate immunity, including thioredoxins (TRX), peptidoglycan recognition receptor proteins (PGRPs), ferritins, prophenoloxidase (ProPO), vitellogenin (Vg), toll-like receptor (TLRs), heat shock proteins (HSPs), and CuZnSOD gene. The information in this review is very useful for updating our understanding of the progress of carotenoid research in invertebrate immunology and to help identify topics for future topics.
Collapse
Affiliation(s)
- Karsoon Tan
- Key Laboratory of Marine Biotechnology of Guangdong Province, Institute of Marine Sciences, Shantou University, Shantou, China.,Mariculture Research Center for Subtropical Shellfish & Algae of Guangdong Province, Shantou, China.,STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou, China
| | - Hongkuan Zhang
- Key Laboratory of Marine Biotechnology of Guangdong Province, Institute of Marine Sciences, Shantou University, Shantou, China.,Mariculture Research Center for Subtropical Shellfish & Algae of Guangdong Province, Shantou, China.,STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou, China
| | - Leong-Seng Lim
- Borneo Marine Research Institute, University Malaysia Sabah, Kota Kinabalu, Malaysia
| | - Hongyu Ma
- Key Laboratory of Marine Biotechnology of Guangdong Province, Institute of Marine Sciences, Shantou University, Shantou, China.,Mariculture Research Center for Subtropical Shellfish & Algae of Guangdong Province, Shantou, China.,STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou, China
| | - Shengkang Li
- Key Laboratory of Marine Biotechnology of Guangdong Province, Institute of Marine Sciences, Shantou University, Shantou, China.,Mariculture Research Center for Subtropical Shellfish & Algae of Guangdong Province, Shantou, China.,STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou, China
| | - Huaiping Zheng
- Key Laboratory of Marine Biotechnology of Guangdong Province, Institute of Marine Sciences, Shantou University, Shantou, China.,Mariculture Research Center for Subtropical Shellfish & Algae of Guangdong Province, Shantou, China.,STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou, China
| |
Collapse
|
44
|
Jiang W, Yang L, He Y, Zhang H, Li W, Chen H, Ma D, Yin J. Genome-wide identification and transcriptional expression analysis of superoxide dismutase (SOD) family in wheat ( Triticum aestivum). PeerJ 2019; 7:e8062. [PMID: 31763072 PMCID: PMC6873880 DOI: 10.7717/peerj.8062] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 10/20/2019] [Indexed: 12/17/2022] Open
Abstract
Superoxide dismutases (SODs) are a family of key antioxidant enzymes that play a crucial role in plant growth and development. Previously, this gene family has been investigated in Arabidopsis and rice. In the present study, a genome-wide analysis of the SOD gene family in wheat were performed. Twenty-six SOD genes were identified from the whole genome of wheat, including 17 Cu/Zn-SODs, six Fe-SODs, and three Mn-SODs. The chromosomal location mapping analysis indicated that these three types of SOD genes were only distributed on 2, 4, and 7 chromosomes, respectively. Phylogenetic analyses of wheat SODs and several other species revealed that these SOD proteins can be assigned to two major categories. SOD1 mainly comprises of Cu/Zn-SODs, and SOD2 mainly comprises of Fe-SODs and Mn-SODs. Gene structure and motif analyses indicated that most of the SOD genes showed a relatively conserved exon/intron arrangement and motif composition. Analyses of transcriptional data indicated that most of the wheat SOD genes were expressed in almost all of the examined tissues and had important functions in abiotic stress resistance. Finally, quantitative real-time polymerase chain reaction (qRT-PCR) analysis was used to reveal the regulating roles of wheat SOD gene family in response to NaCl, mannitol, and polyethylene glycol stresses. qRT-PCR showed that eight randomly selected genes with relatively high expression levels responded to all three stresses based on released transcriptome data. However, their degree of response and response patterns were different. Interestingly, among these genes, TaSOD1.7, TaSOD1.9, TaSOD2.1, and TaSOD2.3 feature research value owing to their remarkable expression-fold change in leaves or roots under different stresses. Overall, our results provide a basis of further functional research on the SOD gene family in wheat and facilitate their potential use for applications in the genetic improvement on wheat in drought and salt stress environments.
Collapse
Affiliation(s)
- Wenqiang Jiang
- Engineering Research Center of Ecology and Agricultural Use of Wetland, Ministry of Education/Hubei Collaborative Innovation Center for Grain Industry/College of Agriculture, Yangtze University, Jingzhou, Hubei, China.,Institute of Plant Protection and Soil Science, Hubei Academy of Agricultural Sciences, Wuhan, Hubei, China.,Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu, China
| | - Lei Yang
- Engineering Research Center of Ecology and Agricultural Use of Wetland, Ministry of Education/Hubei Collaborative Innovation Center for Grain Industry/College of Agriculture, Yangtze University, Jingzhou, Hubei, China
| | - Yiqin He
- Engineering Research Center of Ecology and Agricultural Use of Wetland, Ministry of Education/Hubei Collaborative Innovation Center for Grain Industry/College of Agriculture, Yangtze University, Jingzhou, Hubei, China
| | - Haotian Zhang
- Engineering Research Center of Ecology and Agricultural Use of Wetland, Ministry of Education/Hubei Collaborative Innovation Center for Grain Industry/College of Agriculture, Yangtze University, Jingzhou, Hubei, China
| | - Wei Li
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu, China
| | - Huaigu Chen
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu, China
| | - Dongfang Ma
- Engineering Research Center of Ecology and Agricultural Use of Wetland, Ministry of Education/Hubei Collaborative Innovation Center for Grain Industry/College of Agriculture, Yangtze University, Jingzhou, Hubei, China.,Institute of Plant Protection and Soil Science, Hubei Academy of Agricultural Sciences, Wuhan, Hubei, China
| | - Junliang Yin
- Engineering Research Center of Ecology and Agricultural Use of Wetland, Ministry of Education/Hubei Collaborative Innovation Center for Grain Industry/College of Agriculture, Yangtze University, Jingzhou, Hubei, China
| |
Collapse
|
45
|
Zhou C, Zhu C, Fu H, Li X, Chen L, Lin Y, Lai Z, Guo Y. Genome-wide investigation of superoxide dismutase (SOD) gene family and their regulatory miRNAs reveal the involvement in abiotic stress and hormone response in tea plant (Camellia sinensis). PLoS One 2019; 14:e0223609. [PMID: 31600284 PMCID: PMC6786557 DOI: 10.1371/journal.pone.0223609] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2019] [Accepted: 09/24/2019] [Indexed: 02/06/2023] Open
Abstract
Superoxide dismutases (SODs), as a family of metalloenzymes related to the removal of reactive oxygen species (ROS), have not previously been investigated at genome-wide level in tea plant. In this study, 10 CsSOD genes were identified in tea plant genome, including 7 Cu/Zn-SODs (CSDs), 2 Fe-SODs (FSDs) and one Mn-SOD (MSD), and phylogenetically classified in three subgroups, respectively. Physico-chemical characteristic, conserved motifs and potential protein interaction analyses about CsSOD proteins were carried out. Exon-intron structures and codon usage bias about CsSOD genes were also examined. Exon-intron structures analysis revealed that different CsSOD genes contained various number of introns. On the basis of the prediction of regulatory miRNAs of CsSODs, a modification 5’ RNA ligase-mediated (RLM)-RACE was performed and validated that csn-miR398a-3p-1 directly cleaves CsCSD4. By prediction of cis-acting elements, the expression patterns of 10 CsSOD genes and their regulatory miRNAs were detected under cold, drought, exogenous methyl jasmonate (MeJA) and gibberellin (GA3) treatments. The results showed that most of CsSODs except for CsFSD2 were induced under cold stress and CsCSDs may play primary roles under drought stress; exogenous GA3 and MeJA could also stimulated/inhibited distinct CsSODs at different stages. In addition, we found that csn-miR398a-3p-1 negatively regulated the expression of CsCSD4 may be a crucial regulatory mechanism under cold stress. This study provides a certain basis for the studies about stress resistance in tea plants, even provide insight into comprehending the classification, evolution, diverse functions and influencing factors of expression patterns for CsSOD genes.
Collapse
Affiliation(s)
- Chengzhe Zhou
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Chen Zhu
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Haifeng Fu
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Xiaozhen Li
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Lan Chen
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Yuling Lin
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Zhongxiong Lai
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Yuqiong Guo
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- Key Laboratory of Tea Science of Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- * E-mail:
| |
Collapse
|
46
|
Verma D, Lakhanpal N, Singh K. Genome-wide identification and characterization of abiotic-stress responsive SOD (superoxide dismutase) gene family in Brassica juncea and B. rapa. BMC Genomics 2019; 20:227. [PMID: 30890148 PMCID: PMC6425617 DOI: 10.1186/s12864-019-5593-5] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 03/11/2019] [Indexed: 12/20/2022] Open
Abstract
Background Abiotic stresses like drought, heat, cold and salinity cause major productivity loss in the rapeseed-mustard crops (Brassica). Major efforts have been made in the past to identify genes that provide resistance against such stresses. Superoxide dismutase (SOD) proteins, member of the metallo-enzyme family play vital role in protecting plants against abiotic stresses. In the present study, genome-wide analysis of abiotic stress responsive SOD gene family has been done in B. juncea and B. rapa. Results A total of 29 and 18 SOD genes were identified in B. juncea and B. rapa respectively and chromosome location mapping indicated their wide distribution across genome. On the basis of domain composition, the SODs were phylogenetically classified into sub-groups which was also substantiated by the gene structure and sub-cellular locations of SOD proteins. Functional annotation of SODs was also done by Gene Ontology (GO) mapping and the result was corroborated by the identified cis-regulatory elements in the promoter region of SOD genes. Based on FPKM analysis of SRA data available for drought, heat and salt stress, we identified 14 and 10 abiotic stress responsive SOD genes in B. rapa and B. juncea respectively. The differential expression analysis under drought and heat stress of identified abiotic-stress responsive SOD genes was done through quantitative Real Time PCR. Conclusion We identified abiotic-stress responsive genes that could help in improving the plant tolerance against abiotic stresses. This was the first study to describe the genome-wide analysis of SOD gene family in B. rapa and B. juncea, and the results will help in laying basic ground for future work of cloning and functional validation of SOD genes during abiotic stresses leading to Brassica crop improvement. Electronic supplementary material The online version of this article (10.1186/s12864-019-5593-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Deepika Verma
- Department of Biotechnology, BMS Block I, Panjab University, Sector 25, Panjab University, Chandigarh, 160014, India
| | - Neha Lakhanpal
- Department of Biotechnology, BMS Block I, Panjab University, Sector 25, Panjab University, Chandigarh, 160014, India
| | - Kashmir Singh
- Department of Biotechnology, BMS Block I, Panjab University, Sector 25, Panjab University, Chandigarh, 160014, India.
| |
Collapse
|
47
|
Genome-Wide Identification, Characterization, and Expression Analysis of the Grapevine Superoxide Dismutase (SOD) Family. Int J Genomics 2019; 2019:7350414. [PMID: 30923713 PMCID: PMC6409070 DOI: 10.1155/2019/7350414] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 12/01/2018] [Accepted: 12/20/2018] [Indexed: 01/23/2023] Open
Abstract
Superoxide dismutase (SOD) is an essential enzyme of the plant antioxidant system that responds to oxidative damage caused by adverse conditions. However, little is known about the SOD gene family in Vitis vinifera (Vv). In the present study, ten SOD genes, including 6 copper/zinc SODs, 2 iron SODs, and 2 manganese SODs, were identified in the grapevine genome where they were unevenly distributed on 12 chromosomes. Ten VvSOD genes were divided into three main groups based on phylogenetic analysis, subcellular localization, and the distribution of conserved protein motifs. Additionally, many cis-elements related to different stresses were found in the promoters of the 10 VvSOD genes. Syntenic analysis revealed that VvMSD1 and VvMSD2 were derived from segmental duplication, and VvCSD4 and VvCSD5 belong to a pair of tandemly duplicated genes. Gene expression analysis based on microarray data showed that the 10 VvSOD genes were expressed in all the tested tissues. Interestingly, the segmentally duplicated gene pair (VvMSD1 and VvMSD2) exhibited differential expression patterns in various organs. In contrast, the tandemly duplicated gene pair (VvCSD4 and VvCSD5) displayed similar expression patterns in the tested organs. Our results provide a basis for further functional research on the SOD gene family in grapevine.
Collapse
|
48
|
Wang T, Song H, Zhang B, Lu Q, Liu Z, Zhang S, Guo R, Wang C, Zhao Z, Liu J, Peng R. Genome-wide identification, characterization, and expression analysis of superoxide dismutase (SOD) genes in foxtail millet ( Setaria italica L.). 3 Biotech 2018; 8:486. [PMID: 30498660 PMCID: PMC6240016 DOI: 10.1007/s13205-018-1502-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 11/01/2018] [Indexed: 11/25/2022] Open
Abstract
Superoxide dismutases (SODs) play important roles in plant growth, development, and response to abiotic stresses. Despite SOD gene families have been identified in various plant species, little is known in foxtail millet (Setaria italica L.). In this study, a systematic analysis of SOD gene family was performed in foxtail millet and the expression pattern of SOD genes in response to abiotic stressors was analyzed at the whole-genomic level. Eight SOD genes were identified in foxtail millet, including 4 Cu/ZnSODs, 3 FeSODs, and 1 MnSOD. These SiSODs are unevenly distributed across 5 of the 9 chromosomes. Phylogenetic analysis showed that SOD proteins could be divided into two major categories (Cu/ZnSODs and Fe-MnSODs), containing seven subgroups, from foxtail millet and other plant species. SOD genes have conserved motif and exon/intron composition in the same subgroup among Setaria italica, Setaria viridis, and Oryza sativa. Additionally, many cis-elements that respond to different stressors were distributed at different densities in the promoters of 8 SiSODs. The expression patterns of SiSODs in different tissues and different abiotic stressors indicated that the SiSODs may play important roles in reactive oxygen species scavenging, caused by various stressors in foxtail millet. This study provides a foundation for the further cloning and functional verification of the SOD gene family response to environmental stimuli in foxtail millet.
Collapse
Affiliation(s)
- Tao Wang
- College of Biology and Food Engineering, Anyang Institute of Technology, Anyang, Henan 455000 China
| | - Hui Song
- Anyang Academy of Agriculture Sciences, Anyang, Henan 455000 China
| | - Baohong Zhang
- Department of Biology, East Carolina University, Greenville, NC 27858 USA
| | - Quanwei Lu
- College of Biology and Food Engineering, Anyang Institute of Technology, Anyang, Henan 455000 China
| | - Zhen Liu
- College of Biology and Food Engineering, Anyang Institute of Technology, Anyang, Henan 455000 China
| | - Shulin Zhang
- College of Biology and Food Engineering, Anyang Institute of Technology, Anyang, Henan 455000 China
| | - Ruilin Guo
- College of Biology and Food Engineering, Anyang Institute of Technology, Anyang, Henan 455000 China
| | - Cong Wang
- College of Biology and Food Engineering, Anyang Institute of Technology, Anyang, Henan 455000 China
| | - Zilin Zhao
- College of Biology and Food Engineering, Anyang Institute of Technology, Anyang, Henan 455000 China
| | - Jinrong Liu
- Anyang Academy of Agriculture Sciences, Anyang, Henan 455000 China
| | - Renhai Peng
- College of Biology and Food Engineering, Anyang Institute of Technology, Anyang, Henan 455000 China
| |
Collapse
|
49
|
Piao C, Li Z, Ding J, Kong D. Analysis of BMSCs-intervened viscoelasticity of sciatic nerve in rats with chronic alcoholic intoxication 1. Acta Cir Bras 2018; 33:935-944. [PMID: 30484503 DOI: 10.1590/s0102-865020180100000008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2018] [Accepted: 09/10/2018] [Indexed: 12/13/2022] Open
Abstract
PURPOSE To investigate the impact of bone mesenchymal stem cells (BMSCs) intervention on the viscoelasticity of sciatic nerve in rats with chronic alcohol intoxication (CAI). METHODS The CAI rat models were prepared, divided into model groups, and treated with either BMSCs or basic fibroblast growth factor (bFGF). Then the rats underwent electrophysiological test and the serum levels of malondialdehyde (MDA), superoxide dismutase (SOD), and metallothionein (MT) were measured. Histological observation, stress relaxation test, and creep test were performed for the sciatic nerve of the CAI model in each group. RESULTS The MDA level of group BMSC was significantly lower (p<0.05) than that of groups MOD (the CIA model) and bFGF. The SOD and MT levels were higher in group BMSC than in groups MOD and bFGF (p<0.05). The motor nerve conduction velocity and amplitude were higher in group BMSC than in groups MOD and bFGF (p<0.05). The amounts of 7200s stress reduction and 7200 s strain increase of the sciatic nerve in group BMSC were greater than those in groups bFGF and MOD (p<0.05). CONCLUSION Bone mesenchymal stem cells can improve the metabolism of free radicals, restore the tissue morphology and viscoelasticity of the chronic alcohol intoxication animal model, and positively affect the repairing of the injured sciatic nerve.
Collapse
Affiliation(s)
- Chengdong Piao
- PhD, Department of Orthopaedics, Second Hospital of Jilin University, China. Conception and design of the study
| | - Zhengwei Li
- PhD, Department of Orthopaedics, Second Hospital of Jilin University, China. Histopathological examinations
| | - Jie Ding
- Master, Department of Stomatology, Affiliated Hospital of Changchun University of Chinese Medicine, China. Acquisition of data
| | - Daliang Kong
- PhD, Department of Orthopaedics, China-Japan Union Hospital, Jilin University, China. Technical procedures, analysis of data
| |
Collapse
|
50
|
Pischedda A, Ramasamy KP, Mangiagalli M, Chiappori F, Milanesi L, Miceli C, Pucciarelli S, Lotti M. Antarctic marine ciliates under stress: superoxide dismutases from the psychrophilic Euplotes focardii are cold-active yet heat tolerant enzymes. Sci Rep 2018; 8:14721. [PMID: 30283056 PMCID: PMC6170424 DOI: 10.1038/s41598-018-33127-1] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 09/20/2018] [Indexed: 11/09/2022] Open
Abstract
Oxidative stress is a particularly severe threat to Antarctic marine polar organisms because they are exposed to high dissolved oxygen and to intense UV radiation. This paper reports the features of three superoxide dismutases from the Antarctic psychrophilic ciliate Euplotes focardii that faces two environmental challenges, oxidative stress and low temperature. Two out of these are Cu,Zn superoxide dismutases (named Ef-SOD1a and Ef-SOD1b) and one belongs to the Mn-containing group (Ef-SOD2). Ef-SOD1s and Ef-SOD2 differ in their evolutionary history, expression and overall structural features. Ef-SOD1 genes are expressed at different levels, with Ef-SOD1b mRNA 20-fold higher at the ciliate optimal temperature of growth (4 °C). All Ef-SOD enzymes are active at 4 °C, consistent with the definition of cold-adapted enzymes. At the same time, they display temperatures of melting in the range 50-70 °C and retain residual activity after incubation at 65-75 °C. Supported by data of molecular dynamics simulation, we conclude that the E. focardii SODs combine cold activity, local molecular flexibility and thermo tolerance.
Collapse
Affiliation(s)
- Alessandro Pischedda
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126, Milano, Italy
| | - Kesava Priyan Ramasamy
- School of Biosciences and Veterinary Medicine, University of Camerino, Via Gentile III da Varano, 1, 62032, Camerino (MC), Italy
| | - Marco Mangiagalli
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126, Milano, Italy
| | | | | | - Cristina Miceli
- School of Biosciences and Veterinary Medicine, University of Camerino, Via Gentile III da Varano, 1, 62032, Camerino (MC), Italy
| | - Sandra Pucciarelli
- School of Biosciences and Veterinary Medicine, University of Camerino, Via Gentile III da Varano, 1, 62032, Camerino (MC), Italy.
| | - Marina Lotti
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126, Milano, Italy
| |
Collapse
|