1
|
Bennett JL, Nguyen GTH, Donald WA. Protein-Small Molecule Interactions in Native Mass Spectrometry. Chem Rev 2021; 122:7327-7385. [PMID: 34449207 DOI: 10.1021/acs.chemrev.1c00293] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Small molecule drug discovery has been propelled by the continual development of novel scientific methodologies to occasion therapeutic advances. Although established biophysical methods can be used to obtain information regarding the molecular mechanisms underlying drug action, these approaches are often inefficient, low throughput, and ineffective in the analysis of heterogeneous systems including dynamic oligomeric assemblies and proteins that have undergone extensive post-translational modification. Native mass spectrometry can be used to probe protein-small molecule interactions with unprecedented speed and sensitivity, providing unique insights into polydisperse biomolecular systems that are commonly encountered during the drug discovery process. In this review, we describe potential and proven applications of native MS in the study of interactions between small, drug-like molecules and proteins, including large multiprotein complexes and membrane proteins. Approaches to quantify the thermodynamic and kinetic properties of ligand binding are discussed, alongside a summary of gas-phase ion activation techniques that have been used to interrogate the structure of protein-small molecule complexes. We additionally highlight some of the key areas in modern drug design for which native mass spectrometry has elicited significant advances. Future developments and applications of native mass spectrometry in drug discovery workflows are identified, including potential pathways toward studying protein-small molecule interactions on a whole-proteome scale.
Collapse
Affiliation(s)
- Jack L Bennett
- School of Chemistry, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Giang T H Nguyen
- School of Chemistry, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - William A Donald
- School of Chemistry, University of New South Wales, Sydney, New South Wales 2052, Australia
| |
Collapse
|
2
|
Root K, Barylyuk K, Schwab A, Thelemann J, Illarionov B, Geist JG, Gräwert T, Bacher A, Fischer M, Diederich F, Zenobi R. Aryl bis-sulfonamides bind to the active site of a homotrimeric isoprenoid biosynthesis enzyme IspF and extract the essential divalent metal cation cofactor. Chem Sci 2018; 9:5976-5986. [PMID: 30079212 PMCID: PMC6050538 DOI: 10.1039/c8sc00814k] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Accepted: 06/17/2018] [Indexed: 12/22/2022] Open
Abstract
Characterizing the mode of action of non-covalent inhibitors in multisubunit enzymes often presents a great challenge. Most of the conventionally used methods are based on ensemble measurements of protein-ligand binding in bulk solution. They often fail to accurately describe multiple binding processes occurring in such systems. Native electrospray ionization mass spectrometry (ESI-MS) of intact protein complexes is a direct, label-free approach that can render the entire distribution of ligand-bound states in multimeric protein complexes. Here we apply native ESI-MS to comprehensively characterize the isoprenoid biosynthesis enzyme IspF from Arabidopsis thaliana, an example of a homomeric protein complex with multiple binding sites for several types of ligands, including a metal cofactor and a synthetic inhibitor. While standard biophysical techniques failed to reveal the mode of action of recently discovered aryl-sulfonamide-based inhibitors of AtIspF, direct native ESI-MS titrations of the protein with the ligands and ligand competition assays allowed us to accurately capture the solution-phase protein-ligand binding equilibria in full complexity and detail. Based on these combined with computational modeling, we propose a mechanism of AtIspF inhibition by aryl bis-sulfonamides that involves both the competition with the substrate for the ligand-binding pocket and the extraction of Zn2+ from the enzyme active site. This inhibition mode is therefore mixed competitive and non-competitive, the latter exerting a key inhibitory effect on the enzyme activity. The results of our study deliver a profound insight into the mechanisms of AtIspF action and inhibition, open new perspectives for designing inhibitors of this important drug target, and demonstrate the applicability and value of the native ESI-MS approach for deep analysis of complex biomolecular binding equilibria.
Collapse
Affiliation(s)
- Katharina Root
- Department of Chemistry and Applied Biosciences , ETH Zurich , Zurich , Switzerland .
| | - Konstantin Barylyuk
- Department of Chemistry and Applied Biosciences , ETH Zurich , Zurich , Switzerland .
| | - Anatol Schwab
- Department of Chemistry and Applied Biosciences , ETH Zurich , Zurich , Switzerland .
| | - Jonas Thelemann
- Department of Chemistry and Applied Biosciences , ETH Zurich , Zurich , Switzerland .
| | - Boris Illarionov
- Hamburg School of Food Science , University of Hamburg , Hamburg , Germany
| | - Julie G Geist
- Department of Chemistry and Applied Biosciences , ETH Zurich , Zurich , Switzerland .
| | - Tobias Gräwert
- Hamburg School of Food Science , University of Hamburg , Hamburg , Germany
| | - Adelbert Bacher
- Department of Chemistry , Technical University of Munich , Garching , Germany
| | - Markus Fischer
- Hamburg School of Food Science , University of Hamburg , Hamburg , Germany
| | - François Diederich
- Department of Chemistry and Applied Biosciences , ETH Zurich , Zurich , Switzerland .
| | - Renato Zenobi
- Department of Chemistry and Applied Biosciences , ETH Zurich , Zurich , Switzerland .
| |
Collapse
|
3
|
How can native mass spectrometry contribute to characterization of biomacromolecular higher-order structure and interactions? Methods 2018; 144:3-13. [PMID: 29704661 DOI: 10.1016/j.ymeth.2018.04.025] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 04/03/2018] [Accepted: 04/21/2018] [Indexed: 01/16/2023] Open
Abstract
Native mass spectrometry (MS) is an emerging approach for characterizing biomacromolecular structure and interactions under physiologically relevant conditions. In native MS measurement, intact macromolecules or macromolecular complexes are directly ionized from a non-denaturing solvent, and key noncovalent interactions that hold the complexes together can be preserved for MS analysis in the gas phase. This technique provides unique multi-level structural information such as conformational changes, stoichiometry, topology and dynamics, complementing conventional biophysical techniques. Despite the maturation of native MS and greatly expanded range of applications in recent decades, further dissemination is needed to make the community aware of such a technique. In this review, we attempt to provide an overview of the current body of knowledge regarding major aspects of native MS and explain how such technique contributes to the characterization of biomacromolecular higher-order structure and interactions.
Collapse
|
4
|
Chingin K, Barylyuk K. Charge-State-Dependent Variation of Signal Intensity Ratio between Unbound Protein and Protein-Ligand Complex in Electrospray Ionization Mass Spectrometry: The Role of Solvent-Accessible Surface Area. Anal Chem 2018; 90:5521-5528. [PMID: 29653057 DOI: 10.1021/acs.analchem.7b05349] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Native electrospray ionization mass spectrometry (ESI-MS) is nowadays widely used for the direct and sensitive determination of protein complex stoichiometry and binding affinity constants ( Ka). A common yet poorly understood phenomenon in native ESI-MS is the difference between the charge-state distributions (CSDs) of the bound protein-ligand complex (PL) and unbound protein (P) signals. This phenomenon is typically attributed to experimental artifacts such as nonspecific binding or in-source dissociation and is considered highly undesirable, because the determined Ka values display strong variation with charge state. This situation raises serious concerns regarding the reliability of ESI-MS for the analysis of protein complexes. Here we demonstrate that, contrary to the common belief, the CSD difference between P and PL ions can occur without any loss of complex integrity, simply due to a change in the solvent-accessible surface area (ΔSASA) of the protein upon ligand binding in solution. The experimental CSD shifts for PL and P ions in ESI-MS are explained in relation to the magnitude of ΔSASA for diverse protein-ligand systems using a simple model based on the charged residue mechanism. Our analysis shows that the revealed ΔSASA factor should be considered rather general and be given attention for the correct spectral interpretation of protein complexes.
Collapse
Affiliation(s)
- Konstantin Chingin
- Jiangxi Key Laboratory for Mass Spectrometry and Instrumentation , East China University of Technology , Guanglan Road 418 , Nanchang , Jiangxi , China 330013
| | - Konstantin Barylyuk
- Department of Biochemistry , University of Cambridge , Hopkins Building, Tennis Court Road , Cambridge CB2 1QW , United Kingdom
| |
Collapse
|
5
|
Eschweiler JD, Kerr R, Rabuck-Gibbons J, Ruotolo BT. Sizing Up Protein-Ligand Complexes: The Rise of Structural Mass Spectrometry Approaches in the Pharmaceutical Sciences. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2017; 10:25-44. [PMID: 28301749 DOI: 10.1146/annurev-anchem-061516-045414] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Capturing the dynamic interplay between proteins and their myriad interaction partners is critically important for advancing our understanding of almost every biochemical process and human disease. The importance of this general area has spawned many measurement methods capable of assaying such protein complexes, and the mass spectrometry-based structural biology methods described in this review form an important part of that analytical arsenal. Here, we survey the basic principles of such measurements, cover recent applications of the technology that have focused on protein-small-molecule complexes, and discuss the bright future awaiting this group of technologies.
Collapse
Affiliation(s)
| | - Richard Kerr
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109;
| | | | - Brandon T Ruotolo
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109;
| |
Collapse
|
6
|
Hopper JTS, Robinson CV. Mass spectrometry quantifies protein interactions--from molecular chaperones to membrane porins. Angew Chem Int Ed Engl 2014; 53:14002-15. [PMID: 25354304 DOI: 10.1002/anie.201403741] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Indexed: 12/16/2022]
Abstract
Proteins possess an intimate relationship between their structure and function, with folded protein structures generating recognition motifs for the binding of ligands and other proteins. Mass spectrometry (MS) can provide information on a number of levels of protein structure, from the primary amino acid sequence to its three-dimensional fold and quaternary interactions. Given that MS is a gas-phase technique, with its foundations in analytical chemistry, it is perhaps counter-intuitive to use it to study the structure and non-covalent interactions of proteins that form in solution. Herein we show, however, that MS can go beyond simply preserving protein interactions in the gas phase by providing new insight into dynamic interaction networks, dissociation mechanisms, and the cooperativity of ligand binding. We consider potential pitfalls in data interpretation and place particular emphasis on recent studies that revealed quantitative information about dynamic protein interactions, in both soluble and membrane-embedded assemblies.
Collapse
Affiliation(s)
- Jonathan T S Hopper
- Physical and Theoretical Chemistry Laboratory, University of Oxford, South Parks Road, Oxford OX1 3QZ (UK)
| | | |
Collapse
|
7
|
Hopper JTS, Robinson CV. Massenspektrometrie zur Quantifizierung von Wechselwirkungen zwischen Proteinen - von molekularen Chaperonen zu Membranporinen. Angew Chem Int Ed Engl 2014. [DOI: 10.1002/ange.201403741] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
8
|
Cassou CA, Williams ER. Anions in electrothermal supercharging of proteins with electrospray ionization follow a reverse Hofmeister series. Anal Chem 2014; 86:1640-7. [PMID: 24410546 PMCID: PMC3983018 DOI: 10.1021/ac403398j] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
![]()
The
effects of different anions on the extent of electrothermal
supercharging of proteins from aqueous ammonium and sodium salt solutions
were investigated. Sulfate and hydrogen phosphate are the most effective
anions at producing high charge state protein ions from buffered aqueous
solution, whereas iodide and perchlorate are ineffective with electrothermal
supercharging. The propensity for these anions to produce high charge
state protein ions follows the following trend: sulfate > hydrogen
phosphate > thiocyanate > bicarbonate > chloride > formate
≈
bromide > acetate > iodide > perchlorate. This trend correlates
with
the reverse Hofmeister series over a wide range of salt concentrations
(1 mM to 2 M) and with several physical properties, including solvent
surface tension, anion viscosity B-coefficient, and anion surface/bulk
partitioning coefficient, all of which are related to the Hofmeister
series. The effectiveness of electrothermal supercharging does not
depend on bubble formation, either from thermal degradation of the
buffer or from coalescence of dissolved gas. These results provide
evidence that the effect of different ions in the formation of high
charge state ions by electrothermal supercharging is largely a result
of Hofmeister effects on protein stability leading to protein unfolding
in the heated ESI droplet.
Collapse
Affiliation(s)
- Catherine A Cassou
- Department of Chemistry, University of California , Berkeley, California 94720-1460, United States
| | | |
Collapse
|
9
|
Cubrilovic D, Haap W, Barylyuk K, Ruf A, Badertscher M, Gubler M, Tetaz T, Joseph C, Benz J, Zenobi R. Determination of protein-ligand binding constants of a cooperatively regulated tetrameric enzyme using electrospray mass spectrometry. ACS Chem Biol 2014; 9:218-26. [PMID: 24128068 DOI: 10.1021/cb4007002] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
This study highlights the benefits of nano electrospray ionization mass spectrometry (nanoESI-MS) as a fast and label-free method not only for determination of dissociation constants (KD) of a cooperatively regulated enzyme but also to better understand the mechanism of enzymatic cooperativity of multimeric proteins. We present an approach to investigate the allosteric mechanism in the binding of inhibitors to the homotetrameric enzyme fructose 1,6-bisphosphatase (FBPase), a potential therapeutic target for glucose control in type 2 diabetes. A series of inhibitors binding at an allosteric site of FBPase were investigated to determine their KDs by nanoESI-MS. The KDs determined by ESI-MS correlate very well with IC50 values in solution. The Hill coefficients derived from nanoESI-MS suggest positive cooperativity. From single-point measurements we could obtain information on relative potency, stoichiometry, conformational changes, and mechanism of cooperativity. A new X-ray crystal structure of FBPase tetramer binding ligand 3 in a 4:4 stoichiometry is also reported. NanoESI-MS-based results match the current understanding of the investigated system and are in agreement with the X-ray structural data, but provide additional mechanistic insight on the ligand binding, due to the better dynamic resolution. This method offers a powerful approach for studying other proteins with allosteric binding sites, as well.
Collapse
Affiliation(s)
- Dragana Cubrilovic
- Department of Chemistry and Applied Biosciences, ETH Zurich, 8093 Zurich, Switzerland
| | - Wolfgang Haap
- F. Hoffmann-La Roche Ltd, Discovery Research, Grenzacherstr. 124, 4070 Basel, Switzerland
| | - Konstantin Barylyuk
- Department of Chemistry and Applied Biosciences, ETH Zurich, 8093 Zurich, Switzerland
| | - Armin Ruf
- F. Hoffmann-La Roche Ltd, Discovery Research, Grenzacherstr. 124, 4070 Basel, Switzerland
| | - Martin Badertscher
- Department of Chemistry and Applied Biosciences, ETH Zurich, 8093 Zurich, Switzerland
| | - Marcel Gubler
- F. Hoffmann-La Roche Ltd, Discovery Research, Grenzacherstr. 124, 4070 Basel, Switzerland
| | - Tim Tetaz
- F. Hoffmann-La Roche Ltd, Discovery Research, Grenzacherstr. 124, 4070 Basel, Switzerland
| | - Catherine Joseph
- F. Hoffmann-La Roche Ltd, Discovery Research, Grenzacherstr. 124, 4070 Basel, Switzerland
| | - Jörg Benz
- F. Hoffmann-La Roche Ltd, Discovery Research, Grenzacherstr. 124, 4070 Basel, Switzerland
| | - Renato Zenobi
- Department of Chemistry and Applied Biosciences, ETH Zurich, 8093 Zurich, Switzerland
| |
Collapse
|
10
|
Lin H, Kitova EN, Klassen JS. Measuring positive cooperativity using the direct ESI-MS assay. Cholera toxin B subunit homopentamer binding to GM1 pentasaccharide. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2014; 25:104-110. [PMID: 24122305 DOI: 10.1007/s13361-013-0751-5] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2013] [Revised: 08/12/2013] [Accepted: 08/12/2013] [Indexed: 06/02/2023]
Abstract
Direct electrospray ionization mass spectrometry (ESI-MS) assay was used to investigate the stepwise binding of the GM1 pentasaccharide β-D-Galp-(1→3)-β-D-GalpNAc-(1→4)[α-D-Neu5Ac-(2→3)]-β-D-Galp-(1→4)-β-D-Glcp (GM1os) to the cholera toxin B subunit homopentamer (CTB5) and to establish conclusively whether GM1os binding is cooperative. Apparent association constants were measured for the stepwise addition of one to five GM1os to CTB5 at pH 6.9 and 22 °C. The intrinsic association constant, which was established from the apparent association constant for the addition of a single GM1os to CTB5, was found to be (3.2 ± 0.2) × 106 M(–1). This is in reasonable agreement with the reported value of (6.4 ± 0.3) × 106 M(–1), which was measured at pH 7.4 and 25 °C using isothermal titration calorimetry (ITC). Analysis of the apparent association constants provides direct and unambiguous evidence that GM1os binding exhibits small positive cooperativity. Binding was found to be sensitive to the number of ligand-bound nearest neighbor subunits, with the affinities enhanced by a factor of 1.7 and 2.9 when binding occurs next to one or two ligand-bound subunits, respectively. These findings, which provide quantitative support for the binding model proposed by Homans and coworkers [14], highlight the unique strengths of the direct ESI-MS assay for measuring cooperative ligand binding.
Collapse
|
11
|
Cubrilovic D, Barylyuk K, Hofmann D, Walczak MJ, Gräber M, Berg T, Wider G, Zenobi R. Direct monitoring of protein–protein inhibition using nano electrospray ionization mass spectrometry. Chem Sci 2014. [DOI: 10.1039/c3sc53360c] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
We investigated the inhibition of the protein–protein interactions by nanoESI-MS to monitor the extent of inhibition and the binding mechanism.
Collapse
Affiliation(s)
- Dragana Cubrilovic
- Department of Chemistry and Applied Biosciences
- ETH Zurich
- 8093 Zurich, Switzerland
| | - Konstantin Barylyuk
- Department of Chemistry and Applied Biosciences
- ETH Zurich
- 8093 Zurich, Switzerland
| | - Daniela Hofmann
- Department of Molecular Biology and Biophysics
- ETH Zurich
- 8093 Zurich, Switzerland
| | - Michal Jerzy Walczak
- Department of Molecular Biology and Biophysics
- ETH Zurich
- 8093 Zurich, Switzerland
| | - Martin Gräber
- Institute of Organic Chemistry
- University of Leipzig
- 04103 Leipzig, Germany
| | - Thorsten Berg
- Institute of Organic Chemistry
- University of Leipzig
- 04103 Leipzig, Germany
| | - Gerhard Wider
- Department of Molecular Biology and Biophysics
- ETH Zurich
- 8093 Zurich, Switzerland
| | - Renato Zenobi
- Department of Chemistry and Applied Biosciences
- ETH Zurich
- 8093 Zurich, Switzerland
| |
Collapse
|
12
|
Barylyuk K, Gülbakan B, Xie X, Zenobi R. DNA oligonucleotides: a model system with tunable binding strength to study monomer-dimer equilibria with electrospray ionization-mass spectrometry. Anal Chem 2013; 85:11902-12. [PMID: 24274465 DOI: 10.1021/ac402669e] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Electrospray ionization (ESI) is increasingly used to measure binding strengths, but it is not always clear whether the ESI process introduces artifacts. Here we propose a model monomer-dimer equilibrium system based on DNA oligonucleotides to systematically explore biomolecular self-association with the ESI-mass spectrometry (MS) titration method. The oligonucleotides are designed to be self-complementary and have the same chemical composition and mass, allowing for equal ionization probability, ion transmission, and detection efficiency in ESI-MS. The only difference is the binding strength, which is determined by the nucleotide sequence and can be tuned to cover a range of dissociation constant values. This experimental design allows one to focus on the impact of ESI on the chemical equilibrium and to avoid the other typical sources of variation in ESI-MS signal responses, which yields a direct comparison of samples with different binding strengths. For a set of seven model DNA oligonucleotides, the monomer-dimer binding equilibrium was probed with the ESI-MS titration method in both positive and negative ion modes. A mathematical model describing the dependence of the monomer-to-dimer peak intensity ratio on the DNA concentration was proposed and used to extract apparent Kd values and the fraction of DNA duplex that irreversibly dissociates in the gas phase. The Kd values determined via ESI-MS titration were compared to those determined in solution with isothermal titration calorimetry and equilibrium thermal denaturation methods and were found to be significantly lower. The observed discrepancy was attributed to a greater electrospray response of dimers relative to that of monomers.
Collapse
Affiliation(s)
- Konstantin Barylyuk
- Department of Chemistry and Applied Biosciences, ETH Zurich , Wolfgang-Pauli-Strasse 10, 8093 Zurich, Switzerland
| | | | | | | |
Collapse
|
13
|
High-sensitivity Orbitrap mass analysis of intact macromolecular assemblies. Nat Methods 2012; 9:1084-6. [DOI: 10.1038/nmeth.2208] [Citation(s) in RCA: 316] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2012] [Accepted: 09/17/2012] [Indexed: 12/19/2022]
|
14
|
Edwards MJ, Williams MA, Maxwell A, McKay AR. Mass spectrometry reveals that the antibiotic simocyclinone D8 binds to DNA gyrase in a "bent-over" conformation: evidence of positive cooperativity in binding. Biochemistry 2011; 50:3432-40. [PMID: 21338149 DOI: 10.1021/bi101691k] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
DNA topoisomerases are enzymes that control DNA topology and are vital targets for antimicrobial and anticancer drugs. Here we present a mass spectrometry study of complexes formed between the A subunit of the topoisomerase DNA gyrase and the bifunctional inhibitor simocyclinone D8 (SD8), an antibiotic isolated from Streptomyces. These studies show that, in an alternative mode of interaction to that found by X-ray crystallography, each subunit binds a single bifunctional inhibitor with separate binding pockets for the two ends of SD8. The gyrase subunits form constitutive dimers, and fractional occupancies of inhibitor-bound states show that there is strong allosteric cooperativity in the binding of two bifunctional ligands to the dimer. We show that the mass spectrometry data can be fitted to a general model of cooperative binding via an extension of the "tight-binding" approach, providing a rigorous determination of the dissociation constants and degree of cooperativity. This general approach will be applicable to other systems with multiple binding sites and highlights mass spectrometry's role as a powerful emerging tool for unraveling the complexities of biomolecular interactions.
Collapse
Affiliation(s)
- Marcus J Edwards
- Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Colney, United Kingdom
| | | | | | | |
Collapse
|
15
|
El-Faramawy A, Guo Y, Verkerk UH, Thomson BA, Siu KWM. Infrared irradiation in the collision cell of a hybrid tandem quadrupole/time-of-flight mass spectrometer for declustering and cleaning of nanoelectrosprayed protein complex ions. Anal Chem 2010; 82:9878-84. [PMID: 21062028 DOI: 10.1021/ac102351m] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Herein we report the performance of a hybrid quadrupole time-of-flight tandem mass spectrometer with an improved designed for coaxial infrared laser introduction for the characterization and dissociation of large protein complex ions and their aggregates formed under nanoelectrospray ionization. The major improvement from the original design (Raspopov, S. A.; El-Faramawy, A.; Thomson, B. A.; Siu, K. W. M. Anal. Chem. 2006, 78, 4572-4577) involves the use of a hollow silica waveguide and physical isolation of the infrared laser. Large model protein complex ions and their aggregates examined include alcohol dehydrogenase, avidin, GroEL, and others. Gentle heating of these complexes with the infrared laser facilitated declustering and resulted in better resolved mass spectral peaks and more accurate molecular-weight measurements.
Collapse
Affiliation(s)
- Ayman El-Faramawy
- Centre for Research in Earth and Space Science, York University, 4700 Keele Street, Toronto, Ontario, Canada M3J 1P3
| | | | | | | | | |
Collapse
|
16
|
Ball V, Maechling C. Isothermal microcalorimetry to investigate non specific interactions in biophysical chemistry. Int J Mol Sci 2009; 10:3283-3315. [PMID: 20111693 PMCID: PMC2812836 DOI: 10.3390/ijms10083283] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2009] [Revised: 07/21/2009] [Accepted: 07/24/2009] [Indexed: 01/28/2023] Open
Abstract
Isothermal titration microcalorimetry (ITC) is mostly used to investigate the thermodynamics of “specific” host-guest interactions in biology as well as in supramolecular chemistry. The aim of this review is to demonstrate that ITC can also provide useful information about non-specific interactions, like electrostatic or hydrophobic interactions. More attention will be given in the use of ITC to investigate polyelectrolyte-polyelectrolyte (in particular DNA-polycation), polyelectrolyte-protein as well as protein-lipid interactions. We will emphasize that in most cases these “non specific” interactions, as their definition will indicate, are favoured or even driven by an increase in the entropy of the system. The origin of this entropy increase will be discussed for some particular systems. We will also show that in many cases entropy-enthalpy compensation phenomena occur.
Collapse
Affiliation(s)
- Vincent Ball
- Institut National de la Santé et de la Recherche Médicale, Unité mixte de recherche 977, 11 rue Humann, 67085 Strasbourg Cédex, France
- Université de Strasbourg, Faculté de Chirurgie Dentaire, 1 Place de l’Hôpital, 67000 Strasbourg, France
- Author to whom correspondence should be addressed; E-Mail:
; Tel. +33-3-90-24-32-58; Fax: +33-3-88-90-24-33-79
| | - Clarisse Maechling
- Laboratoire d’Innovation Thérapeutique, Unité Mixte de Recherche 7200 CNRS - Université de Strasbourg, Faculté de Pharmacie, 74 route du Rhin BP 60024, F-67401 ILLKIRCH Cedex, France; E-Mail:
(C.M.)
| |
Collapse
|
17
|
Bruneaux M, Terrier P, Leize E, Mary J, Lallier FH, Zal F. Structural study ofCarcinus maenashemocyanin by native ESI-MS: Interaction withL-lactate and divalent cations. Proteins 2009; 77:589-601. [DOI: 10.1002/prot.22471] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
18
|
Human pancreas-specific protein disulfide isomerase homolog (PDIp) is redox-regulated through formation of an inter-subunit disulfide bond. Arch Biochem Biophys 2009; 485:1-9. [DOI: 10.1016/j.abb.2008.12.021] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2008] [Revised: 12/24/2008] [Accepted: 12/25/2008] [Indexed: 11/23/2022]
|
19
|
Pinkse MWH, Rijkers DTS, Dostmann WR, Heck AJR. Mode of action of cGMP-dependent protein kinase-specific inhibitors probed by photoaffinity cross-linking mass spectrometry. J Biol Chem 2009; 284:16354-16368. [PMID: 19369251 DOI: 10.1074/jbc.m808521200] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The inhibitor peptide DT-2 (YGRKKRRQRRRPPLRKKKKKH) is the most potent and selective inhibitor of the cGMP-dependent protein kinase (PKG) known today. DT-2 is a construct of a PKG tight binding sequence (W45, LRKKKKKH, KI=0.8 microM) and a membrane translocating sequence (DT-6, YGRKKRRQRRRPP, KI=1.1 microM), that combined strongly inhibits PKG catalyzed phosphorylation (KI=12.5 nM) with approximately 1000-fold selectivity toward PKG over protein kinase A, the closest relative of PKG. However, the molecular mechanism behind this inhibition is not entirely understood. Using a combination of photoaffinity labeling, stable isotope labeling, and mass spectrometry, we have located the binding sites of PKG-specific substrate and inhibitor peptides. Covalent linkage of a PKG-specific substrate analogue was localized in the catalytic core on residues 356-372, also known as the glycine-rich loop, essential for ATP binding. By analogy, the individual inhibitor peptides W45 and DT-6 were also found to cross-link near the glycine-rich loop, suggesting these are both substrate competitive inhibitors. A bifunctional photoreactive analogue of DT-2 was found to generate dimers of PKG. This cross-linking induced covalent PKG dimerization was not observed for an N-terminal deletion mutant of PKG, which lacks the dimerization domain. In addition, non-covalent mass spectrometry was used to determine binding stoichiometry and binding order of the inhibitor peptides. Dimeric PKG binds two W45 and DT-6 peptides, whereas only one DT-2 molecule was observed to bind to the dimeric PKG. Taken together, these findings imply that (i) the two individual components making up DT-2 are both targeted against the substrate-binding site and (ii) binding of a single DT-2 molecule inactivates both PKG monomers simultaneously, which is an indication that (iii) in cGMP-activated PKG the catalytic centers of both subunits may be in each other's proximity.
Collapse
Affiliation(s)
- Martijn W H Pinkse
- From the Biomolecular Mass Spectrometry and Proteomics Group, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Sorbonnnelaan 16, Utrecht 3584 CA, The Netherlands; Department of Biotechnology, Delft, University of Technology, Delft 2628 BC, The Netherlands
| | - Dirk T S Rijkers
- Medicinal Chemistry and Chemical Biology, Utrecht Institute for Pharmaceutical Sciences, Department of Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht 3584 CA, The Netherlands
| | - Wolfgang R Dostmann
- Department of Pharmacology, College of Medicine, University of Vermont, Burlington, Vermont 05405
| | - Albert J R Heck
- From the Biomolecular Mass Spectrometry and Proteomics Group, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Sorbonnnelaan 16, Utrecht 3584 CA, The Netherlands.
| |
Collapse
|
20
|
Donald LJ, Collado VM, Galka JJ, O'Neil JD, Duckworth HW, Loewen PC, Standing KG. Urea as a protein destabilizing agent in electrospray ionisation. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2009; 23:788-792. [PMID: 19219845 DOI: 10.1002/rcm.3941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Urea is well known as a denaturant of proteins, but there is also evidence that millimolar amounts of urea may in fact stabilize protein complexes. Advances in mass spectrometric analysis have given us the opportunity to test the effect of urea on several noncovalent complexes in buffered solutions. We expected to see lower charge states if folded proteins were more compact (and therefore more stable), and higher charge states if the proteins were denatured. We have found that mM urea interferes with some noncovalent interactions, and that the extent of interference depends on the specific protein complex. The difference seems to be related to the type of interactions, with weak ones, such as H-bonds, more sensitive to urea. Examples show that a quick check with urea may give some insights into protein stability in the mass spectrometer.
Collapse
Affiliation(s)
- Lynda J Donald
- Department of Chemistry, University of Manitoba, Winnipeg, MB R3T 2N2, Canada.
| | | | | | | | | | | | | |
Collapse
|
21
|
Perry RH, Cooks RG, Noll RJ. Orbitrap mass spectrometry: instrumentation, ion motion and applications. MASS SPECTROMETRY REVIEWS 2008; 27:661-99. [PMID: 18683895 DOI: 10.1002/mas.20186] [Citation(s) in RCA: 273] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Since its introduction, the orbitrap has proven to be a robust mass analyzer that can routinely deliver high resolving power and mass accuracy. Unlike conventional ion traps such as the Paul and Penning traps, the orbitrap uses only electrostatic fields to confine and to analyze injected ion populations. In addition, its relatively low cost, simple design and high space-charge capacity make it suitable for tackling complex scientific problems in which high performance is required. This review begins with a brief account of the set of inventions that led to the orbitrap, followed by a qualitative description of ion capture, ion motion in the trap and modes of detection. Various orbitrap instruments, including the commercially available linear ion trap-orbitrap hybrid mass spectrometers, are also discussed with emphasis on the different methods used to inject ions into the trap. Figures of merit such as resolving power, mass accuracy, dynamic range and sensitivity of each type of instrument are compared. In addition, experimental techniques that allow mass-selective manipulation of the motion of confined ions and their potential application in tandem mass spectrometry in the orbitrap are described. Finally, some specific applications are reviewed to illustrate the performance and versatility of the orbitrap mass spectrometers.
Collapse
Affiliation(s)
- Richard H Perry
- Department of Chemistry, Purdue University, West Lafayette, IN 47907, USA
| | | | | |
Collapse
|
22
|
Mirza UA, Chen G, Liu YH, Doll RJ, Girijavallabhan VM, Ganguly AK, Pramanik BN. Mass spectrometric studies of potent inhibitors of farnesyl protein transferase--detection of pentameric noncovalent complexes. JOURNAL OF MASS SPECTROMETRY : JMS 2008; 43:1393-1401. [PMID: 18438977 DOI: 10.1002/jms.1417] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Farnesyl protein transferase (FPT) inhibition is an interesting and promising approach to noncytotoxic anticancer therapy. Research in this area has resulted in several orally active compounds that are in clinical trials. Electrospray ionization (ESI) time-of-flight mass spectrometry (TOF-MS) was used for the direct detection of a 95 182 Da pentameric noncovalent complex of alpha/beta subunits of FPT containing Zn, farnesyl pyrophosphate (FPP) and SCH 66336, a compound currently undergoing phase III clinical trials as an anticancer agent. It was noted that the desalting of protein samples was an important factor in the detection of the complex. This study demonstrated that the presence of FPP in the system was necessary for the detection of the FPT-inhibitor complex. No pentameric complex was detected in the spectrum when the experiment was carried out in the absence of the FPP. An indirect approach was also applied to confirm the noncovalent binding of SCH 66336 to FPT by the use of an off-line size exclusion chromatography followed by liquid chromatography-electrospray ionization mass spectrometry (LC-ESI-MS) for the detection of the inhibitor.
Collapse
Affiliation(s)
- Urooj A Mirza
- Department of Spectroscopy, Schering-Plough Research Institute, Kenilworth, New Jersey 07033, USA.
| | | | | | | | | | | | | |
Collapse
|
23
|
Courjean O, Chevreux G, Perret E, Morel A, Sanglier S, Potier N, Engel J, van Dorsselaer A, Feracci H. Modulation of E-cadherin monomer folding by cooperative binding of calcium ions. Biochemistry 2008; 47:2339-49. [PMID: 18232713 DOI: 10.1021/bi701340d] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Classical cadherins are transmembrane glycoproteins involved in calcium-dependent cell-cell adhesion. Calcium ions are coordinated at the interface between successive modules of the cadherin ectodomain and are thought to regulate the adhesive interactions of cadherins when present at millimolar concentrations. It is widely accepted that calcium plays a critical role in cadherin-mediated cell-cell adhesion, but the nature of cadherin-calcium binding remains a matter of debate. We investigated the parameters of noncovalent cadherin-calcium binding, using the two N-terminal modules of E-cadherin (E/EC12) with a native N-terminal end and nondenaturing electrospray ionization mass spectrometry. By directly visualizing the molecular complexes, we demonstrated that E/EC12 binds three calcium ions, with an average KD of 20 +/- 0.7 microM. These calcium ions bound cooperatively to E/EC12 in its monomeric state, and these properties were not modified by an N-terminal extension consisting of a single methionine residue. This binding induced specific structural changes, as shown by assessments of protease sensitivity, circular dichroism, and mass spectrometry. Furthermore, the D103A mutation (a residue involved in E-cadherin adhesive function) modified calcium binding and led to a loss of cooperativity and the absence of structural changes, despite calcium binding. As the amino acids involved in calcium binding are found within the cadherin consensus motif, our findings may be relevant to other members of the cadherin family.
Collapse
Affiliation(s)
- Olivier Courjean
- Morphogenèse cellulaire et progression tumorale, Institut Curie, CNRS UMR 144, Paris, France
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Crystal structure of Thermus thermophilus tRNA m1A58 methyltransferase and biophysical characterization of its interaction with tRNA. J Mol Biol 2008; 377:535-50. [PMID: 18262540 DOI: 10.1016/j.jmb.2008.01.041] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2007] [Revised: 01/11/2008] [Accepted: 01/16/2008] [Indexed: 11/22/2022]
Abstract
Methyltransferases from the m(1)A(58) tRNA methyltransferase (TrmI) family catalyze the S-adenosyl-l-methionine-dependent N(1)-methylation of tRNA adenosine 58. The crystal structure of Thermus thermophilus TrmI, in complex with S-adenosyl-l-homocysteine, was determined at 1.7 A resolution. This structure is closely related to that of Mycobacterium tuberculosis TrmI, and their comparison enabled us to enlighten two grooves in the TrmI structure that are large enough and electrostatically compatible to accommodate one tRNA per face of TrmI tetramer. We have then conducted a biophysical study based on electrospray ionization mass spectrometry, site-directed mutagenesis, and molecular docking. First, we confirmed the tetrameric oligomerization state of TrmI, and we showed that this protein remains tetrameric upon tRNA binding, with formation of complexes involving one to two molecules of tRNA per TrmI tetramer. Second, three key residues for the methylation reaction were identified: the universally conserved D170 and two conserved aromatic residues Y78 and Y194. We then used molecular docking to position a N(9)-methyladenine in the active site of TrmI. The N(9)-methyladenine snugly fits into the catalytic cleft, where the side chain of D170 acts as a bidentate ligand binding the amino moiety of S-adenosyl-l-methionine and the exocyclic amino group of the adenosine. Y194 interacts with the N(9)-methyladenine ring, whereas Y78 can stabilize the sugar ring. From our results, we propose that the conserved residues that form the catalytic cavity (D170, Y78, and Y194) are essential for fashioning an optimized shape of the catalytic pocket.
Collapse
|
25
|
Mazon H, Gábor K, Leys D, Heck AJR, van der Oost J, van den Heuvel RHH. Transcriptional activation by CprK1 is regulated by protein structural changes induced by effector binding and redox state. J Biol Chem 2007; 282:11281-90. [PMID: 17303561 DOI: 10.1074/jbc.m611177200] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The transcriptional activator CprK1 from Desulfitobacterium-hafniense, a member of the ubiquitous cAMP receptor protein/fumarate nitrate reduction regulatory protein family, activates transcription of genes encoding proteins involved in reductive dehalogenation of chlorinated aromatic compounds. 3-chloro-4-hydroxyphenylacetate is a known effector for CprK1, which interacts tightly with the protein, and induces binding to a specific DNA sequence ("dehalobox," TTAAT--ATTAA) located in the promoter region of chlorophenol reductive dehalogenase genes. Despite the availability of recent x-ray structures of two CprK proteins in distinct states, the mechanism by which CprK1 activates transcription is poorly understood. In the present study, we have investigated the mechanism of CprK1 activation and its effector specificity. By using macromolecular native mass spectrometry and DNA binding assays, analogues of 3-chloro-4-hydroxyphenylacetate that have a halogenated group at the ortho position and a chloride or acetic acid group at the para position were found to be potent effectors for CprK1. By using limited proteolysis it was demonstrated that CprK1 requires a cascade of structural events to interact with dehalobox dsDNA. Upon reduction of the intermolecular disulfide bridge in oxidized CprK1, the protein becomes more dynamic, but this alone is not sufficient for DNA binding. Activation of CprK1 is a typical example of allosteric regulation; the binding of a potent effector molecule to reduced CprK1 induces local changes in the N-terminal effector binding domain, which subsequently may lead to changes in the hinge region and as such to structural changes in the DNA binding domain that are required for specific DNA binding.
Collapse
Affiliation(s)
- Hortense Mazon
- Department of Biomolecular Mass Spectrometry, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Sorbonnelaan 16, 3584 CA Utrecht, The Netherlands
| | | | | | | | | | | |
Collapse
|
26
|
Downard KM. Ions of the interactome: The role of MS in the study of protein interactions in proteomics and structural biology. Proteomics 2006; 6:5374-84. [PMID: 16991196 DOI: 10.1002/pmic.200600247] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The role of MS in the study of protein-protein interactions in solution is described from a proteomics perspective, in terms of high-throughput analyses of protein complexes in vivo, through to chemical and biochemical treatments ahead of MS analysis in the context of complementary experimental approaches in structural biology. The use of MS to characterise protein-protein interactions is described following the single and tandem affinity purification of protein complexes and assemblies of expressed proteins in host cells, the isolation and preservation of protein complexes on surfaces and microarrays, and their prior treatment with chemical and biochemical probes by hydrogen exchange, radical probe, chemical cross-linking, and limited proteolysis. The advantages and disadvantages of each of the approaches are presented. These new and emerging applications, which further demonstrate the power of MS, continue to ensure that the mass spectrometer will remain at the heart of discoveries in proteomics in the foreseeable future.
Collapse
Affiliation(s)
- Kevin M Downard
- School of Molecular and Microbial Biosciences, University of Sydney, Sydney, Australia.
| |
Collapse
|
27
|
Chevreux G, Potier N, Van Dorsselaer A, Bahloul A, Houdusse A, Wells A, Sweeney HL. Electrospray ionization mass spectrometry studies of noncovalent myosin VI complexes reveal a new specific calmodulin binding site. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2005; 16:1367-76. [PMID: 15979337 DOI: 10.1016/j.jasms.2005.03.023] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2005] [Revised: 03/21/2005] [Accepted: 03/22/2005] [Indexed: 05/03/2023]
Abstract
Among the myosin superfamily, myosin VI differs from all others by a reverse directionality and a particular motility. Little structural information is available for myosin VI. It is known that it binds one calmodulin (CaM) by means of a single "IQ motif" and that myosin VI contains a specific insert located at the junction between the motor domain (MD) and the lever arm, likely to play a critical role for the unusual motility previously observed. Electrospray ionization mass spectrometry (MS) was used to determine the CaM and Ca2+ stoichiometries in several myosin VI constructs. In particular, the experimental conditions required for the observation of multiprotein/Ca2+ noncovalent assemblies are detailed for two truncated MD constructs (less than 20 kDa) and for three full MD constructs (more than 90 KDa). The specificity of the detected stoichiometries is discussed for each construct and the resolving power of Time of Flight mass spectrometry is stressed, in particular for the detection of metal ions binding to high molecular weight complexes. MS reveals a new CaM binding site for myosin VI and highlights a different behavior for the five myosin VI constructs versus Ca2+ binding. In addition to these stoichiometry based experiments, gas-phase dissociation analyses on intact complexes are described. They reveal that Ca2+ transfer between protein partners occurs during the dissociation process for one construct with a full MD. Charge-transfer and dissociation behavior has allowed to draw structural assumptions for the interaction of the MD with the CaM N-terminal lobe.
Collapse
|
28
|
Fu X, Zhang X, Chang Z. 4,4'-Dianilino-1,1'-binaphthyl-5,5'-sulfonate, a novel molecule having chaperone-like activity. Biochem Biophys Res Commun 2005; 329:1087-93. [PMID: 15752765 DOI: 10.1016/j.bbrc.2005.01.164] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2005] [Indexed: 11/24/2022]
Abstract
4,4'-Dianilino-1,1'-binaphthyl-5,5'-sulfonate (bis-ANS) and 1-anilinonaphthalene-8-sulfonate (ANS) are hydrophobic probes that are widely used in protein folding studies, using their capacity to bind to hydrophobic regions of partially unfolded proteins and in turn leading to an increase in fluorescence. Here we reveal a novel chaperone-like activity for bis-ANS, which acted as a highly effective inhibitor for the thermal- or chemical-induced aggregation of alcohol dehydrogenase, insulin or the whole cell extract of Escherichia coli, with ANS showing a much weaker effect. The studies to elucidate the mechanism underlying this activity show that bis-ANS is able to form stable soluble aggregates with the denaturing proteins and dramatically increase its fluorescence intensity upon incubation with aggregation-prone proteins. Moreover, we found that bis-ANS is able to prevent the heat inactivation of citrate synthase. These observations suggest that bis-ANS is able to block the exposed hydrophobic surfaces to suppress protein aggregation, acting in a way similar to what small heat shock proteins (one sub-class of molecular chaperones) do. The data presented here, together with the report that bis-ANS was able to suppress the amyloid formation of the prion peptide [J. Biol. Chem. 279 (2004) 5346], suggest that this molecule may be used as a potential protein stabilizer in addition to its current application as a hydrophobic probe.
Collapse
Affiliation(s)
- Xinmiao Fu
- State Key Laboratory of Protein Engineering and Plant Genetic Engineering, Peking University, Beijing 100871, China
| | | | | |
Collapse
|
29
|
Hu Q, Noll RJ, Li H, Makarov A, Hardman M, Graham Cooks R. The Orbitrap: a new mass spectrometer. JOURNAL OF MASS SPECTROMETRY : JMS 2005; 40:430-43. [PMID: 15838939 DOI: 10.1002/jms.856] [Citation(s) in RCA: 708] [Impact Index Per Article: 35.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Research areas such as proteomics and metabolomics are driving the demand for mass spectrometers that have high performance but modest power requirements, size, and cost. This paper describes such an instrument, the Orbitrap, based on a new type of mass analyzer invented by Makarov. The Orbitrap operates by radially trapping ions about a central spindle electrode. An outer barrel-like electrode is coaxial with the inner spindlelike electrode and mass/charge values are measured from the frequency of harmonic ion oscillations, along the axis of the electric field, undergone by the orbitally trapped ions. This axial frequency is independent of the energy and spatial spread of the ions. Ion frequencies are measured non-destructively by acquisition of time-domain image current transients, with subsequent fast Fourier transforms (FFTs) being used to obtain the mass spectra. In addition to describing the Orbitrap mass analyzer, this paper also describes a complete Orbitrap-based mass spectrometer, equipped with an electrospray ionization source (ESI). Ions are transferred from the ESI source through three stages of differential pumping using RF guide quadrupoles. The third quadrupole, pressurized to less than 10(-3) Torr with collision gas, acts as an ion accumulator; ion/neutral collisions slow the ions and cause them to pool in an axial potential well at the end of the quadrupole. Ion bunches are injected from this pool into the Orbitrap analyzer for mass analysis. The ion injection process is described in a simplified way, including a description of electrodynamic squeezing, field compensation for the effects of the ion injection slit, and criteria for orbital stability. Features of the Orbitrap at its present stage of development include high mass resolution (up to 150,000), large space charge capacity, high mass accuracy (2-5 ppm), a mass/charge range of at least 6000, and dynamic range greater than 10(3). Applications based on electrospray ionization are described, including characterization of transition-metal complexes, oligosaccharides, peptides, and proteins. Use is also made of the high-resolution capabilities of the Orbitrap to confirm the presence of metaclusters of serine octamers in ESI mass spectra and to perform H/D exchange experiments on these ions in the storage quadrupole.
Collapse
Affiliation(s)
- Qizhi Hu
- Purdue University, Chemistry Department, West Lafayette, IN 47907, USA
| | | | | | | | | | | |
Collapse
|
30
|
Huang HH, Liao HK, Chen YJ, Hwang TS, Lin YH, Lin CH. Structural characterization of sialic acid synthase by electrospray mass spectrometry--a tetrameric enzyme composed of dimeric dimers. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2005; 16:324-332. [PMID: 15734325 DOI: 10.1016/j.jasms.2004.11.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2004] [Revised: 11/25/2004] [Accepted: 11/29/2004] [Indexed: 05/24/2023]
Abstract
Sialic acid synthase (NeuB) encoded by the neuB gene catalyzes the condensation of N-acetylmannosamine and phospho(enol)pyruvate to form N-acetylneuraminic acid. The enzyme is essential for the biosynthesis of polysialic acid, a capsular sugar polymer functioning as a virulent factor and antiphagocytic barrier. This report demonstrates the first characterization on the quaternary structure of NeuB from Escherichia coli (EcNeuB) and Streptococcus agalactiae (SaNeuB) by nanoflow electrospray ionization mass spectrometry (ESI-MS). Under non-denaturing conditions, Tris buffer was observed to induce a higher ratio of tetramer/dimer of NeuB in the ESI mass spectra, providing supportive evidence for the existence of a "structurally-specific" tetramer. The instrument parameters were found to significantly affect the ratio of detected tetramer/dimer in ESI mass spectra. The harshest conditions, including high desolvation voltages and pressure in the collision cell, led to enhanced detection of the 160 kDa tetramer. The prevalence of dimeric form is likely the cause in loss of tetramer stability in gas-phase arising from insufficient collisional cooling, which implies an asymmetric assembly, possibly composed of dimeric dimers. Most interestingly, the hypothesis was further supported by chemical cross-linking of SaNeuB, in which the reaction of shorter linker yielded mainly the dimer whereas that of longer linker produced both dimer and tetramer. Furthermore, the ESI-MS analysis can reflect dramatic change of pH-dependent quaternary structure in association with enzyme activity, suggesting the tetrameric form may be the primary species responsible for the enzyme catalysis.
Collapse
Affiliation(s)
- Hsin-Hung Huang
- Institute of Chemistry, Academia Sinica, Taipei 11529, Taiwan.
| | | | | | | | | | | |
Collapse
|
31
|
Potier N, Rogniaux H, Chevreux G, Van Dorsselaer A. Ligand–Metal Ion Binding to Proteins: Investigation by ESI Mass Spectrometry. Methods Enzymol 2005; 402:361-89. [PMID: 16401515 DOI: 10.1016/s0076-6879(05)02011-2] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The objective of this chapter is to show the general mass spectrometry (MS)-based strategies that can be used to retrieve information regarding protein-metal and protein-ligand noncovalent complexes. Indeed, when using carefully controlled conditions in the atmospheric pressure-vacuum interface of the mass spectrometer, and when sample preparation is optimized, it is possible to preserve large specific multiprotein-metal-ligand noncovalent complexes during MS analysis. Examples describing the possibilities of electrospray ionization MS (ESI-MS) are shown. For instance, it can be used to probe cooperativity in the binding of a ligand or a metal to a protein or may constitute a new methodology for a more rational approach for drug discovery and for human genome annotation. Thanks to its ability to directly give information on stoichiometry or dynamics of the interactions formed in solution, MS offers new possibilities to tackle more and more various applications.
Collapse
Affiliation(s)
- Noelle Potier
- Laboratoire de Spéctrometrie de Masse Bio-Organique, Strasbourg, France
| | | | | | | |
Collapse
|
32
|
Abstract
The minutiae of subtle changes that occur in response to ligand binding in multiprotein complexes are often difficult to assess without resource to high resolution X-ray analysis. Recent developments in mass spectrometry, however, are providing insight into dynamic changes within components. In this article we review recent applications of MS for selection of ligands and definition of their binding characteristics for individual protein targets through to macromolecular complexes such as ribosomes.
Collapse
Affiliation(s)
- Margaret G McCammon
- Cambridge University Chemical Laboratory, Lensfield Road, Cambridge CB2 1EW, UK
| | | |
Collapse
|
33
|
Heck AJR, Van Den Heuvel RHH. Investigation of intact protein complexes by mass spectrometry. MASS SPECTROMETRY REVIEWS 2004; 23:368-89. [PMID: 15264235 DOI: 10.1002/mas.10081] [Citation(s) in RCA: 445] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Mass spectrometry has grown in recent years to a well-accepted and increasingly important complementary technique in structural biology. Especially electrospray ionization mass spectrometry is well suited for the detection of non-covalent protein complexes and their interactions with DNA, RNA, ligands, and cofactors. Over the last decade, significant advances have been made in the ionization and mass analysis techniques, which makes the investigation of even larger and more heterogeneous intact assemblies feasible. These technological developments have paved the way to study intact non-covalent protein-protein interactions, assembly and disassembly in real time, subunit exchange, cooperativity effects, and effects of cofactors, allowing us a better understanding of proteins in cellular processes. In this review, we describe some of the latest developments and several highlights.
Collapse
Affiliation(s)
- Albert J R Heck
- Department of Biomolecular Mass Spectrometry, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, The Netherlands.
| | | |
Collapse
|
34
|
Lengqvist J, Mata De Urquiza A, Bergman AC, Willson TM, Sjövall J, Perlmann T, Griffiths WJ. Polyunsaturated fatty acids including docosahexaenoic and arachidonic acid bind to the retinoid X receptor alpha ligand-binding domain. Mol Cell Proteomics 2004; 3:692-703. [PMID: 15073272 DOI: 10.1074/mcp.m400003-mcp200] [Citation(s) in RCA: 215] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Nuclear receptors (NRs) constitute a large and highly conserved family of ligand-activated transcription factors that regulate diverse biological processes such as development, metabolism, and reproduction. As such, NRs have become important drug targets, and the identification of novel NR ligands is a subject of much interest. The retinoid X receptor (RXR) belongs to a subfamily of NRs that bind vitamin A metabolites (i.e. retinoids), including 9-cis-retinoic acid (9-cis-RA). However, although 9-cis-RA has been described as the natural ligand for RXR, its endogenous occurrence has been difficult to confirm. Recently, evidence was provided for the existence of a different natural RXR ligand in mouse brain, the highly enriched polyunsaturated fatty acid (PUFA) docosahexaenoic acid (DHA) (Mata de Urquiza et al. (2000) Science 290, 2140-2144). However, the results suggested that supra-physiological levels of DHA were required for efficient RXR activation. Using a refined method for ligand addition to transfected cells, the current study shows that DHA is a more potent RXR ligand than previously observed, inducing robust RXR activation already at low micromolar concentrations. Furthermore, it is shown that other naturally occurring PUFAs can activate RXR with similar efficiency as DHA. In additional experiments, the binding of fatty acid ligands to RXRalpha is directly demonstrated by electrospray mass spectrometry of the noncovalent complex between the RXR ligand-binding domain (LBD) and its ligands. Data is presented that shows the noncovalent interaction between the RXR LBD and a number of PUFAs including DHA and arachidonic acid, corroborating the results in transfected cells. Taken together, these results show that RXR binds PUFAs in solution and that these compounds induce receptor activation, suggesting that RXR could function as a fatty acid receptor in vivo.
Collapse
Affiliation(s)
- Johan Lengqvist
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE-17177 Stockholm, Sweden
| | | | | | | | | | | | | |
Collapse
|
35
|
Liang Y, Du F, Sanglier S, Zhou BR, Xia Y, Van Dorsselaer A, Maechling C, Kilhoffer MC, Haiech J. Unfolding of rabbit muscle creatine kinase induced by acid. A study using electrospray ionization mass spectrometry, isothermal titration calorimetry, and fluorescence spectroscopy. J Biol Chem 2003; 278:30098-105. [PMID: 12771138 DOI: 10.1074/jbc.m304050200] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Electrospray ionization mass spectrometry, isothermal titration calorimetry (ITC), fluorescence spectroscopy, and glutaraldehyde cross-linking SDS-PAGE have been used to study the unfolding of rabbit muscle creatine kinase (MM-CK) induced by acid. The mass spectrometric experiments show that MM-CK is unfolded gradually when titrated with acid. MM-CK is a dimer (the native state) at pH 7.0 and becomes an equilibrium mixture of the dimer and a partially folded monomer (the intermediate) between pH 6.7 and 5.0. The dimeric protein becomes an equilibrium mixture of the intermediate and an unfolded monomer (the unfolded state) between pH 5.0 and 3.0 and is almost fully unfolded at pH 3.0 reached. The results from a "phase diagram" method of fluorescence show that the conformational transition between the native state and the intermediate of MM-CK occurs in the pH range of 7.0-5.2, and the transition between the intermediate and the unfolded state of the protein occurs between pH 5.2 and 3.0. The intrinsic molar enthalpy changes for formation of the unfolded state of MM-CK induced by acid at 15.0, 25.0, 30.0, and 37.0 degrees C have been determined by ITC. A large positive molar heat capacity change of the unfolding, 8.78 kcal mol-1 K-1, at all temperatures examined indicates that hydrophobic interaction is the dominant driving force stabilizing the native structure of MM-CK. Combining the results from these four methods, we conclude that the acid-induced unfolding of MM-CK follows a "three-state" model and that the intermediate state of the protein is a partially folded monomer.
Collapse
Affiliation(s)
- Yi Liang
- College of Life Sciences, Wuhan University, Wuhan 430072, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Back JW, de Jong L, Muijsers AO, de Koster CG. Chemical cross-linking and mass spectrometry for protein structural modeling. J Mol Biol 2003; 331:303-13. [PMID: 12888339 DOI: 10.1016/s0022-2836(03)00721-6] [Citation(s) in RCA: 169] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The growth of gene and protein sequence information is currently so rapid that three-dimensional structural information is lacking for the overwhelming majority of known proteins. In this review, efforts towards rapid and sensitive methods for protein structural characterization are described, complementing existing technologies. Based on chemical cross-linking and offering the analytical speed and sensitivity of mass spectrometry these methodologies are thought to contribute valuable tools towards future high throughput protein structure elucidation.
Collapse
Affiliation(s)
- Jaap Willem Back
- Swammerdam Institute for Life Sciences (SILS), Mass Spectrometry group, University of Amsterdam, Nieuwe Achtergracht 166, 1018 WV, Amsterdam, The Netherlands.
| | | | | | | |
Collapse
|
37
|
Sanglier S, Leize E, Van Dorsselaer A, Zal F. Comparative ESI-MS study of approximately 2.2 MDa native hemocyanins from deep-sea and shore crabs: from protein oligomeric state to biotope. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2003; 14:419-429. [PMID: 12745211 DOI: 10.1016/s1044-0305(03)00131-4] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
In the past years, the potential of electrospray ionization mass spectrometry (ESI-MS) for the observation of intact weak interactions, such as non-covalent protein-ligand, protein-protein, protein-DNA complexes, has spread out. The coupling of ESI with time-of-flight (TOF) and quadrupole-time-of-flight (Q-TOF) analyzers has even enabled the detection of larger complexes with molecular weights greatly higher than 200 kDa. In this paper, we report a comparative ESI-MS study on the protein quaternary structure of native hemocyanins (Hc) from crabs living in different biotopes: a shore crab (Carcinus maenas) and two deep-sea crabs (Segonzacia mesatlantica and Bythograea thermydron). Hc is an extracellular blood protein, composed of several protein chains which can associate in large multimers. The goal of this study is to point out that the oligomerization state of native Hcs is biotope-dependent. Depending on the crab, ESI-MS analyses under non-denaturing conditions reveal different oligomeric forms present in equilibrium in solution. Molecular weights up to 2,235 kDa were measured for the associations of 30 subunits of the Bythograea thermydron Hc. Thanks to ESI-MS analyses, it could be concluded for the first time that the oligomerization state of native Hcs is dependent on the crab environment. The investigation of these different non-covalent self-assemblies is very important for the life history of crabs, since they are directly related with different oxygen binding abilities and thus, with their ability to colonize habitats with different oxygen contents.
Collapse
Affiliation(s)
- Sarah Sanglier
- Laboratoire de Spectrométrie de Masse Bio-Organique, CNRS UMR 7509, ECPM, Université Louis Pasteur de Strasbourg, 25, Rue Becquerel, 67082, Strasbourg Cedex 2, France
| | | | | | | |
Collapse
|
38
|
Potier N, Billas IML, Steinmetz A, Schaeffer C, van Dorsselaer A, Moras D, Renaud JP. Using nondenaturing mass spectrometry to detect fortuitous ligands in orphan nuclear receptors. Protein Sci 2003; 12:725-33. [PMID: 12649431 PMCID: PMC2323851 DOI: 10.1110/ps.0232503] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Nondenaturing electrospray mass spectrometry (ESI-MS) has been used to reveal the presence of potential ligands in the ligand-binding domain (LBD) of orphan nuclear receptors. This new approach, based on supramolecular mass spectrometry, allowed the detection and identification of fortuitous ligands for the retinoic acid-related orphan receptor beta (RORbeta) and the ultraspiracle protein (USP). These fortuitous ligands were specifically captured from the host cell with the proper stoichiometry. After organic extraction, these molecules have been characterized by classic analytical methods and identified as stearic acid for RORbeta and a phosphatidylethanolamine (PE) for USP, as confirmed by crystallography. These molecules act as "fillers" and may not be the physiological ligands, but they prove to be essential to stabilize the active conformation of the LBD, enabling its crystallization. The resulting crystal structures provide a detailed picture of the ligand-binding pocket, allowing the design of highly specific synthetic ligands that can be used to characterize the function of orphan nuclear receptors. An additional advantage of this new method is that it is not based on a functional test and that it can detect low-affinity ligands.
Collapse
Affiliation(s)
- Noelle Potier
- Laboratoire de Spectrométrie de Masse Bio-Organique, Ecole Européenne de Chimie, Polymères et Matériaux, CNRS UMR7509, 67087 Strasbourg, France
| | | | | | | | | | | | | |
Collapse
|
39
|
Roitel O, Vachette P, Azza S, Branlant G. P but not R-axis interface is involved in cooperative binding of NAD on tetrameric phosphorylating glyceraldehyde-3-phosphate dehydrogenase from Bacillus stearothermophilus. J Mol Biol 2003; 326:1513-22. [PMID: 12595262 DOI: 10.1016/s0022-2836(03)00049-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Homotetrameric phosphorylating glyceraldehyde-3-phosphate dehydrogenase (GAPDH) from Bacillus stearothermophilus can be described as a dimer of dimers with three non-equivalent P, R, and Q interfaces. In our previous study, negative cooperativity in NAD binding to wild-type GAPDH was interpreted according to the induced-fit model in terms of two independent dimers with two interacting binding sites in each dimer. Two dimeric mutant GAPDHs, i.e. Y46G/S48G and D186G/E276G, were shown to exhibit positive cooperativity in NAD binding. Based on the molecular modeling of the substitutions and the fact that the most extensive inter-subunit interactions are formed across the P-axis interface of the tetramer, it was postulated that both dimeric mutant GAPDHs were of O-P type. Therefore, the P-axis interface was assumed to play a major role in causing cooperativity in NAD binding.Here, two other mutant GAPDHs, Y46G/R52G and D282G, have been studied. Using small angle X-ray scattering, the dimeric form of the D282G mutant GAPDH is shown to be of O-R type whereas both dimeric mutant GAPDHs Y46G/R52G and Y46G/S48G are of O-P type. Similarly to dimeric Y46G/S48G mutant GAPDH, the dimeric Y46G/R52G mutant GAPDH exhibits positive cooperativity in NAD binding. On the other hand, no significant cooperativity in NAD binding to the dimeric form of the D282G mutant GAPDH is observed, whereas its tetrameric counterpart exhibits negative cooperativity, similarly to the wild-type enzyme. Altogether, the results support the view that the P-axis interface is essential in causing cooperativity in NAD binding by transmitting the structural information induced upon cofactor binding from one subunit to the other one within O-P/Q-R dimers in contrast to the R-axis interface, which does not transmit structural information within O-R/Q-P dimers. The absence of activity of O-P and O-R dimer GAPDHs is the consequence of a pertubation of the conformation of the active site, at least of the nicotinamide subsite, as evidenced by the absence of an ion pair between catalytic residues C149 and H176 and the greater accessibility of C149 to a thiol kinetic probe.
Collapse
Affiliation(s)
- Olivier Roitel
- Maturation des ARN et Enzymologie Moléculaire, UMR 7567 CNRS-UHP B.P. 239, Faculté des Sciences, Université Henri Poincaré Nancy I, BP 239, 54506, Cedex, Vandoeuvre-lès-Nancy, France
| | | | | | | |
Collapse
|
40
|
McCammon MG, Scott DJ, Keetch CA, Greene LH, Purkey HE, Petrassi HM, Kelly JW, Robinson CV. Screening transthyretin amyloid fibril inhibitors: characterization of novel multiprotein, multiligand complexes by mass spectrometry. Structure 2002; 10:851-63. [PMID: 12057199 DOI: 10.1016/s0969-2126(02)00771-2] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Tetrameric transthyretin is involved in transport of thyroxine and, through its interactions with retinol binding protein, vitamin A. Dissociation of these structures is widely accepted as the first step in the formation of transthyretin amyloid fibrils. Using a mass spectrometric approach, we have examined a series of 18 ligands proposed as inhibitors of this process. The ligands were evaluated for their ability to bind to and stabilize the tetrameric structure, their cooperativity in binding, and their ability to compete with the natural ligand thyroxine. The observation of a novel ten-component complex containing six protein subunits, two vitamin molecules, and two synthetic ligands allows us to conclude that ligand binding does not inhibit association of transthyretin with holo retinol binding protein.
Collapse
Affiliation(s)
- Margaret G McCammon
- Department of Chemistry, University of Cambridge, Lensfield Road, CB2 1EW, Cambridge, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Current literature in mass spectrometry. JOURNAL OF MASS SPECTROMETRY : JMS 2001; 36:838-848. [PMID: 11473409 DOI: 10.1002/jms.94] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
|