1
|
Qing T, Liu J, Liu F, Mitchell DC, Beresis RT, Gordan JD. Methods to assess small molecule allosteric modulators of the STRAD pseudokinase. Methods Enzymol 2022; 667:427-453. [PMID: 35525550 DOI: 10.1016/bs.mie.2022.03.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
With the increased appreciation of the biological relevance of pseudokinase (PSK) allostery, the broadening of small molecule strategies to target PSK function is of particular importance. We and others have pursued the development of small molecule allosteric modulators of the STRAD pseudokinase by targeting its ATP binding pocket. The purpose of this effort is to modulate the function of the LKB1 tumor suppressor kinase, which exists in a trimer with the STRAD PSK and the adaptor protein MO25. Here we provide detailed guidance regarding the different methods we have used for medium throughput screening to identify STRAD ligands and measure their impact on LKB1 kinase activity. Our experience supports preferential use of direct measurements of LKB1 kinase activity, and demonstrates the limitations of indirect assessment methods in the development trans-acting allosteric modulators.
Collapse
Affiliation(s)
- Tingting Qing
- Chempartner Co, Ltd., Shanghai, China; Chempartner Co, Ltd., South San Francisco, CA, United States
| | - Jin Liu
- Chempartner Co, Ltd., Shanghai, China; Chempartner Co, Ltd., South San Francisco, CA, United States
| | - Fen Liu
- Chempartner Co, Ltd., Shanghai, China; Chempartner Co, Ltd., South San Francisco, CA, United States
| | - Dom C Mitchell
- Division of Hematology Oncology and Quantitative Biosciences Institute, University of California, San Francisco (UCSF), San Francisco, CA, United States
| | - Richard T Beresis
- Chempartner Co, Ltd., Shanghai, China; Chempartner Co, Ltd., South San Francisco, CA, United States
| | - John D Gordan
- Division of Hematology Oncology and Quantitative Biosciences Institute, University of California, San Francisco (UCSF), San Francisco, CA, United States.
| |
Collapse
|
2
|
Chaudhry C, Tebben A, Tokarski JS, Borzilleri R, Pitts WJ, Lippy J, Zhang L. An innovative kinome platform to accelerate small-molecule inhibitor discovery and optimization from hits to leads. Drug Discov Today 2021; 26:1115-1125. [PMID: 33497831 DOI: 10.1016/j.drudis.2021.01.018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 07/23/2020] [Accepted: 01/18/2021] [Indexed: 01/09/2023]
Abstract
Kinases, accounting for 20% of the human genome, have been the focus of pharmaceutical drug discovery efforts for over three decades. Despite concerns surrounding the tractability of kinases as drug targets, it is evident that kinase drug discovery offers great potential, underscored by the US Food and Drug Administration (FDA) approval of 48 small-molecule kinase inhibitors. Despite these successes, it is challenging to identify novel kinome selective inhibitors with good pharmacokinetic/pharmacodynamic (PK/PD) properties, and resistance to kinase inhibitor treatment frequently arises. A new era of kinase drug discovery predicates the need for diverse and powerful tools to discover the next generation of kinase inhibitors. Here, we outline key tenets of the Bristol Meyers Squibb (BMS) kinase platform, to enable efficient generation of highly optimized kinase inhibitors.
Collapse
Affiliation(s)
- Charu Chaudhry
- Lead Discovery and Optimization, Bristol Myers Squibb, NJ, USA.
| | - Andrew Tebben
- Molecular Structure and Design, Molecular Discovery Technologies, Bristol Myers Squibb, NJ, USA
| | - John S Tokarski
- Molecular Structure and Design, Molecular Discovery Technologies, Bristol Myers Squibb, NJ, USA
| | | | - William J Pitts
- Immunosciences Discovery Chemistry, Bristol Myers Squibb, NJ, USA
| | - Jonathan Lippy
- Lead Discovery and Optimization, Bristol Myers Squibb, NJ, USA
| | - Litao Zhang
- Lead Discovery and Optimization, Bristol Myers Squibb, NJ, USA
| |
Collapse
|
3
|
Hewitt SH, Butler SJ. Application of lanthanide luminescence in probing enzyme activity. Chem Commun (Camb) 2018; 54:6635-6647. [PMID: 29790500 DOI: 10.1039/c8cc02824a] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Enzymes play critical roles in the regulation of cellular function and are implicated in numerous disease conditions. Reliable and practicable assays are required to study enzyme activity, to facilitate the discovery of inhibitors and activators of enzymes related to disease. In recent years, a variety of enzyme assays have been devised that utilise luminescent lanthanide(iii) complexes, taking advantage of their high detection sensitivities, long luminescence lifetimes, and line-like emission spectra that permit ratiometric and time-resolved analyses. In this Feature article, we focus on recent progress in the development of enzyme activity assays based on lanthanide(iii) luminescence, covering a variety of strategies including Ln(iii)-labelled antibodies and proteins, Ln(iii) ion encapsulation within defined peptide sequences, reactivity-based Ln(iii) probes, and discrete Ln(iii) complexes. Emerging approaches for monitoring enzyme activity are discussed, including the use of anion responsive lanthanide(iii) complexes, capable of molecular recognition and luminescence signalling of polyphosphate anions.
Collapse
Affiliation(s)
- Sarah H Hewitt
- Department of Chemistry, Loughborough University, Epinal Way, Loughborough, LE11 3TU, UK.
| | | |
Collapse
|
4
|
Moshinsky DJ, Ruslim L, Blake RA, Tang F. A Widely Applicable, High-Throughput TR-FRET Assay for the Measurement of Kinase Autophosphorylation: VEGFR-2 as a Prototype. ACTA ACUST UNITED AC 2016; 8:447-52. [PMID: 14567797 DOI: 10.1177/1087057103255282] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Homogeneous time-resolved fluorescence resonance energy transfer (TR-FRET) assays represent a highly sensitive and robust high-throughput screening (HTS) method for the quantification of kinase activity. Traditional TR-FRET kinase assays detect the phosphorylation of an exogenous substrate. The authors describe the development and optimization of a TR-FRET technique that measures the autophosphorylation of vascular endothelial growth factor receptor 2 (VEGFR-2) kinase and extend its applicability to a variety of other kinases. The VEGFR-2 assay demonstrated dose-dependent inhibition by compounds known to modulate the catalytic activity of this receptor. In addition, kinetic analysis of a previously characterized VEGFR-2 inhibitor was performed using the method, and results were consistent with those obtained using a different assay format. Because of the known involvement of VEGFR-2 in angiogenesis, this assay should facilitate HTS for antiangiogenic agents. In addition, this general technique should have utility for the screening for inhibitors of kinases as potential therapeutic agents for many other disease indications.
Collapse
|
5
|
Duan XC, Chen H, Liu FF, Conway L, Wei S, Cai ZP, Liu L, Voglmeir J. One Assay for All: Exploring Small Molecule Phosphorylation Using Amylose–Polyiodide Complexes. Anal Chem 2015; 87:9546-50. [DOI: 10.1021/acs.analchem.5b02247] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Xu C. Duan
- Glycomics
and Glycan Bioengineering
Research Center (GGBRC), College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095 China
| | - Huan Chen
- Glycomics
and Glycan Bioengineering
Research Center (GGBRC), College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095 China
| | - Fang F. Liu
- Glycomics
and Glycan Bioengineering
Research Center (GGBRC), College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095 China
| | - Louis Conway
- Glycomics
and Glycan Bioengineering
Research Center (GGBRC), College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095 China
| | - Shuang Wei
- Glycomics
and Glycan Bioengineering
Research Center (GGBRC), College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095 China
| | - Zhi P. Cai
- Glycomics
and Glycan Bioengineering
Research Center (GGBRC), College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095 China
| | - Li Liu
- Glycomics
and Glycan Bioengineering
Research Center (GGBRC), College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095 China
| | - Josef Voglmeir
- Glycomics
and Glycan Bioengineering
Research Center (GGBRC), College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095 China
| |
Collapse
|
6
|
Application of chemical biology in target identification and drug discovery. Arch Pharm Res 2015; 38:1642-50. [PMID: 26242900 DOI: 10.1007/s12272-015-0643-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Accepted: 07/29/2015] [Indexed: 10/23/2022]
Abstract
Drug discovery and development is vital to the well-being of mankind and sustainability of the pharmaceutical industry. Using chemical biology approaches to discover drug leads has become a widely accepted path partially because of the completion of the Human Genome Project. Chemical biology mainly solves biological problems through searching previously unknown targets for pharmacologically active small molecules or finding ligands for well-defined drug targets. It is a powerful tool to study how these small molecules interact with their respective targets, as well as their roles in signal transduction, molecular recognition and cell functions. There have been an increasing number of new therapeutic targets being identified and subsequently validated as a result of advances in functional genomics, which in turn led to the discovery of numerous active small molecules via a variety of high-throughput screening initiatives. In this review, we highlight some applications of chemical biology in the context of drug discovery.
Collapse
|
7
|
Ngo L, Wu J, Yang C, Zheng YG. Effective Quenchers Are Required to Eliminate the Interference of Substrate: Cofactor Binding in the HAT Scintillation Proximity Assay. Assay Drug Dev Technol 2015; 13:210-20. [PMID: 26065557 PMCID: PMC4490742 DOI: 10.1089/adt.2015.636] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Histone acetyltransferases (HATs) mediate the transfer of an acetyl group from the cofactor, acetyl-CoA, to the side chain amino group of specific lysines in diverse protein substrates, most notably nuclear histones. The deregulation of HATs is connected to a number of disease states. Reliable and rapid biochemical assays for HATs are critical for understanding biological functions of protein acetylation, as well as for screening small-molecule inhibitors of HAT enzymes. In this report, we present a scintillation proximity assay (SPA) for the measurement of HAT enzymatic activities. The acetyl donor was [(3)H]Ac-CoA, and a biotin-modified histone peptide served as the HAT substrate. After the HAT reaction, streptavidin-coated beads were added to induce proximity of acetylated substrate to the scintillant molecules. However, we observed strong nonspecific binding between the cofactor and the histone peptide substrates, which adversely complicated the SPA performance. To prevent this problem, a set of chemical agents were evaluated to eliminate the cofactor-substrate interaction, thus providing reliable SPA readings. With optimization, the SPA showed consistent and robust performance for HAT activity measurement and HAT inhibitor evaluation. Overall, this mix-and-measure assay does not require any washing procedure, can be utilized in the microplate format, and is well suited for high-throughput screening of HAT chemical modulators.
Collapse
Affiliation(s)
- Liza Ngo
- Department of Pharmaceutical and Biomedical Sciences, The University of Georgia , Athens, Georgia
| | - Jiang Wu
- Department of Pharmaceutical and Biomedical Sciences, The University of Georgia , Athens, Georgia
| | - Chao Yang
- Department of Pharmaceutical and Biomedical Sciences, The University of Georgia , Athens, Georgia
| | - Yujun George Zheng
- Department of Pharmaceutical and Biomedical Sciences, The University of Georgia , Athens, Georgia
| |
Collapse
|
8
|
Yu W, Eram MS, Hajian T, Szykowska A, Burgess-Brown N, Vedadi M, Brown PJ. A scintillation proximity assay for histone demethylases. Anal Biochem 2014; 463:54-60. [DOI: 10.1016/j.ab.2014.06.023] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2014] [Revised: 06/22/2014] [Accepted: 06/28/2014] [Indexed: 10/25/2022]
|
9
|
Lee SH, Rhee HW, van Noort D, Lee HJ, Park HH, Shin IS, Hong JI, Park TH. Microfluidic bead-based sensing platform for monitoring kinase activity. Biosens Bioelectron 2014; 57:1-9. [DOI: 10.1016/j.bios.2014.01.039] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2013] [Revised: 01/18/2014] [Accepted: 01/20/2014] [Indexed: 10/25/2022]
|
10
|
Nobori T, Shiosaki S, Mori T, Toita R, Kim CW, Nakamura Y, Kishimura A, Niidome T, Katayama Y. Fluorescent Polyion Complex Nanoparticle That Incorporates an Internal Standard for Quantitative Analysis of Protein Kinase Activity. Bioconjug Chem 2014; 25:869-72. [DOI: 10.1021/bc500142j] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
| | | | | | | | | | | | | | - Takuro Niidome
- Graduate
School of Science and Technology, Kumamoto University, 2-39-1 Kurokami, Chuo-Ku, Kumamoto 860-8555, Japan
| | | |
Collapse
|
11
|
Jing M, Verardi R, Veglia G, Bowser MT. Development of a Sensitive Assay for SERCA Activity Using FRET Detection of ADP. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2014; 6:1468-1474. [PMID: 24729794 PMCID: PMC3982649 DOI: 10.1039/c3ay41808a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Various isoforms of sarco(endo)plasmic reticulum Ca2+-ATPase (SERCA) regulate Ca2+ homeostatic balance in both the heart (SERCA2a) and skeletal muscle (SERCA1a). Ca2+ plays a key role in these tissues as an intracellular signal that controls contractility. Due to its key role in the contractility cycle, SERCA is emerging as a promising pharmacological target to modulate heart muscle function. SERCA function is regulated by its endogenous inhibitor phospholamban (PLN). Upon binding, PLN decreases SERCA's apparent affinity for Ca2+. Therefore the interaction between PLN and SERCA has an important role in determining both physiological and pathological conditions. Quantifying the inhibitory potency of PLN is of great importance in understanding the pathophysiology of heart muscle. Traditionally, SERCA activity assays have been performed using a PK/LDH-coupled enzyme reaction, which suffers from limited sensitivity. We have developed a new SERCA activity assay based on the direct detection of the product ADP via time resolved FRET (TR-FRET). Under optimized conditions, our assay reduced the amount of SERCA required to perform the assay 1,000-fold. Inter-day reproducibility was shown to be excellent for SERCA preparations in either detergent (C12E8) or reconstituted lipids. The inhibitory effect of PLN on SERCA measured under the low-concentration conditions of our assay allowed us to more accurately investigate the binding between PLN and SERCA. Significant inhibitory effects of PLN were observed even at mid-nanomolar concentrations significantly lower than previous Kd estimates for the SERCA-PLN complex.
Collapse
Affiliation(s)
- Meng Jing
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455
| | - Raffaello Verardi
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, Minnesota 55455
| | - Gianluigi Veglia
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455 ; Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, Minnesota 55455
| | - Michael T Bowser
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455
| |
Collapse
|
12
|
Pytel D, Seyb K, Liu M, Ray SS, Concannon J, Huang M, Cuny GD, Diehl JA, Glicksman MA. Enzymatic Characterization of ER Stress-Dependent Kinase, PERK, and Development of a High-Throughput Assay for Identification of PERK Inhibitors. ACTA ACUST UNITED AC 2014; 19:1024-34. [PMID: 24598103 DOI: 10.1177/1087057114525853] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2013] [Accepted: 02/04/2014] [Indexed: 12/17/2022]
Abstract
PERK is serine/threonine kinase localized to the endoplasmic reticulum (ER) membrane. PERK is activated and contributes to cell survival in response to a variety of physiological stresses that affect protein quality control in the ER, such as hypoxia, glucose depravation, increased lipid biosynthesis, and increased protein translation. Pro-survival functions of PERK are triggered by such stresses, suggesting that development of small-molecule inhibitors of PERK may be efficacious in a variety of disease scenarios. Hence, we have conducted a detailed enzymatic characterization of the PERK kinase to develop a high-throughput-screening assay (HTS) that will permit the identification of small-molecule PERK inhibitors. In addition to establishing the K(m) of PERK for both its primary substrate, eIF2α, and for adenosine triphosphate, further mechanistic studies revealed that PERK targets its substrate via either a random/steady-state ordered mechanism. For HTS, we developed a time-resolved fluorescence resonance energy transfer-based assay that yielded a robust Z' factor and percent coefficient of variation value, enabling the successful screening of 79,552 compounds. This approach yielded one compound that exhibited good in vitro and cellular activity. These results demonstrate the validity of this screen and represent starting points for drug discovery efforts.
Collapse
Affiliation(s)
- Dariusz Pytel
- The Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, PA, USA Department of Cancer Biology, University of Pennsylvania, Philadelphia, PA, USA Abramson Cancer Center and Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA Laboratory for Drug Discovery in Neurodegeneration, Harvard NeuroDiscovery Center, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, USA
| | - Kathleen Seyb
- Laboratory for Drug Discovery in Neurodegeneration, Harvard NeuroDiscovery Center, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, USA
| | - Min Liu
- Laboratory for Drug Discovery in Neurodegeneration, Harvard NeuroDiscovery Center, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, USA
| | - Soumya S Ray
- Laboratory for Drug Discovery in Neurodegeneration, Harvard NeuroDiscovery Center, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, USA
| | - John Concannon
- Laboratory for Drug Discovery in Neurodegeneration, Harvard NeuroDiscovery Center, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, USA
| | - Mickey Huang
- Laboratory for Drug Discovery in Neurodegeneration, Harvard NeuroDiscovery Center, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, USA
| | - Gregory D Cuny
- Laboratory for Drug Discovery in Neurodegeneration, Harvard NeuroDiscovery Center, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, USA
| | - J Alan Diehl
- The Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, PA, USA Department of Cancer Biology, University of Pennsylvania, Philadelphia, PA, USA Abramson Cancer Center and Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Marcie A Glicksman
- Laboratory for Drug Discovery in Neurodegeneration, Harvard NeuroDiscovery Center, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, USA
| |
Collapse
|
13
|
Minor LK. Assays for membrane tyrosine kinase receptors: methods for high-throughput screening and utility for diagnostics. Expert Rev Mol Diagn 2014; 5:561-71. [PMID: 16013974 DOI: 10.1586/14737159.5.4.561] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The development of novel antagonists or agonists of membrane tyrosine kinase receptors is a large focus of discovery research. This review will provide some background on membrane tyrosine kinases as well as a description of some of the better established assays used for the high-throughput screening of membrane tyrosine kinase inhibitors. Biochemical methods detailed include those using labels such as radioactivity and fluorescence (fluorescence energy transfer, fluorescence and fluorescence polarization) as well as label-free assays using luminescence. These assays are solid phase, liquid phase, as well as bead based. In addition, a discussion on which tools are available to screen for membrane tyrosine kinase receptor modulators/activators using whole-cell assays will be presented. The potential clinical need for testing receptor activation/phosphorylation as well as the possibility of using some of these tests to measure biomarkers of disease or as clinical diagnostic tools to tailor drug therapy or monitor its efficacy will also be discussed.
Collapse
Affiliation(s)
- Lisa K Minor
- Johnson & Johnson Pharmaceutical Research and Development, LLC, Springhouse Pennsylvania, Welsh & McKean Rds, Springhouse, PA 19477, USA.
| |
Collapse
|
14
|
Shiosaki S, Nobori T, Mori T, Toita R, Nakamura Y, Kim CW, Yamamoto T, Niidome T, Katayama Y. A protein kinase assay based on FRET between quantum dots and fluorescently-labeled peptides. Chem Commun (Camb) 2013; 49:5592-4. [PMID: 23677259 DOI: 10.1039/c3cc41680a] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
A novel protein kinase assay was developed, based on FRET between QDs and fluorescently-labeled substrate peptides. The negatively charged QDs recognize the change in net charge of the peptide upon phosphorylation. Despite its simple mechanism, this assay is sensitive and robust enough to be applied to the evaluation of protein kinase inhibitors.
Collapse
Affiliation(s)
- Shujiro Shiosaki
- Graduate School of Systems Life Sciences, Kyushu University, 744 Motooka, Nishi-Ku, Fukuoka 819-0395, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Joseph RE, Kleino I, Wales TE, Xie Q, Fulton DB, Engen JR, Berg LJ, Andreotti AH. Activation loop dynamics determine the different catalytic efficiencies of B cell- and T cell-specific tec kinases. Sci Signal 2013; 6:ra76. [PMID: 23982207 DOI: 10.1126/scisignal.2004298] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Itk (interleukin-2-inducible T cell kinase) and Btk (Bruton's tyrosine kinase) are nonreceptor tyrosine kinases of the Tec family that signal downstream of the T cell receptor (TCR) and B cell receptor (BCR), respectively. Despite their high sequence similarity and related signaling roles, Btk is a substantially more active kinase than Itk. We showed that substitution of 6 of the 619 amino acid residues of Itk with the corresponding residues of Btk (and vice versa) was sufficient to completely switch the activities of Itk and Btk. The substitutions responsible for the swap in activity are all localized to the activation segment of the kinase domain. Nuclear magnetic resonance and hydrogen-deuterium exchange mass spectrometry analyses revealed that Itk and Btk had distinct protein dynamics in this region, which could explain the differences in catalytic efficiency between these kinases. Introducing Itk with enhanced activity into T cells led to enhanced and prolonged TCR signaling compared to that in cells with wild-type Itk. These findings imply that evolutionary pressures have led to Tec kinases having distinct enzymatic properties, depending on the cellular context. We suggest that the weaker catalytic activities of T cell-specific kinases serve to regulate cellular activation and prevent aberrant immune responses.
Collapse
Affiliation(s)
- Raji E Joseph
- Roy J Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA 50011, USA
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Fu C, Zheng X, Jiang Y, Liu Y, Xu P, Zeng Z, Liu R, Zhao Y. A universal and multiplex kinase assay using γ-[(18)O(4)]-ATP. Chem Commun (Camb) 2013; 49:2795-7. [PMID: 23439932 DOI: 10.1039/c3cc38467e] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We have synthesized γ-[(18)O4]-ATP and used it to develop a non-radioactive and multiplex method. Significantly, this novel approach can be applied to any kinases without using a purified enzyme or a fluorescent substrate. Using this approach, the effectiveness and specificity of inhibitors on several kinases could be readily determined.
Collapse
Affiliation(s)
- Chuan Fu
- Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, PR China
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Abstract
BACKGROUND Homogeneous time-resolved fluorescence (HTRF) is a fluorescence resonance energy transfer-based technology used to measure bimolecular interactions. It has been applied successfully to kinase assays and has become an important tool in kinase drug discovery. OBJECTIVE This article reviews the current status of HTRF technology in biochemical and cellular kinase assays. METHODS Recent literature and meeting reports on HTRF kinase assays are reviewed, and their principles, advantages and drawbacks, current status and the potential applications in kinase drug discovery are discussed. RESULTS/CONCLUSION HTRF kinase assays are homogeneous, robust, sensitive, easy to miniaturize and high-throughput. This assay format is versatile, as both peptide and protein substrates can be used, and high ATP concentrations are tolerated, which enables the assay to be performed under conditions mimicking the physiological environment. HTRF kinase assays have been applied to both high-throughput screening and compound mechanistic studies. Besides protein kinases, the technology has now been expanded into the lipid kinase family. Furthermore, the utility of HTRF technology in cellular assays is emerging. HTRF kinase assays are a great addition to the toolbox for kinase drug discovery.
Collapse
Affiliation(s)
- Yong Jia
- Group Leader Genomics Institute of the Novartis Research Foundation, Department of Kinase Biology, 10675 John J Hopkins Dr, San Diego, CA 92121, USA +858 812 1728 ; +858 812 1918 ;
| |
Collapse
|
18
|
Toita R, Mori T, Naritomi Y, Kang JH, Shiosaki S, Niidome T, Katayama Y. Fluorometric detection of protein kinase Cα activity based on phosphorylation-induced dissociation of a polyion complex. Anal Biochem 2012; 424:130-6. [DOI: 10.1016/j.ab.2012.01.036] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2011] [Revised: 01/11/2012] [Accepted: 01/13/2012] [Indexed: 12/11/2022]
|
19
|
Takagi T, Shum D, Parisi M, Santos RE, Radu C, Calder P, Rizvi Z, Frattini MG, Djaballah H. Comparison of luminescence ADP production assay and radiometric scintillation proximity assay for Cdc7 kinase. Comb Chem High Throughput Screen 2012; 14:669-87. [PMID: 21564015 DOI: 10.2174/138620711796504442] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2010] [Revised: 03/19/2011] [Accepted: 04/26/2011] [Indexed: 12/20/2022]
Abstract
Several assay technologies have been successfully adapted and used in HTS to screen for protein kinase inhibitors; however, emerging comparative analysis studies report very low hit overlap between the different technologies, which challenges the working assumption that hit identification is not dependent on the assay method of choice. To help address this issue, we performed two screens on the cancer target, Cdc7-Dbf4 heterodimeric protein kinase, using a direct assay detection method measuring [(33)P]-phosphate incorporation into the substrate and an indirect method measuring residual ADP production using luminescence. We conducted the two screens under similar conditions, where in one, we measured [(33)P]-phosphate incorporation using scintillation proximity assay (SPA), and in the other, we detected luminescence signal of the ATP-dependent luciferase after regenerating ATP from residual ADP (LUM). Surprisingly, little or no correlation were observed between the positives identified by the two methods; at a threshold of 30% inhibition, 25 positives were identified in the LUM screen whereas the SPA screen only identified two positives, Tannic acid and Gentian violet, with Tannic acid being common to both. We tested 20 out of the 25 positive compounds in secondary confirmatory study and confirmed 12 compounds including Tannic acid as Cdc7-Dbf4 kinase inhibitors. Gentian violet, which was only positive in the SPA screen, inhibited luminescence detection and categorized as a false positive. This report demonstrates the strong impact in detection format on the success of a screening campaign and the importance of carefully designed confirmatory assays to eliminate those compounds that target the detection part of the assay.
Collapse
Affiliation(s)
- Toshimitsu Takagi
- HTS Core Facility, Molecular Pharmacology and Chemistry Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Lippok S, Seidel SAI, Duhr S, Uhland K, Holthoff HP, Jenne D, Braun D. Direct detection of antibody concentration and affinity in human serum using microscale thermophoresis. Anal Chem 2012; 84:3523-30. [PMID: 22397688 DOI: 10.1021/ac202923j] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The direct quantification of both the binding affinity and absolute concentration of disease-related biomarkers in biological fluids is particularly beneficial for differential diagnosis and therapy monitoring. Here, we extend microscale thermophoresis to target immunological questions. Optically generated thermal gradients were used to deplete fluorescently marked antigens in 2- and 10-fold-diluted human serum. We devised and validated an autocompetitive strategy to independently fit the concentration and dissociation constant of autoimmune antibodies against the cardiac β1-adrenergic receptor related to dilated cardiomyopathy. As an artificial antigen, the peptide COR1 was designed to mimic the second extracellular receptor loop. Thermophoresis resolved antibody concentrations from 2 to 200 nM and measured the dissociation constant as 75 nM. The approach quantifies antibody binding in its native serum environment within microliter volumes and without any surface attachments. The simplicity of the mix and probe protocol minimizes systematic errors, making thermophoresis a promising detection method for personalized medicine.
Collapse
Affiliation(s)
- Svenja Lippok
- Systems Biophysics, Center for Nanoscience, Physics Department, Ludwig Maximilians Universität München, München, Germany
| | | | | | | | | | | | | |
Collapse
|
21
|
Koga H, Toita R, Mori T, Tomiyama T, Kang JH, Niidome T, Katayama Y. Fluorescent Nanoparticles Consisting of Lipopeptides and Fluorescein-Modified Polyanions for Monitoring of Protein Kinase Activity. Bioconjug Chem 2011; 22:1526-34. [DOI: 10.1021/bc200066w] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
| | | | | | | | | | | | - Yoshiki Katayama
- Center for Advanced Medical Innovation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| |
Collapse
|
22
|
Wu B, Wang HL, Pettus L, Wurz RP, Doherty EM, Henkle B, McBride HJ, Saris CJM, Wong LM, Plant MH, Sherman L, Lee MR, Hsieh F, Tasker AS. Discovery of Pyridazinopyridinones as Potent and Selective p38 Mitogen-Activated Protein Kinase Inhibitors. J Med Chem 2010; 53:6398-411. [DOI: 10.1021/jm100567y] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Bin Wu
- Department of Chemistry Research and Discovery
| | | | | | | | | | | | | | | | | | | | | | | | - Faye Hsieh
- Pharmacokinetics and Drug Metabolism, Amgen Inc., One Amgen Center Drive, Thousand Oaks, California 91320
| | | |
Collapse
|
23
|
Pan BS, Chan GKY, Chenard M, Chi A, Davis LJ, Deshmukh SV, Gibbs JB, Gil S, Hang G, Hatch H, Jewell JP, Kariv I, Katz JD, Kunii K, Lu W, Lutterbach BA, Paweletz CP, Qu X, Reilly JF, Szewczak AA, Zeng Q, Kohl NE, Dinsmore CJ. MK-2461, a novel multitargeted kinase inhibitor, preferentially inhibits the activated c-Met receptor. Cancer Res 2010; 70:1524-33. [PMID: 20145145 DOI: 10.1158/0008-5472.can-09-2541] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The receptor tyrosine kinase c-Met is an attractive target for therapeutic blockade in cancer. Here, we describe MK-2461, a novel ATP-competitive multitargeted inhibitor of activated c-Met. MK-2461 inhibited in vitro phosphorylation of a peptide substrate recognized by wild-type or oncogenic c-Met kinases (N1100Y, Y1230C, Y1230H, Y1235D, and M1250T) with IC(50) values of 0.4 to 2.5 nmol/L. In contrast, MK-2461 was several hundredfold less potent as an inhibitor of c-Met autophosphorylation at the kinase activation loop. In tumor cells, MK-2461 effectively suppressed constitutive or ligand-induced phosphorylation of the juxtamembrane domain and COOH-terminal docking site of c-Met, and its downstream signaling to the phosphoinositide 3-kinase-AKT and Ras-extracellular signal-regulated kinase pathways, without inhibiting autophosphorylation of the c-Met activation loop. BIAcore studies indicated 6-fold tighter binding to c-Met when it was phosphorylated, suggesting that MK-2461 binds preferentially to activated c-Met. MK-2461 displayed significant inhibitory activities against fibroblast growth factor receptor (FGFR), platelet-derived growth factor receptor, and other receptor tyrosine kinases. In cell culture, MK-2461 inhibited hepatocyte growth factor/c-Met-dependent mitogenesis, migration, cell scatter, and tubulogenesis. Seven of 10 MK-2461-sensitive tumor cell lines identified from a large panel harbored genomic amplification of MET or FGFR2. In a murine xenograft model of c-Met-dependent gastric cancer, a well-tolerated oral regimen of MK-2461 administered at 100 mg/kg twice daily effectively suppressed c-Met signaling and tumor growth. Similarly, MK-2461 inhibited the growth of tumors formed by s.c. injection of mouse NIH-3T3 cells expressing oncogenic c-Met mutants. Taken together, our findings support further preclinical development of MK-2461 for cancer therapy.
Collapse
Affiliation(s)
- Bo-Sheng Pan
- Department of In Vitro Sciences, Merck Research Laboratories, BMB-11, 33 Avenue Louis Pasteur, Boston, MA 02115, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Wu M, Long S, Frutos AG, Eichelberger M, Li M, Fang Y. Interrogation of phosphor-specific interaction on a high-throughput label-free optical biosensor system-Epic system. J Recept Signal Transduct Res 2009; 29:202-10. [PMID: 19640222 DOI: 10.1080/10799890903068474] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
The Epic system, a high-throughput label-free optical biosensor system, is applied for the biochemical interrogation of phosphor-specific interactions of the 14-3-3 protein and its substrates. It has shown the capability not only for high-throughput characterization of binding rank and affinity but also for the exploration of potential interacting kinases for the substrates. A perspective of biochemical applications for diagnostics and biomarker discovery, as well as cell-based applications for endogenous receptors and viral infection characterization, are also provided.
Collapse
Affiliation(s)
- Meng Wu
- Department of Neuroscience, High Throughput Biology Center and Johns Hopkins Ion Channel Center, Johns Hopkins University, School of Medicine, Baltimore, Maryland 21205, USA
| | | | | | | | | | | |
Collapse
|
25
|
Yagi YI, Abe K, Ikebukuro K, Sode K. Kinetic Mechanism and Inhibitor Characterization of WNK1 Kinase. Biochemistry 2009; 48:10255-66. [DOI: 10.1021/bi900666n] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Yukiko I. Yagi
- Tokyo University of Agriculture and Technology, 2-24-16 Naka-machi, Koganei, Tokyo, Japan
| | - Koichi Abe
- Tokyo University of Agriculture and Technology, 2-24-16 Naka-machi, Koganei, Tokyo, Japan
| | - Kazunori Ikebukuro
- Tokyo University of Agriculture and Technology, 2-24-16 Naka-machi, Koganei, Tokyo, Japan
| | - Koji Sode
- Tokyo University of Agriculture and Technology, 2-24-16 Naka-machi, Koganei, Tokyo, Japan
| |
Collapse
|
26
|
Zhang L, Yan Y, Liu Z, Abliz Z, Liu G. Identification of peptide substrate and small molecule inhibitors of testis-specific serine/threonine kinase1 (TSSK1) by the developed assays. J Med Chem 2009; 52:4419-28. [PMID: 19530700 DOI: 10.1021/jm9002846] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
In this paper, a peptide substrate (Pep8) of TSSK1 is identified. Using Pep8 as a substrate, two homogeneous and efficient assays for TSSK1 inhibitors screening have been developed, including luminescent kinase assay and LC-MS-based high-throughput assay. Two classes of compounds were identified that are able to efficiently inhibit phosphorylation catalyzed by TSSK1.
Collapse
Affiliation(s)
- Leilei Zhang
- Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | | | | | | | | |
Collapse
|
27
|
Wood ER, Shewchuk L, Hassel A, Nichols J, Truesdale AT, Smith D, Carter HL, Weaver K, Barrett G, Leesnitzer T, Alvarez E, Bardera AI, Alamillo A, Cantizani J, Martin J, Smith GK, Jensen DE, Xie H, Mook R, Kumar R, Kuntz K. Discovery of an inhibitor of insulin-like growth factor 1 receptor activation: implications for cellular potency and selectivity over insulin receptor. Biochem Pharmacol 2009; 78:1438-47. [PMID: 19665448 DOI: 10.1016/j.bcp.2009.07.022] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2009] [Revised: 07/23/2009] [Accepted: 07/29/2009] [Indexed: 01/10/2023]
Abstract
Insulin-like growth factor 1 receptor (IGF-1R) is an attractive target for anti-cancer therapy due to its anti-apoptotic effect on tumor cells, but inhibition of insulin receptor (IR) may have undesired metabolic consequences. The primary sequences of the ATP substrate-binding sites of these receptors are identical and the crystal structures of the activated kinase domains are correspondingly similar. Thus, most small-molecule inhibitors described to date are equally potent against the activated kinase domains of IGF-1R and IR. In contrast, the non-phosphorylated kinase domains of these receptors have several structural features that may accommodate differences in binding affinity for kinase inhibitors. We used a cell-based assay measuring IGF-1R autophosphorylation as an inhibitor screen, and identified a potent purine derivative that is selective compared to IR. Surprisingly, the compound is a weak inhibitor of the activated IGF-1R tyrosine kinase domain. Biochemical and structural studies are presented that indicate the compound preferentially binds to the ATP site of non-phosphorylated IGF-1R compared to phosphorylated IGF-1R. The potential selectivity and potency advantages of this binding mode are discussed.
Collapse
Affiliation(s)
- Edgar R Wood
- Department of Biological Reagents and Assay Development, Research Triangle Park, GlaxoSmithKline, Inc., NC 27709, United States.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Shapiro AB, Walkup GK, Keating TA. Correction for Interference by Test Samples in High-Throughput Assays. ACTA ACUST UNITED AC 2009; 14:1008-16. [DOI: 10.1177/1087057109341768] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
In high-throughput biochemical assays performed in multiwell plates, the effect of test samples on the activity of the biochemical system is usually measured by optical means such as absorbance, fluorescence, luminescence, or scintillation counting. The test sample often causes detection interference when it remains in the well during the measurement. Interference may be due to light absorption, fluorescence quenching, sample fluorescence, chemical interaction of the sample with a detection reagent, or depression of the meniscus. A simple method is described that corrects for such interference well by well. The interference is measured in a separate artifact assay plate. An appropriate arithmetic correction is then applied to the measurement in the corresponding well of the activity assay plate. The correction procedure can be used for single-point screening or potency measurements on serial dilutions of test samples.
Collapse
|
29
|
Hunt JA, Beresis RT, Goulet JL, Holmes MA, Hong XJ, Kovacs E, Mills SG, Ruzek RD, Wong F, Hermes JD, Park YW, Salowe SP, Sonatore LM, Wu L, Woods A, Zaller DM, Sinclair PJ. Disubstituted pyrimidines as Lck inhibitors. Bioorg Med Chem Lett 2009; 19:5440-3. [PMID: 19674899 DOI: 10.1016/j.bmcl.2009.07.102] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2009] [Revised: 07/20/2009] [Accepted: 07/22/2009] [Indexed: 11/27/2022]
Abstract
We have developed a family of 4-benzimidazolyl-N-piperazinethyl-pyrimidin-2-amines that are subnanomolar inhibitors of Lck. A subset of these Lck inhibitors, with heterocyclic substituents at the benzimidazole C5, are also low-nanomolar inhibitors of cellular IL2 release.
Collapse
Affiliation(s)
- Julianne A Hunt
- Merck Research Laboratories, Merck & Co., PO Box 2000, Rahway, NJ 07065, United States.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Hong L, Quinn CM, Jia Y. Evaluating the utility of the HTRF Transcreener ADP assay technology: a comparison with the standard HTRF assay technology. Anal Biochem 2009; 391:31-8. [PMID: 19406097 DOI: 10.1016/j.ab.2009.04.033] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2009] [Revised: 04/20/2009] [Accepted: 04/22/2009] [Indexed: 01/13/2023]
Abstract
The HTRF (homogeneous time-resolved fluorescence) Transcreener ADP assay is a new kinase assay technology marketed by Cis-Bio International (Bagnols-Cèze, France). It measures kinase activity by detecting the formation of ADP using a monoclonal antibody and HTRF detection principles. In this article, we compare this technology with a standard HTRF kinase assay using EGFR [L858R/T790M] mutant enzyme as a case study. We demonstrate that the HTRF Transcreener ADP assay generated similar kinetic constants and inhibitor potency compared with the standard HTRF assay. However, the smaller dynamic window and lower Z' factor of the HTRF Transcreener ADP assay make this format less preferable for high-throughput screening. Based on the assay principle, the HTRF Transcreener ADP assay can detect both kinase and ATPase activities simultaneously. The ability to probe ATPase activity opens up new avenues for assaying kinases with intrinsic ATPase activity without the need to identify substrates, and this can speed up the drug discovery process. However, caution must be exercised because any contaminating ATPase activity will result in an invalid assay. The inability to tolerate high concentrations of ATP in the assay will also limit the application of this technology, especially in compound mechanistic studies such as ATP competition. Overall, the HTRF Transcreener ADP assay provides a new alternative tool to complement existing assay technologies for drug discovery.
Collapse
Affiliation(s)
- Lin Hong
- Department of Kinase Biology/Oncology, Genomics Institute of the Novartis Research Foundation, San Diego, CA 92121, USA
| | | | | |
Collapse
|
31
|
Lundin A, Eriksson J. A real-time bioluminescent HTS method for measuring protein kinase activity influenced neither by ATP concentration nor by luciferase inhibition. Assay Drug Dev Technol 2008; 6:531-41. [PMID: 18532902 DOI: 10.1089/adt.2008.133] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
The firefly luciferin-luciferase reaction has been used to set up an assay for protein kinase based on measuring ATP consumption rate as the first-order rate constant for the kinase reaction. The assay obviates the problems encountered with previous bioluminescent protein kinase assays such as interference with the luciferase reaction from library compounds, nonlinear standard curves, and limited dynamic ranges. In the assay described in the present paper luciferase and luciferin are present during the entire kinase reaction, and the light emission can be measured continuously. In an HTS situation the light emission is measured only twice, i.e., initially and after a predetermined time. After a fivefold reduction of the ATP concentration a Z' value of 0.96 was obtained. Light emission data from samples with kinase are normalized with light emission data from blanks without kinase. First-order rate constants for the kinase reaction calculated from normalized light emission are not affected by a moderate degree of inactivation of luciferase and luciferin during the measuring time. The constants have the same value at all ATP concentrations much lower than the K(m) of the luciferase and the kinase. These factors make the assay very robust and influenced neither by ATP concentration nor by luciferase inhibition. The measuring time depends on the kinase activity and can be varied from minutes to more than 8 h provided the kinase is stable and the evaporation of water from the wells is acceptable. The assay is linear with respect to kinase activity over three orders of magnitude. The new reagents also allowed us to determine K(m) values for ATP and for Kemptide.
Collapse
Affiliation(s)
- Arne Lundin
- BioThema AB, Stationsvagen 17, Handen, Sweden.
| | | |
Collapse
|
32
|
Dufau I, Lazzari A, Samson A, Pouny I, Ausseil F. Optimization of a homogeneous assay for kinase inhibitors in plant extracts. Assay Drug Dev Technol 2008; 6:673-82. [PMID: 19035848 DOI: 10.1089/adt.2008.143] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
To identify natural and original kinase inhibitors from plant extracts, we have developed and compared a heterogeneous enzyme-linked immunosorbent assay (ELISA) and a homogeneous time-resolved fluorescence (HTRF, Cisbio International, Bagnols/Cèze, France) assay. Kinase affinity for the ATP substrate was determined in both assays, and the same [ATP]/ATP Km ratio was used in each case to enable the identification of ATP competitive and noncompetitive inhibitors. Assays were then used to screen the same collection of chemical compounds and plant extracts. The intra-assay correlation analysis of each technology showed a very good screening precision in HTRF and an acceptable one in ELISA. When the two methods were compared, a poor correlation was obtained with a higher hit rate in the ELISA. We then performed a detailed study of the ELISA hits and showed that they also presented a strong antioxidant activity, associated with high adsorption into microplate wells, which interfered with the horseradish peroxidase-based detection system. These hits were then flagged as false-positives. We also showed that many plant extracts presented this kind of activity and that this interference could explain the lack of correlation between the assays. These findings suggest that assay design should be carefully adapted to the substances to be screened and that interferences should be extensively considered before any assay development process and comparison studies. In spite of a few interferences, our results showed that a homogeneous-phase assay like the HTRF assay could be more efficiently used for plant extract screening than a heterogeneous-phase assay like ELISA.
Collapse
Affiliation(s)
- Isabelle Dufau
- Centre de Criblage Pharmacologique, CNRS--Pierre Fabre Joint Service Unit 2646, Toulouse, France
| | | | | | | | | |
Collapse
|
33
|
Hemmilá I, Mukkala VM. Time-Resolution in Fluorometry Technologies, Labels, and Applications in Bioanalytical Assays. Crit Rev Clin Lab Sci 2008. [DOI: 10.1080/20014091084254] [Citation(s) in RCA: 194] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
34
|
Jia Y, Gu XJ, Brinker A, Warmuth M. Measuring the tyrosine kinase activity: a review of biochemical and cellular assay technologies. Expert Opin Drug Discov 2008; 3:959-78. [DOI: 10.1517/17460441.3.8.959] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Yong Jia
- Group Leader Genomics Institute of the Novartis Research Foundation, Department of Kinase Biology, 10675 John J. Hopkins Dr, San Diego, CA 92121, USA ;
| | - Xiang-ju Gu
- Group Leader Genomics Institute of the Novartis Research Foundation, Department of Lead Discovery, 10675 John J. Hopkins Dr, San Diego, CA 92121, USA
| | - Achim Brinker
- Associate Director Genomics Institute of the Novartis Research Foundation, Department of Lead Discovery, 10675 John J. Hopkins Dr, San Diego, CA 92121, USA
| | - Markus Warmuth
- Director Genomics Institute of the Novartis Research Foundation, Department of Kinase Biology, 10675 John J. Hopkins Dr, San Diego, CA 92121, USA
| |
Collapse
|
35
|
Yang P, Kennedy RT. High performance liquid chromatography coupled on-line to capillary electrophoresis with laser-induced fluorescence detection for detecting inhibitors of Src homology 2 domain–phosphopeptide binding in mixtures. J Chromatogr A 2008; 1194:225-30. [DOI: 10.1016/j.chroma.2008.04.072] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2007] [Revised: 04/08/2008] [Accepted: 04/17/2008] [Indexed: 10/22/2022]
|
36
|
Abstract
Scintillation proximity assay technologies provide a rapid non-separation method to measure common biological interactions using radioactively tagged molecules. This unit identifies potential uses of the technology for the measurement of receptor-ligand binding, cAMP accumulation, GTP binding to heterotrimeric G proteins, protease activity and cellular uptake.
Collapse
Affiliation(s)
- Steven D Kahl
- Lilly Research Laboratories, Indianapolis, Indiana, USA
| | | |
Collapse
|
37
|
Schröter T, Minond D, Weiser A, Dao C, Habel J, Spicer T, Chase P, Baillargeon P, Scampavia L, Schürer S, Chung C, Mader C, Southern M, Tsinoremas N, LoGrasso P, Hodder P. Comparison of miniaturized time-resolved fluorescence resonance energy transfer and enzyme-coupled luciferase high-throughput screening assays to discover inhibitors of Rho-kinase II (ROCK-II). ACTA ACUST UNITED AC 2008; 13:17-28. [PMID: 18227223 DOI: 10.1177/1087057107310806] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Kinases are important drug discovery targets for a wide variety of therapeutic indications; consequently, the measurement of kinase activity remains a common high-throughput screening (HTS) application. Recently, enzyme-coupled luciferase-kinase (LK) format assays have been introduced. This format measures luminescence resulting from metabolism of adenosine triphosphate (ATP) via a luciferin/luciferase-coupled reaction. In the research presented here, 1536-well format time-resolved fluorescence resonance energy transfer (TR-FRET) and LK assays were created to identify novel Rho-associated kinase II (ROCK-II) inhibitors. HTS campaigns for both assays were conducted in this miniaturized format. It was found that both assays were able to consistently reproduce the expected pharmacology of inhibitors known to be specific to ROCK-II (fasudil IC50: 283 +/- 27 nM and 336 +/- 54 nM for TR-FRET and LK assays, respectively; Y-27632 IC50: 133 +/- 7.8 nM and 150 +/- 22 nM for TR-FRET and LK assays, respectively). In addition, both assays proved robust for HTS efforts, demonstrating excellent plate Z' values during the HTS campaign (0.84 +/- 0.03; 0.72 +/- 0.05 for LK and TR-FRET campaigns, respectively). Both formats identified scaffolds of known and novel ROCK-II inhibitors with similar sensitivity. A comparison of the performance of these 2 assay formats in an HTS campaign was enabled by the existence of a subset of 25,000 compounds found in both our institutional and the Molecular Library Screening Center Network screening files. Analysis of the HTS campaign results based on this subset of common compounds showed that both formats had comparable total hit rates, hit distributions, amount of hit clusters, and format-specific artifact. It can be concluded that both assay formats are suitable for the discovery of ROCK-II inhibitors, and the choice of assay format depends on reagents and/or screening technology available.
Collapse
Affiliation(s)
- Thomas Schröter
- Department of Molecular Therapeutics and Drug Discovery, Scripps Florida, Jupiter, Florida 33458, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Bacart J, Corbel C, Jockers R, Bach S, Couturier C. The BRET technology and its application to screening assays. Biotechnol J 2008; 3:311-24. [DOI: 10.1002/biot.200700222] [Citation(s) in RCA: 134] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
39
|
Harbert C, Marshall J, Soh S, Steger K. Development of a HTRF kinase assay for determination of Syk activity. CURRENT CHEMICAL GENOMICS 2008; 1:20-6. [PMID: 20161824 PMCID: PMC2774622 DOI: 10.2174/1875397300801010020] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2007] [Revised: 01/14/2008] [Accepted: 01/21/2008] [Indexed: 11/22/2022]
Abstract
Regulation of protein phosphorylation is a primary cellular signaling mechanism. Many cellular responses to internal and external events are mitigated by protein kinase signaling cascades. Dysfunction of protein kinase activity has been linked to a variety of human pathologies, in the areas of cancer, inflammation, metabolism, cell cycle, apoptosis, as well as cardiovascular, neurodegenerative and autoimmune diseases [1-3]. As such, there is an important need for protein kinase activity detection methodologies for researchers engaged in Drug Discovery. A number of different technologies have been employed for the measurement of protein kinase activity, including radioactive methods, luminescent methods, and fluorescent methods. More recently, Homogeneous Time Resolved Fluorescence technology (HTRF®), based on the principle of time-resolved fluorescent resonance energy transfer (TR-FRET), has been developed and applied for the measurement of protein kinase activity in vitro. This technology note describes the development of an HTRF® assay for detection of Syk enzyme activity in a format consistent with the requirements of High-Throughput Screening (HTS) campaigns currently used in drug discovery.
Collapse
|
40
|
Han X, Shigaki S, Yamaji T, Yamanouchi G, Mori T, Niidome T, Katayama Y. A quantitative peptide array for evaluation of protein kinase activity. Anal Biochem 2008; 372:106-15. [DOI: 10.1016/j.ab.2007.09.026] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2007] [Revised: 08/16/2007] [Accepted: 09/23/2007] [Indexed: 10/22/2022]
|
41
|
Abstract
Protein kinase activity results in the incorporation of radiolabeled phosphate from [gamma-32P]ATP into a peptide or protein substrate. The measurement of the amount of radioactivity incorporated into a substrate as a function of time and enzyme concentration allows enzyme activity to be quantified. The activity is expressed as a 'unit', where 1 unit corresponds to the amount of protein kinase that catalyzes the incorporation of 1 nanomole of phosphate into the standard substrate in 1 minute. Specific activity is defined as units of activity per milligram protein. The assay format described here is quick, simple, inexpensive, sensitive and accurate, provides a direct measurement of activity and remains the 'gold standard' for the quantification of protein kinase activity. Up to 40 samples can be assayed manually at one time, and the assay takes one person less than 1 hour to complete.
Collapse
Affiliation(s)
- C James Hastie
- Division of Signal Transduction Therapy, Medical Sciences Institute-Wellcome Trust Biocentre Complex, University of Dundee, Dow Street, Dundee DD1 5EH, Scotland
| | | | | |
Collapse
|
42
|
Oishi J, Asami Y, Mori T, Kang JH, Tanabe M, Niidome T, Katayama Y. Measurement of Homogeneous Kinase Activity for Cell Lysates Based on the Aggregation of Gold Nanoparticles. Chembiochem 2007; 8:875-9. [PMID: 17457815 DOI: 10.1002/cbic.200700086] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Jun Oishi
- Graduate School of Systems Life Sciences, Department of Applied Chemistry and Center for Future Chemistry, Kyushu University, Fukuoka, Japan
| | | | | | | | | | | | | |
Collapse
|
43
|
Wei M, Wynn R, Hollis G, Liao B, Margulis A, Reid BG, Klabe R, Liu PCC, Becker-Pasha M, Rupar M, Burn TC, McCall DE, Li Y. High-throughput determination of mode of inhibition in lead identification and optimization. ACTA ACUST UNITED AC 2007; 12:220-8. [PMID: 17351185 DOI: 10.1177/1087057106296679] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
After finishing the primary high-throughput screening, the screening team is often faced with thousands of hits to be evaluated further. Effective filtering of these hits is crucial in identifying leads. Mode of inhibition (MOI) study is extremely useful in validating whether the observed compound activity is specific to the biological target. In this article, the authors describe a high-throughput MOI determination method for evaluating thousands of compounds using an existing screening infrastructure. Based on enzyme or receptor kinetics theory, the authors developed the method by measuring the ratio of IC(50) or percent inhibition at 2 carefully chosen substrate or ligand concentrations to define an inhibitor as competitive, uncompetitive, or noncompetitive. This not only facilitates binning of HTS hits according to their MOI but also greatly expands HTS utility in support of the medicinal chemistry team's lead optimization practice. Three case studies are presented to demonstrate how the method was applied successfully in 3 discovery programs targeting either an enzyme or a G-protein-coupled receptor.
Collapse
Affiliation(s)
- Min Wei
- Biochemistry Group, CVU CEDD, GlaxoSmithKline Pharmaceuticals, King of Prussia, PA, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Moon JH, MacLean P, McDaniel W, Hancock LF. Conjugated polymer nanoparticles for biochemical protein kinase assay. Chem Commun (Camb) 2007:4910-2. [DOI: 10.1039/b710807a] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
45
|
Kashem MA, Nelson RM, Yingling JD, Pullen SS, Prokopowicz AS, Jones JW, Wolak JP, Rogers GR, Morelock MM, Snow RJ, Homon CA, Jakes S. Three Mechanistically Distinct Kinase Assays Compared: Measurement of Intrinsic ATPase Activity Identified the Most Comprehensive Set of ITK Inhibitors. ACTA ACUST UNITED AC 2006; 12:70-83. [PMID: 17166826 DOI: 10.1177/1087057106296047] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Numerous assay methods have been developed to identify small-molecule effectors of protein kinases, but no single method can be applied to all isolated kinases. The authors developed a set of 3 high-throughput screening (HTS)–compatible biochemical assays that can measure 3 mechanistically distinct properties of a kinase active site, with the goal that at least 1 of the 3 would be applicable to any kinase selected as a target for drug discovery efforts. Two assays measure catalytically active enzyme: A dissociation-enhanced lanthanide fluoroimmuno assay (DELFIA) uses an antibody to quantitate the generation of phosphorylated substrate; a second assay uses luciferase to measure the consumption of adenosine triphosphate (ATP) during either phosphoryl-transfer to a peptide substrate or to water (intrinsic ATPase activity). A third assay, which is not dependent on a catalytically active enzyme, measures the competition for binding to kinase between an inhibitor and a fluorescent ATP binding site probe. To evaluate the suitability of these assays for drug discovery, the authors compared their ability to identify inhibitors of a nonreceptor protein tyrosine kinase from the Tec family, interleukin-2-inducible T cell kinase (ITK). The 3 assays agreed on 57% of the combined confirmed hit set identified from screening a 10,208-compound library enriched with known kinase inhibitors and molecules that were structurally similar. Among the 3 assays, the one measuring intrinsic ATPase activity produced the largest number of unique hits, the fewest unique misses, and the most comprehensive hit set, missing only 2.7% of the confirmed inhibitors identified by the other 2 assays combined. Based on these data, all 3 assay formats are viable for screening and together provide greater options for assay design depending on the targeted kinase.
Collapse
Affiliation(s)
- Mohammed A Kashem
- Boehringer Ingelheim Pharmaceuticals, Inc., Department of Medicinal Chemistry, Ridgefield, CT 06877-0368, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Keseru GM, Makara GM. Hit discovery and hit-to-lead approaches. Drug Discov Today 2006; 11:741-8. [PMID: 16846802 DOI: 10.1016/j.drudis.2006.06.016] [Citation(s) in RCA: 139] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2006] [Revised: 05/08/2006] [Accepted: 06/16/2006] [Indexed: 12/31/2022]
Abstract
Hit discovery technologies range from traditional high-throughput screening to affinity selection of large libraries, fragment-based techniques and computer-aided de novo design, many of which have been extensively reviewed. Development of quality leads using hit confirmation and hit-to-lead approaches present their own challenges, depending on the hit discovery method used to identify the initial hits. In this paper, we summarize common industry practices adopted to tackle hit-to-lead challenges and review how the advantages and drawbacks of different hit discovery techniques could affect the various issues hit-to-lead groups face.
Collapse
Affiliation(s)
- György M Keseru
- CADD&HTS Unit, Gedeon Richter Ltd, 19-21 Gyömroi út, Budapest, H-1103, Hungary
| | | |
Collapse
|
47
|
Moger J, Gribbon P, Sewing A, Winlove CP. The Application of Fluorescence Lifetime Readouts in High-Throughput Screening. ACTA ACUST UNITED AC 2006; 11:765-72. [PMID: 16943393 DOI: 10.1177/1087057106291541] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Measurement of fluorescence lifetime is a well-established technique, which has recently been introduced into the portfolio of assay formats used in high-throughput screening (HTS). This investigation establishes appropriate conditions for using lifetime measurements to reduce the impact of compound interference effects during large-scale HTS of corporate screening files. Experimental data on mixtures of standard fluorophores and interfering compounds (from 5 HTS campaigns) have been combined with a theoretical model to identify the minimum data quality required, defined by the photon count in the peak channel, for discrimination of biological activity. Single-component fluorophore lifetimes can be recovered with an error of 1%, with a peak photon count of 102, but the same accuracy with a 2-component decay requires a peak photon count of 103. When a 3rd component is introduced, the minimum peak count increases to 104. The influence of scattered light on lifetime determination was investigated using an emulsion (diameters 25-675 nm). The measured decays of interfering compounds, identified as autofluorescent, show that the vast majority have a very short lifetime that can readily be resolved from the reporter fluorophore, using appropriate data-fitting methods.
Collapse
Affiliation(s)
- Julian Moger
- School of Physics, University of Exeter, Exeter, UK.
| | | | | | | |
Collapse
|
48
|
Perrin D, Frémaux C, Scheer A. Assay Development and Screening of a Serine/Threonine Kinase in an On-Chip Mode Using Caliper Nanofluidics Technology. ACTA ACUST UNITED AC 2006; 11:359-68. [PMID: 16751332 DOI: 10.1177/1087057106286653] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Kinases are key targets for drug discovery. In the field of screening in general and especially in the kinase area, because of considerations of efficiency and cost, radioactivity-based assays tend to be replaced by alternative, mostly fluorescence-based, assays. Today, the limiting factor is rarely the number of data points that can be obtained but rather the quality of the data, enzyme availability, and cost. In this article, the authors describe the development of an assay for a kinase screen based on the electrophoretic separation of fluorescent product and substrate using a Caliper-based nanofluidics environment in on-chip incubation mode. The authors present the results of screening a focused set of 32,000 compounds together with confirmation data obtained in a filtration assay. In addition, they have made a small-scale comparison between the on-chip and off-chip nanofluidics screening modes. In their hands, the screen in on-chip mode is characterized by high precision most likely due to the absence of liquid pipetting; an excellent confirmation rate (62%) in an independent assay format, namely, filtration; and good sensitivity. This study led to the identification of 4 novel chemical series of inhibitors.
Collapse
Affiliation(s)
- Dominique Perrin
- Molecular Screening and Cellular Pharmacology Department, Serono Pharmaceutical Research Institute, Geneva, Switzerland.
| | | | | |
Collapse
|
49
|
Charter NW, Kauffman L, Singh R, Eglen RM. A generic, homogenous method for measuring kinase and inhibitor activity via adenosine 5'-diphosphate accumulation. ACTA ACUST UNITED AC 2006; 11:390-9. [PMID: 16751335 DOI: 10.1177/1087057106286829] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The authors describe an assay to measure the generation of adenosine 5'-diphosphate (ADP) resulting from phosphorylation of a substrate by a kinase. ADP accumulation is detected by conversion to a fluorescent signal via a coupled enzyme system. The technology has potential applications for the assessment of inhibitor potency and mode of action as well as kinetic analysis of enzyme activity. The assay has a wide dynamic range (0.25-75 microM) and has been validated with several kinases including the highly active cyclic adenosine monophosphate-dependent protein kinase (PKAalpha), casein kinase 1 (CK1), and the weakly active kinase Jun N-terminal kinase 2 (Jnk2alpha2). Kinase activity can be measured either in an end point or continuous mode. Assay performance in end point mode was compared with an adenosine 5'-triphosphate (ATP) depletion assay and in continuous mode with a pyruvate kinase/lactate dehydrogenase coupled assay. The ability to characterize kinase kinetics was demonstrated by deriving ATP/substrate affinity (Michaelis-Menten constant; K(m)) values for PKAalpha, CK1, and Jnk2alpha2. The assay readily measured activity with kinase reactions using protein substrates, indicating the suitability for use with large macromolecules. A wide range of inhibitor activities could be determined even in the presence of high ATP concentrations, making the assay highly suitable to characterize the mode of action of the inhibitor in question. Collectively, this assay provides a homogenous, generic method for a number of applications in kinase drug discovery.
Collapse
|
50
|
Ye G, Ayrapetov M, Nam NH, Sun G, Parang K. Solid-phase binding assays of peptides using EGFP-Src SH2 domain fusion protein and biotinylated Src SH2 domain. Bioorg Med Chem Lett 2005; 15:4994-7. [PMID: 16169725 DOI: 10.1016/j.bmcl.2005.08.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2005] [Revised: 08/02/2005] [Accepted: 08/02/2005] [Indexed: 11/26/2022]
Abstract
Two solid-phase binding assays were designed and evaluated for their potential use in comparing the affinity of peptides to the Src SH2 domain. Resin beads attached to peptides were incubated with the enhanced green fluorescence protein(EGFP)-Src SH2 domain fusion protein or the biotinylated Src SH2 domain and extensively washed. The beads-attached tetrapeptides with high affinities to the EGFP-Src SH2 domain showed more fluorescence intensity than those beads containing tetrapeptides with weak binding affinities, as shown by fluorescence microscopy and fluorescence imaging system. Only the beads attached to pYEEI produced a dark purple color on incubation of the beads, respectively, with the biotinylated Src kinases SH2 domain, alkaline phosphatase-coupled streptavidin, and BCIP/NBT. These solid-phase binding assays may have potential applications for the screening of peptides for the Src kinases SH2 domains.
Collapse
Affiliation(s)
- Guofeng Ye
- Department of Biomedical and Pharmaceutical Sciences, University of Rhode Island, 41 Lower College Road, Kingston, RI 02881, USA
| | | | | | | | | |
Collapse
|