1
|
Costas MJ, Couto A, Cabezas A, Pinto RM, Ribeiro JM, Cameselle JC. Alternative Splicing of the Last TKFC Intron Yields Transcripts Differentially Expressed in Human Tissues That Code In Vitro for a Protein Devoid of Triokinase and FMN Cyclase Activity. Biomolecules 2024; 14:1288. [PMID: 39456221 PMCID: PMC11506722 DOI: 10.3390/biom14101288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 10/01/2024] [Accepted: 10/09/2024] [Indexed: 10/28/2024] Open
Abstract
The 18-exon human TKFC gene codes for dual-activity triokinase and FMN cyclase (TKFC) in an ORF, spanning from exon 2 to exon 18. In addition to TKFC-coding transcripts (classified as tkfc type by their intron-17 splice), databases contain evidence for alternative TKFC transcripts, but none of them has been expressed, studied, and reported in the literature. A novel full-ORF transcript was cloned from brain cDNA and sequenced (accession no. DQ344550). It results from an alternative 3' splice-site in intron 17. The cloned cDNA contains an ORF also spanning from exon 2 to exon 18 of the TKFC gene but with a 56-nt insertion between exons 17 and 18 (classified as tkfc_ins56 type). This insertion introduces an in-frame stop, and the resulting ORF codes for a shorter TKFC variant, which, after expression, is enzymatically inactive. TKFC intron-17 splicing was found to be differentially expressed in human tissues. In a multiple-tissue northern blot using oligonucleotide probes, the liver showed a strong expression of the tkfc-like splice of intron 17, and the heart preferentially expressed the tkfc_ins56-like splice. Through a comparison to global expression data from massive-expression studies of human tissues, it was inferred that the intestine preferentially expresses TKFC transcripts that contain neither of those splices. An analysis of transcript levels quantified by RNA-Seq in the GTEX database revealed an exception to this picture due to the occurrence of a non-coding short transcript with a tkfc-like splice. Altogether, the results support the occurrence of potentially relevant transcript variants of the TKFC gene, differentially expressed in human tissues. (This work is dedicated in memoriam to Professor Antonio Sillero, 1938-2024, for his lifelong mentoring and his pioneering work on triokinase).
Collapse
Affiliation(s)
| | | | | | | | - João Meireles Ribeiro
- Departamento de Bioquímica y Biología Molecular y Genética, Facultad de Medicina, Universidad de Extremadura, 06006 Badajoz, Spain; (M.J.C.); (A.C.); (A.C.); (R.M.P.)
| | - José Carlos Cameselle
- Departamento de Bioquímica y Biología Molecular y Genética, Facultad de Medicina, Universidad de Extremadura, 06006 Badajoz, Spain; (M.J.C.); (A.C.); (A.C.); (R.M.P.)
| |
Collapse
|
2
|
He Z, Wang Z, Lu Z, Gao C, Wang Y. An electrophoretic mobility shift assay using the protein isolated from host plants. PLANT METHODS 2024; 20:68. [PMID: 38735938 PMCID: PMC11089672 DOI: 10.1186/s13007-024-01201-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Accepted: 05/01/2024] [Indexed: 05/14/2024]
Abstract
BACKGROUND The electrophoretic mobility shift assay (EMSA) is a common technology to detect DNA-protein interactions. However, in most cases, the protein used in EMSA is obtained via prokaryotic expression, and rarely from plants. At the same time, the proteins expressed from prokaryotic systems usually cannot fold naturally and have no post translationally modification, which may affect the binding of proteins to DNA. RESULTS Here, we develop a technique to quickly isolate proteins of interest from host plants and then analyze them using fluorescent EMSA. This technology system is called: protein from plants fluorescent EMSA method (PPF-EMSA). In PPF-EMSA, a special transient transformation method is employed to transiently deliver genes into the plant, enabling efficient synthesis the encoded proteins. Then, the target protein is isolated using immunoprecipitation, and the DNA probes were labeled with cyanine 3 (Cy3). Both fluorescent EMSA and super-shift fluorescent EMSA can be performed using the proteins from plants. Three kinds of plants, Betula platyphylla, Populus. davidiana×P. bolleana and Arabidopsis thaliana, are used in this study. The proteins isolated from plants are in a natural state, can fold naturally and are posttranslationally modified, enabling true binding to their cognate DNAs. CONCLUSION As transient transformation can be performed quickly and not depended on whether stable transformation is available or not, we believe this method will have a wide application, enabling isolation of proteins from host plant conveniently.
Collapse
Affiliation(s)
- Zihang He
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, 150040, China
| | - Zhibo Wang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, 150040, China
| | - Zhangguo Lu
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, 150040, China
| | - Caiqiu Gao
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, 150040, China
| | - Yucheng Wang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, 150040, China.
| |
Collapse
|
3
|
Ahmad W, Baby J, Gull B, Mustafa F. Liquid and Solid Hybridization Methods to Detect RNAs. Methods Mol Biol 2024; 2822:125-141. [PMID: 38907916 DOI: 10.1007/978-1-0716-3918-4_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/24/2024]
Abstract
Northern blotting (NB) has been a long-standing method for RNA detection. However, its labor-intensive nature, reliance on high-quality RNA, and use of radioactivity have diminished its appeal over time. Nevertheless, the emergence of microRNAs (miRNAs) has reignited the demand for sensitive and quantitative NB techniques. We have recently developed cost-effective and rapid protocols for RNA detection using solid and liquid hybridization (LH) techniques which exhibit high sensitivity without the need for radioactive or specialized reagents like locked nucleic acid (LNA) probes. Our assays incorporate biotinylated probes and improved techniques for probe hybridization, transfer, cross-linking, and signal enhancement. We demonstrate that while NB is sensitive in detecting mRNAs and small RNAs, our LH protocol efficiently detects these as well as miRNAs at lower amounts of RNA, achieving higher sensitivity comparable to radiolabeled probes. Compared to NB, LH offers benefits of speed, sensitivity, and specificity in detecting mRNAs, small RNAs, and miRNAs.
Collapse
Affiliation(s)
- Waqar Ahmad
- Department of Biochemistry & Molecular Biology, College of Medicine and Health Sciences, United Arab Emirates (UAE) University, Al Ain, United Arab Emirates
| | - Jasmin Baby
- Department of Biochemistry & Molecular Biology, College of Medicine and Health Sciences, United Arab Emirates (UAE) University, Al Ain, United Arab Emirates
- Department of Microbiology & Immunology, The University of British Columbia, Vancouver, Canada
| | - Bushra Gull
- Department of Biochemistry & Molecular Biology, College of Medicine and Health Sciences, United Arab Emirates (UAE) University, Al Ain, United Arab Emirates
| | - Farah Mustafa
- Department of Biochemistry & Molecular Biology, College of Medicine and Health Sciences, United Arab Emirates (UAE) University, Al Ain, United Arab Emirates.
| |
Collapse
|
4
|
Development of the DNA-based biosensors for high performance in detection of molecular biomarkers: More rapid, sensitive, and universal. Biosens Bioelectron 2022; 197:113739. [PMID: 34781175 PMCID: PMC8553638 DOI: 10.1016/j.bios.2021.113739] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 10/25/2021] [Indexed: 02/07/2023]
Abstract
The molecular biomarkers are molecules that are closely related to specific physiological states. Numerous molecular biomarkers have been identified as targets for disease diagnosis and biological research. To date, developing highly efficient probes for the precise detection of biomarkers has become an attractive research field which is very important for biological and biochemical studies. During the past decades, not only the small chemical probe molecules but also the biomacromolecules such as enzymes, antibodies, and nucleic acids have been introduced to construct of biosensor platform to achieve the detection of biomarkers in a highly specific and highly efficient way. Nevertheless, improving the performance of the biosensors, especially in clinical applications, is still in urgent demand in this field. A noteworthy example is the Corona Virus Disease 2019 (COVID-19) that breaks out globally in a short time in 2020. The COVID-19 was caused by the virus called SARS-CoV-2. Early diagnosis is very important to block the infection of the virus. Therefore, during these months scientists have developed dozens of methods to achieve rapid and sensitive detection of the virus. Nowadays some of these new methods have been applied for producing the commercial detection kit and help people against the disease worldwide. DNA-based biosensors are useful tools that have been widely applied in the detection of molecular biomarkers. The good stability, high specificity, and excellent biocompatibility make the DNA-based biosensors versatile in application both in vitro and in vivo. In this paper, we will review the major methods that emerged in recent years on the design of DNA-based biosensors and their applications. Moreover, we will also briefly discuss the possible future direction of DNA-based biosensors design. We believe this is helpful for people interested in not only the biosensor field but also in the field of analytical chemistry, DNA nanotechnology, biology, and disease diagnosis.
Collapse
|
5
|
Gan CY, Cui J, Zhang WL, Wang YW, Huang AL, Hu JL. DNA Engineering and Hepatitis B Virus Replication. Front Microbiol 2021; 12:783040. [PMID: 34858381 PMCID: PMC8632529 DOI: 10.3389/fmicb.2021.783040] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Accepted: 10/13/2021] [Indexed: 11/13/2022] Open
Abstract
Recombinant DNA technology is a vital method in human hepatitis B virus (HBV), producing reporter viruses or vectors for gene transferring. Researchers have engineered several genes into the HBV genome for different purposes; however, a systematic analysis of recombinant strategy is lacking. Here, using a 500-bp deletion strategy, we scanned the HBV genome and identified two regions, region I (from nt 2,118 to 2,814) and region II (from nt 99 to 1,198), suitable for engineering. Ten exogenous genes, including puromycin N-acetyl transferase gene (Pac), blasticidin S deaminase gene (BSD), Neomycin-resistance gene (Neo), Gaussia luciferase (Gluc), NanoLuc (Nluc), copGFP, mCherry, UnaG, eGFP, and tTA1, were inserted into these two regions and fused into the open reading frames of hepatitis B core protein (HBC) and hepatitis B surface protein (HBS) via T2A peptide. Recombination of 9 of the 10 genes at region 99-1198 and 5 of the 10 genes at region 2118-2814 supported the formation of relaxed circular (RC) DNA. HBV DNA and HBV RNA assays implied that exogenous genes potentially abrogate RC DNA by inducing the formation of adverse secondary structures. This hypothesis was supported because sequence optimization of the UnaG gene based on HBC sequence rescued RC DNA formation. Findings from this study provide an informative basis and a valuable method for further constructing and optimizing recombinant HBV and imply that DNA sequence might be intrinsically a potential source of selective pressure in the evolution of HBV.
Collapse
Affiliation(s)
- Chun-Yang Gan
- Key Laboratory of Molecular Biology on Infectious Diseases, Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Jing Cui
- Key Laboratory of Molecular Biology on Infectious Diseases, Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Wen-Lu Zhang
- Key Laboratory of Molecular Biology on Infectious Diseases, Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Yu-Wei Wang
- Department of Laboratory Medicine, Chongqing Hospital of Traditional Chinese Medicine, Chongqing, China
| | - Ai-Long Huang
- Key Laboratory of Molecular Biology on Infectious Diseases, Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Jie-Li Hu
- Key Laboratory of Molecular Biology on Infectious Diseases, Ministry of Education, Chongqing Medical University, Chongqing, China
| |
Collapse
|
6
|
Ahmad W, Gull B, Baby J, Mustafa F. A Comprehensive Analysis of Northern versus Liquid Hybridization Assays for mRNAs, Small RNAs, and miRNAs Using a Non-Radiolabeled Approach. Curr Issues Mol Biol 2021; 43:457-484. [PMID: 34206608 PMCID: PMC8929067 DOI: 10.3390/cimb43020036] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 06/07/2021] [Accepted: 06/16/2021] [Indexed: 12/27/2022] Open
Abstract
Northern blotting (NB), a gold standard for RNA detection, has lost its charm due to its hands-on nature, need for good quality RNA, and radioactivity. With the emergence of the field of microRNAs (miRNAs), the necessity for sensitive and quantitative NBs has again emerged. Here, we developed highly sensitive yet non-radiolabeled, fast, economical NB, and liquid hybridization (LH) assays without radioactivity or specialized reagents like locked nucleic acid (LNA)- or digoxigenin-labeled probes for mRNAs/small RNAs, especially miRNAs using biotinylated probes. An improvised means of hybridizing oligo probes along with efficient transfer, cross-linking, and signal enhancement techniques was employed. Important caveats of each assay were elaborated upon, especially issues related to probe biotinylation, use of exonuclease, and bioimagers not reported earlier. We demonstrate that, while the NBs were sensitive for mRNAs and small RNAs, our LH protocol could efficiently detect these and miRNAs using less than 10-100 times the total amount of RNA, a sensitivity comparable to radiolabeled probes. Compared to NBs, LH was a faster, more sensitive, and specific approach for mRNA/small RNA/miRNA detection. A comparison of present work with six seminal studies is presented along with detailed protocols for easy reproducibility. Overall, our study provides effective platforms to study large and small RNAs in a sensitive, efficient, and cost-effective manner.
Collapse
|
7
|
RirA of Dinoroseobacter shibae senses iron via a [3Fe-4S]1+ cluster co-ordinated by three cysteine residues. Biochem J 2020; 477:191-212. [PMID: 31860023 DOI: 10.1042/bcj20180734] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 12/17/2019] [Accepted: 12/19/2019] [Indexed: 12/15/2022]
Abstract
In the marine bacterium, Dinoroseobacter shibae the transcription factor rhizobial iron regulator A (RirA) is involved in the adaptation to iron-limited growth conditions. In vitro iron and sulfide content determinations in combination with UV/Vis and electron paramagnetic resonance (EPR) spectroscopic analyses using anaerobically purified, recombinant RirA protein suggested a [3Fe-4S]1+ cluster as a cofactor. In vivo Mössbauer spectroscopy also corroborated the presence of a [3Fe-4S]1+ cluster in RirA. Moreover, the cluster was found to be redox stable. Three out of four highly conserved cysteine residues of RirA (Cys 91, Cys 99, Cys 105) were found essential for the [3Fe-4S]1+ cluster coordination. The dimeric structure of the RirA protein was independent of the presence of the [3Fe-4S]1+ cluster. Electro mobility shift assays demonstrated the essential role of an intact [3Fe-4S]1+ cluster for promoter binding by RirA. The DNA binding site was identified by DNase I footprinting. Mutagenesis studies in combination with DNA binding assays confirmed the promoter binding site as 3'-TTAAN10AATT-5'. This work describes a novel mechanism for the direct sensing of cellular iron levels in bacteria by an iron-responsive transcriptional regulator using the integrity of a redox-inactive [3Fe-4S]1+ cluster, and further contributes to the general understanding of iron regulation in marine bacteria.
Collapse
|
8
|
Abstract
Radioactive reagents have been gradually replaced by nonisotopic reagents for some tasks in molecular biology. Concern over laboratory safety and the economic and environmental aspects of radioactive waste disposal have been key factors in this change. Generally, the new nonisotopic systems have improved in terms of analytical sensitivity and the time required to obtain a result. The most prominent nonisotopic analytical methods exploit chemiluminescence, described here. This technique has been particularly effective when used in combination with an enzyme label, so that the amplifying properties of an enzyme label and the high sensitivity of a chemiluminescent detection reaction are combined to produce an ultrasensitive assay (e.g., chemiluminescent detection of peroxidase- and alkaline phosphatase-labeled proteins and nucleic acid probes). In all of the commonly used applications in molecular biology, the analytical performance of the chemiluminescent systems approaches that of 125I- or 32P-based systems. Chemiluminescent systems also avoid the lengthy signal detection times required with 32P-based methods, yielding results in minutes rather than days. In addition, chemiluminescent probes can be easily stripped from membranes, allowing the membranes to be reprobed many times without significant loss of resolution. Experimental protocols for directly attaching nonisotopic labels to nucleic acids and indirect labeling methods based on biotin, fluorescein, and digoxigenin labels are now well established. The ancillary reagents (e.g., avidin, streptavidin, antidigoxigenin, and antifluorescein enzyme conjugates) required for the indirect methods are widely available.
Collapse
|
9
|
Hsieh YW, Alqadah A, Chuang CF. An Optimized Protocol for Electrophoretic Mobility Shift Assay Using Infrared Fluorescent Dye-labeled Oligonucleotides. J Vis Exp 2016. [PMID: 27929467 DOI: 10.3791/54863] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Electrophoretic Mobility Shift Assays (EMSA) are an instrumental tool to characterize the interactions between proteins and their target DNA sequences. Radioactivity has been the predominant method of DNA labeling in EMSAs. However, recent advances in fluorescent dyes and scanning methods have prompted the use of fluorescent tagging of DNA as an alternative to radioactivity for the advantages of easy handling, saving time, reducing cost, and improving safety. We have recently used fluorescent EMSA (fEMSA) to successfully address an important biological question. Our fEMSA analysis provides mechanistic insight into the effect of a missense mutation, G73E, in the highly conserved HMG transcription factor SOX-2 on olfactory neuron type diversification. We found that mutant SOX-2G73E protein alters specific DNA binding activity, thereby causing olfactory neuron identity transformation. Here, we present an optimized and cost-effective step-by-step protocol for fEMSA using infrared fluorescent dye-labeled oligonucleotides containing the LIM-4/SOX-2 adjacent target sites and purified SOX-2 proteins (WT and mutant SOX-2G73E proteins) as a biological example.
Collapse
Affiliation(s)
- Yi-Wen Hsieh
- Department of Biological Sciences, University of Illinois at Chicago
| | - Amel Alqadah
- Department of Biological Sciences, University of Illinois at Chicago
| | - Chiou-Fen Chuang
- Department of Biological Sciences, University of Illinois at Chicago;
| |
Collapse
|
10
|
Salisch H, Ryll M, Hinz KH, Neumann U. Experiences with multispecies polymerase chain reaction and specific oligonucleotide probes for the detection of Mycoplasma gallisepticum and Mycoplasma synoviae. Avian Pathol 2016; 28:337-44. [PMID: 26905489 DOI: 10.1080/03079459994588] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
Amplified fragments of the rDNA coding for 16S rRNA of Mycoplasma gallisepticum (MG) and Mycoplasma synoviae (MS) were blotted on nylon membranes, followed by dot-blot detection with two species-specific digoxigenin-(DIG)-labeled oligonucleotide probes. The sensitivity and specifity of the tests were determined in titration studies with purified homologous and heterologous DNA. With the detection protocol used, the MSYV8/31 probe showed 100% specifity for MS, while both MG and the related species Mycoplasma imitans were recognized by the MGAV8/31 probe. Both DIG-labeled oligonucleotides gave positive results in the colorimetric assay with 10 to 100 ng homologous non-amplified DNA and polymerase chain reaction (PCR) amplificates of 100 fg homologous template DNA. There was no reaction with heterologous strains when amplificates starting with a 106-fold amount of template DNA (100 ng) were tested in dot-blots. The suitability for field samples was demonstrated with tracheal swabs from turkeys and chickens, and the results were compared with mycoplasma growth in cultures of the same swabs. Both tests had an accuracy of over 95%, a high sensitivity and specificity, and high predictive values of positive or negative results. There was no significant difference between the results obtained by the two methods. PCR in combination with dot-blotting is a relatively simple method for the detection of mycoplasma infections, and a valuable extension of current diagnostic tools.
Collapse
|
11
|
Abstract
One of the major challenges in plant molecular biology is to generate transgenic plants that express transgenes stably over generations. Here, we describe some routine methods to study transgene locus structure and to analyze transgene expression in plants: Southern hybridization using DIG chemiluminescent technology for characterization of transgenic locus, SYBR Green-based real-time RT-PCR to measure transgene transcript level, and protein immunoblot analysis to evaluate accumulation and stability of transgenic protein product in the target tissue.
Collapse
|
12
|
Bashir K, Ishimaru Y, Itai RN, Senoura T, Takahashi M, An G, Oikawa T, Ueda M, Sato A, Uozumi N, Nakanishi H, Nishizawa NK. Iron deficiency regulated OsOPT7 is essential for iron homeostasis in rice. PLANT MOLECULAR BIOLOGY 2015; 88:165-76. [PMID: 25893776 DOI: 10.1007/s11103-015-0315-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Accepted: 04/01/2015] [Indexed: 05/07/2023]
Abstract
The molecular mechanism of iron (Fe) uptake and transport in plants are well-characterized; however, many components of Fe homeostasis remain unclear. We cloned iron-deficiency-regulated oligopeptide transporter 7 (OsOPT7) from rice. OsOPT7 localized to the plasma membrane and did not transport Fe(III)-DMA or Fe(II)-NA and GSH in Xenopus laevis oocytes. Furthermore OsOPT7 did not complement the growth of yeast fet3fet4 mutant. OsOPT7 was specifically upregulated in response to Fe-deficiency. Promoter GUS analysis revealed that OsOPT7 expresses in root tips, root vascular tissue and shoots as well as during seed development. Microarray analysis of OsOPT7 knockout 1 (opt7-1) revealed the upregulation of Fe-deficiency-responsive genes in plants grown under Fe-sufficient conditions, despite the high Fe and ferritin concentrations in shoot tissue indicating that Fe may not be available for physiological functions. Plants overexpressing OsOPT7 do not exhibit any phenotype and do not accumulate more Fe compared to wild type plants. These results indicate that OsOPT7 may be involved in Fe transport in rice.
Collapse
Affiliation(s)
- Khurram Bashir
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Zhou B, Yao W, Wang S, Wang X, Jiang T. The metallothionein gene, TaMT3, from Tamarix androssowii confers Cd2+ tolerance in tobacco. Int J Mol Sci 2014; 15:10398-409. [PMID: 24918294 PMCID: PMC4100158 DOI: 10.3390/ijms150610398] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2014] [Revised: 05/16/2014] [Accepted: 05/16/2014] [Indexed: 11/18/2022] Open
Abstract
Cadmium (Cd) is a nonessential microelement and low concentration Cd2+ has strong toxicity to plant growth. Plant metallothioneins, a class of low molecular, cystein(Cys)-rich and heavy-metal binding proteins, play an important role in both metal chaperoning and scavenging of reactive oxygen species (ROS) with their large number of cysteine residues and therefore, protect plants from oxidative damage. In this study, a metallothionein gene, TaMT3, isolated from Tamarix androssowii was transformed into tobacco (Nicotiana tobacum) through Agrobacterium-mediated leaf disc method, and correctly expressed under the control of 35S promoter. Under Cd2+ stress, the transgenic tobacco showed significant increases of superoxide dismutase (SOD) activity and chlorophyll concentration, but decreases of peroxidase (POD) activity and malondialdehyde (MDA) accumulation when compared to the non-transgenic tobacco. Vigorous growth of transgenic tobacco was observed at the early development stages, resulting in plant height and fresh weight were significantly larger than those of the non-transgenic tobacco under Cd2+ stress. These results demonstrated that the expression of the exogenous TaMT3 gene increased the ability of ROS cleaning-up, indicating a stronger tolerance to Cd2+ stress.
Collapse
Affiliation(s)
- Boru Zhou
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China.
| | - Wenjing Yao
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China.
| | - Shengji Wang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China.
| | - Xinwang Wang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China.
| | - Tingbo Jiang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China.
| |
Collapse
|
14
|
Zhang N, Quan Z, Rash B, Oliver SG. Synergistic effects of TOR and proteasome pathways on the yeast transcriptome and cell growth. Open Biol 2013; 3:120137. [PMID: 23697803 PMCID: PMC3866871 DOI: 10.1098/rsob.120137] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The proteasome has been implicated in gene transcription through a variety of mechanisms. How the proteasome regulates genome-wide transcription in relation to nutrient signalling pathways is largely unknown. Using chemical inhibitors to compromise the functions of the proteasome and/or TORC1, we reveal that the proteasome and TORC1 synergistically promote the expression of de novo purine and amino acid biosynthetic genes, and restrict the transcription of those associated with proteolysis, starvation and stress responses. Genetic analysis demonstrates that TORC1 negatively regulates both the Yak1 and Rim15 kinases to modulate starvation-specific gene expression mediated by the Msn2/4 and Gis1 transcription factors. Compromising proteasome function induces starvation-specific gene transcription in exponential-phase cells and abrogates the strict control of such expression by Yak1 and Rim15 in rapamycin-treated cells, confirming that the proteasome functions to ensure stringent control of the starvation response by the TOR pathway. Synergy between the two pathways is also exhibited on cell growth control. Rpn4-dependent upregulation of proteasomal genes and a catalytically competent 20S proteasome are essential for yeast cells to respond to reduced TORC1 activity. These data suggest that the proteasome and the TOR signalling pathway synergistically regulate a significant portion of the genome to coordinate cell growth and starvation response.
Collapse
Affiliation(s)
- Nianshu Zhang
- Cambridge Systems Biology Centre and Department of Biochemistry, University of Cambridge, Sanger Building, 80 Tennis Court Road, Cambridge CB2 1GA, UK
| | | | | | | |
Collapse
|
15
|
Hamidi-Asl E, Palchetti I, Hasheminejad E, Mascini M. A review on the electrochemical biosensors for determination of microRNAs. Talanta 2013; 115:74-83. [PMID: 24054564 DOI: 10.1016/j.talanta.2013.03.061] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2012] [Revised: 03/22/2013] [Accepted: 03/26/2013] [Indexed: 12/15/2022]
Abstract
MicroRNAs (miRNAs) are a family of non-protein-coding, endogenous, small RNAs. They are a group of gene regulators that function mainly by binding the 3' untranslated regions of specific target messenger RNA (mRNA) leading to gene inactivation by repression of mRNA transcription or induction of mRNA. Mature miRNAs are short molecules approximately 22 nucleotides in length. They regulate a wide range of biological functions from cell proliferation and death to cancer progression. Cellular miRNA expression levels can be used as biomarkers for the onset of disease states and in gene therapy for genetic disorders. Methods for detection of miRNA mainly include northern blotting, microarray, polymerase chain reaction (PCR). This review focuses on the use of electrochemical biosensors for the detection of microRNA.
Collapse
Affiliation(s)
- Ezat Hamidi-Asl
- Eletroanalytical Chemistry Research Laboratory, Department of Analytical Chemistry, Faculty of Chemistry, University of Mazandaran, Babolsar, Iran; Università degli Studi di Firenze, Dipartimento di Chimica, Via della Lastruccia 3, 50019 Sesto Fiorentino, Italy.
| | | | | | | |
Collapse
|
16
|
Wu J, Huang HY, Hopper AK. A rapid and sensitive non-radioactive method applicable for genome-wide analysis of Saccharomyces cerevisiae genes involved in small RNA biology. Yeast 2013; 30:119-28. [PMID: 23417998 DOI: 10.1002/yea.2947] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Revised: 02/02/2013] [Accepted: 02/04/2013] [Indexed: 11/10/2022] Open
Abstract
Conventional isolation and detection methods for small RNAs from yeast cells have been designed for a limited number of samples. In order to be able to conduct a genome-wide assessment of how each gene product impacts upon small RNAs, we developed a rapid method for analysing small RNAs from Saccharomyces cerevisiae wild-type (wt) and mutants cells in the deletion and temperature-sensitive (ts) collections. Our method implements three optimized techniques: a procedure for growing small yeast cultures in 96-deepwell plates, a fast procedure for small RNA isolation from the plates, and a sensitive non-radioactive northern method for RNA detection. The RNA isolation procedure requires only 4 h for processing 96 samples, is highly reproducible and yields RNA of good quality and quantity. The non-radioactive northern method employs digoxigenin (DIG)-labelled DNA probes and chemiluminescence. It detects femtomole levels of small RNAs within 1 min exposure time. We minimized the processing time for large-scale analysis and optimized the stripping and reprobing procedures for analyses of multiple RNAs from a single membrane. The method described is rapid, sensitive, safe and cost-effective for genome-wide screens of novel genes involved in the biogenesis, subcellular trafficking and stability of small RNAs. Moreover, it will be useful to educational laboratory class venues and to research institutions with limited access to radioisotopes or robots.
Collapse
Affiliation(s)
- Jingyan Wu
- Department of Molecular Genetics, Ohio State University, Columbus, OH 43210, USA
| | | | | |
Collapse
|
17
|
Paul S, Ali N, Gayen D, Datta SK, Datta K. Molecular breeding of Osfer 2 gene to increase iron nutrition in rice grain. GM CROPS & FOOD 2012; 3:310-6. [PMID: 22992483 DOI: 10.4161/gmcr.22104] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Rice being a staple food, contains little iron in the edible grain. To increase the iron nutrition in rice grains, our present study highlights the first time development of high iron rice grain by exploring the endosperm specific overexpression of endogenous ferritin gene. The gene has been cloned from rice and overexpressed under the control of endosperm specific GlutelinA2 (OsGluA 2) promoter. After genetic transformation of aromatic indica rice cultivar, Pusa-sugandhi II, the milled seeds of resulting T 3 transgenics exhibited 7.8-fold of ferritin overexpression, which contributed to 2.09- and 1.37-fold of iron and zinc accumulation respectively. T 3 seeds demonstrated endosperm specific localization of iron that confirms the tissue specific activity of GluA2 promoter. Transgenic and non-transgenic plants showed no difference in their agronomic traits. Our study suggested that overexpression of rice endogenous ferritin gene is a step ahead toward cisgenic approach and can act as an effective tool for iron biofortification.
Collapse
Affiliation(s)
- Soumitra Paul
- Plant Molecular Biology and Biotechnology Laboratory, Department of Botany, University of Calcutta, Kolkata, India
| | | | | | | | | |
Collapse
|
18
|
Protective vaccination against infectious bursal disease virus with whole recombinant Kluyveromyces lactis yeast expressing the viral VP2 subunit. PLoS One 2012; 7:e42870. [PMID: 23024743 PMCID: PMC3443089 DOI: 10.1371/journal.pone.0042870] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2012] [Accepted: 07/12/2012] [Indexed: 01/09/2023] Open
Abstract
Here we report on vaccination approaches against infectious bursal disease (IBD) of poultry that were performed with complete yeast of the species Kluyveromyces lactis (K. lactis). Employing a genetic system that enables the rapid production of stably transfected recombinant K. lactis, we generated yeast strains that expressed defined quantities of the virus capsid forming protein VP2 of infectious bursal disease virus (IBDV). Both, subcutaneous as well as oral vaccination regiments with the heat-inactivated but otherwise untreated yeast induced IBDV-neutralizing antibodies in mice and chickens. A full protection against a subsequent IBDV infection was achieved by subcutaneous inoculation of only milligram amounts of yeast per chicken. Oral vaccination also generated protection: while mortality was observed in control animals after virus challenge, none of the vaccinees died and ca. one-tenth were protected as indicated by the absence of lesions in the bursa of Fabricius. Recombinant K. lactis was thus indicated as a potent tool for the induction of a protective immune response by different applications. Subcutaneously applied K. lactis that expresses the IBDV VP2 was shown to function as an efficacious anti-IBD subunit vaccine.
Collapse
|
19
|
The transcription factor AlsR binds and regulates the promoter of the alsSD operon responsible for acetoin formation in Bacillus subtilis. J Bacteriol 2011; 194:1100-12. [PMID: 22178965 DOI: 10.1128/jb.06425-11] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bacillus subtilis forms acetoin under anaerobic fermentative growth conditions and as a product of the aerobic carbon overflow metabolism. Acetoin formation from pyruvate requires α-acetolactate synthase and acetolactate decarboxylase, both encoded by the alsSD operon. The alsR gene, encoding the LysR-type transcriptional regulator AlsR, was found to be essential for the in vivo expression of alsSD in response to anaerobic acetate accumulation, the addition of acetate, low pH, and the aerobic stationary phase. The expressions of the alsSD operon and the alsR regulatory gene were independent of other regulators of the anaerobic regulatory network, including ResDE, Fnr, and ArfM. A negative autoregulation of alsR was observed. In vitro transcription from the alsSD promoter using purified B. subtilis RNA polymerase required AlsR. DNA binding studies with purified recombinant AlsR in combination with promoter mutagenesis experiments identified a 19-bp high-affinity palindromic binding site (TAAT-N(11)-ATTA) at positions -76 to -58 (regulatory binding site [RBS]) and a low-affinity site (AT-N(11)-AT) at positions -41 to -27 (activator binding site [ABS]) upstream of the transcriptional start site of alsSD. The RBS and ABS were found to be essential for in vivo alsSD transcription. AlsR binding to both sites induced the formation of higher-order, transcription-competent complexes. The AlsR protein carrying the S100A substitution at the potential coinducer binding site still bound to the RBS and ABS. However, AlsR(S100A) failed to form the higher-order complex and to initiate in vivo and in vitro transcription. A model for AlsR promoter binding and transcriptional activation was deduced.
Collapse
|
20
|
Weitzel C, Petersen M. Cloning and characterisation of rosmarinic acid synthase from Melissa officinalis L. PHYTOCHEMISTRY 2011; 72:572-8. [PMID: 21354582 DOI: 10.1016/j.phytochem.2011.01.039] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2010] [Revised: 01/28/2011] [Accepted: 01/31/2011] [Indexed: 05/30/2023]
Abstract
Lemon balm (Melissa officinalis L.; Lamiaceae) is a well-known medicinal plant mainly due to two groups of compounds, the essential oil and the phenylpropanoid derivatives. The prominent phenolic compound is rosmarinic acid (RA), an ester of caffeic acid and 3,4-dihydroxyphenyllactic acid. RA shows a number of interesting biological activities. Rosmarinic acid synthase (RAS; 4-coumaroyl-CoA:hydroxyphenyllactic acid hydroxycinnamoyltransferase) catalyses the ester formation. Cell cultures of M. officinalis have been established in order to characterise the formation of RA in an important diploid medicinal plant. RAS activity as well as the expression of the RAS gene are closely correlated with the accumulation of RA in suspension cultures of M. officinalis. The RAS cDNA and gene (MoRAS) were isolated. The RAS gene was shown to be intron-free. MoRAS belongs to the BAHD superfamily of acyltransferases. Southern-blot analysis suggests the presence of only one RAS gene copy in the M. officinalis genome. The enzyme was characterised with respect to enzyme properties, substrate preferences and kinetic data in crude plant extracts and as heterologously synthesised protein from Escherichia coli.
Collapse
Affiliation(s)
- Corinna Weitzel
- Institut für Pharmazeutische Biologie und Biotechnologie, Philipps-Universität Marburg, Deutschhausstr. 17A, D-35037 Marburg, Germany.
| | | |
Collapse
|
21
|
Almaguer-Flores A, Olivares-Navarrete R, Wieland M, Ximénez-Fyvie LA, Schwartz Z, Boyan BD. Influence of topography and hydrophilicity on initial oral biofilm formation on microstructured titanium surfaces in vitro. Clin Oral Implants Res 2011; 23:301-7. [PMID: 21492236 DOI: 10.1111/j.1600-0501.2011.02184.x] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
OBJECTIVES The aim of this study was to analyse the influence of the microtopography and hydrophilicity of titanium (Ti) substrates on initial oral biofilm formation. MATERIALS AND METHODS Nine bacterial species belonging to the normal oral microbiota, including: Aggregatibacter actinomycetemcomitans, Actinomyces israelii, Campylobacter rectus, Eikenella corrodens, Fusobacterium nucleatum, Parvimonas micra, Porphyromonas gingivalis, Prevotella intermedia, and Streptococcus sanguinis were tested on Ti surfaces: pretreatment (PT [R(a) <0.2 μm]), acid-etched (A [R(a) <0.8 μm]), A modified to be hydrophilic (modA), sand-blasted/acid-etched (SLA [R(a) =4 μm]), and hydrophilic SLA (modSLA). Disks were incubated for 24 h in anaerobic conditions using a normal culture medium (CM) or human saliva (HS). The total counts of bacteria and the proportion of each bacterial species were analysed by checkerboard DNA-DNA hybridization. RESULTS Higher counts of bacteria were observed on all surfaces incubated with CM compared with the samples incubated with HS. PT, SLA, and modSLA exhibited higher numbers of attached bacteria in CM, whereas SLA and modSLA had a significant increase in bacterial adhesion in HS. The proportion of the species in the initial biofilms was also influenced by the surface properties and the media used: SLA and modSLA increased the proportion of species like A. actinomycetemcomitans and S. sanguinis in both media, while the adhesion of A. israelii and P. gingivalis on the same surfaces was affected in the presence of saliva. CONCLUSIONS The initial biofilm formation and composition were affected by the microtopography and hydrophilicity of the surface and by the media used.
Collapse
Affiliation(s)
- A Almaguer-Flores
- Instituto de Investigaciones en Materiales, Universidad Nacional, Autónoma de México, Ciudad Universitaria, México, DF México
| | | | | | | | | | | |
Collapse
|
22
|
Dombrowski JE, Baldwin JC, Alderman SC, Martin RC. Transformation of Epichloë typhina by electroporation of conidia. BMC Res Notes 2011; 4:46. [PMID: 21375770 PMCID: PMC3058031 DOI: 10.1186/1756-0500-4-46] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2010] [Accepted: 03/05/2011] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Choke, caused by the endophytic fungus Epichloë typhina, is an important disease affecting orchardgrass (Dactylis glomerata L.) seed production in the Willamette Valley. Little is known concerning the conditions necessary for successful infection of orchardgrass by E. typhina. Detection of E. typhina in plants early in the disease cycle can be difficult due to the sparse distribution of hyphae in the plant. Therefore, a sensitive method to detect fungal infection in plants would provide an invaluable tool for elucidating the conditions for establishment of infection in orchardgrass. Utilization of a marker gene, such as the green fluorescent protein (GFP), transformed into Epichloë will facilitate characterization of the initial stages of infection and establishment of the fungus in plants. FINDINGS We have developed a rapid, efficient, and reproducible transformation method using electroporation of germinating Epichloë conidia isolated from infected plants. CONCLUSIONS The GFP labelled E. typhina provides a valuable molecular tool to researchers studying conditions and mechanisms involved in the establishment of choke disease in orchardgrass.
Collapse
Affiliation(s)
- James E Dombrowski
- USDA-ARS National Forage Seed Production Research Center, 3450 S.W. Campus Way, Corvallis, OR 97331 USA
| | - James C Baldwin
- Applied Technology Center, 2484 Gillingham Drive, B-175W Brooks City-Base, TX 78235 USA
| | - Steve C Alderman
- USDA-ARS National Forage Seed Production Research Center, 3450 S.W. Campus Way, Corvallis, OR 97331 USA
| | - Ruth C Martin
- USDA-ARS National Forage Seed Production Research Center, 3450 S.W. Campus Way, Corvallis, OR 97331 USA
| |
Collapse
|
23
|
Weitzel C, Petersen M. Enzymes of phenylpropanoid metabolism in the important medicinal plant Melissa officinalis L. PLANTA 2010; 232:731-42. [PMID: 20563822 DOI: 10.1007/s00425-010-1206-x] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2010] [Accepted: 06/03/2010] [Indexed: 05/10/2023]
Abstract
Lemon balm (Melissa officinalis, Lamiaceae) is a well-known medicinal plant. Amongst the biologically active ingredients are a number of phenolic compounds, the most prominent of which is rosmarinic acid. To obtain better knowledge of the biosynthesis of these phenolic compounds, two enzymes of the general phenylpropanoid pathway, phenylalanine ammonia-lyase (PAL) and 4-coumarate:coenzyme A-ligase (4CL), were investigated in suspension cultures of lemon balm. MoPAL1 and Mo4CL1 cDNAs were cloned and heterologously expressed in Escherichia coli and the enzymes characterised. Expression analysis of both genes showed a correlation with the enzyme activities and rosmarinic acid content during a cultivation period of the suspension culture. Southern-blot analysis suggested the presence of most probably two gene copies in the M. officinalis genome of both PAL and 4CL. The genomic DNA sequences of MoPAL1 and Mo4CL1 were amplified and sequenced. MoPAL1 contains one phase 2 intron of 836 bp at a conserved site, whilst Mo4CL1 was devoid of introns.
Collapse
Affiliation(s)
- Corinna Weitzel
- Institut für Pharmazeutische Biologie und Biotechnologie, Philipps-Universität Marburg, Deutschhausstr 17A, 35037 Marburg, Germany
| | | |
Collapse
|
24
|
Kim SW, Li Z, Moore PS, Monaghan AP, Chang Y, Nichols M, John B. A sensitive non-radioactive northern blot method to detect small RNAs. Nucleic Acids Res 2010; 38:e98. [PMID: 20081203 PMCID: PMC2853138 DOI: 10.1093/nar/gkp1235] [Citation(s) in RCA: 224] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The continuing discoveries of potentially active small RNAs at an unprecedented rate using high-throughput sequencing have raised the need for methods that can reliably detect and quantitate the expression levels of small RNAs. Currently, northern blot is the most widely used method for validating small RNAs that are identified by methods such as high-throughput sequencing. We describe a new northern blot-based protocol (LED) for small RNA (∼15–40 bases) detection using digoxigenin (DIG)-labeled oligonucleotide probes containing locked nucleic acids (LNA) and 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide for cross-linking the RNA to the membrane. LED generates clearly visible signals for RNA amounts as low as 0.05 fmol. This method requires as little as a few seconds of membrane exposure to outperform the signal intensity using overnight exposure of isotope-based methods, corresponding to ∼1000-fold improvement in exposure-time. In contrast to commonly used radioisotope-based methods, which require freshly prepared and hazardous probes, LED probes can be stored for at least 6 months, facilitate faster and more cost-effective experiments, and are more environmentally friendly. A detailed protocol of LED is provided in the Supplementary Data.
Collapse
Affiliation(s)
- Sang Woo Kim
- Department of Computational Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15260, USA
| | | | | | | | | | | | | |
Collapse
|
25
|
Kulkarni AP, Mittal SPK, Devasagayam TPA, Pal JK. Oxidative stress perturbs cell proliferation in human K562 cells by modulating protein synthesis and cell cycle. Free Radic Res 2009; 43:1090-100. [DOI: 10.1080/10715760903179673] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
26
|
Duran MB, Rahman A, Colten M, Brazill D. Dictyostelium discoideum paxillin regulates actin-based processes. Protist 2009; 160:221-32. [PMID: 19213599 PMCID: PMC2743336 DOI: 10.1016/j.protis.2008.09.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2008] [Accepted: 09/13/2008] [Indexed: 10/21/2022]
Abstract
Paxillin is a key player in integrating the actin cytoskeleton with adhesion, and thus is essential to numerous cellular processes, including proliferation, differentiation, and migration in animal cells. PaxB, the Dictyostelium discoideum orthologue of paxillin, has been shown to be important for adhesion and development, much like its mammalian counterpart. Here, we use the overproduction of PaxB to gain better insight into its role in regulating the actin cytoskeleton and adhesion. We find that PaxB-overexpressing (PaxBOE) cells can aggregate and form mounds normally, but are blocked in subsequent development. This arrest can be rescued by addition of wild-type cells, indicating a non-cell autonomous role for PaxB. PaxBOE cells also have alterations in several actin-based processes, including adhesion, endocytosis, motility, and chemotaxis. PaxBOE cells exhibit an EDTA-sensitive increase in cell-cell cohesion, suggesting that PaxB-mediated adhesion is Ca(2+) or Mg(2+) dependent. Interestingly, cells overexpressing paxB are less adhesive to the substratum. In addition, PaxBOE cells display decreased motility under starved conditions, decreased endocytosis, and are unable to efficiently chemotax up a folate gradient. Taken together, the data suggest that proper expression of PaxB is vital for the regulation of development and actin-dependent processes.
Collapse
Affiliation(s)
- M. Berenice Duran
- Department of Biological Sciences, Center for the Study of Gene Structure and Function, Hunter College of the City University of New York, New York, NY 10021, USA
| | - Asif Rahman
- Department of Biological Sciences, Center for the Study of Gene Structure and Function, Hunter College of the City University of New York, New York, NY 10021, USA
| | - Max Colten
- Department of Biological Sciences, Center for the Study of Gene Structure and Function, Hunter College of the City University of New York, New York, NY 10021, USA
| | - Derrick Brazill
- Department of Biological Sciences, Center for the Study of Gene Structure and Function, Hunter College of the City University of New York, New York, NY 10021, USA
| |
Collapse
|
27
|
Shibli JA, Melo L, Ferrari DS, Figueiredo LC, Faveri M, Feres M. Composition of supra- and subgingival biofilm of subjects with healthy and diseased implants. Clin Oral Implants Res 2009; 19:975-82. [PMID: 18828812 DOI: 10.1111/j.1600-0501.2008.01566.x] [Citation(s) in RCA: 247] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
OBJECTIVES The purpose of this study was to compare the microbial composition of supra- and subgingival biofilm in subjects with and without peri-implantitis. MATERIAL AND METHODS Forty-four subjects (mean age 48.9 +/- 13.51 years) with at least one implant restored and functional for at least 2 years were assigned to two groups: a peri-implantitis group (n=22), consisting of subjects presenting peri-implant sites with radiographic defects >3 mm, bleeding on probing and/or suppuration; and a control group (n=22), consisting of subjects with healthy implants. The clinical parameters evaluated were plaque index, gingival bleeding, bleeding on probing, suppuration, probing depth and clinical attachment level. Supra- and subgingival biofilm samples were taken from the deepest sites of each implant and analyzed for the presence of 36 microorganisms by checkerboard DNA-DNA hybridization. RESULTS Higher mean counts of Porphyromonas gingivalis, Treponema denticola and Tannerella forsythia were observed in the peri-implantitis group, both supra- and subgingivally (P<0.05). The proportions of the pathogens from the red complex were elevated, while host-compatible beneficial microbial complexes were reduced in diseased compared with healthy implants. The microbiological profiles of supra- and subgingival environments did not differ substantially within each group. CONCLUSION Marked differences were observed in the composition of supra- and subgingival biofilm between healthy and diseased implants. The microbiota associated with peri-implantitis was comprised of more periodontal pathogenic bacterial species, including the supragingival biofilm.
Collapse
Affiliation(s)
- Jamil A Shibli
- Department of Periodontology, Dental Research Division, Guarulhos University, São Paulo, Brazil
| | | | | | | | | | | |
Collapse
|
28
|
Weiss EH, Lilienfeld BG, Müller S, Müller E, Herbach N, Kessler B, Wanke R, Schwinzer R, Seebach JD, Wolf E, Brem G. HLA-E/human beta2-microglobulin transgenic pigs: protection against xenogeneic human anti-pig natural killer cell cytotoxicity. Transplantation 2009; 87:35-43. [PMID: 19136889 DOI: 10.1097/tp.0b013e318191c784] [Citation(s) in RCA: 116] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND Natural killer (NK) cells participate in pig-to-primate xenograft rejection both by antibody-dependent and -independent mechanisms. A majority of human NK cells express the inhibitory receptor CD94/NKG2A, which binds specifically to human leukocyte antigen (HLA)-E, a trimeric complex consisting of the HLA-E heavy chain, beta2-microglobulin (beta2m), and a peptide derived from the leader sequence of some major histocompatibility complex class I molecules. METHODS To use this mechanism for protection of pig tissues against human NK cell-mediated cytotoxicity, we generated transgenic pigs by pronuclear microinjection of genomic fragments of HLA-E with an HLA-B7 signal sequence and of human beta2-microglobulin (hubeta2m) into zygotes. RESULTS Three transgenic founder pigs were generated. Northern blot analysis of RNA from peripheral blood mononuclear cells revealed the presence of the expected transcript sizes for both transgenes in two of the three founders. The founder with the highest expression and his offspring were characterized in detail. Fluorescence-activated cell sorting (FACS) and Western blot analyses demonstrated consistent expression of HLA-E and hubeta2m in peripheral blood mononuclear cells. Immunohistochemistry revealed the presence of HLA-E and hubeta2m on endothelial cells of many organs, including heart and kidney. In vitro studies showed that lymphoblasts and endothelial cells derived from HLA-E/hubeta2m transgenic pigs are effectively protected against human NK cell-mediated cytotoxicity, depending on the level of CD94/NKG2A expression on the NK cells. Further, HLA-E/hubeta2m expression on porcine endothelial cells inhibited the secretion of interferon (IFN)-gamma by co-cultured human NK cells. CONCLUSIONS This novel approach against cell-mediated xenogeneic responses has important implications for the generation of multitransgenic pigs as organ donors for clinical xenotransplantation.
Collapse
Affiliation(s)
- Elisabeth H Weiss
- Department of Biology II, Anthropology and Human Genetics, LMU Munich, Planegg-Martinsried, Germany.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Pulvermacher SC, Stauffer LT, Stauffer GV. Role of the Escherichia coli Hfq protein in GcvB regulation of oppA and dppA mRNAs. Microbiology (Reading) 2009; 155:115-123. [DOI: 10.1099/mic.0.023432-0] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The gcvB gene encodes a small non-translated RNA (referred to as GcvB) that regulates oppA and dppA, two genes that encode periplasmic binding proteins for the oligopeptide and dipeptide transport systems. Hfq, an RNA chaperone protein, binds many small RNAs and is required for the small RNAs to regulate expression of their respective target genes. We showed that repression by GcvB of dppA : : lacZ and oppA : : phoA translational fusions is dependent upon Hfq. Double mutations in gcvB and hfq yielded similar expression levels of dppA : : lacZ and oppA : : phoA compared with gcvB or hfq single mutations, suggesting that GcvB and Hfq repress by the same mechanism. The effect of Hfq is not through regulation of transcription of gcvB. Hfq is known to increase the stability of some small RNAs and to facilitate the interactions between small RNAs and specific mRNAs. In the absence of Hfq, there is a marked decrease in the half-life of GcvB in cells grown in both Luria–Bertani broth and glucose minimal medium with glycine, suggesting that part of the role of Hfq is to stabilize GcvB. Overproduction of GcvB in wild-type Escherichia coli results in superrepression of a dppA : : lacZ fusion, but overproduction of GcvB in an hfq mutant does not result in significant repression of the dppA : : lacZ fusion. These results suggest that Hfq also is likely required for GcvB–mRNA pairing.
Collapse
Affiliation(s)
| | | | - George V. Stauffer
- Department of Microbiology, University of Iowa, Iowa City, IA 52242, USA
| |
Collapse
|
30
|
Abstract
In Escherichia coli, the gcvB gene encodes a nontranslated RNA (referred to as GcvB) that regulates OppA and DppA, two periplasmic binding proteins for the oligopeptide and dipeptide transport systems. An additional regulatory target of GcvB, sstT, was found by microarray analysis of RNA isolated from a wild-type strain and a gcvB deletion strain grown to mid-log phase in Luria-Bertani broth. The SstT protein functions to transport L-serine and L-threonine by sodium transport into the cell. Reverse transcription-PCR and translational fusions confirmed that GcvB negatively regulates sstT mRNA levels in cells grown in Luria-Bertani broth. A series of transcriptional fusions identified a region of sstT mRNA upstream of the ribosome binding site needed for negative regulation by GcvB. Analysis of the GcvB RNA identified a sequence complementary to this region of the sstT mRNA. The region of GcvB complementary to sstT mRNA is the same region of GcvB identified to regulate the dppA and oppA mRNAs. Mutations predicted to disrupt base pairing between sstT mRNA and GcvB were made in gcvB, which resulted in the identification of a small region of GcvB necessary for negative regulation of sstT-lacZ. Additionally, the RNA chaperone protein Hfq was found to be necessary for GcvB to negatively regulate sstT-lacZ in Luria-Bertani broth and glucose minimal medium supplemented with glycine. The sstT mRNA is the first target found to be regulated by GcvB in glucose minimal medium supplemented with glycine.
Collapse
|
31
|
Chen H, Samadder PP, Tanaka Y, Ohira T, Okuizumi H, Yamaoka N, Miyao A, Hirochika H, Ohira T, Tsuchimoto S, Ohtsubo H, Nishiguchi M. OsRecQ1, a QDE-3 homologue in rice, is required for RNA silencing induced by particle bombardment for inverted repeat DNA, but not for double-stranded RNA. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2008; 56:274-286. [PMID: 18564381 DOI: 10.1111/j.1365-313x.2008.03587.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Based on the nucleotide sequence of QDE-3 in Neurospora crassa, which is involved in RNA silencing, rice (Oryza sativa) mutant lines disrupted by the insertion of the rice retrotransposon Tos17 were selected. Homozygous individuals from the M(1) and M(2) generations were screened and used for further analyses. The expression of the gene was not detected in leaves or calli of the mutant lines, in contrast to the wild type (WT). Induction of RNA silencing by particle bombardment was performed to investigate any effects of the OsRecQ1 gene on RNA silencing with silencing inducers of the GFP (green fluorescence protein)/GUS (beta-glucuronidase) gene in the mutant lines. The results showed that OsRecQ1 is required for RNA silencing induced by particle bombardment for inverted-repeat DNA, but not for double-stranded RNA (dsRNA). The levels of transcripts from inverted-repeat DNA were much lower in the mutant lines than those in the WT. Furthermore, no effects were observed in the accumulation of endogenous microRNAs (miR171 and miR156) and the production of the short interspersed nuclear element retroelement by small interfering RNA. On the basis of these results, we propose that OsRecQ1 may participate in the process that allows inverted repeat DNA to be transcribed into dsRNA, which can trigger RNA silencing.
Collapse
MESH Headings
- Amino Acid Sequence
- Cells, Cultured
- DNA Helicases/genetics
- Fungal Proteins/genetics
- Gene Expression Regulation, Plant
- Genes, Plant
- Genes, Reporter
- Green Fluorescent Proteins
- Molecular Sequence Data
- Mutagenesis, Insertional
- Oryza/genetics
- Plant Epidermis/genetics
- Plants, Genetically Modified/genetics
- Plasmids
- RNA Interference
- RNA, Double-Stranded/genetics
- RNA, Plant/genetics
- Repetitive Sequences, Nucleic Acid/genetics
- Reverse Transcriptase Polymerase Chain Reaction
- Sequence Analysis, DNA
- Sequence Homology, Nucleic Acid
- Short Interspersed Nucleotide Elements
Collapse
Affiliation(s)
- Hui Chen
- Faculty of Agriculture, Ehime University, 3-5-7 Tarumi, Matsuyama, Ehime 790-8566, JapanNational Institute of Agrobiological Sciences, 2-1-2 Kan-nondai, Tsukuba, Ibaraki 305-8602, JapanInstitute of Molecular and Cellular Bioscience, University of Tokyo, 1-1-1 Yayoi, Bunkyo, Tokyo 113-0032, Japan
| | - Partha P Samadder
- Faculty of Agriculture, Ehime University, 3-5-7 Tarumi, Matsuyama, Ehime 790-8566, JapanNational Institute of Agrobiological Sciences, 2-1-2 Kan-nondai, Tsukuba, Ibaraki 305-8602, JapanInstitute of Molecular and Cellular Bioscience, University of Tokyo, 1-1-1 Yayoi, Bunkyo, Tokyo 113-0032, Japan
| | - Yoshikazu Tanaka
- Faculty of Agriculture, Ehime University, 3-5-7 Tarumi, Matsuyama, Ehime 790-8566, JapanNational Institute of Agrobiological Sciences, 2-1-2 Kan-nondai, Tsukuba, Ibaraki 305-8602, JapanInstitute of Molecular and Cellular Bioscience, University of Tokyo, 1-1-1 Yayoi, Bunkyo, Tokyo 113-0032, Japan
| | - Tatsuya Ohira
- Faculty of Agriculture, Ehime University, 3-5-7 Tarumi, Matsuyama, Ehime 790-8566, JapanNational Institute of Agrobiological Sciences, 2-1-2 Kan-nondai, Tsukuba, Ibaraki 305-8602, JapanInstitute of Molecular and Cellular Bioscience, University of Tokyo, 1-1-1 Yayoi, Bunkyo, Tokyo 113-0032, Japan
| | - Hisato Okuizumi
- Faculty of Agriculture, Ehime University, 3-5-7 Tarumi, Matsuyama, Ehime 790-8566, JapanNational Institute of Agrobiological Sciences, 2-1-2 Kan-nondai, Tsukuba, Ibaraki 305-8602, JapanInstitute of Molecular and Cellular Bioscience, University of Tokyo, 1-1-1 Yayoi, Bunkyo, Tokyo 113-0032, Japan
| | - Naoto Yamaoka
- Faculty of Agriculture, Ehime University, 3-5-7 Tarumi, Matsuyama, Ehime 790-8566, JapanNational Institute of Agrobiological Sciences, 2-1-2 Kan-nondai, Tsukuba, Ibaraki 305-8602, JapanInstitute of Molecular and Cellular Bioscience, University of Tokyo, 1-1-1 Yayoi, Bunkyo, Tokyo 113-0032, Japan
| | - Akio Miyao
- Faculty of Agriculture, Ehime University, 3-5-7 Tarumi, Matsuyama, Ehime 790-8566, JapanNational Institute of Agrobiological Sciences, 2-1-2 Kan-nondai, Tsukuba, Ibaraki 305-8602, JapanInstitute of Molecular and Cellular Bioscience, University of Tokyo, 1-1-1 Yayoi, Bunkyo, Tokyo 113-0032, Japan
| | - Hirohiko Hirochika
- Faculty of Agriculture, Ehime University, 3-5-7 Tarumi, Matsuyama, Ehime 790-8566, JapanNational Institute of Agrobiological Sciences, 2-1-2 Kan-nondai, Tsukuba, Ibaraki 305-8602, JapanInstitute of Molecular and Cellular Bioscience, University of Tokyo, 1-1-1 Yayoi, Bunkyo, Tokyo 113-0032, Japan
| | - Takayuki Ohira
- Faculty of Agriculture, Ehime University, 3-5-7 Tarumi, Matsuyama, Ehime 790-8566, JapanNational Institute of Agrobiological Sciences, 2-1-2 Kan-nondai, Tsukuba, Ibaraki 305-8602, JapanInstitute of Molecular and Cellular Bioscience, University of Tokyo, 1-1-1 Yayoi, Bunkyo, Tokyo 113-0032, Japan
| | - Suguru Tsuchimoto
- Faculty of Agriculture, Ehime University, 3-5-7 Tarumi, Matsuyama, Ehime 790-8566, JapanNational Institute of Agrobiological Sciences, 2-1-2 Kan-nondai, Tsukuba, Ibaraki 305-8602, JapanInstitute of Molecular and Cellular Bioscience, University of Tokyo, 1-1-1 Yayoi, Bunkyo, Tokyo 113-0032, Japan
| | - Hisako Ohtsubo
- Faculty of Agriculture, Ehime University, 3-5-7 Tarumi, Matsuyama, Ehime 790-8566, JapanNational Institute of Agrobiological Sciences, 2-1-2 Kan-nondai, Tsukuba, Ibaraki 305-8602, JapanInstitute of Molecular and Cellular Bioscience, University of Tokyo, 1-1-1 Yayoi, Bunkyo, Tokyo 113-0032, Japan
| | - Masamichi Nishiguchi
- Faculty of Agriculture, Ehime University, 3-5-7 Tarumi, Matsuyama, Ehime 790-8566, JapanNational Institute of Agrobiological Sciences, 2-1-2 Kan-nondai, Tsukuba, Ibaraki 305-8602, JapanInstitute of Molecular and Cellular Bioscience, University of Tokyo, 1-1-1 Yayoi, Bunkyo, Tokyo 113-0032, Japan
| |
Collapse
|
32
|
Karagyozov L, Godfrey R, Böhmer SA, Petermann A, Hölters S, Ostman A, Böhmer FD. The structure of the 5'-end of the protein-tyrosine phosphatase PTPRJ mRNA reveals a novel mechanism for translation attenuation. Nucleic Acids Res 2008; 36:4443-53. [PMID: 18603590 PMCID: PMC2490741 DOI: 10.1093/nar/gkn391] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Analysis of the human protein-tyrosine phosphatase (PTP) PTPRJ mRNA detected three in-frame AUGs at the 5′-end (starting at nt +14, +191 and +356) with no intervening stop codons. This tandem AUG arrangement is conserved between humans and the mouse and is unique among the genes of the classical PTPs. Until now it was assumed that the principal open reading frame (ORF) starts at AUG356. Our experiments showed that: (i) translation of the mRNA synthesized under the PTPRJ promoter starts predominantly at AUG191, leading to the generation of a 55 amino acid sequence preceding the signal peptide; (ii) the longer form is being likewise correctly processed into mature PTPRJ; (iii) the translation of the region between AUG191 and AUG356 inhibits the overall expression, a feature which depends on the sequence of the encoded peptide. Specifically, a sequence of 13 amino acids containing multiple arginine residues (RRTGWRRRRRRRR) confers the inhibition. In the absence of uORF these previously unrecognized characteristics of the 5′-end of the mRNA present a novel mechanism to suppress, and potentially to regulate translation.
Collapse
Affiliation(s)
- Luchezar Karagyozov
- Institute of Molecular Cell Biology, Center for Molecular Biomedicine, Friedrich-Schiller-University Jena, Jena, Germany
| | | | | | | | | | | | | |
Collapse
|
33
|
Mn2+-dependent ADP-ribose/CDP-alcohol pyrophosphatase: a novel metallophosphoesterase family preferentially expressed in rodent immune cells. Biochem J 2008; 413:103-13. [PMID: 18352857 DOI: 10.1042/bj20071471] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
ADPRibase-Mn (Mn2+-dependent ADP-ribose/CDP-alcohol pyrophosphatase) was earlier isolated from rat liver supernatants after separation from ADPRibase-I and ADPRibase-II (Mg2+-activated ADP-ribose pyrophosphatases devoid of CDP-alcohol pyrophosphatase activity). The last mentioned are putative Nudix hydrolases, whereas the molecular identity of ADPRibase-Mn is unknown. MALDI (matrix-assisted laser-desorption ionization) MS data from rat ADPRibase-Mn pointed to a hypothetical protein that was cloned and expressed and showed the expected specificity. It is encoded by the RGD1309906 rat gene, which so far has been annotated simply as 'hydrolase'. ADPRibase-Mn is not a Nudix hydrolase, but it shows the sequence and structural features typical of the metallophosphoesterase superfamily. It may constitute a protein family of its own, the members of which appear to be specific to vertebrates, plants and algae. ADP-ribose was successfully docked to a model of rat ADPRibase-Mn, revealing its putative active centre. Microarray data from the GEO (Gene Expression Omnibus) database indicated that the mouse gene 2310004I24Rik, an orthologue of RGD1309906, is preferentially expressed in immune cells. This was confirmed by Northern-blot and activity assay of ADPRibase-Mn in rat tissues. A possible role of ADPRibase-Mn in immune cell signalling is suggested by the second-messenger role of ADP-ribose, which activates TRPM2 (transient receptor potential melastatin channel-2) ion channels as a mediator of oxidative/nitrosative stress, and by the signalling function assigned to many of the microarray profile neighbours of 2310004I24Rik. Furthermore, the influence of ADPRibase-Mn on the CDP-choline or CDP-ethanolamine pathways of phospholipid biosynthesis cannot be discounted.
Collapse
|
34
|
NIKOLAITCHOUK NATALIA, ANDERSCH BJÖRN, FALSEN ENEVOLD, STRÖMBECK LOUISE, MATTSBY-BALTZER INGER. The lower genital tract microbiota in relation to cytokine-, SLPI- and endotoxin levels: application of checkerboard DNA-DNA hybridization (CDH). APMIS 2008; 116:263-77. [DOI: 10.1111/j.1600-0463.2008.00808.x] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
35
|
Iglesias R, Pérez Y, Citores L, Ferreras JM, Méndez E, Girbés T. Elicitor-dependent expression of the ribosome-inactivating protein beetin is developmentally regulated. JOURNAL OF EXPERIMENTAL BOTANY 2008; 59:1215-1223. [PMID: 18343888 DOI: 10.1093/jxb/ern030] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
BE27 and BE29 are two forms of beetin, a virus-inducible type 1 ribosome-inactivating protein isolated from leaves of Beta vulgaris L. Western blot analysis revealed the presence of beetin forms in adult plants but not in germ or young plants, indicating that the expression of these proteins is developmentally regulated. While beetins are expressed only in adult plants, their transcripts are present through all stages of development. In addition, the treatment of B. vulgaris leaves with mediators of plant-acquired resistance such as salicylic acid and hydrogen peroxide promoted the expression of beetin by induction of its transcript, but only in adult plants. The plant expresses three mRNAs which differ only in their 3' untranslated region. All these observations suggest a dual regulation of beetin expression, i.e. at the post-transcriptional and transcriptional levels. Additionally, total RNA isolated from leaves treated with hydrogen peroxide, which express high levels of active beetin, is not de-adenylated by endogenous beetin, nor in vitro by the addition of BE27, thus suggesting that sugar beet ribosomes are resistant to beetin.
Collapse
Affiliation(s)
- Rosario Iglesias
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias, Universidad de Valladolid, E-47005 Valladolid, Spain
| | | | | | | | | | | |
Collapse
|
36
|
Pulvermacher SC, Stauffer LT, Stauffer GV. The role of the small regulatory RNA GcvB in GcvB/mRNA posttranscriptional regulation of oppA and dppA in Escherichia coli. FEMS Microbiol Lett 2008; 281:42-50. [PMID: 18312576 DOI: 10.1111/j.1574-6968.2008.01068.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
The gcvB gene encodes two small, nontranslated RNAs that regulate OppA and DppA, periplasmic binding proteins for the oligopeptide and dipeptide transport systems. Analysis of the gcvB sequence identified a region of complementarity near the ribosome-binding sites of dppA and oppA mRNAs. Several changes in gcvB predicted to reduce complementarity of GcvB with dppA-lacZ and oppA-phoA reduced the ability of GcvB to repress the target RNAs while other changes had no effect or resulted in stronger repression of the target mRNAs. Mutations in dppA-lacZ and oppA-phoA that restored complementarity to GcvB restored the ability of GcvB to repress dppA-lacZ but not oppA-phoA. Additionally, a change that reduced complementarity of GcvB to dppA-lacZ reduced GcvB repression of dppA-lacZ with no effect on oppA-phoA. The results suggest that different regions of GcvB have different roles in regulating dppA and oppA mRNA, and although pairing between GcvB and dppA mRNA is likely part of the regulatory mechanism, the results do not support a simple base pairing interaction between GcvB and its target mRNAs as the complete mechanism of repression.
Collapse
|
37
|
KUWANO A, HASEGAWA T, ARAI K. Type VII and XVII Collagen mRNA Expressions in Regenerated Epidermal Laminae in Chronic Equine Laminitis. J Equine Sci 2008; 19:103-7. [PMID: 24833961 PMCID: PMC4013949 DOI: 10.1294/jes.19.103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/17/2008] [Indexed: 11/01/2022] Open
Affiliation(s)
| | | | - Katsuhiko ARAI
- Faculty of Agriculture Scleroprotein and Leather Research Institute, Tokyo University of Agriculture and Technology
| |
Collapse
|
38
|
Link TI, Voegele RT. Secreted proteins of Uromyces fabae: similarities and stage specificity. MOLECULAR PLANT PATHOLOGY 2008; 9:59-66. [PMID: 18705884 PMCID: PMC6640452 DOI: 10.1111/j.1364-3703.2007.00448.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Uromyces fabae on Vicia faba is a model system for obligate biotrophic interactions. Searching for potential effector proteins we investigated the haustorial secretome of U. fabae (biotrophic stage) and compared it with the secretome of in vitro grown infection structures, which represent the pre-biotrophic stage. Using the yeast signal sequence trap method we identified 62 genes encoding proteins secreted from haustoria and 42 genes encoding proteins secreted from in vitro grown infection structures. Four of these genes were identical in both libraries, giving a total of 100 genes coding for secreted proteins. This finding indicates a strong stage-specific regulation of protein secretion. Similarity with previously identified proteins was found for 39 of the sequences analysed, 28 of which showed similarity to proteins identified among members of the order Uredinales only. This might be taken as an indication for possible roles in virulence and host specificity unique to the Uredinales.
Collapse
Affiliation(s)
- Tobias I Link
- Phytopathologie, Fachbereich Biologie, Universität Konstanz, Universitätsstrasse 10, 78457 Konstanz, Germany
| | | |
Collapse
|
39
|
Harrison EJ, Bush M, Plett JM, McPhee DP, Vitez R, O’Malley B, Sharma V, Bosnich W, Séguin A, MacKay J, Regan S. Diverse developmental mutants revealed in an activation-tagged population of poplarThis article is one of a selection of papers published on the Special Issue of Poplar Research in Canada. ACTA ACUST UNITED AC 2007. [DOI: 10.1139/b07-063] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We have produced the largest population of activation-tagged poplar trees to date, approximately 1800 independent lines, and report on phenotypes of interest that have been identified in tissue culture and greenhouse conditions. Activation tagging is an insertional mutagenesis technique that results in the dominant upregulation of an endogenous gene. A large-scale Agrobacterium -mediated transformation protocol was used to transform the pSKI074 activation-tagging vector into Populus tremula × Populus alba hybrid poplar. We have screened the first 1000 lines for developmental abnormalities and have a visible mutant frequency of 2.4%, with alterations in leaf and stem structure as well as overall stature. Most of the phenotypes represent new phenotypes that have not previously been identified in poplar and, in some cases, not in any other plant either. Molecular analysis of the T-DNA inserts of a subpopulation of mutant lines reveal both single and double T-DNA inserts with double inserts more common in lines with visible phenotypes. The broad range of developmental mutants identified in this pilot screen of the population reveals that it will be a valuable resource for gene discovery in poplar. The full value of this population will only be realized as we screen these lines for a wide range of phenotypes.
Collapse
Affiliation(s)
- Edward J. Harrison
- Biology Department, Queen’s University, Kingston, ON K7L 3N6, Canada
- Biology Department, Carleton University, Ottawa, ON K1S 5B6, Canada
- Canadian Forest Service, Laurentian Forestry Centre, Sainte-Foy, QC G1V 4C7, Canada
- Centre de recherche en biologie forestière, Université Laval, QC G1K 7P4, Canada
| | - Michael Bush
- Biology Department, Queen’s University, Kingston, ON K7L 3N6, Canada
- Biology Department, Carleton University, Ottawa, ON K1S 5B6, Canada
- Canadian Forest Service, Laurentian Forestry Centre, Sainte-Foy, QC G1V 4C7, Canada
- Centre de recherche en biologie forestière, Université Laval, QC G1K 7P4, Canada
| | - Jonathan M. Plett
- Biology Department, Queen’s University, Kingston, ON K7L 3N6, Canada
- Biology Department, Carleton University, Ottawa, ON K1S 5B6, Canada
- Canadian Forest Service, Laurentian Forestry Centre, Sainte-Foy, QC G1V 4C7, Canada
- Centre de recherche en biologie forestière, Université Laval, QC G1K 7P4, Canada
| | - Daniel P. McPhee
- Biology Department, Queen’s University, Kingston, ON K7L 3N6, Canada
- Biology Department, Carleton University, Ottawa, ON K1S 5B6, Canada
- Canadian Forest Service, Laurentian Forestry Centre, Sainte-Foy, QC G1V 4C7, Canada
- Centre de recherche en biologie forestière, Université Laval, QC G1K 7P4, Canada
| | - Robin Vitez
- Biology Department, Queen’s University, Kingston, ON K7L 3N6, Canada
- Biology Department, Carleton University, Ottawa, ON K1S 5B6, Canada
- Canadian Forest Service, Laurentian Forestry Centre, Sainte-Foy, QC G1V 4C7, Canada
- Centre de recherche en biologie forestière, Université Laval, QC G1K 7P4, Canada
| | - Brendan O’Malley
- Biology Department, Queen’s University, Kingston, ON K7L 3N6, Canada
- Biology Department, Carleton University, Ottawa, ON K1S 5B6, Canada
- Canadian Forest Service, Laurentian Forestry Centre, Sainte-Foy, QC G1V 4C7, Canada
- Centre de recherche en biologie forestière, Université Laval, QC G1K 7P4, Canada
| | - Vijaya Sharma
- Biology Department, Queen’s University, Kingston, ON K7L 3N6, Canada
- Biology Department, Carleton University, Ottawa, ON K1S 5B6, Canada
- Canadian Forest Service, Laurentian Forestry Centre, Sainte-Foy, QC G1V 4C7, Canada
- Centre de recherche en biologie forestière, Université Laval, QC G1K 7P4, Canada
| | - Whynn Bosnich
- Biology Department, Queen’s University, Kingston, ON K7L 3N6, Canada
- Biology Department, Carleton University, Ottawa, ON K1S 5B6, Canada
- Canadian Forest Service, Laurentian Forestry Centre, Sainte-Foy, QC G1V 4C7, Canada
- Centre de recherche en biologie forestière, Université Laval, QC G1K 7P4, Canada
| | - Armand Séguin
- Biology Department, Queen’s University, Kingston, ON K7L 3N6, Canada
- Biology Department, Carleton University, Ottawa, ON K1S 5B6, Canada
- Canadian Forest Service, Laurentian Forestry Centre, Sainte-Foy, QC G1V 4C7, Canada
- Centre de recherche en biologie forestière, Université Laval, QC G1K 7P4, Canada
| | - John MacKay
- Biology Department, Queen’s University, Kingston, ON K7L 3N6, Canada
- Biology Department, Carleton University, Ottawa, ON K1S 5B6, Canada
- Canadian Forest Service, Laurentian Forestry Centre, Sainte-Foy, QC G1V 4C7, Canada
- Centre de recherche en biologie forestière, Université Laval, QC G1K 7P4, Canada
| | - Sharon Regan
- Biology Department, Queen’s University, Kingston, ON K7L 3N6, Canada
- Biology Department, Carleton University, Ottawa, ON K1S 5B6, Canada
- Canadian Forest Service, Laurentian Forestry Centre, Sainte-Foy, QC G1V 4C7, Canada
- Centre de recherche en biologie forestière, Université Laval, QC G1K 7P4, Canada
| |
Collapse
|
40
|
Ries A, Goldberg JL, Grimpe B. A novel biological function for CD44 in axon growth of retinal ganglion cells identified by a bioinformatics approach. J Neurochem 2007; 103:1491-505. [PMID: 17760872 PMCID: PMC2901540 DOI: 10.1111/j.1471-4159.2007.04858.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The failure of CNS regeneration and subsequent motor and sensory loss remain major unsolved questions despite massive accumulation of experimental observations and results. The sheer volume of data and the variety of resources from which these data are generated make it difficult to integrate prior work to build new hypotheses. To address these challenges we developed a prototypic suite of computer programs to extract protein names from relevant publications and databases and associated each of them with several general categories of biological functions in nerve regeneration. To illustrate the usefulness of our data mining approach, we utilized the program output to generate a hypothesis for a biological function of CD44 interaction with osteopontin (OPN) and laminin in axon outgrowth of CNS neurons. We identified CD44 expression in retinal ganglion cells and when these neurons were plated on poly-l-lysine 3% of them initiated axon growth, on OPN 15%, on laminin-111 (1x) 41%, on laminin-111 (0.5x) 56%, and on a mixture of OPN and laminin (1x) 67% of neurons generated axon growth. With the aid of a deoxyribozyme (DNA enzyme) to CD44 that digests the target mRNA, we demonstrated that a reduction of CD44 expression led to reduced axon initiation of retinal ganglion cells on all substrates. We suggest that such an integrative, applied systems biology approach to CNS trauma will be critical to understand and ultimately overcome the failure of CNS regeneration.
Collapse
Affiliation(s)
- Albert Ries
- Department of Cell Biology, Max Planck Institute of Biochemistry, Munich, Germany
| | | | - Barbara Grimpe
- The Miami Project to Cure Paralysis, University of Miami, Miami, Florida, USA
| |
Collapse
|
41
|
Bashir K, Nagasaka S, Itai RN, Kobayashi T, Takahashi M, Nakanishi H, Mori S, Nishizawa NK. Expression and enzyme activity of glutathione reductase is upregulated by Fe-deficiency in graminaceous plants. PLANT MOLECULAR BIOLOGY 2007; 65:277-84. [PMID: 17710555 DOI: 10.1007/s11103-007-9216-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2006] [Accepted: 07/23/2007] [Indexed: 05/04/2023]
Abstract
Glutathione reductase (GR) plays an important role in the response to biotic and abiotic stresses in plants. We studied the expression patterns and enzyme activities of GR in graminaceous plants under Fe-sufficient and Fe-deficient conditions by isolating cDNA clones for chloroplastic GR (HvGR1) and cytosolic GR (HvGR2) from barley. We found that the sequences of GR1 and GR2 were highly conserved in graminaceous plants. Based on their nucleotide sequences, HvGR1 and HvGR2 were predicted to encode polypeptides of 550 and 497 amino acids, respectively. Both proteins showed in vitro GR activity, and the specific activity for HvGR1 was 3-fold that of HvGR2. Northern blot analyses were performed to examine the expression patterns of GR1 and GR2 in rice (Os), wheat (Ta), barley (Hv), and maize (Zm). HvGR1, HvGR2, and TaGR2 were upregulated in response to Fe-deficiency. Moreover, HvGR1 and TaGR1 were mainly expressed in shoot tissues, whereas HvGR2 and TaGR2 were primarily observed in root tissues. The GR activity increased in roots of barley, wheat, and maize and shoot tissues of rice, barley, and maize in response to Fe-deficiency. Furthermore, it appeared that GR was not post-transcriptionally regulated, at least in rice, wheat, and barley. These results suggest that GR may play a role in the Fe-deficiency response in graminaceous plants.
Collapse
MESH Headings
- Amino Acid Sequence
- Blotting, Northern
- Blotting, Western
- Chloroplasts/enzymology
- Cloning, Molecular
- Cytosol/enzymology
- DNA, Complementary/chemistry
- DNA, Complementary/genetics
- Gene Expression Regulation, Enzymologic/drug effects
- Gene Expression Regulation, Plant/drug effects
- Glutathione/metabolism
- Glutathione Reductase/genetics
- Glutathione Reductase/metabolism
- Hordeum/enzymology
- Iron/metabolism
- Iron/pharmacology
- Isoenzymes/genetics
- Isoenzymes/metabolism
- Models, Biological
- Molecular Sequence Data
- Oryza/genetics
- Phylogeny
- Sequence Analysis, DNA
- Sequence Homology, Amino Acid
- Triticum/genetics
- Up-Regulation/drug effects
- Up-Regulation/genetics
- Zea mays/genetics
Collapse
Affiliation(s)
- Khurram Bashir
- Laboratory of Plant Biotechnology, Department of Global Agricultural Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-Ku, Tokyo, 113-8657, Japan
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Jiang TB, Ding BJ, Li FJ, Yang CP. Differential expression of endogenous ferritin genes and iron homeostasis alteration in transgenic tobacco overexpressing soybean ferritin gene. YI CHUAN XUE BAO = ACTA GENETICA SINICA 2006; 33:1120-6. [PMID: 17185172 DOI: 10.1016/s0379-4172(06)60150-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2005] [Accepted: 02/20/2006] [Indexed: 10/23/2022]
Abstract
For studying the effects of endogenous ferritin gene expressions (NtFer1, GenBank accession number AY083924; and NtFer2, GenBank accession number AY141105) on the iron homeostasis in transgenic tobacco (Nicotiana tabacum L.) plants expressing soybean (Glycine max Merr) ferritin gene (SoyFer1, GenBank accession number M64337), the transgenic tobacco has been produced by placing soybean ferritin cDNA cassette under the control of the CaMV 35S promoter. The exogenous gene expression was examined by both Northern- and Western-blot analyses. Comparison of endogenous ferritin gene expressions between nontransformant and transgenic tobacco plants showed that the expression of NtFer1 was increased in the leaves of transgenic tobacco plants, whereas the NtFer2 expression was unchanged. The iron concentration in the leaves of transgenic tobacco plants was about 1.5-folds higher than that in nontransformant. Enhanced growth of transgenic tobacco was observed at the early development stages, resulting in plant height and fresh weights significantly greater than those in the nontransformant. These results demonstrated that exogenous ferritin expression induced increased expression of at least one of the endogenous ferritin genes in transgenic tobacco plants by enhancing the ferric chelate reductase activity and iron transport ability of the root, and improved the rate of photosynthesis.
Collapse
Affiliation(s)
- Ting-Bo Jiang
- Heilongjiang Key Laboratory of Forest Tree Improvement, Northeast Forestry University, Harbin 150040, China.
| | | | | | | |
Collapse
|
43
|
Grabusic K, Maier S, Hartmann A, Mantik A, Hammerschmidt W, Kempkes B. The CR4 region of EBNA2 confers viability of Epstein-Barr virus-transformed B cells by CBF1-independent signalling. J Gen Virol 2006; 87:3169-3176. [PMID: 17030849 DOI: 10.1099/vir.0.82105-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The Epstein-Barr virus (EBV) nuclear antigen 2 (EBNA2) gene product is the key regulator of the latent genes of EBV and essential for EBV-mediated transformation of human primary B cells. Viral mutants were constructed carrying a deletion of the EBNA2 conserved region 4 (CR4). Primary resting B cells infected with the DeltaCR4-EBNA2 mutant virus were dramatically impaired for B cell transformation. Lymphoblastoid cell lines (LCLs) established with this mutant EBV revealed a prolonged population doubling time when cells were cultivated at low cell densities, which are not critical for wild-type-infected cells. Low-level spontaneous cell death occurred when the cells were cultivated at suboptimal cell densities. The phenotype of B cells and LCLs infected with the DeltaCR4-EBNA2 mutant virus indicated that the CR4 region of EBNA2 specifically contributes to the viability of the cells rather than affecting cell division rates.
Collapse
Affiliation(s)
- Kristina Grabusic
- GSF - National Research Center for Environment and Health, Institute of Clinical Molecular Biology, Marchioninistr. 25, D-81377 Munich, Germany
| | - Sabine Maier
- GSF - National Research Center for Environment and Health, Institute of Clinical Molecular Biology, Marchioninistr. 25, D-81377 Munich, Germany
| | - Andrea Hartmann
- GSF - National Research Center for Environment and Health, Institute of Clinical Molecular Biology, Marchioninistr. 25, D-81377 Munich, Germany
| | - Anja Mantik
- GSF - National Research Center for Environment and Health, Institute of Clinical Molecular Biology, Marchioninistr. 25, D-81377 Munich, Germany
| | | | - Bettina Kempkes
- GSF - National Research Center for Environment and Health, Institute of Clinical Molecular Biology, Marchioninistr. 25, D-81377 Munich, Germany
| |
Collapse
|
44
|
Felsheim RF, Herron MJ, Nelson CM, Burkhardt NY, Barbet AF, Kurtti TJ, Munderloh UG. Transformation of Anaplasma phagocytophilum. BMC Biotechnol 2006; 6:42. [PMID: 17076894 PMCID: PMC1635035 DOI: 10.1186/1472-6750-6-42] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2006] [Accepted: 10/31/2006] [Indexed: 11/16/2022] Open
Abstract
Background Tick-borne pathogens cause emerging zoonoses, and include fastidious organisms such as Anaplasma phagocytophilum. Because of their obligate intracellular nature, methods for mutagenesis and transformation have not been available. Results To facilitate genetic manipulation, we transformed A. phagocytophilum (Ap) to express a green fluorescent protein (GFP) with the Himar1 transposase system and selection with the clinically irrelevant antibiotic spectinomycin. Conclusion These transformed bacteria (GFP/Ap) grow at normal rates and are brightly fluorescent in human, monkey, and tick cell culture. Molecular characterization of the GFP/Ap genomic DNA confirmed transposition and the flanking genomic insertion locations were sequenced. Three mice inoculated with GFP/Ap by intraperitoneal injection became infected as demonstrated by the appearance of morulae in a peripheral blood neutrophil and re-isolation of the bacteria in culture.
Collapse
Affiliation(s)
| | - Michael J Herron
- Department of Entomology, University of Minnesota, St. Paul, MN, 55108, USA
| | - Curtis M Nelson
- Department of Entomology, University of Minnesota, St. Paul, MN, 55108, USA
| | - Nicole Y Burkhardt
- Department of Entomology, University of Minnesota, St. Paul, MN, 55108, USA
| | - Anthony F Barbet
- Department of Pathobiology, College of Veterinary Medicine, University of Florida, Gainesville, FL, 32611, USA
| | - Timothy J Kurtti
- Department of Entomology, University of Minnesota, St. Paul, MN, 55108, USA
| | - Ulrike G Munderloh
- Department of Entomology, University of Minnesota, St. Paul, MN, 55108, USA
| |
Collapse
|
45
|
Faveri M, Feres M, Shibli JA, Hayacibara RF, Hayacibara MM, de Figueiredo LC. Microbiota of the dorsum of the tongue after plaque accumulation: an experimental study in humans. J Periodontol 2006; 77:1539-46. [PMID: 16945032 DOI: 10.1902/jop.2006.050366] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
BACKGROUND The purpose of the present investigation was to determine the effect of the absence of tongue hygiene on the microbiota of the dorsum of the tongue. METHODS Ten volunteers (aged 19 to 22 years) entered the study at baseline and were instructed to abstain from tongue cleaning for 7 days, followed by a period of 3 days without any kind of oral hygiene. Subsequently, a period of 21 days of washout was employed, and this protocol was repeated three times. Microbiological samples were obtained from the dorsum of the tongue at baseline and at the end of the period of coating accumulation and analyzed using the checkerboard DNA-DNA hybridization technique. RESULTS The species found in highest mean counts at baseline and day 10 were Prevotella melaninogenica and Veillonella parvula. The mean bacterial total counts enhanced significantly during the study (from 17.1x10(6) to 33.7x10(6)). Proportions of red and blue complexes and levels of 18 species also increased after the period of coating accumulation, including several periodontal pathogens, such as Prevotella intermedia, Prevotella nigrescens, Streptococcus constellatus, Tannerella forsythensis, Porphyromonas gingivalis, Treponema denticola, and P. melaninogenica. CONCLUSION The tongue surface could be an important reservoir for periodontal pathogens and may play a role in the recolonization of tooth surfaces and in the etiology of oral halitosis.
Collapse
Affiliation(s)
- Marcelo Faveri
- Department of Periodontology, Dental Research Division, Guarulhos University, Guarulhos, São Paulo, Brazil
| | | | | | | | | | | |
Collapse
|
46
|
Härtig E, Hartmann A, Schätzle M, Albertini AM, Jahn D. The Bacillus subtilis nrdEF genes, encoding a class Ib ribonucleotide reductase, are essential for aerobic and anaerobic growth. Appl Environ Microbiol 2006; 72:5260-5. [PMID: 16885274 PMCID: PMC1538738 DOI: 10.1128/aem.00599-06] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Ribonucleotide reductases (RNRs) are essential for the biosynthesis of the deoxyribonucleoside triphosphates of DNA. Recently, it was proposed that externally supplied deoxyribonucleosides or DNA is required for the growth of Bacillus subtilis under strict anaerobic conditions (M. J. Folmsbee, M. J. McInerney, and D. P. Nagle, Appl. Environ. Microbiol. 70:5252-5257, 2004). Cultivation of B. subtilis on minimal medium in the presence of oxygen indicators in combination with oxygen electrode measurements and viable cell counting demonstrated that growth occurred under strict anaerobic conditions in the absence of externally supplied deoxyribonucleosides. The nrdEF genes encode the only obvious RNR in B. subtilis. A temperature-sensitive nrdE mutant failed to grow under aerobic and anaerobic conditions, indicating that this oxygen-dependent class I RNR has an essential role under both growth conditions. Aerobic growth and anaerobic growth of the nrdE mutant were rescued by addition of deoxynucleotides. The nrd locus consists of an nrdI-nrdE-nrdF-ymaB operon. The 5' end of the corresponding mRNA revealed transcriptional start sites 45 and 48 bp upstream of the translational start of nrdI. Anaerobic transcription of the operon was found to be dependent on the presence of intact genes for the ResDE two-component redox regulatory system. Two potential ResD binding sites were identified approximately 62 bp (site A) and 50 bp (site B) upstream of the transcriptional start sites by a bioinformatic approach. Only mutation of site B eliminated nrd expression. Aerobic transcription was ResDE independent but required additional promoter elements localized between 88 and 275 bp upstream of the transcriptional start.
Collapse
Affiliation(s)
- Elisabeth Härtig
- Institute of Microbiology, Technical University of Braunschweig, D-38106 Braunschweig, Germany.
| | | | | | | | | |
Collapse
|
47
|
Wong JL, Wessel GM. Rendezvin: An essential gene encoding independent, differentially secreted egg proteins that organize the fertilization envelope proteome after self-association. Mol Biol Cell 2006; 17:5241-52. [PMID: 17005910 PMCID: PMC1679687 DOI: 10.1091/mbc.e06-07-0634] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Preventing polyspermy during animal fertilization relies on modifications to the egg's extracellular matrix. On fertilization in sea urchins, the contents of cortical granules are secreted and rapidly assemble into the egg's extracellular vitelline layer, forming the fertilization envelope, a proteinaceous structure that protects the zygote from subsequent sperm. Here, we document rendezvin, a gene whose transcript is differentially spliced to yield proteins destined for either cortical granules or the vitelline layer. These distinctly trafficked variants reunite after cortical granule secretion at fertilization. Together, they help coordinate assembly of the functional fertilization envelope, whose proteome is now defined in full.
Collapse
Affiliation(s)
- Julian L. Wong
- Department of Molecular Biology, Cellular Biology, and Biochemistry, Brown University, Providence, RI 02912
| | - Gary M. Wessel
- Department of Molecular Biology, Cellular Biology, and Biochemistry, Brown University, Providence, RI 02912
| |
Collapse
|
48
|
Bashir K, Inoue H, Nagasaka S, Takahashi M, Nakanishi H, Mori S, Nishizawa NK. Cloning and characterization of deoxymugineic acid synthase genes from graminaceous plants. J Biol Chem 2006; 281:32395-402. [PMID: 16926158 DOI: 10.1074/jbc.m604133200] [Citation(s) in RCA: 177] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Graminaceous plants have evolved a unique mechanism to acquire iron through the secretion of a family of small molecules, called mugineic acid family phytosiderophores (MAs). All MAs are synthesized from l-Met, sharing the same pathway from l-Met to 2'-deoxymugineic acid (DMA). DMA is synthesized through the reduction of a 3''-keto intermediate by deoxymugineic acid synthase (DMAS). We have isolated DMAS genes from rice (OsDMAS1), barley (HvDMAS1), wheat (TaD-MAS1), and maize (ZmDMAS1). Their nucleotide sequences indicate that OsDMAS1 encodes a predicted polypeptide of 318 amino acids, whereas the other three orthologs all encode predicted polypeptides of 314 amino acids and are highly homologous (82-97.5%) to each other. The DMAS proteins belong to the aldo-keto reductase superfamily 4 (AKR4) but do not fall within the existing subfamilies of AKR4 and appear to constitute a new subfamily within the AKR4 group. All of the proteins showed DMA synthesis activity in vitro. Their enzymatic activities were highest at pH 8-9, consistent with the hypothesis that DMA is synthesized in subcellular vesicles. Northern blot analysis revealed that the expression of each of the above DMAS genes is up-regulated under iron-deficient conditions in root tissue, and that of the genes OsDMAS1 and TaDMAS1 is up-regulated in shoot tissue. OsDMAS1 promoter-GUS analysis in iron-sufficient roots showed that its expression is restricted to cells participating in long distance transport and that it is highly up-regulated in the entire root under iron-deficient conditions. In shoot tissue, OsDMAS1 promoter drove expression in vascular bundles specifically under iron-deficient conditions.
Collapse
Affiliation(s)
- Khurram Bashir
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657
| | | | | | | | | | | | | |
Collapse
|
49
|
Mohan J, Dement-Brown J, Maier S, Ise T, Kempkes B, Tolnay M. Epstein-Barr virus nuclear antigen 2 induces FcRH5 expression through CBF1. Blood 2006; 107:4433-9. [PMID: 16439682 DOI: 10.1182/blood-2005-09-3815] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
AbstractFc-receptor homolog 5 (FcRH5) is a recently identified B-cell membrane protein of unknown function. In Burkitt lymphoma cell lines with chromosome 1q21 abnormalities, FcRH5 expression is deregulated, implicating FcRH5 in lymphomagenesis. Epstein-Barr virus infects and immortalizes B cells, and is implicated in the etiology of several tumors of B-cell origin. Overexpression of genes located on 1q21-25 has been proposed as a surrogate for Epstein-Barr virus in Burkitt lymphoma. We now report that Epstein-Barr virus nuclear antigen 2 (EBNA2) markedly induces the expression of the FcRH5 gene, encoded on chromosome 1q21. Induction occurred in the absence of other viral proteins and did not require de novo protein synthesis. EBNA2 lacks a DNA-binding domain and can target responsive genes through the host DNA binding protein CBF1. We show that induction of FcRH5 by EBNA2 is strictly CBF1 dependent, as it was abolished in CBF1-deficient cells. Accordingly, EBNA2 targeted CBF1 binding sites present in the FcRH5 promoter in vivo, as detected by chromatin immunoprecipitation. These results identify FcRH5 as a novel, direct target of EBNA2 that may contribute to the development of Epstein-Barr virus–associated tumors.
Collapse
Affiliation(s)
- Joanne Mohan
- Division of Monoclonal Antibodies, Center for Drug Evaluation and Research, Food and Drug Administration, Rockville, MD 20857, USA
| | | | | | | | | | | |
Collapse
|
50
|
Voegele RT, Wirsel S, Möll U, Lechner M, Mendgen K. Cloning and characterization of a novel invertase from the obligate biotroph Uromyces fabae and analysis of expression patterns of host and pathogen invertases in the course of infection. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2006; 19:625-34. [PMID: 16776296 DOI: 10.1094/mpmi-19-0625] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Invertases are key enzymes in carbon partitioning in higher plants. They gain additional importance in the distribution of carbohydrates in the event of wounding or pathogen attack. Although many researchers have found an increase in invertase activity upon infection, only a few studies were able to determine whether the source of this activity was host or parasite. This article analyzes the role of invertases involved in the biotrophic interaction of the rust fungus Uromyces fabae and its host plant, Vicia faba. We have identified a fungal gene, Uf-INV1, with homology to invertases and assessed its contribution to pathogenesis. Expression analysis indicated that transcription began upon penetration of the fungus into the leaf, with high expression levels in haustoria. Heterologous expression of Uf-INV1 in Saccharomyces cerevisiae and Pichia pastoris allowed a biochemical characterization of the enzymatic activity associated with the secreted gene product INV1p. Expression analysis of the known vacuolar and cell-wall-bound invertase isoforms of V. faba indicated a decrease in the expression of a vacuolar invertase, whereas one cell-wall-associated invertase exhibited increased expression. These changes were not confined to the infected tissue, and effects also were observed in remote plant organs, such as roots. These findings hint at systemic effects of pathogen infection. Our results support the hypothesis that pathogen infection establishes new sinks which compete with physiological sink organs.
Collapse
Affiliation(s)
- Ralf T Voegele
- Phytopathologie, Fachbereich Biologie, Universität Konstanz, 78457 Konstanz, Germany.
| | | | | | | | | |
Collapse
|