1
|
Abucayon E, Whalen C, Torres OB, Duval AJ, Sulima A, Antoline JFG, Oertel T, Barrientos RC, Jacobson AE, Rice KC, Matyas GR. A Rapid Method for Direct Quantification of Antibody Binding-Site Concentration in Serum. ACS OMEGA 2022; 7:26812-26823. [PMID: 35936462 PMCID: PMC9352236 DOI: 10.1021/acsomega.2c03237] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 07/04/2022] [Indexed: 06/15/2023]
Abstract
The quantitation of the available antibody binding-site concentration of polyclonal antibodies in serum is critical in defining the efficacy of vaccines against substances of abuse. We have conceptualized an equilibrium dialysis (ED)-based approach coupled with fluorimetry (ED-fluorimetry) to measure the antibody binding-site concentration to the ligand in an aqueous environment. The measured binding-site concentrations in monoclonal antibody (mAb) and sera samples from TT-6-AmHap-immunized rats by ED-fluorimetry are in agreement with those determined by a more established equilibrium dialysis coupled with ultraperformance liquid chromatography tandem mass spectrometry (ED-UPLC-MS/MS). Importantly, we have shown that the measured antibody binding-site concentrations to the ligand by ED-fluorimetry were not influenced by the sample serum matrix; thus, this method is valid for determining the binding-site concentration of polyclonal antibodies in sera samples. Further, we have demonstrated that under appropriate analytical conditions, this method resolved the total binding-site concentrations on a nanomolar scale with good accuracy and repeatability within the microliter sample volumes. This simple, rapid, and sample preparation-free approach has the potential to reliably perform quantitative antibody binding-site screening in serum and other more complex biological fluids.
Collapse
Affiliation(s)
- Erwin
G. Abucayon
- Laboratory
of Adjuvant and Antigen Research, U.S. Military HIV Research Program,
Walter Reed Army Institute of Research, 503 Robert Grant Avenue, Silver Spring, Maryland 20910, United States
- Henry
M. Jackson Foundation for the Advancement of Military Medicine, 6720A Rockledge Drive, Bethesda, Maryland 20817, United States
| | - Connor Whalen
- Laboratory
of Adjuvant and Antigen Research, U.S. Military HIV Research Program,
Walter Reed Army Institute of Research, 503 Robert Grant Avenue, Silver Spring, Maryland 20910, United States
- Oak
Ridge Institute for Science and Education, Oak Ridge, Tennessee 37831, United States
| | - Oscar B. Torres
- Laboratory
of Adjuvant and Antigen Research, U.S. Military HIV Research Program,
Walter Reed Army Institute of Research, 503 Robert Grant Avenue, Silver Spring, Maryland 20910, United States
- Henry
M. Jackson Foundation for the Advancement of Military Medicine, 6720A Rockledge Drive, Bethesda, Maryland 20817, United States
| | - Alexander J. Duval
- Laboratory
of Adjuvant and Antigen Research, U.S. Military HIV Research Program,
Walter Reed Army Institute of Research, 503 Robert Grant Avenue, Silver Spring, Maryland 20910, United States
- Henry
M. Jackson Foundation for the Advancement of Military Medicine, 6720A Rockledge Drive, Bethesda, Maryland 20817, United States
| | - Agnieszka Sulima
- Department
of Health and Human Services, Drug Design
and Synthesis Section, Molecular Targets and Medications Discovery
Branch, Intramural Research Program, National Institute on Drug Abuse
and the National Institute on Alcohol Abuse and Alcoholism, National
Institutes of Health, 9800 Medical Center Drive, Bethesda, Maryland 20892-3373, United States
| | - Joshua F. G. Antoline
- Department
of Health and Human Services, Drug Design
and Synthesis Section, Molecular Targets and Medications Discovery
Branch, Intramural Research Program, National Institute on Drug Abuse
and the National Institute on Alcohol Abuse and Alcoholism, National
Institutes of Health, 9800 Medical Center Drive, Bethesda, Maryland 20892-3373, United States
| | - Therese Oertel
- Laboratory
of Adjuvant and Antigen Research, U.S. Military HIV Research Program,
Walter Reed Army Institute of Research, 503 Robert Grant Avenue, Silver Spring, Maryland 20910, United States
- Oak
Ridge Institute for Science and Education, Oak Ridge, Tennessee 37831, United States
| | - Rodell C. Barrientos
- Laboratory
of Adjuvant and Antigen Research, U.S. Military HIV Research Program,
Walter Reed Army Institute of Research, 503 Robert Grant Avenue, Silver Spring, Maryland 20910, United States
- Henry
M. Jackson Foundation for the Advancement of Military Medicine, 6720A Rockledge Drive, Bethesda, Maryland 20817, United States
| | - Arthur E. Jacobson
- Department
of Health and Human Services, Drug Design
and Synthesis Section, Molecular Targets and Medications Discovery
Branch, Intramural Research Program, National Institute on Drug Abuse
and the National Institute on Alcohol Abuse and Alcoholism, National
Institutes of Health, 9800 Medical Center Drive, Bethesda, Maryland 20892-3373, United States
| | - Kenner C. Rice
- Department
of Health and Human Services, Drug Design
and Synthesis Section, Molecular Targets and Medications Discovery
Branch, Intramural Research Program, National Institute on Drug Abuse
and the National Institute on Alcohol Abuse and Alcoholism, National
Institutes of Health, 9800 Medical Center Drive, Bethesda, Maryland 20892-3373, United States
| | - Gary R. Matyas
- Laboratory
of Adjuvant and Antigen Research, U.S. Military HIV Research Program,
Walter Reed Army Institute of Research, 503 Robert Grant Avenue, Silver Spring, Maryland 20910, United States
| |
Collapse
|
2
|
Lee S, Hong VS. Development and Application of a High-Throughput Fluorescence Polarization Assay to Target Pim Kinases. Assay Drug Dev Technol 2016; 14:50-7. [PMID: 26824666 DOI: 10.1089/adt.2015.685] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Pim proteins consisting of three isoforms (Pim-1, Pim-2, and Pim-3) are a family of serine/threonine kinases that regulate fundamental cellular responses such as cell growth, differentiation, and apoptosis. Overexpression of the Pim kinases has been linked to a wide variety of hematological and solid tumors. Thus, all three Pim kinases have been studied as promising targets for anticancer therapy. Here, we report on the development and optimization of an immobilized metal ion affinity partitioning (IMAP) fluorescence polarization (FP) method for Pim kinases. In this homogeneous 384-well assay method, fluorescein-labeled phosphopeptides are captured on cationic nanoparticles through interactions with immobilized trivalent metals, resulting in high polarization values. The apparent Km values for adenosine triphosphate (ATP) were determined to be 45 ± 7, 6.4 ± 2, and 29 ± 5 μM for Pim-1, Pim-2, and Pim-3, respectively. The assay yielded robustness with Z'-factors of >0.75 and low day-to-day variability (CV <5%) for all three Pim kinases. The IMAP FP assay was further validated by determining IC50 values for staurosporine and a known Pim inhibitor. We have also used an IMAP FP assay to examine whether compound 1, an ATP mimetic inhibitor designed through structure-based drug design, is indeed an ATP-competitive inhibitor of Pim kinases. Kinetic analysis based on Lineweaver-Burk plots showed that the inhibition mechanism of compound 1 is ATP competitive against all three Pim isoforms. The optimized IMAP assay for Pim kinases not only allows for high-throughput screening but also facilitates the characterization of novel Pim inhibitors for drug development.
Collapse
Affiliation(s)
- Seongho Lee
- Department of Chemistry, Keimyung University , Daegu, Korea
| | | |
Collapse
|
3
|
Toita R, Mori T, Naritomi Y, Kang JH, Shiosaki S, Niidome T, Katayama Y. Fluorometric detection of protein kinase Cα activity based on phosphorylation-induced dissociation of a polyion complex. Anal Biochem 2012; 424:130-6. [DOI: 10.1016/j.ab.2012.01.036] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2011] [Revised: 01/11/2012] [Accepted: 01/13/2012] [Indexed: 12/11/2022]
|
4
|
Koga H, Toita R, Mori T, Tomiyama T, Kang JH, Niidome T, Katayama Y. Fluorescent Nanoparticles Consisting of Lipopeptides and Fluorescein-Modified Polyanions for Monitoring of Protein Kinase Activity. Bioconjug Chem 2011; 22:1526-34. [DOI: 10.1021/bc200066w] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
| | | | | | | | | | | | - Yoshiki Katayama
- Center for Advanced Medical Innovation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| |
Collapse
|
5
|
Fluorescence detection techniques for protein kinase assay. Anal Bioanal Chem 2008; 390:2049-57. [DOI: 10.1007/s00216-008-1986-z] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2007] [Revised: 02/12/2008] [Accepted: 02/14/2008] [Indexed: 12/25/2022]
|
6
|
|
7
|
Graves TL, Zhang Y, Scott JE. A universal competitive fluorescence polarization activity assay for S-adenosylmethionine utilizing methyltransferases. Anal Biochem 2007; 373:296-306. [PMID: 18028865 PMCID: PMC4144338 DOI: 10.1016/j.ab.2007.09.025] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2007] [Revised: 09/06/2007] [Accepted: 09/24/2007] [Indexed: 10/22/2022]
Abstract
A high-throughput, competitive fluorescence polarization immunoassay has been developed for the detection of methyltransferase activity. The assay was designed to detect S-adenosylhomocysteine (AdoHcy), a product of all S-adenosylmethionine (AdoMet)-utilizing methyltransferase reactions. We employed commercially available anti-AdoHcy antibody and fluorescein-AdoHcy conjugate tracer to measure AdoHcy generated as a result of methyltransferase activity. AdoHcy competes with tracer in the antibody/tracer complex. The release of tracer results in a decrease in fluorescence polarization. Under optimized conditions, AdoHcy and AdoMet titrations demonstrated that the antibody had more than a 150-fold preference for binding AdoHcy relative to AdoMet. Mock methyltransferase reactions using both AdoHcy and AdoMet indicated that the assay tolerated 1 to 3 microM AdoMet. The limit of detection was approximately 5 nM (0.15 pmol) AdoHcy in the presence of 3 muM AdoMet. To validate the assay's ability to quantitate methyltransferase activity, the methyltransferase catechol-O-methyltransferase (COMT) and a known selective inhibitor of COMT activity were used in proof-of-principle experiments. A time- and enzyme concentration-dependent decrease in fluorescence polarization was observed in the COMT assay that was developed. The IC(50) value obtained using a selective COMT inhibitor was consistent with previously published data. Thus, this sensitive and homogeneous assay is amenable for screening compounds for inhibitors of methyltransferase activity.
Collapse
Affiliation(s)
- Tiffany L Graves
- Department of Pharmaceutical Sciences, Biomanufacturing Research Institute and Technology Enterprise, North Carolina Central University, Durham, NC 27707, USA
| | | | | |
Collapse
|
8
|
Rudolph J. Inhibiting transient protein-protein interactions: lessons from the Cdc25 protein tyrosine phosphatases. Nat Rev Cancer 2007; 7:202-11. [PMID: 17287826 DOI: 10.1038/nrc2087] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Transient protein-protein interactions have key regulatory functions in many of the cellular processes that are implicated in cancerous growth, particularly the cell cycle. Targeting these transient interactions as therapeutic targets for anticancer drug development seems like a good idea, but it is not a trivial task. This Review discusses the issues and difficulties that are encountered when considering these transient interactions as drug targets, using the example of the cell division cycle 25 (Cdc25) phosphatases and their cyclin-dependent kinase (CDK)-cyclin protein substrates.
Collapse
Affiliation(s)
- Johannes Rudolph
- Department of Biochemistry, Duke University Medical Center, BOX 3813, LSRC Building, Room C125, Durham, North Carolina 27710, USA.
| |
Collapse
|
9
|
Olive DM. Quantitative methods for the analysis of protein phosphorylation in drug development. Expert Rev Proteomics 2006; 1:327-41. [PMID: 15966829 DOI: 10.1586/14789450.1.3.327] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Most signal transduction and cell signaling pathways are mediated by protein kinases. Protein kinases have emerged as important cellular regulatory proteins in many aspects of neoplasia. Protein kinase inhibitors offer the opportunity to target diseases such as cancer with chemotherapeutic agents specific for the causative molecular defect. In order to identify possible targets and assess kinase inhibitors, quantitative methods for analyzing protein phosphorylation have been developed. This review examines some of the current formats used for quantifying kinase function for drug development.
Collapse
Affiliation(s)
- D Michael Olive
- Research & Development, LI-COR Biosciences, 4308 Progressive Ave., Lincoln, NE 68504, USA.
| |
Collapse
|
10
|
Pommereau A, Pap E, Kannt A. Two simple and generic antibody-independent kinase assays: comparison of a bioluminescent and a microfluidic assay format. ACTA ACUST UNITED AC 2005; 9:409-16. [PMID: 15296640 DOI: 10.1177/1087057104264175] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In this study, the authors have compared the performance of 2 high-throughput screening assays for a serin/threonine kinase: a microplate-based, bioluminescent assay that uses the luciferin/luciferase system to monitor ATP consumption, and a microfluidic assay that measures the change in mobility in an electric field of a fluorescently labeled peptide upon phosphorylation. Both assays are homogeneous, nonradioactive, antibody independent and could be miniaturized to a reaction volume of 4 microl. The robustness of both formats was demonstrated by Z' values > 0.8. Screening of a small library (2133 compounds) showed that the results obtained with both technologies correlate very well. Although the threshold for hits was set to a comparably low value-22.2% and 13.7% inhibition for the ATP consumption and microfluidic assay, respectively, corresponding to mean plus 3 standard deviations-the overlap of active compounds identified with the 2 assay formats was greater than 94%. Thus, both assays allow the identification of even low potency inhibitors with a high level of confidence.
Collapse
Affiliation(s)
- Antje Pommereau
- Aventis Lead Discovery Technologies, Industriepark Hoechst, H811, D-65926 Frankfurt am Main, Germany
| | | | | |
Collapse
|
11
|
Lu Z, Yin Z, James L, Syto R, Stafford JM, Koseoglu S, Mayhood T, Myers J, Windsor W, Kirschmeier P, Samatar AA, Malcolm B, Turek-Etienne TC, Kumar CC. Development of a fluorescence polarization bead-based coupled assay to target different activity/conformation states of a protein kinase. ACTA ACUST UNITED AC 2004; 9:309-21. [PMID: 15191648 DOI: 10.1177/1087057104263506] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Most of the protein kinase inhibitors being developed are directed toward the adenosine triphosphate (ATP) binding site that is highly conserved in many kinases. A major issue with these inhibitors is the specificity for a given kinase. Structure determination of several kinases has shown that protein kinases adopt distinct conformations in their inactive state, in contrast to their strikingly similar conformations in their active states. Hence, alternative assay formats that can identify compounds targeting the inactive form of a protein kinase are desirable. The authors describe the development and optimization of an Immobilized Metal Assay for Phosphochemicals (IMAP)-based couple d assay using PDK1 and inactive Akt-2 enzymes. PDK1 phosphorylates Akt-2 at Thr 309 in the catalytic domain, leading to enzymatic activation. Activation of Akt by PDK1 is measured by quantitating the phosphorylation of Akt-specific substrate peptide using the IMAP assay format. This IMAP-coupled assay has been formatted in a 384-well microplate format with a Z' of 0.73 suitable for high-throughput screening. This assay was evaluated by screening the biologically active sample set LOPAC trade mark and validated with the protein kinase C inhibitor staurosporine. The IC(50) value generated was comparable to the value obtained by the radioactive (33)P-gamma-ATP flashplate transfer assay. This coupled assay has the potential to identify compounds that target the inactive form of Akt and prevent its activation by PDK1, in addition to finding inhibitors of PDK1 and activated Akt enzymes.
Collapse
Affiliation(s)
- Zhuomei Lu
- Department of Tumor Biology, Schering-Plough Research Institute, 2015 Galloping Hill Road, Kenilworth, NJ 07033, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Turek-Etienne TC, Lei M, Terracciano JS, Langsdorf EF, Bryant RW, Hart RF, Horan AC. Use of red-shifted dyes in a fluorescence polarization AKT kinase assay for detection of biological activity in natural product extracts. ACTA ACUST UNITED AC 2004; 9:52-61. [PMID: 15006149 DOI: 10.1177/1087057103259346] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Kinases are an important therapeutic target for drug discovery, and many cancer chemotherapeutic agents have been derived from natural product sources. Natural product samples, however, have the likelihood of assay interference, particularly at elevated test concentrations. The authors developed a competitive fluorescence polarization (FP) assay using red-shifted fluorophores for the AKT kinase and demonstrated utility for testing concentrated natural product extracts. A set of 7 actinomycetes cultures containing indolocarbazoles, known nonselective kinase inhibitors, and a control set of 22 nonproducing indolocarbazole cultures were evaluated. Using red-shifted dyes (Cy3B or Cy5), the authors identified active samples with minimal interference up to the extract concentrations that are 3 times nonextracted culture levels. In contrast, a significant number of interferences were observed using either a fluorescein competitive FP assay or a [33P]ATP Flashplate assay. This work demonstrates that one can screen natural product extracts at high concentrations successfully using FP technology with red-shifted dyes.
Collapse
Affiliation(s)
- Tammy C Turek-Etienne
- Department of New Lead Discovery, Schering-Plough Research Institute, Kenilworth, NJ 07033-1300, USA.
| | | | | | | | | | | | | |
Collapse
|
13
|
Brazil DP, Yang ZZ, Hemmings BA. Advances in protein kinase B signalling: AKTion on multiple fronts. Trends Biochem Sci 2004; 29:233-42. [PMID: 15130559 DOI: 10.1016/j.tibs.2004.03.006] [Citation(s) in RCA: 667] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Derek P Brazil
- Conway Institute of Biomolecular and Biomedical Research, Department of Medicine and Therapeutics, University College Dublin, Belfield, Dublin 4, Ireland
| | | | | |
Collapse
|
14
|
Morgan AG, McCauley TJ, Stanaitis ML, Mathrubutham M, Millis SZ. Development and Validation of a Fluorescence Technology for both Primary and Secondary Screening of Kinases That Facilitates Compound Selectivity and Site-Specific Inhibitor Determination. Assay Drug Dev Technol 2004; 2:171-81. [PMID: 15165513 DOI: 10.1089/154065804323056512] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The IQ Technology has been developed to serve as a homogeneous, universal detection platform for HTS of kinases and phosphatases. The technology is a direct, noncompetitive assay format that does not require antibodies or radioactive reagents to measure phosphorylation state. Fluorophore-labeled peptides are used as enzyme substrates, and kinase or phosphatase activity is quantitated by direct measurement of the phosphorylation state of the substrate. Phosphorylation is measured by the change in fluorescence intensity that occurs when a proprietary iron-containing compound binds specifically to phosphoryl groups on peptides. This change in observed fluorescence is proportional to the extent of phosphorylation of the fluorophore-labeled peptide. The technology provides a universal method that can be used with any peptide sequence and is insensitive to high concentrations of ATP. Inhibition at the ATP-binding site versus the phosphorylation site can be differentiated and compound selectivity identified using the same detection method as in the primary screen. The technology has been tested against a large number of detergents, organics, and other reagents found in reaction mixtures, and the detection method eliminates common issues associated with fluorescent and chromogenic compounds. The technology has been formatted for 96-, 384-, and 1,536-well microplate formats, and a representative Z' value of 0.7 was obtained. IC(50) values generated using this platform correlate with previously reported values, and screening of a small compound library was performed to evaluate the assay further.
Collapse
Affiliation(s)
- Aric G Morgan
- Research and Development, Pierce Biotechnology, Rockford, IL, USA
| | | | | | | | | |
Collapse
|
15
|
Asensio CJA, Garcia RC. Determination of a large number of kinase activities using peptide substrates, P81 phosphocellulose paper arrays and phosphor imaging. Anal Biochem 2003; 319:21-33. [PMID: 12842103 DOI: 10.1016/s0003-2697(03)00282-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
To perform phosphoproteomics and signal transduction studies, a number of protein kinase activities and levels must be simultaneously analyzed in different cell samples and correlated with phosphoprotein patterns to obtain conclusions with regard to the regulation of kinase networks. We describe here a miniaturized format of the classical phosphocellulose (P81) paper binding assay with which up to 594 kinase reactions can be simultaneously analyzed. Kinase peptide substrates possessing a minimum of three consecutive basic residues were subjected to phosphorylation in 96-well plates and aliquots of the phosphorylation reactions were spotted on arrays printed on P81 papers. Phosphorylation levels were quantified using a storage phosphor system imager. The versatility of the procedure was validated by analyzing casein kinase 2, protein kinase C, and p34cdc2/cyclin B in cell extracts and testing the effect of known inhibitors and activators on kinase activities. This improved, miniaturized version of the classical P81 paper method combines simplicity, high sensitivity, high reproducibility, high reliability, and optimal Z factors and takes into account possible sources of background signals. We discuss the possibility of automation and the advantages over other methods.
Collapse
Affiliation(s)
- Cristian J A Asensio
- Leukocyte Biology Unit, International Centre for Genetic Engineering and Biotechnology, Area Science Park, 34012 Trieste, Italy
| | | |
Collapse
|
16
|
Turek-Etienne TC, Kober TP, Stafford JM, Bryant RW. Development of a Fluorescence Polarization AKT Serine/Threonine Kinase Assay Using an Immobilized Metal Ion Affinity-Based Technology. Assay Drug Dev Technol 2003; 1:545-53. [PMID: 15090251 DOI: 10.1089/154065803322302808] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
A bead-based FP assay methodology, termed IMAP trade mark, has been developed for the serine/threonine kinase, AKT, that allows for direct measurement of product formation. The assay design utilizes a fluoresceinated peptide substrate that, when phosphorylated by the kinase, binds to nanoparticles derivatized with trivalent metal cations through a metal-phospholigand interaction. The result of this bound fluoresceinated phosphorylated product is an increase in polarization signal caused by a decrease in the molecular mobility of the bound product. The AKT IMAP FP assay has been formatted in a 384-well microtiter plate with a Z' of 0.75, suitable for HTS. The assay was validated with six known kinase inhibitors. The IC(50) values generated were comparable to previously reported values using a competitive antibody-based FP assay and a radioactive [(33)P]ATP Flashplate transfer assay. The IMAP assay was further evaluated by screening the biologically active sample set, LOPAC trade mark. It was found that no fluorescent samples interfered with the assay's performance and that one could identify appropriate inhibitors. The advantages of IMAP technology are that it does not require the use of antibodies, the polarization signal generated is large in comparison with most FP assays based on antibodies, and IMAP captures and measures the product formed directly. The higher concentrations of fluorophore used in the assay versus competition assays increase the precision of the data obtained and reduce sample interference from compounds. This work demonstrates that IMAP is a valuable technology that may be used in developing numerous kinase assays.
Collapse
Affiliation(s)
- Tammy C Turek-Etienne
- Department of New Lead Discovery, Schering-Plough Research Institute, Kenilworth, NJ 07033-1300, USA.
| | | | | | | |
Collapse
|
17
|
Kupcho K, Somberg R, Bulleit B, Goueli SA. A homogeneous, nonradioactive high-throughput fluorogenic protein kinase assay. Anal Biochem 2003; 317:210-7. [PMID: 12758259 DOI: 10.1016/s0003-2697(03)00094-0] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Protein kinases play an important role in many cellular processes and mediate cellular responses to a variety of extracellular stimuli. They have been identified by many pharmaceuticals as valid targets for drug discovery. Because of the large number of protein kinases, and the large number of compounds to be screened, it is important to develop assay systems that are not only sensitive but also homogeneous, fast, simple, nonradioactive, and cost-effective. Here we present a novel, rapid, robust assay to measure the enzyme activity of low concentrations of several serine/threonine and tyrosine protein kinases. It is based on the use of fluorogenic peptide substrates (Rhodamine 110, bis peptide amide) that are cleaved before phosphorylation to release the free Rhodamine 110; upon phosphorylation, cleavage is hindered, and the compound remains as a nonfluorescent peptide conjugate. The assay can be carried out in single- as well as multiwell plate formats such as 96- and 384-well plates. The signal-to-noise ratio is very high (40), the Z(') is over 0.8, and the signal is stable for at least 4h. Finally, the assay is easily adapted to a robotic system for drug discovery programs targeting protein kinases.
Collapse
Affiliation(s)
- Kevin Kupcho
- Cellular Analysis Group, Research and Development, Promega Corp., Madison, WI 53711, USA
| | | | | | | |
Collapse
|
18
|
Scott JE, Carpenter JW. A homogeneous assay of kinase activity that detects phosphopeptide using fluorescence polarization and zinc. Anal Biochem 2003; 316:82-91. [PMID: 12694730 DOI: 10.1016/s0003-2697(03)00036-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Homogeneous antibody-free assays of protein kinase activity have great utility in high-throughput screening in support of drug discovery. In an effort to develop such an assay, we have used a pair of fluorescein-labeled peptides of identical amino acid sequence with and without phosphorylation on serine to mimic the substrate and product, respectively, of a kinase. Using fluorescence polarization (FP), we have demonstrated that a mixture of zinc sulfate, phosphate-buffered saline, and bovine serum albumin added to the peptides dramatically and differentially increased the fluorescence polarization of the phosphorylated peptide over its nonphosphorylated derivative. A similar FP differential was observed using different peptide pairs, though the magnitude varied. The FP values obtained using this method were directly proportional to the fraction of phosphopeptide present. Therefore, an FP assay was developed using a proprietary kinase. Using this FP method, linear reaction kinetics were obtained in enzyme titration and reaction time course experiments. The IC(50) values for a panel of inhibitors of kinase activity were determined using this FP method and a scintillation proximity assay. The IC(50) values were comparable between the two methods, suggesting that the zinc FP assay may be useful as an inexpensive high-throughput assay for identifying inhibitors of kinase activity.
Collapse
Affiliation(s)
- John E Scott
- Eli Lilly & Company, Sphinx Laboratories, 20 TW Alexander Drive, Research Triangle Park, NC 27709, USA.
| | | |
Collapse
|
19
|
Abstract
Protein phosphorylation is the mediator of many important cellular processes of signal transduction and cell regulation. Phosphorylation often occurs on multiple sites within a single protein, whereby the results of individual phosphorylations are not well defined. This is partially due to the lack of tools for analyzing specific phosphorylation states in a quantitative manner. We have developed a high-throughput, rapid, and quantitative method for the determination of the phosphorylation status of peptides and, more importantly, native protein substrates of kinases using a competitive fluorescence-based approach. We have applied our method to measuring the phosphorylation activity of the Wee1 and Myt1 kinases. Our technique allows one to monitor the bis-phosphorylation status of the Cdk2 protein using an antibody specific for bis-phosphorylated Cdk2 and a fluorescently labeled bis-phosphorylated Cdk2 peptide. We have used this assay to screen a library of 16 general kinase inhibitors against Wee1 and Myt1 activity. None of the inhibitors inhibited Wee1, but both staurosporine and K-252a inhibited Myt1, with IC(50) values of 9.2+/-3.6 and 4.0+/-1.3 microM, respectively.
Collapse
|
20
|
Turek-Etienne TC, Small EC, Soh SC, Xin TA, Gaitonde PV, Barrabee EB, Hart RF, Bryant RW. Evaluation of fluorescent compound interference in 4 fluorescence polarization assays: 2 kinases, 1 protease, and 1 phosphatase. JOURNAL OF BIOMOLECULAR SCREENING 2003; 8:176-84. [PMID: 12844438 DOI: 10.1177/1087057103252304] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
With the increasing use of fluorescence-based assays in high-throughput screening (HTS), the possibility of interference by fluorescent compounds needs to be considered. To investigate compound interference, a well-defined sample set of biologically active compounds, LOPAC, was evaluated using 4 fluorescein-based fluorescence polarization (FP) assays. Two kinase assays, a protease assay, and a phosphatase assay were studied. Fluorescent compound interference and light scattering were observed in both mixture- and single-compound testing under certain circumstances. In the kinase assays, which used low levels (1-3 nM) of fluorophore, an increase in total fluorescence, an abnormal decrease in mP readings, and negative inhibition values were attributed to compound fluorescence. Light scattering was observed by an increase in total fluorescence and minimal reduction in mP, leading to false positives. The protease and phosphatase assays, which used a higher concentration of fluorophore (20-1200 nM) than the kinase assays, showed minimal interference from fluorescent compounds, demonstrating that an increase in the concentration of the fluorophore minimized potential fluorescent compound interference. The data also suggests that mixtures containing fluorescent compounds can result in either false negatives that can mask a potential "hit" or false positives, depending on the assay format. Cy dyes (e.g., Cy3B and Cy5 ) excite and emit further into the red region than fluorescein and, when used in place of fluorescein in kinase 1, eliminate fluorescence interference and light scattering by LOPAC compounds. This work demonstrates that fluorescent compound and light scattering interferences can be overcome by increasing the fluorophore concentration in an assay or by using longer wavelength dyes.
Collapse
Affiliation(s)
- Tammy C Turek-Etienne
- New Lead Discovery, Schering-Plough Research Institute K15 4/4800 B421C, 2015 Galloping Hill Road, Kenilworth, NJ 07033, USA.
| | | | | | | | | | | | | | | |
Collapse
|