1
|
Xie W, Dhinojwala A, Gianneschi NC, Shawkey MD. Interactions of Melanin with Electromagnetic Radiation: From Fundamentals to Applications. Chem Rev 2024; 124:7165-7213. [PMID: 38758918 DOI: 10.1021/acs.chemrev.3c00858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/19/2024]
Abstract
Melanin, especially integumentary melanin, interacts in numerous ways with electromagnetic radiation, leading to a set of critical functions, including radiation protection, UV-protection, pigmentary and structural color productions, and thermoregulation. By harnessing these functions, melanin and melanin-like materials can be widely applied to diverse applications with extraordinary performance. Here we provide a unified overview of the melanin family (all melanin and melanin-like materials) and their interactions with the complete electromagnetic radiation spectrum (X-ray, Gamma-ray, UV, visible, near-infrared), which until now has been absent from the literature and is needed to establish a solid fundamental base to facilitate their future investigation and development. We begin by discussing the chemistries and morphologies of both natural and artificial melanin, then the fundamentals of melanin-radiation interactions, and finally the exciting new developments in high-performance melanin-based functional materials that exploit these interactions. This Review provides both a comprehensive overview and a discussion of future perspectives for each subfield of melanin that will help direct the future development of melanin from both fundamental and applied perspectives.
Collapse
Affiliation(s)
- Wanjie Xie
- Department of Biology, Evolution and Optics of Nanostructure Group, University of Ghent, Gent 9000, Belgium
| | - Ali Dhinojwala
- School of Polymer Science and Polymer Engineering, The University of Akron, Akron, Ohio 44325, United States
| | - Nathan C Gianneschi
- Department of Chemistry, Department of Materials Science and Engineering, Department of Biomedical Engineering, Simpson-Querrey Institute, Chemistry of Life Processes Institute, Lurie Cancer Center, and International Institute of Nanotechnology, Northwestern University, Evanston, Illinois 60208, United States
| | - Matthew D Shawkey
- Department of Biology, Evolution and Optics of Nanostructure Group, University of Ghent, Gent 9000, Belgium
| |
Collapse
|
2
|
Chen H, Wang J, Du J, Mandal BK, Si Z, Xu X, Yang H, Wang C. Analysis of recently duplicated TYRP1 genes and their effect on the formation of black patches in Oujiang-color common carp (Cyprinus carpio var. color). Anim Genet 2021; 52:451-460. [PMID: 33939849 DOI: 10.1111/age.13071] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/11/2021] [Indexed: 11/29/2022]
Abstract
Tyrp1 gene, as a member of the tyrosinase family, has undergone a recent duplication event during fourth-round whole genome duplication in common carp. In this research, three Tyrp1 genes were identified in Oujiang-color common carp (Cyprinus carpio var. color). The similar expression patterns and close phylogenetic relationship indicated that Tyrp1c is homologous to Tyrp1b and possibly originated from the ancient Tyrp1b. The rates of synonymous and non-synonymous substitution (Ka /Ks ) in Tyrp1 across teleost phylogeny indicated that Tyrp1a is more likely to be in the process of purifying selection. The CRISPR/Cas9 system was used to disrupt the Tyrp1 genes in zebrafish and the WB (black patches on white skin) strain of Oujiang-color common carp. The Tyrp1 loss of function variants in zebrafish and WB carp showed severe melanin deficiency in the skin. Meanwhile, inactivation of a single Tyrp1 gene did not obstruct melanin synthesis, which proved that the functional redundancy of Tyrp1 genes existed in both zebrafish and Oujiang-color common carp. Among the mosaic individuals with Tyrp1 genes in disrupted-color common carp, various mutations in Tyrp1b gene induced gray or brown phenotypes, suggesting that it may be bifunctional in Oujiang-color common carp. In addition, the phenotype of WB variants was different from that of WW (whole white skin), suggesting that Tyrp1 genes were not the key factor that caused the difference between WB and WW.
Collapse
Affiliation(s)
- H Chen
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, Shanghai, 201306, China.,National Demonstration Center for Experimental Fisheries Science Education (Shanghai Ocean University), Shanghai, 201306, China.,Shanghai Engineering Research Center of Aquaculture, Shanghai, 201306, China.,Institute of Hydrobiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - J Wang
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, Shanghai, 201306, China.,National Demonstration Center for Experimental Fisheries Science Education (Shanghai Ocean University), Shanghai, 201306, China.,Shanghai Engineering Research Center of Aquaculture, Shanghai, 201306, China
| | - J Du
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, Shanghai, 201306, China.,National Demonstration Center for Experimental Fisheries Science Education (Shanghai Ocean University), Shanghai, 201306, China.,Shanghai Engineering Research Center of Aquaculture, Shanghai, 201306, China
| | - B K Mandal
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, Shanghai, 201306, China.,National Demonstration Center for Experimental Fisheries Science Education (Shanghai Ocean University), Shanghai, 201306, China.,Shanghai Engineering Research Center of Aquaculture, Shanghai, 201306, China
| | - Zh Si
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, Shanghai, 201306, China.,National Demonstration Center for Experimental Fisheries Science Education (Shanghai Ocean University), Shanghai, 201306, China.,Shanghai Engineering Research Center of Aquaculture, Shanghai, 201306, China
| | - X Xu
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, Shanghai, 201306, China.,National Demonstration Center for Experimental Fisheries Science Education (Shanghai Ocean University), Shanghai, 201306, China.,Shanghai Engineering Research Center of Aquaculture, Shanghai, 201306, China
| | - H Yang
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, Shanghai, 201306, China.,National Demonstration Center for Experimental Fisheries Science Education (Shanghai Ocean University), Shanghai, 201306, China.,Shanghai Engineering Research Center of Aquaculture, Shanghai, 201306, China
| | - Ch Wang
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, Shanghai, 201306, China.,National Demonstration Center for Experimental Fisheries Science Education (Shanghai Ocean University), Shanghai, 201306, China.,Shanghai Engineering Research Center of Aquaculture, Shanghai, 201306, China
| |
Collapse
|
3
|
Cao W, Zhou X, McCallum NC, Hu Z, Ni QZ, Kapoor U, Heil CM, Cay KS, Zand T, Mantanona AJ, Jayaraman A, Dhinojwala A, Deheyn DD, Shawkey MD, Burkart MD, Rinehart JD, Gianneschi NC. Unraveling the Structure and Function of Melanin through Synthesis. J Am Chem Soc 2021; 143:2622-2637. [PMID: 33560127 DOI: 10.1021/jacs.0c12322] [Citation(s) in RCA: 145] [Impact Index Per Article: 48.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Melanin is ubiquitous in living organisms across different biological kingdoms of life, making it an important, natural biomaterial. Its presence in nature from microorganisms to higher animals and plants is attributed to the many functions of melanin, including pigmentation, radical scavenging, radiation protection, and thermal regulation. Generally, melanin is classified into five types-eumelanin, pheomelanin, neuromelanin, allomelanin, and pyomelanin-based on the various chemical precursors used in their biosynthesis. Despite its long history of study, the exact chemical makeup of melanin remains unclear, and it moreover has an inherent diversity and complexity of chemical structure, likely including many functions and properties that remain to be identified. Synthetic mimics have begun to play a broader role in unraveling structure and function relationships of natural melanins. In the past decade, polydopamine, which has served as the conventional form of synthetic eumelanin, has dominated the literature on melanin-based materials, while the synthetic analogues of other melanins have received far less attention. In this perspective, we will discuss the synthesis of melanin materials with a special focus beyond polydopamine. We will emphasize efforts to elucidate biosynthetic pathways and structural characterization approaches that can be harnessed to interrogate specific structure-function relationships, including electron paramagnetic resonance (EPR) and solid-state nuclear magnetic resonance (ssNMR) spectroscopy. We believe that this timely Perspective will introduce this class of biopolymer to the broader chemistry community, where we hope to stimulate new opportunities in novel, melanin-based poly-functional synthetic materials.
Collapse
Affiliation(s)
| | | | | | | | - Qing Zhe Ni
- Department of Chemistry & Biochemistry, University of California, San Diego, La Jolla, California 92093, United States
| | - Utkarsh Kapoor
- Department of Chemical and Biomolecular Engineering, Colburn Laboratory, University of Delaware, Newark, Delaware 19716, United States
| | - Christian M Heil
- Department of Chemical and Biomolecular Engineering, Colburn Laboratory, University of Delaware, Newark, Delaware 19716, United States
| | - Kristine S Cay
- Department of Chemistry & Biochemistry, University of California, San Diego, La Jolla, California 92093, United States
| | - Tara Zand
- Department of Chemistry & Biochemistry, University of California, San Diego, La Jolla, California 92093, United States
| | - Alex J Mantanona
- Department of Chemistry & Biochemistry, University of California, San Diego, La Jolla, California 92093, United States
| | - Arthi Jayaraman
- Department of Chemical and Biomolecular Engineering, Colburn Laboratory, Department of Materials Science and Engineering, University of Delaware, Newark, Delaware 19716, United States
| | - Ali Dhinojwala
- Department of Polymer Science, The University of Akron, Akron, Ohio 44325, United States
| | - Dimitri D Deheyn
- Marine Biology Research Division, Scripps Institution of Oceanography, La Jolla, California 92093-0202, United States
| | - Matthew D Shawkey
- Evolution and Optics of Nanostructures Group, Department of Biology, The University of Ghent, 9000 Ghent, Belgium
| | - Michael D Burkart
- Department of Chemistry & Biochemistry, University of California, San Diego, La Jolla, California 92093, United States
| | - Jeffrey D Rinehart
- Department of Chemistry & Biochemistry, University of California, San Diego, La Jolla, California 92093, United States
| | - Nathan C Gianneschi
- Department of Chemistry & Biochemistry, University of California, San Diego, La Jolla, California 92093, United States
| |
Collapse
|
4
|
Yang J, Ye R, Zhang H, Liu Y. Amplification of lmbB1 gene in Streptomyces lincolnensis improves quantity and quality of lincomycin A fermentation. Prep Biochem Biotechnol 2020; 50:529-537. [PMID: 31916478 DOI: 10.1080/10826068.2019.1710714] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
As a lincosamide antibiotic, lincomycin is still important for treating diseases caused by Gram-positive bacteria. Manufacturing of lincomycin needs efforts to, e.g. maximize desirable species and minimizing unwanted fermentation byproducts. Analysis of the lincomycin biosynthetic gene cluster of Streptomyces lincolnensis, lmbB1, was shown to catalyze the conversion of L-dopa but not of L-tyrosine and then further generated the precursor of lincomycin A. Based on the principle of directed breeding, a strain termed as S. lincolnensis 24-2, was obtained in this work. By overexpressing the lmbB1 gene, this strain produces efficacious lincomycin A and suppresses melanin generation, whereas contains unwanted lincomycin B. The good fermentation performance of the mutant-lmbB1 (M-lmbB1) was also confirmed in a 15 L-scale bioreactor, which increased the lincomycin A production by 37.6% compared with control of 6435 u/mL and reduced the accumulation of melanin by 29.9% and lincomycin B by 73.4%. This work demonstrated that the amplification of lmbB1 gene mutation and metabolic engineering could promote lincomycin biosynthesis and might be helpful for reducing the production of other industrially unnecessary byproduct.
Collapse
Affiliation(s)
- Jing Yang
- The State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Ruifang Ye
- The State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | | | - Yan Liu
- Topfond Pharmaceutical Co., Ltd, Henan, China
| |
Collapse
|
5
|
Tanaka H, Yamashita Y, Umezawa K, Hirobe T, Ito S, Wakamatsu K. The Pro-Oxidant Activity of Pheomelanin is Significantly Enhanced by UVA Irradiation: Benzothiazole Moieties Are More Reactive than Benzothiazine Moieties. Int J Mol Sci 2018; 19:E2889. [PMID: 30249034 PMCID: PMC6213070 DOI: 10.3390/ijms19102889] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 09/22/2018] [Accepted: 09/22/2018] [Indexed: 11/18/2022] Open
Abstract
It is generally considered that eumelanin (EM) is photoprotective while pheomelanin (PM) is phototoxic. A recent study using a mouse model demonstrated that PM produces reactive oxygen species (ROS) that cause DNA damage and eventually lead to melanomagenesis. A biochemical study showed that PM possesses a pro-oxidant activity. PM consists of benzothiazine (BT) and benzothiazole (BZ) moieties, BT moieties being transformed to BZ moieties by heat or light. In this study, we compared the effects of ultraviolet A (UVA) irradiation using synthetic PMs with different BT to BZ ratios and using various coat color mouse hairs. We found that UVA irradiation of BZ-PM increased glutathione (GSH) depletion and generated more H₂O₂ than UVA irradiation of BT-PM. Non-irradiated controls did not exhibit strong pro-oxidant activities. Upon UVA irradiation, yellow mouse hairs oxidized GSH and produced H₂O₂ faster than black or albino mouse hairs. Next, to examine the mechanism of the pro-oxidant activity of BT-PM and BZ-PM, we examined the pro-oxidant activities of 7-(2-amino-2-carboxyethyl)-dihydro-1,4-benzothiazine-3-carboxylic acid (DHBTCA) and 6-(2-amino-2-carboxyethyl)-4-hydroxybenzothiazole (BZ-AA) as BT and BZ monomers, respectively. Their pro-oxidant activities were similar, but a large difference was seen in the effects of ROS scavengers, which suggests that the redox reactions may proceed via singlet oxygen in BZ-AA and via superoxide anions in DHBTCA. These results show that UVA enhances the pro-oxidant activity of PM, in particular BZ-PM.
Collapse
Affiliation(s)
- Hitomi Tanaka
- Department of Chemistry, Fujita Health University School of Health Sciences, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake, Aichi 470-1192, Japan.
| | - Yui Yamashita
- Department of Chemistry, Fujita Health University School of Health Sciences, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake, Aichi 470-1192, Japan.
| | - Kana Umezawa
- Department of Chemistry, Fujita Health University School of Health Sciences, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake, Aichi 470-1192, Japan.
| | - Tomohisa Hirobe
- Laboratory for Cell Culture and Pathology, Shinjuku Skin Clinic, Kawase Building BF1, Shinjuku 3-17-5, Shinjuku-ku, Tokyo 160-0022, Japan.
| | - Shosuke Ito
- Department of Chemistry, Fujita Health University School of Health Sciences, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake, Aichi 470-1192, Japan.
| | - Kazumasa Wakamatsu
- Department of Chemistry, Fujita Health University School of Health Sciences, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake, Aichi 470-1192, Japan.
| |
Collapse
|
6
|
Galván I, Araujo-Andrade C, Marro M, Loza-Alvarez P, Wakamatsu K. Raman spectroscopy quantification of eumelanin subunits in natural unaltered pigments. Pigment Cell Melanoma Res 2018; 31:673-682. [DOI: 10.1111/pcmr.12707] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 04/19/2018] [Accepted: 04/20/2018] [Indexed: 11/25/2022]
Affiliation(s)
- Ismael Galván
- Departamento de Ecología Evolutiva; Estación Biológica de Doñana; CSIC; Sevilla Spain
| | - Cuauhtemoc Araujo-Andrade
- ICFO - Institut de Ciencies Fotoniques; The Barcelona Institute of Science and Technology; Castelldefels Spain
- Unidad Académica de Física; Universidad Autónoma de Zacatecas; Zacatecas Mexico
| | - Mónica Marro
- ICFO - Institut de Ciencies Fotoniques; The Barcelona Institute of Science and Technology; Castelldefels Spain
| | - Pablo Loza-Alvarez
- ICFO - Institut de Ciencies Fotoniques; The Barcelona Institute of Science and Technology; Castelldefels Spain
| | - Kazumasa Wakamatsu
- Department of Chemistry; Fujita Health University School of Health Sciences; Toyoake Japan
| |
Collapse
|
7
|
Solano F. Photoprotectionversusphotodamage: updating an old but still unsolved controversy about melanin. POLYM INT 2016. [DOI: 10.1002/pi.5117] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- F Solano
- Department of Biochemistry and Molecular Biology B and Research Group for Molecular Control of Cell Proliferation, School of Medicine and IMIB; University of Murcia; 30100 Murcia Spain
| |
Collapse
|
8
|
Melanin characterisation suggests that the “brown” phenotype in alpaca (Vicugna pacos) is predominantly pheomelanic. Small Rumin Res 2013. [DOI: 10.1016/j.smallrumres.2013.07.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
9
|
Ito S, Suzuki N, Takebayashi S, Commo S, Wakamatsu K. Neutral pH and copper ions promote eumelanogenesis after the dopachrome stage. Pigment Cell Melanoma Res 2013; 26:817-25. [PMID: 23844795 DOI: 10.1111/pcmr.12137] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2013] [Accepted: 07/08/2013] [Indexed: 11/28/2022]
Abstract
The diversity of pigmentation in the skin, hair, and eyes of humans has been largely attributed to the diversity of pH in melanosomes with acidic pH being proposed to suppress melanin production. Tyrosinase has an optimum pH of 7.4 and its activity is suppressed greatly at lower pH values. The first step of eumelanogenesis is the oxidation of tyrosine to dopachrome (DC) via dopaquinone. However, how eumelanogenesis is controlled by pH beyond this stage is not known. In this study, we examined the effects of pH (5.3-7.3) on the conversion of DC to 5,6-dihydroxyindole (DHI) and 5,6-dihydroxyindole-2-carboxylic acid (DHICA) and the subsequent oxidation of DHI and DHICA to form eumelanin. The effects of Cu(2+) ions on those reactions were also compared. The results indicate that an acidic pH greatly suppresses the late stages of eumelanogenesis and that Cu(2+) ions accelerate the conversion of DC to DHICA and its subsequent oxidation.
Collapse
Affiliation(s)
- Shosuke Ito
- Department of Chemistry, Fujita Health University School of Health Sciences, Toyoake, Aichi, Japan
| | | | | | | | | |
Collapse
|
10
|
Ito S, Wakamatsu K, Glass K, Simon JD. High-performance liquid chromatography estimation of cross-linking of dihydroxyindole moiety in eumelanin. Anal Biochem 2013; 434:221-5. [DOI: 10.1016/j.ab.2012.12.005] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2012] [Revised: 10/31/2012] [Accepted: 12/04/2012] [Indexed: 10/27/2022]
|
11
|
Wakamatsu K, Nakanishi Y, Miyazaki N, Kolbe L, Ito S. UVA-induced oxidative degradation of melanins: fission of indole moiety in eumelanin and conversion to benzothiazole moiety in pheomelanin. Pigment Cell Melanoma Res 2012; 25:434-45. [PMID: 22551214 DOI: 10.1111/j.1755-148x.2012.01011.x] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Eumelanin is photoprotective while pheomelanin is phototoxic to pigmented tissues. Ultraviolet A (UVA)-induced tanning seems to result from the photooxidation of pre-existing melanin and contributes no photoprotection. However, data available for melanin biodegradation remain limited. In this study, we first examined photodegradation of eumelanin and pheomelanin in human black hairs and found that the ratio of Free (formed by peroxidation in situ) to Total (after hydrogen peroxide oxidation) pyrrole-2,3,5-tricarboxylic acid (PTCA) increases with hair aging, indicating fission of the dihydroxyindole moiety. In red hair, the ratio of thiazole-2,4,5-tricarboxylic acid (TTCA) to 4-amino-3-hydroxyphenylalanine (4-AHP) increases with aging, indicating the conversion from benzothiazine to benzothiazole moiety. These photodegradation of melanins were confirmed by UVA (not UVB) irradiation of melanins from mice and human hairs and synthetic eumelanin and pheomelanin. These results show that both eumelanin and pheomelanin degrade by UVA and that Free/Total PTCA and TTCA/4-AHP ratios serve as sensitive indicators of photodegradation.
Collapse
Affiliation(s)
- Kazumasa Wakamatsu
- Department of Chemistry, Fujita Health University School of Health Sciences, Toyoake, Aichi, Japan
| | | | | | | | | |
Collapse
|
12
|
Hyogo R, Nakamura A, Okuda H, Wakamatsu K, Ito S, Sota T. Mid-infrared vibrational spectroscopic characterization of 5,6-dihydroxyindole and eumelanin derived from it. Chem Phys Lett 2011. [DOI: 10.1016/j.cplett.2011.10.043] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
13
|
Liu XM, Zhou Q, Xu SZ, Wakamatsu K, Lei TC. Maintenance of immune hyporesponsiveness to melanosomal proteins by DHICA-mediated antioxidation: Possible implications for autoimmune vitiligo. Free Radic Biol Med 2011; 50:1177-85. [PMID: 21256957 DOI: 10.1016/j.freeradbiomed.2011.01.017] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2010] [Revised: 12/21/2010] [Accepted: 01/12/2011] [Indexed: 11/15/2022]
Abstract
Melanocyte destruction in the skin of vitiligo patients has been considered to be a consequence of an autoimmune response against melanosomal proteins. However, little is known about the molecular mechanisms by which the immune system recognizes these sequestered intracellular self-proteins, which are confined in specialized organelles termed melanosomes, and is provoked into an autoimmune response to melanocytes. Here, we utilize a sucrose density-gradient ultracentrifugation protocol to enrich melanosomal components from dopachrome tautomerase (Dct)-mutant or wild-type melanocytes exposed to a pulse of hydrogen peroxide at a noncytotoxic concentration to evaluate their immunogenicity in mice challenged with the corresponding melanosomal proteins. The results demonstrate that enhanced humoral and cellular immune responses to a challenge with late-stage melanosomal proteins, especially with those derived from Dct-mutant melanocytes, are found in the immunized mice. To elucidate whether a reduced 5,6-dihydroxyindole-2-carboxylic acid (DHICA) content in melanin might cause a loss in antioxidative protection to the proteins, we incubated these melanosomal proteins in vitro with synthetic 5,6-dihydroindole (DHI)-melanin or DHI/DHICA (1:1)-melanin and then used them to immunize mice. T cell proliferation and IgG antibody responsiveness to the challenges were significantly induced by melanosomal proteins treated with DHI-melanin, but not by those treated with DHI/DHICA (1:1)-melanin. Moreover, we observed that melanosomal proteins derived from Dct-mutant melanocytes are subject to oxidative modifications that alter their antigenic configurations to attain an enhanced immunogenicity compared with those derived from wild-type melanocytes. From these results, we conclude that DHICA-mediated antioxidation plays a critical role in the maintenance of immune hyporesponsiveness to melanosomal proteins.
Collapse
Affiliation(s)
- Xiao-Ming Liu
- Department of Dermatology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | | | | | | | | |
Collapse
|
14
|
Ito S, Wakamatsu K. Human hair melanins: what we have learned and have not learned from mouse coat color pigmentation. Pigment Cell Melanoma Res 2011; 24:63-74. [PMID: 20726950 DOI: 10.1111/j.1755-148x.2010.00755.x] [Citation(s) in RCA: 103] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Hair pigmentation is one of the most conspicuous phenotypes in humans. Melanocytes produce two distinct types of melanin pigment: brown to black, indolic eumelanin and yellow to reddish brown, sulfur-containing pheomelanin. Biochemically, the precursor tyrosine and the key enzyme tyrosinase and the tyrosinase-related proteins are involved in eumelanogenesis, while only the additional presence of cysteine is necessary for pheomelanogenesis. Other important proteins involved in melanogenesis include P protein, MATP protein, α-MSH, agouti signaling protein (ASIP), MC1R (the receptor for MSH and ASIP), and SLC7A11, a cystine transporter. Many studies have examined the effects of loss-of-function mutations of those proteins on mouse coat color pigmentation. In contrast, much less is known regarding the effects of mutations of the corresponding proteins on human hair pigmentation except for MC1R polymorphisms that lead to pheomelanogenesis. This perspective will discuss what we have/have not learned from mouse coat color pigmentation, with special emphasis on the significant roles of pH and the level of cysteine in melanosomes in controlling melanogenesis. Based on these data, a hypothesis is proposed to explain the diversity of human hair pigmentation.
Collapse
Affiliation(s)
- Shosuke Ito
- Department of Chemistry, Fujita Health University School of Health Sciences, Toyoake, Aichi, Japan.
| | | |
Collapse
|
15
|
Ito S, Wakamatsu K. Human hair melanins: what we have learned and have not learned from mouse coat color pigmentation. Pigment Cell Melanoma Res 2010. [DOI: 10.1111/j.1755-1471.2010.00755.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
16
|
Peles DN, Simon JD. Direct Measurement of the Ultraviolet Absorption Coefficient of Single Retinal Melanosomes. Photochem Photobiol 2010; 86:279-81. [DOI: 10.1111/j.1751-1097.2009.00656.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
17
|
Braasch I, Liedtke D, Volff JN, Schartl M. Pigmentary function and evolution of tyrp1 gene duplicates in fish. Pigment Cell Melanoma Res 2009; 22:839-50. [PMID: 19659755 DOI: 10.1111/j.1755-148x.2009.00614.x] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
The function of the tyrosinase-related protein 1 (Tyrp1) has not yet been investigated in vertebrates basal to tetrapods. Teleost fishes have two duplicates of the tyrp1 gene. Here, we show that the teleost tyrp1 duplicates have distributed the ancestral gene expression in the retinal pigment epithelium (RPE) and melanophores in a species-specific manner. In medaka embryos, tyrp1a expression is found in the RPE and in melanophores while tyrp1b is only expressed in melanophores. In zebrafish embryos, expression of tyrp1 paralogs overlaps in the RPE and in melanophores. Knockdown of each zebrafish tyrp1 duplicate alone does not show pigmentary defects, but simultaneous knockdown of both tyrp1 genes results in the formation of brown instead of black eumelanin accompanied by severe melanosome defects. Our study suggests that the brown melanosome color in Tyrp1-deficient vertebrates is an effect of altered eumelanin synthesis. Black eumelanin formation essentially relies on the presence of Tyrp1 and some of its function is most likely conserved from the common ancestor of bony vertebrates.
Collapse
Affiliation(s)
- Ingo Braasch
- Physiological Chemistry I, University of Würzburg, Biozentrum, Am Hubland, Würzburg, Germany
| | | | | | | |
Collapse
|
18
|
Simon JD, Peles D, Wakamatsu K, Ito S. Current challenges in understanding melanogenesis: bridging chemistry, biological control, morphology, and function. Pigment Cell Melanoma Res 2009; 22:563-79. [PMID: 19627559 DOI: 10.1111/j.1755-148x.2009.00610.x] [Citation(s) in RCA: 263] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Melanin is a natural pigment produced within organelles, melanosomes, located in melanocytes. Biological functions of melanosomes are often attributed to the unique chemical properties of the melanins they contain; however, the molecular structure of melanins, the mechanism by which the pigment is produced, and how the pigment is organized within the melanosome remains to be fully understood. In this review, we examine the current understanding of the initial chemical steps in the melanogenesis. Most natural melanins are mixtures of eumelanin and pheomelanin, and so after presenting the current understanding of the individual pigments, we focus on the mixed melanin systems, with a critical eye towards understanding how studies on individual melanin do and do not provide insight in the molecular aspects of their structures. We conclude the review with a discussion of important issues that must be addressed in future research efforts to more fully understand the relationship between molecular and functional properties of this important class of natural pigments.
Collapse
Affiliation(s)
- John D Simon
- Department of Chemistry, Duke University, Durham, NC, USA.
| | | | | | | |
Collapse
|
19
|
Simon JD, Hong L, Peles DN. Insights into melanosomes and melanin from some interesting spatial and temporal properties. J Phys Chem B 2008; 112:13201-17. [PMID: 18817437 DOI: 10.1021/jp804248h] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Melanosomes are organelles found in a wide variety of tissues throughout the animal kingdom and exhibit a range of different shapes: spheres of up to approximately 1 mum diameters and ellipsoids with lengths of up to approximately 2 mum and varying aspect ratios. The functions of melanosomes include photoprotection, mitigation of the effects of reactive oxygen species, and metal chelation. The melanosome contains a variety of biological molecules, e.g., proteins and lipids, but the dominant constituent is the pigment melanin, and the functions ascribed to melanosomes are uniquely enabled by the chemical properties of the melanins they contain. In the past decade, there has been significant progress in understanding melanins and their impact on human health. While the molecular details of melanin production and how the pigment is organized within the melanosome determine its properties and biological functions, the physical and chemical properties of the surface of the melanosome are central to their range of ascribed functions. Surprisingly, few studies designed to probe this biological surface have been reported. In this article, we discuss recent work using surface-sensitive analytic, spectroscopic, and imaging techniques to examine the structural and chemical properties of many types of natural pigments: sepia melanin granules, human and bovine ocular melanosomes, human hair melanosomes, and neuromelanin. N 2 adsorption/desorption measurements and atomic force microscopy provide novel insights into surface morphology. The chemical properties of the melanins present on the surface are revealed by X-ray photoelectron spectroscopy and photoemission electron microscopy. These technologies are also applied to elucidate changes in surface properties that occur with aging. Specifically, studies of the surface properties of human retinal pigment epithelium melanosomes as a function of age are stimulating the development of models for their age-dependent behaviors. The article concludes with a brief discussion of important unanswered research questions in this field.
Collapse
Affiliation(s)
- John D Simon
- Department of Chemistry, Duke UNiversity, Durham, NC, USA
| | | | | |
Collapse
|
20
|
Wakamatsu K, Hu DN, McCormick SA, Ito S. Characterization of melanin in human iridal and choroidal melanocytes from eyes with various colored irides. Pigment Cell Melanoma Res 2008; 21:97-105. [PMID: 18353148 DOI: 10.1111/j.1755-148x.2007.00415.x] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Variance in iris color is related to the incidence of several important ocular diseases, including uveal melanoma and age-related macular degeneration. The purposes of this study were to determine the quantity and the types of melanin in cultured human uveal melanocytes in relation to the iris color. Sixty-one cell cultures of pure uveal melanocytes were isolated from donor eyes with various iris colors. The amount of eumelanin (EM) and pheomelanin (PM) of these cells was measured by chemical degradation and microanalytical high-performance liquid chromatography (HPLC) methods. The total amount of melanin was measured by both microanalytical methods and spectrophotometry. Total melanin content, measured by HPLC and spectrophotometry, correlated well with r = 0.872 (P < 0.0001). The quantity and type of melanin in iridal and choroidal melanocytes showed no significant difference (P > 0.05). When cells became senescent, the levels of EM, PM and total melanin were significantly increased. In both growing and senescent melanocytes, the quantity and type of melanin were closely correlated to the iris color. In cells from eyes with dark-colored irides (dark brown and brown), the amount of EM, the ratio of EM/PM and total melanin were significantly greater than that from eyes with light-colored irides (hazel, green, yellow-brown and blue) (P < 0.0001). The quantity of PM in uveal melanocytes from eyes with light-colored irides was slightly greater than that from dark-colored irides, although not statistically significant (P > 0.05). The present study shows that iris color is determined by both the quantity and the type of melanin in uveal melanocytes. These results suggest a possibility that uveal melanin in eyes with dark-colored irides is eumelanic at the surface and acts as an antioxidant while that in eyes with light-colored irides exposes pheomelanic core and behaves as a pro-oxidant.
Collapse
Affiliation(s)
- Kazumasa Wakamatsu
- Department of Chemistry, Fujita Health University School of Health Sciences, Toyoake, Aichi, Japan
| | | | | | | |
Collapse
|
21
|
Hong L, Simon JD. Current understanding of the binding sites, capacity, affinity, and biological significance of metals in melanin. J Phys Chem B 2007; 111:7938-47. [PMID: 17580858 PMCID: PMC2533804 DOI: 10.1021/jp071439h] [Citation(s) in RCA: 211] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Metal chelation is often invoked as one of the main biological functions of melanin. In order to understand the interaction between metals and melanin, extensive studies have been carried out to determine the nature of the metal binding sites, binding capacity, and affinity. These data are central to efforts aimed at elucidating the role metal binding plays in determining the physical, structural, biological, and photochemical properties of melanin. This article examines the current state of understanding of this field.
Collapse
Affiliation(s)
- Lian Hong
- Department of Chemistry, Duke University, Durham, North Carolina 27708, USA
| | | |
Collapse
|
22
|
Wakamatsu K, Hirobe T, Ito S. High levels of melanin-related metabolites in plasma from pink-eyed dilution mice. ACTA ACUST UNITED AC 2007; 20:222-4. [PMID: 17516930 DOI: 10.1111/j.1600-0749.2007.00370.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
23
|
Liu Y, Hong L, Wakamatsu K, Ito S, Adhyaru B, Cheng CY, Bowers CR, Simon JD. Comparison of Structural and Chemical Properties of Black and Red Human Hair Melanosomes¶. Photochem Photobiol 2007. [DOI: 10.1111/j.1751-1097.2005.tb01532.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
24
|
Ye T, Simon JD, Sarna T. Ultrafast Energy Transfer from Bound Tetra(4-N,N,N,N-trimethylanilinium)porphyrin to Synthetic Dopa and Cysteinyldopa Melanins¶. Photochem Photobiol 2007. [DOI: 10.1562/0031-8655(2003)0770001uetfbt2.0.co2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
25
|
Liu Y, Hong L, Wakamatsu K, Ito S, Adhyaru BB, Cheng CY, Bowers CR, Simon JD. Comparisons of the Structural and Chemical Properties of Melanosomes Isolated from Retinal Pigment Epithelium, Iris and Choroid of Newborn and Mature Bovine Eyes¶. Photochem Photobiol 2007. [DOI: 10.1111/j.1751-1097.2005.tb00218.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
26
|
Okuda H, Nakamura A, Wakamatsu K, Ito S, Sota T. Mid-infrared absorption spectrum of 5,6-dihydroxyindole-2-carboxylic acid. Chem Phys Lett 2007. [DOI: 10.1016/j.cplett.2006.11.058] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
27
|
Seagle BLL, Gasyna EM, Mieler WF, Norris JR. Photoprotection of human retinal pigment epithelium cells against blue light-induced apoptosis by melanin free radicals from Sepia officinalis. Proc Natl Acad Sci U S A 2006; 103:16644-8. [PMID: 17075067 PMCID: PMC1636508 DOI: 10.1073/pnas.0605986103] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Cultured retinal pigment epithelium (RPE) cells can phagocytize large foreign particles. Heterogeneous melanin aggregates from Sepia officinalis, a species of cuttlefish, were fed to cultured human RPE cells to produce cells laden with Sepia melanin. Blue light-induced apoptosis (BLIA) assays were performed by flow cytometry on parallel cultures consisting of RPE cells isolated from independent eyes and evenly divided into two cultures, one fed Sepia melanin and one containing only native melanin. After culturing and growth of the cells under blue light illumination for 7 days, the apoptosis percentage of all cultures indicated that Sepia feeding significantly reduced BLIA. To account for Sepia photoprotection, continuous-wave EPR and time-resolved EPR experiments were performed with parallel RPE cultures by using UV (355 nm) and green (532 nm) laser irradiation. Continuous-wave EPR spectra prove that the concentrations of intrinsic and extrinsic melanin free radicals in the Sepia-RPE culture are large compared with those concentrations in the RPE culture. Time-resolved EPR spectra indicate that both UV and green light produced extrinsic melanin radicals as radical pairs from the triplet manifold with a linear dependence on the number of photons per second. These experiments conclusively demonstrate that decreased RPE susceptibility to BLIA correlates with increased intracellular melanin free radical concentrations and that nonnative melanin can supplement native melanin photoprotection of RPE cells.
Collapse
Affiliation(s)
- Brandon-Luke L. Seagle
- *Department of Chemistry, University of Chicago, 5735 South Ellis Avenue, Chicago, IL 60637
| | - Elzbieta M. Gasyna
- Department of Ophthalmology and Visual Science, University of Chicago, 5841 South Maryland Avenue, Chicago, IL 60637; and
| | - William F. Mieler
- Department of Ophthalmology and Visual Science, University of Chicago, 5841 South Maryland Avenue, Chicago, IL 60637; and
| | - James R. Norris
- *Department of Chemistry, University of Chicago, 5735 South Ellis Avenue, Chicago, IL 60637
- Institute for Biophysical Dynamics, University of Chicago, 920 East 58th Street, Chicago, IL 60637
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
28
|
Moses DN, Harreld JH, Stucky GD, Waite JH. Melanin and Glycera jaws: emerging dark side of a robust biocomposite structure. J Biol Chem 2006; 281:34826-32. [PMID: 16984906 DOI: 10.1074/jbc.m603429200] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Defining the design principles guiding the fabrication of superior biocomposite structures from an assemblage of ordinary molecules is a key goal of biomimetics. Considering their low degree of mineralization, Glycera jaws have been shown to be extraordinarily resistant to abrasion based on the metric hardness3/Young's modulus2. The jaws also exhibit an impressive chemical inertness withstanding boiling concentrated hydrochloric acid as well as boiling concentrated sodium hydroxide. A major organic component largely responsible for the chemical inertness of the jaws has been characterized using a spectrophotometric assay for melanin content, 13C solid state nuclear magnetic resonance, IR spectroscopy, and laser desorption ionization-time of flight mass spectrometry and is identified here as a melanin-like network. Although melanin is widely distributed as a pigment in tissues and other structural biomaterials, to our knowledge, Glycera jaws represent the first known integument to exploit melanin as a cohesive load- and shape-bearing material.
Collapse
Affiliation(s)
- Dana N Moses
- Program of Biomolecular Science and Engineering, Department of Chemistry and Biochemistry, University of California, Santa Barbara 93106, USA.
| | | | | | | |
Collapse
|
29
|
Sarangarajan R, Apte SP. The polymerization of melanin: a poorly understood phenomenon with egregious biological implications. Melanoma Res 2006; 16:3-10. [PMID: 16432450 DOI: 10.1097/01.cmr.0000195699.35143.df] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Several hypotheses have explicitly implicated the role of an altered redox status of melanin in the aetiology of melanoma and macular degeneration. The balance between the intrinsic anti-oxidant and pro-oxidant properties of melanin is lost, resulting in an altered redox phenotype. We propose that such an alteration of the redox status of melanin may arise, in part, due to suboptimal conditions for the effective polymerization of melanin precursors. We suggest that a decrease in the degree of polymerization or molecular weight of the melanin polymer may cause an alteration of the redox status of the polymer towards a more pro-oxidant state. A higher propensity of smaller oligomers to complex metals, coupled with an upregulation of metallothionein expression, results in increased production of free radicals including the superoxide anion. This, in association with an increase in the rate of tyrosinase degradation, a decrease in the rate of tyrosinase activation, alterations to template protein structure or alterations in the kinetics of the oxidation of tyrosine via the Raper-Mason pathway, may result in an overcoming of the cellular anti-oxidant pool, an increased susceptibility to oxidative stress and alterations to the reaction kinetics of melanogenesis, thus setting up a cycle of increasing oxidative stress and proliferation leading to the leakage of melanin monomers outside the organelle, thereby causing cytotoxicity and necrosis.
Collapse
Affiliation(s)
- Rangaprasad Sarangarajan
- Department of Pharmaceutical Sciences, Massachusetts College of Pharmacy and Health Sciences, Worcester, Massachusetts, USA
| | | |
Collapse
|
30
|
Sarangarajan R, Apte SP. Melanin Aggregation and Polymerization: Possible Implications in Age-Related Macular Degeneration. Ophthalmic Res 2005; 37:136-41. [PMID: 15867475 DOI: 10.1159/000085533] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2004] [Accepted: 01/18/2005] [Indexed: 11/19/2022]
Abstract
The state of aggregation of the polymer melanin may determine its propensity to act either as an antioxidant or as a pro-oxidant. Age-related alterations in its state of aggregation are suggested to alter the degree of polymerization so as to confer increased pro-oxidant propensity to the melanin polymer. Degradative processes in/of melanosomes and lysosomes in the retinal pigment epithelium (RPE) appear to be intimately connected so that they may involve exchange of contents between these two organelles. An increased pro-oxidant environment inside lysosomes has been associated with preventing the digestion of cellular components including photoreceptor outer rod segments partly by altering function of lysosomal hydrolases. It is speculated that age-related accumulation of low-molecular-weight phototoxic pro-oxidant melanin oligomers within lysosomes in the RPE may be partly responsible for decreasing the digestive rate of incorporated cellular components (including photoreceptor outer rod segments) which may lead to lipofuscin formation. More work is required to definitively refute or support such a hypothesis.
Collapse
Affiliation(s)
- Rangaprasad Sarangarajan
- Department of Phamaceutical Sciences, Massachusetts College of Pharmacy and Health Sciences, Worcester, MA, USA
| | | |
Collapse
|
31
|
Liu Y, Hong L, Wakamatsu K, Ito S, Adhyaru B, Cheng CY, Bowers CR, Simon JD. Comparison of structural and chemical properties of black and red human hair melanosomes. Photochem Photobiol 2005; 81:135-44. [PMID: 15504086 DOI: 10.1562/2004-08-03-ra-259.1] [Citation(s) in RCA: 134] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Melanosomes in black and red human hair are isolated and characterized by various chemical and physical techniques. Different yields of 4-amino-hydroxyphenolanaline by HI hydrolysis (a marker for pheomelanin) and pyrrole-2,3,5-tricarboxylic acid by KMnO(4)/H(+) oxidation (a marker for eumelanin) indicate that the melanosomes in black hair are eumelanosomes, whereas those in red hair are mainly pheomelanosomes. Atomic force microscopy reveals that eumelanosomes and pheomelanosomes have ellipsoidal and spherical shapes, respectively. Eumelanosomes maintain structural integrity upon extraction from the keratin matrix, whereas pheomelanosomes tend to fall apart. The black-hair eumelanosomes have an average of 14.6 +/- 0.5% amino acids content, which is attributed to the internal proteins entrapped in the melanosomes granules. The red-hair melanosomes contain more than 44% of amino acid content even after extensive proteolytic digestion. This high content of amino acids and the poorly reserved integrity of red-hair melanosomes suggest that some proteins are possibly covalently bonded with the melanin constituents in addition to those that are entrapped inside the melanin species. Soluene solubilization assay indicates the absorbance of melanin per gram of sample, adjusted for the amino acid content, is a factor of 2.9 greater for the black-hair melanosomes than the red-hair melanosomes. Metal analysis reveals significant amounts of diverse heavy metal ions bound to the two types of melanosomes. The amount of Cu(II) and Zn(II) are similar but Fe(III) content is four times higher in the red-hair melanosomes. (13)C solid-state nuclear magnetic resonance spectra and infrared spectra are presented and are shown to be powerful techniques for discerning differences in the amino acid contents, the 5,6-dihydroxyindole-2-carboxylic acid:5,6-dihydroxyindole ratio, and the degree of cross-linking in the pigment. Excellent agreement is observed between these spectral results and the chemical degradation data.
Collapse
Affiliation(s)
- Yan Liu
- Department of Chemistry, Duke University, Durham, NC 27708, USA
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Hirobe T, Takeuchi S, Hotta E, Wakamatsu K, Ito S. Pheomelanin production in the epidermis from newborn agouti mice is induced by the expression of the agouti gene in the dermis. ACTA ACUST UNITED AC 2005; 17:506-14. [PMID: 15357837 DOI: 10.1111/j.1600-0749.2004.00176.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The present study was designed to clarify the role of the agouti gene in the regulation of the proliferation and differentiation of mouse epidermal melanocytes using serum-free primary culture of epidermal melanocytes from 0.5-d-old black (a/a; C57BL/10JHir) mice and congenic, agouti (A/A; C57BL/10JHir-A/A) mice. There was no significant difference in the proliferation or differentiation of melanocytes between a/a and A/A mice. However, the content of pheomelanin in culture media from A/A melanocytes was increased by L-tyrosine compared with a/a melanocytes. In addition, the content of the pheomelanin precursor, 5-S-cysteinyldopa, in culture media from A/A melanocytes was dramatically increased by L-tyrosine. Moreover, pheomelanin content in the epidermis from 3.5- and 5.5-d-old A/A mice was much higher than in a/a mice. Analysis of the A gene using reverse transcription-polymerase chain reaction revealed that cultured keratinocytes and melanocytes do not express the A gene. Moreover, the A gene was expressed in the A/A dermis of 0.5-, 3.5- and 5.5-d-old mice, but not in the a/a dermis nor in the A/A or a/a epidermis. These results suggest that A/A epidermal melanoblasts are influenced by the A gene from the dermis of neonatal mice, and are capable of synthesizing pheomelanin in the culture. Pheomelanin production in the epidermis from 3.5- and 5.5-d-old A/A mice may be induced by the expression of the agouti gene in the dermis.
Collapse
Affiliation(s)
- Tomohisa Hirobe
- Radiation Hazards Research Group, National Institute of Radiological Sciences, Anagawa, Inage-ku, Chiba 263-8555, Japan.
| | | | | | | | | |
Collapse
|
33
|
Abstract
The structural organization of melanin granules isolated from ink sacs of Sepia officinalis was examined as a function of metal ion content by scanning electron microscopy and atomic force microscopy. Exposing Sepia melanin granules to ethelenediaminetetraacetic acid (EDTA) solution or to metal salt solutions changed the metal content in the melanin, but did not alter granular morphology. Thus ionic forces between the organic components and metal ions in melanin are not required to sustain the natural morphology once the granule is assembled. However, when aqueous suspensions of Sepia melanin granules of varying metal content are ultra-sonicated, EDTA-washed and Fe-saturated melanin samples lose material to the solution more readily than the corresponding Ca(II) and Mg(II)-loaded samples. The solubilized components are found to be 5,6-dihydroxyindole-2-carboxylic acid (DHICA)-rich constituents. Associated with different metal ions, Na(I), Ca(II) and Mg(II) or Fe(III), these DHICA-rich entities form distinct two-dimensional aggregation structures when dried on the flat surface of mica. The data suggest multiply-charged ions play an important role in assisting or templating the assembly of the metal-free organic components to form the three-dimensional substructure distributed along the protein scaffold within the granule.
Collapse
Affiliation(s)
- Yan Liu
- Department of Chemistry, Duke University, Durham, NC, USA
| | | |
Collapse
|
34
|
Liu Y, Hong L, Wakamatsu K, Ito S, Adhyaru BB, Cheng CY, Bowers CR, Simon JD. Comparisons of the Structural and Chemical Properties of Melanosomes Isolated from Retinal Pigment Epithelium, Iris and Choroid of Newborn and Mature Bovine Eyes¶. Photochem Photobiol 2005; 81:510-6. [PMID: 15701042 DOI: 10.1562/2004-10-19-ra-345.1] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Melanosomes were isolated from the retinal pigment epithelium (RPE), iris and choroid of mature (age >2 years) and newborn (age <1 week) bovine eyes. Scanning electron microscopy was utilized to analyze the morphology of the melanosomes, which were found to vary among different tissues and different ages. While the total content of amino acids differs slightly (ranging from 9% to 15% by mass), the distributions of the amino acids are similar. The pheomelanin content is low in the choroid and the RPE (0.1-0.5%), and moderate in the iris (<2%); therefore, the major melanin component of bovine eye melanosomes is eumelanin, independent of the shape of the melanosomes. The yields of pyrrole-2,3,5-tricarboxylic acid from melanosomes decrease in the following order: choroid > iris > RPE, and exhibit decreasing yields with age. 13C solid-state nuclear magnetic resonance (NMR) spectroscopic analysis of iris and choroid melanosomes indicates the same trends. These observations suggest that the 5,6-dihydroxyindole-2-carboxylic acid contents decrease in the following order: choroid > iris > RPE, and decrease with age. Moreover, the 13C solid-state NMR spectra show (1) for the same age samples, the CH:Cq ratio for choroid is larger than that for iris melanosomes; and (2) an increase in the concentration of carbonyl groups with age within each type of melanosome.
Collapse
Affiliation(s)
- Yan Liu
- Department of Chemistry, Duke University, Durham, NC 27708-0346, USA
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Liu Y, Hong L, Kempf VR, Wakamatsu K, Ito S, Simon JD. Ion-exchange and adsorption of Fe(III) by Sepia melanin. ACTA ACUST UNITED AC 2004; 17:262-9. [PMID: 15140071 DOI: 10.1111/j.1600-0749.2004.00140.x] [Citation(s) in RCA: 120] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Sepia eumelanin is associated with many metal ions, yet little is known about its metal binding capacity and the chemical nature of the binding site(s). Herein, the natural concentrations of metal ions are presented and the ability to remove metals by exposure of the melanin granules to EDTA is quantified. The results reveal that the binding constants of melanin at pH 5.8 for Mg(II), Ca(II), Sr(II) and Cu(II) are, respectively, 5, 4, 14 and 34 times greater than the corresponding binding constants of these ions with EDTA. By exposing Sepia eumelanin to aqueous solutions of FeCl(3), the content of bound Fe(III) can be increased from a natural concentration of approximately 180 ppm to a saturation limit of approximately 80 000 ppm or 1.43 mmol/g of melanin. Similar saturation limits are found for Mg(II) and Ca(II). Exposure of Sepia melanin granules to aqueous solutions containing Ca(II) results in the stoichiometric replacement of the initially bound Mg(II), arguing that these two ions occupy the same binding site(s) in the pigment. The pH-dependent binding of Mg(II) and Ca(II) suggests coordination of these ions to carboxylic acid groups in the pigment. Mg(II) and Ca(II) can be added to a Fe(III)-saturated melanin sample without affecting the amount of Fe(III) pre-adsorbed, clearly establishing Fe(III) and Mg(II)/Ca(II) occupy different binding sites. Taking recent Raman spectroscopic data into account, the binding of Fe(III) is concluded to involve coordination to o-dihydroxyl groups. The effects of metal ion content on the surface morphology were analyzed. No significant changes were found over the full range of Fe(III) concentration studied, which is supported by the Brunauer-Emmett-Teller surface area analysis. These observations imply the existence of channels within the melanin granules that can serve to transport metal ions.
Collapse
Affiliation(s)
- Yan Liu
- Department of Chemistry, Duke University, Durham, NC, USA
| | | | | | | | | | | |
Collapse
|
36
|
Zoccola M, Mossotti R, Innocenti R, Loria DI, Rosso S, Zanetti R. Near Infrared Spectroscopy as a Tool for the Determination of Eumelanin in Human Hair. ACTA ACUST UNITED AC 2004; 17:379-85. [PMID: 15250940 DOI: 10.1111/j.1600-0749.2004.00157.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Eumelanins are brown-black pigments present in the hair and in the epidermis which are acknowledged as protection factors against cell damage caused by ultraviolet radiation. The quantity of eumelanin present in hair has recently been put forward as a means of identifying subjects with a higher risk of skin tumours. For epidemiological studies, chromatographic methods of determining pyrrole-2,3,5-tricarboxylic acid (PTCA; the principal marker of eumelanin) are long, laborious and unsuitable for screening large populations. We suggest near infrared (NIR) spectroscopy as an alternative method of analysing eumelanin in hair samples. PCTA was determined on 93 samples of hair by means of oxidizing with hydrogen peroxide in a basic environment followed by chromatographic separation. The same 93 samples were then subjected to NIR spectrophotometric analysis. The spectra were obtained in reflectance mode on hair samples which had not undergone any preliminary treatment, but had simply been pressed and placed on the measuring window of the spectrophotometer. The PTCA values obtained by means of HPLC were correlated with the near infrared spectrum of the respective samples. A correlation between the PTCA values obtained by means of HPLC and the PTCA values obtained from an analysis of the spectra was obtained using the principal component regression (PCR) algorithm. The correlation obtained has a coefficient of regression (R(2)) of 0.89 and a standard error of prediction (SEP) of 13.8 for a mean value of 108.6 ng PTCA/mg hair. Some considerations about the accuracy of the obtained correlation and the main sources of error are made and some validation results are shown.
Collapse
Affiliation(s)
- Marina Zoccola
- National Research Council, Institute for Macromolecular Studies, C.so Pella 16, 13900 Biella Italy.
| | | | | | | | | | | |
Collapse
|
37
|
Hirobe T, Wakamatsu K, Ito S. Changes in the proliferation and differentiation of neonatal mouse pink-eyed dilution melanocytes in the presence of excess tyrosine. ACTA ACUST UNITED AC 2004; 16:619-28. [PMID: 14629719 DOI: 10.1046/j.1600-0749.2003.00091.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Changes in the proliferation and differentiation of epidermal melanocytes derived from newborn mice wild-type at the pink-eyed dilution (p) locus (P/P) and from congenic mice mutant at that locus (p/p) were investigated in serum-free primary culture, with or without the addition of L-Tyr. Incubation with added L-Tyr inhibited the proliferation of P/P melanocytes in a concentration-dependent manner and inhibition was gradually augmented as the donor mice aged. In contrast, L-Tyr stimulated the proliferation of p/p melanoblasts-melanocytes derived from 0.5-day-old mice, but inhibited their proliferation when derived from 3.5- or 7.5-day-old mice. L-Tyr stimulated the differentiation of P/P melanocytes. However, almost all cells were undifferentiated melanoblasts in control cultures derived from 0.5-, 3.5- and 7.5-day-old p/p mice, but L-Tyr induced their differentiation as the age of the donor mice advanced. The content of the eumelanin marker, pyrrole-2,3,5-tricarboxylic acid as well as the pheomelanin marker, 4-amino-3-hydroxyphenylalanine in p/p melanocytes was greatly reduced compared with P/P melanocytes. However, the contents of eumelanin and its precursor, 5,6-dihydroxyindole-2-carboxylic acid, as well as the contents of pheomelanin and its precursor, 5-S-cysteinyldopa in culture media from p/p melanocytes were similar to those of P/P melanocytes at all ages tested. L-Tyr increased the content of eumelanin and pheomelanin two- to threefold in cultured cells and media derived from 0.5-, 3.5- and 7.5-day-old mice. These results suggest that the proliferation of p/p melanoblasts-melanocytes is stimulated by L-Tyr, and that the differentiation of melanocytes is induced by L-Tyr as the age of the donor mice advanced, although eumelanin and pheomelanin fail to accumulate in p/p melanocytes and are released from them at all ages of skin development.
Collapse
Affiliation(s)
- Tomohisa Hirobe
- Radiation Hazards Research Group, National Institute of Radiological Sciences, Anagawa, Inage-ku, Chiba, Japan.
| | | | | |
Collapse
|
38
|
Abstract
Aluminum, a trivalent cation unable to undergo redox reactions, is shown to faciliate iron-initiated DOPA oxidation in the melanin pathway under acidic condition of pH 5.5, which is a favored medium for aluminum facilitation of iron-induced lipid peroxidation. In the process of oxidation of DOPA to melanin in the presence of the metal ions, Fe3+ and H2O2 oxidize DOPA to dopachrome (DC), then Al3+ catalyzes the conversion of DC to 5,6-dihydroxyindole (DHI) and finally Fe3+ oxidizes DHI to indole-5,6-quinone (IQ), which polymerizes immediately to melanochrome and melanin. The reactions involve the intermediate complexes of metal ions and DOPA or its derivative. The present results indicate that aluminum can enhance the oxidative stress on iron-mediated DOPA oxidation in melanin pathway under acidic condition through the cooperation of iron and aluminum ions.
Collapse
Affiliation(s)
- Junwei Di
- Department of Chemistry, State Key Laboratory of Coordination Chemistry of China, Nanjing University, Nanjing 210093, P R China
| | | |
Collapse
|
39
|
Di J, Bi S. Aluminum ions accelerated the oxidative stress of copper-mediated melanin formation. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2003; 59:3075-3083. [PMID: 14583282 DOI: 10.1016/s1386-1425(03)00127-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
A comparison between the effects of aluminum and cupric ions on the dopachrome (DC) conversion and the cooperation effect of the both ions in the DOPA oxidation to melanin pathway has been studied by UV-Vis spectrophotometric method. Both aluminum and cupric ions catalyze the DC conversion reaction, which is an important step in the melanin synthesis pathway. However, cupric ions catalyze the conversion of DC to yield 5,6-dihydroxyindole-2-carboxylic acid (DHICA) but the product of DC conversion catalyzed by aluminum is 5,6-dihydroxyindole (DHI). DOPA oxidation catalyzed by aluminum and cupric ions is studied in the presence of hydrogen peroxide. The results from our experiments provide evidence that aluminum can markedly increase the oxidative stress of copper-mediated the melanin formation and influence the properties of the melanin by means of changing the ratio of DHICA/DHI in the acidic environment (pH 5.5).
Collapse
Affiliation(s)
- Junwei Di
- Department of Chemistry, The State Key Laboratory of Coordination Chemistry of China, Nanjing University, 22 Hankou Road, Nanjing 210093, China
| | | |
Collapse
|
40
|
Ye T, Simon JD. Comparison of the Ultrafast Absorption Dynamics of Eumelanin and Pheomelanin. J Phys Chem B 2003. [DOI: 10.1021/jp0352837] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
41
|
Ye T, Lamb LE, Wakamatsu K, Ito S, Simon JD. Ultrafast absorption and photothermal studies of decarboxytrichochrome C in solution. Photochem Photobiol Sci 2003; 2:821-3. [PMID: 12911234 DOI: 10.1039/b301893h] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The trichrochromes are natural constituents of pheomelanins. Herein, time-resolved spectroscopic techniques are used to quantify the energetics and dynamics of the primary photoprocesses of trichochromes following excitation into the lowest excited singlet state of the molecule. The absorption spectrum of decarboxytrichochrome C (dTC) reveals multiple electronic states are accessible upon visible and UV excitation. Emission is not observed upon excitation into the lowest energy absorption band. Photothermal measurements reveal 91% of the photon energy is promptly released as heat. Femtosecond time-resolved absorption studies reveal a ground-state recovery time of approximately 2.4 ps. Complete recovery of the ground state is not observed; 15% of the initially excited molecules do not recover on the approximately 150 ps timescale. The combination of ultrafast absorption and photoacoustic data suggest photoexcitation produces a long-lived intermediate and the energy of this species is at least 133 kJ mol(-1) above the ground state of the dTC molecule.
Collapse
Affiliation(s)
- Tong Ye
- Department of Chemistry, Duke University, Durham, NC 27708, USA
| | | | | | | | | |
Collapse
|
42
|
Abstract
The significance of our understanding of the chemistry of melanin and melanogenesis is reviewed. Melanogenesis begins with the production of dopaquinone, a highly reactive o-quinone. Pulse radiolysis is a powerful tool to study the fates of such highly reactive melanin precursors. Based on pulse radiolysis data reported by Land et al. (J Photochem Photobiol B: Biol 2001;64:123) and our biochemical studies, a pathway for mixed melanogenesis is proposed. Melanogenesis proceeds in three distinctive steps. The initial step is the production of cysteinyldopas by the rapid addition of cysteine to dopaquinone, which continues as long as cysteine is present (1 microM). The second step is the oxidation of cysteinyldopas to give pheomelanin, which continues as long as cysteinyldopas are present (10 microM). The last step is the production of eumelanin, which begins only after most cysteinyldopas are depleted. It thus appears that eumelanin is deposited on the preformed pheomelanin and that the ratio of eu- to pheomelanin is determined by the tyrosinase activity and cysteine concentration. In eumelanogenesis, dopachrome is a rather stable molecule and spontaneously decomposes to give mostly 5,6-dihydroxyindole. Dopachrome tautomerase (Dct) catalyses the tautomerization of dopachrome to give mostly 5,6-dihydroxyindole-2-carboxylic acid (DHICA). Our study confirmed that the role of Dct is to increase the ratio of DHICA in eumelanin and to increase the production of eumelanin. In addition, the cytotoxicity of o-quinone melanin precursors was found to correlate with binding to proteins through the cysteine residues. Finally, it is still unknown how the availability of cysteine is controlled within the melanosome.
Collapse
Affiliation(s)
- Shosuke Ito
- Department of Chemistry, Fujita Health University School of Health Sciences, Toyoake, Aichi 470-1192, Japan.
| |
Collapse
|
43
|
Di J, Bi S. Effect of aluminum (III) on the conversion of dopachrome in the melanin synthesis pathway. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2003; 59:1689-1696. [PMID: 12736054 DOI: 10.1016/s1386-1425(02)00403-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The effect of aluminum ions on the kinetics and mode of the conversion of dopachrome (DC) in acidic environment has been studied using UV-Vis spectrophotometric and cyclic voltammetric methods. The DC conversion step is an important reaction in melanogenesis. Aluminum ions catalyze greatly the decarboxylative transformation of DC to give 5,6-dihydroxyindole (DHI) rather than 5,6-dihydroxyindole-2-carboxylic acid (DHICA) at pH 5.5, which enhance the ratio of formation DHI/DHICA in melanin synthesis pathway. The kinetics of DC conversion catalyzed by aluminum ions is dependent on the concentration of DC and aluminum ions. These results provide evidence that aluminum ions could play a role in the synthesis of melanin pathway in acidic condition through catalyzing the DC decarboxylative transformation to yield DHI and influence the melanin structure and properties.
Collapse
Affiliation(s)
- Junwei Di
- Department of Chemistry, Nanjing University, Nanjing 210093, People's Republic of China
| | | |
Collapse
|
44
|
Pezzella A, Vogna D, Prota G. Synthesis of optically active tetrameric melanin intermediates by oxidation of the melanogenic precursor 5,6-dihydroxyindole-2-carboxylic acid under biomimetic conditions. ACTA ACUST UNITED AC 2003. [DOI: 10.1016/s0957-4166(03)00156-3] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
45
|
Langfelder K, Streibel M, Jahn B, Haase G, Brakhage AA. Biosynthesis of fungal melanins and their importance for human pathogenic fungi. Fungal Genet Biol 2003; 38:143-58. [PMID: 12620252 DOI: 10.1016/s1087-1845(02)00526-1] [Citation(s) in RCA: 409] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
For more than 40 years fungi have been known to produce pigments known as melanins. Predominantly these have been dihydroxyphenylalanine (DOPA)-melanin and dihydroxynaphthalene (DHN)-melanin. The biochemical and genetical analysis of the biosynthesis pathways have led to the identification of the genes and corresponding enzymes of the pathways. Only recently have both these types of melanin been linked to virulence in some human pathogenic and phytopathogenic fungi. The absence of melanin in human pathogenic and phytopathogenic fungi often leads to a decrease in virulence. In phytopathogenic fungi such as Magnaporthe grisea and Colletotrichum lagenarium, besides other possible functions in pathogenicity, DHN-melanin plays an essential role in generating turgor for plant appressoria to penetrate plant leaves. While the function of melanin in human pathogenic fungi such as Cryptococcus neoformans, Wangiella dermatitidis, Sporothrix schenckii, and Aspergillus fumigatus is less well defined, its role in protecting fungal cells has clearly been shown. Specifically, the ability of both DOPA- and DHN-melanins to quench free radicals is thought to be an important factor in virulence. In addition, in several fungi the production of fungal virulence factors, such as melanin, has been linked to a cAMP-dependent signaling pathway. Many of the components involved in the signaling pathway have been identified.
Collapse
Affiliation(s)
- Kim Langfelder
- Institut für Mikrobiologie, Universität Hannover, Schneiderberg 50, 30167, Hannover, Germany
| | | | | | | | | |
Collapse
|
46
|
Ye T, Simon JD, Sarna T. Ultrafast Energy Transfer from Bound Tetra(4-N,N,N,N-trimethylanilinium)porphyrin to Synthetic Dopa and Cysteinyldopa Melanins¶. Photochem Photobiol 2003. [DOI: 10.1562/0031-8655(2003)077<0001:uetfbt>2.0.co;2] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
47
|
Abstract
Among the biopolymers, melanins are unique in many respects. The other essential biopolymers - proteins, nucleic acids, and carbohydrates - are chemically well characterized; their precursors (monomer units) and modes of connection between the monomer units are known, and sequences of their connection can be determined with well-established methodologies. In contrast, we still do not have a method to determine accurately the ratio of various units present in melanins. This is largely because of the chemical properties of melanins, such as their insolubility over a broad range of pH, the heterogeneity in their structural features, and also because of the lack of methods that can split melanin polymers into their monomer units (all other biopolymers can be hydrolysed to the corresponding monomer units). To overcome this difficulty, we developed a rapid and sensitive method for quantitatively analysing eumelanin and pheomelanin in biological samples by chemical degradation methods followed by HPLC determination. This HPLC microanalytical method for characterizing eumelanin and pheomelanin has become a useful tool for the study of melanogenesis. This review will summarize the usefulness and limitations of the various chemical and spectrophotometric methods used to analyse melanins at the biochemical, cellular, and tissue levels. Emphasis is given on the usefulness of 4-amino-3-hydroxyphenylalanine as a specific marker of pheomelanin.
Collapse
Affiliation(s)
- Kazumasa Wakamatsu
- Fujita Health University School of Health Sciences, Toyoake, Aichi, Japan.
| | | |
Collapse
|
48
|
Atropoisomeric melanin intermediates by oxidation of the melanogenic precursor 5,6-dihydroxyindole-2-carboxylic acid under biomimetic conditions. Tetrahedron 2002. [DOI: 10.1016/s0040-4020(02)00335-6] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
49
|
Hirobe T, Wakamatsu K, Ito S, Abe H, Kawa Y, Mizoguchi M. Stimulation of the proliferation and differentiation of mouse pink-eyed dilution epidermal melanocytes by excess tyrosine in serum-free primary culture. J Cell Physiol 2002; 191:162-72. [PMID: 12064459 DOI: 10.1002/jcp.10085] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The epidermal cell suspensions of the neonatal dorsal skin derived from wild type mouse at the pink-eyed dilution (p) locus (black, C57BL/10JHir-P/P) and their congenic mutant mouse (pink-eyed dilution, C57BL/10JHir-p/p) were cultured with a serum-free melanocyte growth medium supplemented with additional L-tyrosine (Tyr) from initiation of the primary culture. L-Tyr inhibited the proliferation of P/Pmelanocytes in a dose-dependent manner, whereas L-Tyr stimulated the proliferation of p/p melanoblasts and melanocytes regardless of dose. On the other hand, L-Tyr stimulated (P/P) or induced (p/p) the differentiation of epidermal melanocytes in a dose-dependent manner. In both P/P and p/p melanoblasts and melanocytes cultured with 2.0 mM L-Tyr for 14 days, slight increases in contents of eumelanin marker, pyrrole-2,3,5-tricarboxylic acid (PTCA) and pheomelanin marker, aminohydroxyphenylalanine (AHP) were observed. The average number of total melanosomes (stages I, II, III, and IV) per P/P melanocyte was not changed by L-Tyr treatment, but the proportion of stage IV melanosomes in the total melanosomes was increased. On the contrary, in p/p melanoblasts and melanocytes L-Tyr increased dramatically the number of stage II, III, and IV melanosomes as well as the proportion of stage III melanosomes. Contents of PTCA and eumelanin precursor, 5,6-dihydroxyindole-2-carboxylic acid (DHICA) of cultured media in p/p melanocytes were much more greatly increased than in P/P melanocytes. However, contents of AHP and pheomelanin precursor, 5-S-cysteinyldopa (5-S-CD) of cultured media in p/p melanocytes were increased in a similar tendency to P/Pmelanocytes. These results suggest that p/p melanocytes in the primary culture are induced to synthesize eumelanin by excess L-Tyr, but difficult to accumulate them in melanosomes.
Collapse
Affiliation(s)
- Tomohisa Hirobe
- Radiation Hazards Research Group, National Institute of Radiological Sciences, Anagawa, Chiba, Japan.
| | | | | | | | | | | |
Collapse
|
50
|
Borges CR, Roberts JC, Wilkins DG, Rollins DE. Relationship of melanin degradation products to actual melanin content: application to human hair. Anal Biochem 2001; 290:116-25. [PMID: 11180945 DOI: 10.1006/abio.2000.4976] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Methods not only for characterizing but also for quantitating melanin subtypes from the two types of melanin found in hair--eumelanin and pheomelanin--have been established. In relation to testing for drugs of abuse in hair, these methods will allow for correction of drug binding to specific melanin subtypes and will serve to improve drug measurement in hair. 5,6-Dihydroxyindole (DHI) and 5,6-dihydroxyindole-2-carboxylic acid (DHICA) make up the majority of the eumelanin polymer while benzothiazene units derived from 2-cysteinyl-S-Dopa (2-CysDopa) and 5-cysteinyl-S-Dopa (5-CysDopa) compose the majority of the pheomelanin polymer. Our results show that: (1) pyrrole-2,3-dicarboxylic acid (PDCA) and pyrrole-2,3,5-tricarboxylic acid (PTCA), markers for DHI and DHICA units, respectively, are produced in 0.37 and 4.8% yields, respectively, when melanins are subjected to alkaline hydrogen peroxide degradation, (2) 3-aminotyrosine (3AT) and 4-amino-3-hydroxyphenylalanine (AHP), markers for 2-CysDopa and 5-CysDopa, respectively, are produced in 16 and 23% yield, respectively, when subjected to hydriodic acid hydrolysis, and (3) that black human hair contains approximately 99% eumelanin and 1% pheomelanin, brown and blond hair contain 95% eumelanin and 5% pheomelanin; and red hair contains 67% eumelanin and 33% pheomelanin. These data will allow deeper investigation into the relationship between melanin composition and drug incorporation into hair.
Collapse
Affiliation(s)
- C R Borges
- Department of Pharmacology and Toxicology, University of Utah, Salt Lake City, Utah 84112, USA.
| | | | | | | |
Collapse
|