1
|
Solution structure of multi-domain protein ER-60 studied by aggregation-free SAXS and coarse-grained-MD simulation. Sci Rep 2021; 11:5655. [PMID: 33707747 PMCID: PMC7952739 DOI: 10.1038/s41598-021-85219-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 02/25/2021] [Indexed: 11/08/2022] Open
Abstract
Multi-domain proteins (MDPs) show a variety of domain conformations under physiological conditions, regulating their functions through such conformational changes. One of the typical MDPs, ER-60 which is a protein folding enzyme, has a U-shape with four domains and is thought to have different domain conformations in solution depending on the redox state at the active centres of the edge domains. In this work, an aggregation-free small-angle X-ray scattering revealed that the structures of oxidized and reduced ER-60 in solution are different from each other and are also different from those in the crystal. Furthermore, structural modelling with coarse-grained molecular dynamics simulation indicated that the distance between the two edge domains of oxidized ER-60 is longer than that of reduced ER-60. In addition, one of the edge domains has a more flexible conformation than the other.
Collapse
|
2
|
Kozlov G, Gehring K. Calnexin cycle - structural features of the ER chaperone system. FEBS J 2020; 287:4322-4340. [PMID: 32285592 PMCID: PMC7687155 DOI: 10.1111/febs.15330] [Citation(s) in RCA: 118] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 03/31/2020] [Accepted: 04/08/2020] [Indexed: 12/21/2022]
Abstract
The endoplasmic reticulum (ER) is the major folding compartment for secreted and membrane proteins and is the site of a specific chaperone system, the calnexin cycle, for folding N-glycosylated proteins. Recent structures of components of the calnexin cycle have deepened our understanding of quality control mechanisms and protein folding pathways in the ER. In the calnexin cycle, proteins carrying monoglucosylated glycans bind to the lectin chaperones calnexin and calreticulin, which recruit a variety of function-specific chaperones to mediate protein disulfide formation, proline isomerization, and general protein folding. Upon trimming by glucosidase II, the glycan without an inner glucose residue is no longer able to bind to the lectin chaperones. For proteins that have not yet folded properly, the enzyme UDP-glucose:glycoprotein glucosyltransferase (UGGT) acts as a checkpoint by adding a glucose back to the N-glycan. This allows the misfolded proteins to re-associate with calnexin and calreticulin for additional rounds of chaperone-mediated refolding and prevents them from exiting the ERs. Here, we review progress in structural studies of the calnexin cycle, which reveal common features of how lectin chaperones recruit function-specific chaperones and how UGGT recognizes misfolded proteins.
Collapse
Affiliation(s)
- Guennadi Kozlov
- From the Department of Biochemistry & Centre for Structural BiologyMcGill UniversityMontréalQCCanada
| | - Kalle Gehring
- From the Department of Biochemistry & Centre for Structural BiologyMcGill UniversityMontréalQCCanada
| |
Collapse
|
3
|
Holtzman JL. Cellular and animal models for high-throughput screening of therapeutic agents for the treatment of the diseases of the elderly in general and Alzheimer's disease in particular(†). Front Pharmacol 2013; 4:59. [PMID: 23717280 PMCID: PMC3651961 DOI: 10.3389/fphar.2013.00059] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2012] [Accepted: 04/18/2013] [Indexed: 01/04/2023] Open
Abstract
It is currently thought that the dementia of Alzheimer's disease is due to the neurotoxicity of the deposits or aggregates of amyloid-β (Aβ) in the extracellular space of the cerebral cortex. This model has been widely criticized because there is a poor correlation between deposits and dementia. Others have questioned whether Aβ is truly neurotoxic. Yet, in spite of these concerns, the search for therapeutic agents has been based on the development of mouse models transfected with mutant genes associated in humans with early onset Alzheimer's disease. A major limitation of these models is that although they exhibit many of the pathological and clinical manifestation of the human disease, the bulk of individuals who develop the dementia of Alzheimer's disease have none of these mutant genes. Furthermore, nine clinical trials of drugs that were effective in transgenic mice failed to show any benefit in patients. Finally, a major unresolved issue with the Aβ model is that since Aβ is produced in everyone, why are deposits only seen in the elderly? This issue must be resolved if we are to understand the etiology of the disease and develop test systems for both diagnosis and drug discovery. Published studies from my laboratory demonstrate that in human cerebrospinal fluid immunoreactive Aβ is only present as a complex with two chaperones, ERp57 and calreticulin and is N-glycosylated. This complex formation is catalyzed by the posttranslational protein processing system of the endoplasmic reticulum (ER). Others have reported that in plaque Aβ is present only as the naked peptide. Together these results suggest that both plaque and dementia are secondary to an age related decline in the capacity of the ER to catalyze protein, posttranslational processing. Since the synaptic membrane proteins necessary for a functioning memory are also processed in the ER, these findings would suggest that the loss of cognition is due to a decline in the capacity of the neuron to produce and maintain functioning synapses. Work from my laboratory and from others further indicate that the components of the ER, posttranslational, protein processing pathway do dramatically decline with age. These data suggest that this decline may be found in all cells and could account not only for the dementia of Alzheimer's disease, but also for many of the other manifestations of the aging process. These observations also suggest that declining ER function has a role in two well-recognized phenomena associated with aging: a loss of mitochondrial function and a decrease in myelin. Finally, based on this paradigm I propose new cellular and animals models for high-throughput screening for drug discovery.
Collapse
Affiliation(s)
- Jordan L. Holtzman
- Department of Pharmacology, University of MinnesotaMinneapolis, MN, USA
- Department of Medicine, University of MinnesotaMinneapolis, MN, USA
- Department of Environmental Health Sciences, University of MinnesotaMinneapolis, MN, USA
| |
Collapse
|
4
|
ERp57/GRP58: a protein with multiple functions. Cell Mol Biol Lett 2011; 16:539-63. [PMID: 21837552 PMCID: PMC6275603 DOI: 10.2478/s11658-011-0022-z] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2011] [Accepted: 08/03/2011] [Indexed: 11/22/2022] Open
Abstract
The protein ERp57/GRP58 is a stress-responsive protein and a component of the protein disulfide isomerase family. Its functions in the endoplasmic reticulum are well known, concerning mainly the proper folding and quality control of glycoproteins, and participation in the assembly of the major histocompatibility complex class 1. However, ERp57 is present in many other subcellular locations, where it is involved in a variety of functions, primarily suggested by its participation in complexes with other proteins and even with DNA. While in some instances these roles need to be confirmed by further studies, a great number of observations support the participation of ERp57 in signal transduction from the cell surface, in regulatory processes taking place in the nucleus, and in multimeric protein complexes involved in DNA repair.
Collapse
|
5
|
Ayala Yáñez R, Conn PM. Protein disulfide isomerase chaperone ERP-57 decreases plasma membrane expression of the human GnRH receptor. Cell Biochem Funct 2010; 28:66-73. [PMID: 20029959 DOI: 10.1002/cbf.1622] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Retention of misfolded proteins by the endoplasmic reticulum (ER) is a quality control mechanism involving the participation of endogenous chaperones such as calnexin (CANX). CANX interacts with and restricts plasma membrane expression (PME) of the gonadotropin releasing hormone receptor (GnRHR), a G protein-coupled receptor. CANX also interacts with ERP-57 a thiol oxidoreductase chaperone present in the ER. CANX along with ERP-57 promotes the formation of disulfide bond bridges in nascent proteins. The human GnRH receptor (hGnRHR) is stabilized by two disulfide bond bridges (C(14)-C(200) and C(114)-C(196)), that, when broken, lead to a decrease in receptor expression at the plasma membrane. To determine if the presence of chaperones CANX and ERP-57 exerts an influence over membrane routing and second messenger activation, we assessed the effect of various mutants including those with broken disulfide bridges (Cys --> Ala) along with the hGnRHR. The effect of chaperones on mutants was insignificant, whereas the over expression of ERP-57 led to an hGnRHR retention. This effect was further enhanced by cotransfection with cDNA for CANX showing receptor retention by ERP-57 augmented by CANX, suggesting utilization of these chaperones for quality control of the GnRHR.
Collapse
|
6
|
Joss J, Molloy M, Hinds L, Deane E. Proteomic analysis of early lactation milk of the tammar wallaby (Macropus eugenii). COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2007; 2:150-64. [DOI: 10.1016/j.cbd.2007.02.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2006] [Revised: 02/07/2007] [Accepted: 02/07/2007] [Indexed: 10/23/2022]
|
7
|
Grillo C, D'Ambrosio C, Consalvi V, Chiaraluce R, Scaloni A, Maceroni M, Eufemi M, Altieri F. DNA-binding Activity of the ERp57 C-terminal Domain Is Related to a Redox-dependent Conformational Change. J Biol Chem 2007; 282:10299-310. [PMID: 17283067 DOI: 10.1074/jbc.m700966200] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
ERp57, a member of the protein-disulfide isomerase family, although mainly localized in the endoplasmic reticulum is here shown to have a nuclear distribution. We previously showed the DNA-binding properties of ERp57, its association with the internal nuclear matrix, and identified the C-terminal region, containing the a' domain, as being directly involved in the DNA-binding activity. In this work, we demonstrate that its DNA-binding properties are strongly dependent on the redox state of the a' domain active site. Site-directed mutagenesis experiments on the first cysteine residue of the -CGHC-thioredoxin-like active site lead to a mutant domain (C406S) lacking DNA-binding activity. Biochemical studies on the recombinant domain revealed a conformational change associated with the redox-dependent formation of a homodimer, having two disulfide bridges between the cysteine residues of two a' domain active sites. The formation of intermolecular disulfide bridges rather than intramolecular oxidation of active site cysteines is important to generate species with DNA-binding properties. Thus, in the absence of any dedicated motif within the protein sequence, this structural rearrangement might be responsible for the DNA-binding properties of the C-terminal domain. Moreover, NADH-dependent thioredoxin reductase is active on intermolecular disulfides of the a' domain, allowing the control of dimeric protein content as well as its DNA-binding activity. A similar behavior was also observed for whole ERp57.
Collapse
Affiliation(s)
- Caterina Grillo
- Department of Biochemical Sciences A. Rossi Fanelli, CNR Institute of Molecular Biology and Pathology and Istituto Pasteur-Fondazione Cenci Bolognetti, University La Sapienza, 00185 Rome, Italy
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Kozlov G, Maattanen P, Schrag JD, Pollock S, Cygler M, Nagar B, Thomas DY, Gehring K. Crystal Structure of the bb′ Domains of the Protein Disulfide Isomerase ERp57. Structure 2006; 14:1331-9. [PMID: 16905107 DOI: 10.1016/j.str.2006.06.019] [Citation(s) in RCA: 115] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2006] [Revised: 06/10/2006] [Accepted: 06/13/2006] [Indexed: 11/23/2022]
Abstract
The synthesis of proteins in the endoplasmic reticulum (ER) is limited by the rate of correct disulfide bond formation. This process is carried out by protein disulfide isomerases, a family of ER proteins which includes general enzymes such as PDI that recognize unfolded proteins and others that are selective for specific proteins or classes. Using small-angle X-ray scattering and X-ray crystallography, we report the structure of a selective isomerase, ERp57, and its interactions with the lectin chaperone calnexin. Using isothermal titration calorimetry and NMR spectroscopy, we show that the b' domain of ERp57 binds calnexin with micromolar affinity through a conserved patch of basic residues. Disruption of this binding site by mutagenesis abrogates folding of RNase B in an in vitro assay. The relative positions of the ERp57 catalytic sites and calnexin binding site suggest that activation by calnexin is due to substrate recruitment rather than a direct stimulation of ERp57 oxidoreductase activity.
Collapse
Affiliation(s)
- Guennadi Kozlov
- Biochemistry Department, McGill University, 3655 Promenade Sir William Osler, Montréal, Québec H3G 1Y6, Canada
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Satoh M, Shimada A, Kashiwai A, Saga S, Hosokawa M. Differential cooperative enzymatic activities of protein disulfide isomerase family in protein folding. Cell Stress Chaperones 2005; 10:211-20. [PMID: 16184766 PMCID: PMC1226019 DOI: 10.1379/csc-109r.1] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Endoplasmic reticulum (ER)p61, ERp72, and protein disulfide isomerase (PDI), which are members of the PDI family protein, are ubiquitously present in mammalian cells and are thought to participate in disulfide bond formation and isomerization. However, why the 3 different members need to be colocalized in the ER remains an enigma. We hypothesized that each PDI family protein might have different modes of enzymatic activity in disulfide bond formation and isomerization. We purified PDI, ERp61, and ERp72 proteins from rat liver microsomes and compared the effects of each protein on the folding of bovine pancreatic trypsin inhibitor (BPTI). ERp61 and ERp72 accelerated the initial steps more efficiently than did PDI. ERp61 and ERp72, however, accelerated the rate-limiting step less efficiently than did PDI. PDI or ERp72 did not impede the folding of BPTI by each other but rather catalyzed the folding reaction cooperatively with each other. These data suggest that differential enzymatic activities of ERp proteins and PDI represent a complementary contribution of these enzymes to protein folding in the ER.
Collapse
Affiliation(s)
- Mamoru Satoh
- Department of Pathology, Institute for Developmental Research, Aichi Human Service Center, Kasugai, Aichi 480-0392, Japan
| | | | | | | | | |
Collapse
|
10
|
Mayer M, Frey S, Koivunen P, Myllyharju J, Buchner J. Influence of the oxidoreductase ER57 on the folding of an antibody fab fragment. J Mol Biol 2004; 341:1077-84. [PMID: 15328618 DOI: 10.1016/j.jmb.2004.06.068] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Oxidation and folding of secretory proteins in the endoplasmic reticulum (ER) depends on the presence of chaperones and oxidoreductases. Two of the oxidoreductases present in the ER of mammalian cells are protein disulfide isomerase (PDI) and ERp57. In this study, we investigated the influence of ERp57 on the in vitro reoxidation and refolding of an antibody Fab fragment. Our results show that ERp57 shares functional properties with PDI and that both are clearly different from other oxidoreductases. The reactivation of the denatured and reduced Fab fragment was enhanced significantly in the presence of ERp57 with kinetics and redox dependence of the reactivation reaction comparable to those obtained for PDI. These properties were not influenced by the presence of calnexin. Furthermore, whereas PDI cooperates with the immunoglobulin heavy chain binding protein (BiP), no synergistic effect could be observed for BiP and ERp57. These results indicate that the cooperation of the two oxidoreductases with different partner proteins may explain their different roles in the folding of proteins in the ER.
Collapse
Affiliation(s)
- Marcus Mayer
- Institut für Organishce Chemie und Biochemie, Technische Universität München, Garching, Germany
| | | | | | | | | |
Collapse
|
11
|
Silvennoinen L, Myllyharju J, Ruoppolo M, Orrù S, Caterino M, Kivirikko KI, Koivunen P. Identification and Characterization of Structural Domains of Human ERp57. J Biol Chem 2004; 279:13607-15. [PMID: 14732712 DOI: 10.1074/jbc.m313054200] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The amino acid sequence of ERp57, which functions in the endoplasmic reticulum together with the lectins calreticulin and calnexin to achieve folding of newly synthesized glycoproteins, is highly similar to that of protein disulfide isomerase (PDI), but they have their own distinct roles in protein folding. We have characterized the domain structure of ERp57 by limited proteolysis and N-terminal sequencing and have found it to be similar but not identical to that of PDI. ERp57 had three major protease-sensitive regions, the first of which was located between residues 120 and 150, the second between 201 and 215, and the third between 313 and 341, the data thus being consistent with a four-domain structure abb'a'. Recombinant expression in Escherichia coli was used to verify the domain boundaries. Each single domain and a b'a' double domain could be produced in the form of soluble, folded polypeptides, as verified by circular dichroism spectra and urea gradient gel electrophoresis. When the ability of ERp57 and its a and a' domains to fold denatured RNase A was studied by electrospray mass analyses, ERp57 markedly enhanced the folding rate at early time points, although less effectively than PDI, but was an ineffective catalyst of the overall process. The a and a' domains produced only minor, if any, increases in the folding rate at the early stages and no increase at the late stages. Interaction of the soluble ERp57 domains with the P domain of calreticulin was studied by chemical cross-linking in vitro. None of the single ERp57 domains nor the b'a' double domain could be cross-linked to the P domain, whereas cross-linking was obtained with a hybrid ERpabb'PDIa'c polypeptide but not with ERpabPDIb'a'c, indicating that multiple domains are involved in this protein-protein interaction and that the b' domain of ERp57 cannot be replaced by that of PDI.
Collapse
Affiliation(s)
- Laura Silvennoinen
- Department of Medical Biochemistry and Molecular Biology, University of Oulu, PO Box 5000, FIN-90014 Oulu, Finland
| | | | | | | | | | | | | |
Collapse
|
12
|
Wanamaker CP, Christianson JC, Green WN. Regulation of nicotinic acetylcholine receptor assembly. Ann N Y Acad Sci 2003; 998:66-80. [PMID: 14592864 DOI: 10.1196/annals.1254.009] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The four muscle-type nicotinic acetylcholine receptor (AChR) subunits, alpha, beta, gamma, and delta, assemble into functional alpha(2)betagammadelta pentamers in the endoplasmic reticulum (ER) through a series of interdependent folding and oligomerization events. The first stable assembly intermediate is a trimer composed of alpha, beta, and gamma subunits. The formation of alphabetagamma trimers initiates a series of subunit folding and processing events that allow addition of delta subunits to form alphabetagammadelta tetramers. Subunit folding and processing continue with formation of the ligand-binding sites on the alpha subunit of alphabetagammadelta tetramers and the second alpha subunit added to assemble alpha(2)betagammadelta pentamers. AChR assembly is inefficient. Only 20-30% of synthesized subunits assemble into mature receptors in the ER, while the remaining unassembled subunits are degraded. However, the efficiency of subunit assembly can be regulated under certain conditions leading to higher AChR expression. Increased intracellular cAMP levels cause a 2- to 3-fold increase in AChR assembly efficiency and a comparable increase in surface expression. Additionally, block of ubiquitin-proteasome degradation appears to enhance AChR assembly and expression. Thus, the regulation of AChR assembly through posttranslational mechanisms is a potential therapeutic target for increasing AChR expression in diseases in which expression is compromised.
Collapse
Affiliation(s)
- Christian P Wanamaker
- Department of Neurobiology, Pharmacology, and Physiology, University of Chicago, Chicago, Illinois 60637, USA
| | | | | |
Collapse
|
13
|
Paulsson K, Wang P. Chaperones and folding of MHC class I molecules in the endoplasmic reticulum. BIOCHIMICA ET BIOPHYSICA ACTA 2003; 1641:1-12. [PMID: 12788224 DOI: 10.1016/s0167-4889(03)00048-x] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
In this review we discuss the influence of chaperones on the general phenomena of folding as well as on the specific folding of an individual protein, MHC class I. MHC class I maturation is a highly sophisticated process in which the folding machinery of the endoplasmic reticulum (ER) is heavily involved. Understanding the MHC class I maturation per se is important since peptides loaded onto MHC class I molecules are the base for antigen presentation generating immune responses against virus, intracellular bacteria as well as tumours. This review discusses the early stages of MHC class I maturation regarding BiP and calnexin association, and differences in MHC class I heavy chain (HC) interaction with calnexin and calreticulin are highlighted. Late stage MHC class I maturation with focus on the dedicated chaperone tapasin is also discussed.
Collapse
Affiliation(s)
- Kajsa Paulsson
- The Institution of Tumour Immunology, Lund University, BMC I12, S-223 62, Lund, Sweden.
| | | |
Collapse
|
14
|
Antoniou AN, Ford S, Alphey M, Osborne A, Elliott T, Powis SJ. The oxidoreductase ERp57 efficiently reduces partially folded in preference to fully folded MHC class I molecules. EMBO J 2002; 21:2655-63. [PMID: 12032078 PMCID: PMC126025 DOI: 10.1093/emboj/21.11.2655] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The oxidoreductase ERp57 is an integral component of the peptide loading complex of major histocompatibility complex (MHC) class I molecules, formed during their chaperone-assisted assembly in the endoplasmic reticulum. Misfolded MHC class I molecules or those denied suitable peptides are retrotranslocated and degraded in the cytosol. The presence of ERp57 during class I assembly suggests it may be involved in the reduction of intrachain disulfides prior to retrotranslocation. We have studied the ability of ERp57 to reduce MHC class I molecules in vitro. Recombinant ERp57 specifically reduced partially folded MHC class I molecules, whereas it had little or no effect on folded and peptide-loaded MHC class I molecules. Reductase activity was associated with cysteines at positions 56 and 405 of ERp57, the N-terminal residues of the active CXXC motifs. Our data suggest that the reductase activity of ERp57 may be involved during the unfolding of MHC class I molecules, leading to targeting for degradation.
Collapse
Affiliation(s)
| | | | | | | | - Tim Elliott
- Division of Cell Biology and Immunology, School of Life Sciences, University of Dundee, Dundee DD1 5EH and
Cancer Sciences Division, University of Southampton School of Medicine, Southampton General Hospital, Southampton SO16 6YD, UK Corresponding author e-mail:
| | - Simon J. Powis
- Division of Cell Biology and Immunology, School of Life Sciences, University of Dundee, Dundee DD1 5EH and
Cancer Sciences Division, University of Southampton School of Medicine, Southampton General Hospital, Southampton SO16 6YD, UK Corresponding author e-mail:
| |
Collapse
|
15
|
High S, Lecomte FJ, Russell SJ, Abell BM, Oliver JD. Glycoprotein folding in the endoplasmic reticulum: a tale of three chaperones? FEBS Lett 2000; 476:38-41. [PMID: 10878246 DOI: 10.1016/s0014-5793(00)01666-5] [Citation(s) in RCA: 112] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The endoplasmic reticulum (ER) is a major site of protein synthesis and its inside, or lumen, is a major site of protein folding. The lumen of the ER contains many folding factors and molecular chaperones, which facilitate protein folding by increasing both the rate and the efficiency of this process. Amongst the many ER folding factors, there are three components that specifically modulate the folding glycoproteins bearing N-linked carbohydrate side chains. These components are calnexin, calreticulin and ERp57, and this review focuses on the molecular basis for their capacity to influence glycoprotein folding.
Collapse
Affiliation(s)
- S High
- School of Biological Sciences, University of Manchester, 2.205 Stopford Building, Oxford Road, M13 9PT, Manchester, UK.
| | | | | | | | | |
Collapse
|
16
|
Oliver JD, Roderick HL, Llewellyn DH, High S. ERp57 functions as a subunit of specific complexes formed with the ER lectins calreticulin and calnexin. Mol Biol Cell 1999; 10:2573-82. [PMID: 10436013 PMCID: PMC25489 DOI: 10.1091/mbc.10.8.2573] [Citation(s) in RCA: 244] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
ERp57 is a lumenal protein of the endoplasmic reticulum (ER) and a member of the protein disulfide isomerase (PDI) family. In contrast to archetypal PDI, ERp57 interacts specifically with newly synthesized glycoproteins. In this study we demonstrate that ERp57 forms discrete complexes with the ER lectins, calnexin and calreticulin. Specific ERp57/calreticulin complexes exist in canine pancreatic microsomes, as demonstrated by SDS-PAGE after cross-linking, and by native electrophoresis in the absence of cross-linking. After in vitro translation and import into microsomes, radiolabeled ERp57 can be cross-linked to endogenous calreticulin and calnexin while radiolabeled PDI cannot. Likewise, radiolabeled calreticulin is cross-linked to endogenous ERp57 but not PDI. Similar results were obtained in Lec23 cells, which lack the glucosidase I necessary to produce glycoprotein substrates capable of binding to calnexin and calreticulin. This observation indicates that ERp57 interacts with both of the ER lectins in the absence of their glycoprotein substrate. This result was confirmed by a specific interaction between in vitro synthesized calreticulin and ERp57 prepared in solution in the absence of other ER components. We conclude that ERp57 forms complexes with both calnexin and calreticulin and propose that it is these complexes that can specifically modulate glycoprotein folding within the ER lumen.
Collapse
Affiliation(s)
- J D Oliver
- School of Biological Sciences, University of Manchester, Manchester, M13 9PT, United Kingdom
| | | | | | | |
Collapse
|
17
|
Abstract
Many pathogens have co-evolved with their human hosts to develop strategies for immune evasion that involve disruption of the intracellular pathways by which antigens are bound by class I and class II molecules of the major histocompatibility complex (MHC) for presentation to T cells. Here the molecular events in these pathways are reviewed and pathogen interference is documented for viruses, extracellular and intracellular bacteria and intracellular parasites. In addition to a general review, data from our studies of adenovirus, Chlamydia trachomatis and Coxiella burnetii are summarized. Adenovirus E19 is the first viral gene product described that affects class I MHC molecule expression by two separate mechanisms, intracellular retention of the class I heavy chain by direct binding and by binding to the TAP transporter involved in class I peptide loading. Coxiella and Chlamydia both affect peptide presentation by class II MHC molecules as a result of their residence in endocytic compartments, although the properties of the parasitophorous vacuoles they form are quite different. These examples of active interference with antigen presentation by viral gene products and passive interference by rickettsiae and bacteria are typical of the strategies used by these different classes of pathogens, which need to evade different types of immune responses. Pathogen-host co-evolution is evident in these subversion tactics for which the pathogen crime seems tailored to fit the immune system punishment.
Collapse
Affiliation(s)
- F M Brodsky
- G. W. Hooper Foundation, Department of Microbiology and Immunology, University of California, San Francisco 94143-0552, USA.
| | | | | | | |
Collapse
|
18
|
Markus M, Benezra R. Two isoforms of protein disulfide isomerase alter the dimerization status of E2A proteins by a redox mechanism. J Biol Chem 1999; 274:1040-9. [PMID: 9873049 DOI: 10.1074/jbc.274.2.1040] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have shown previously that E2A helix-loop-helix proteins spontaneously form an intermolecular disulfide cross-link that is required for stable homodimer binding to DNA (Benezra, R. (1994) Cell 79, 1057-1067). These homodimers are important for the development of B lymphocytes but are not present in other cell lineages. We have purified two proteins that are capable of regulating the formation of this disulfide bond and found them to be members of the protein disulfide isomerase (PDI) family. By regulating the formation of the disulfide cross-link, these proteins are capable of regulating the dimerization state of E proteins. PDI-mediated reduction appears to dissociate E protein homodimers and favors heterodimer formation with other basic helix-loop-helix proteins in both a purified protein system and in cellular extracts. These studies suggest that PDI may play an important role in the regulation of E2A transcription factor dimerization and the development of the B lymphocyte lineage.
Collapse
Affiliation(s)
- M Markus
- Cell Biology Program, Memorial Sloan-Kettering Cancer Center, New York, New York 10021, USA
| | | |
Collapse
|
19
|
Hughes EA, Cresswell P. The thiol oxidoreductase ERp57 is a component of the MHC class I peptide-loading complex. Curr Biol 1998; 8:709-12. [PMID: 9637923 DOI: 10.1016/s0960-9822(98)70278-7] [Citation(s) in RCA: 150] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The proper folding and assembly of major histocompatibility complex (MHC) class I molecules in the endoplasmic reticulum (ER) is an intricate process involving a number of components. Nascent heavy chains of MHC class I molecules, translocated into the ER membrane, are rapidly glycosylated and bind the transmembrane chaperone calnexin. In humans, after dissociation from calnexin, fully oxidized MHC class I heavy chains associate with beta 2-microglobulin (beta 2m) and the soluble chaperone calreticulin. This complex interacts with another transmembrane protein, tapasin, which is believed to assist in MHC class I folding as well as in mediating the interaction between assembling MHC class I molecules and the transporter associated with antigen processing (TAP). The TAP heterodimer (TAP1-TAP2) introduces the final component of the MHC class I molecule by translocating peptides, predominately generated by the proteasome, from the cytosol into the ER where they can bind dimers of beta 2M and the MHC class I heavy chain. Recently, the thiol oxidoreductase ERp57--also known as GRP58, ERp61, ER60, Q2, HIP-70, and CPT and first misidentified as phospholipase C-alpha--has been shown to bind in conjunction with calnexin or calreticulin to a number of newly synthesized ER glycoproteins when their N-linked glycans are trimmed by glucosidases I and II. It was speculated that ERp57 is a generic component of the glycan-dependent ER quality control system. Here, we show that ERp57 is a component of the MHC class I peptide-loading complex. ERp57 might influence the folding of MHC class I molecules at a critical step in peptide loading.
Collapse
Affiliation(s)
- E A Hughes
- Section of Immunobiology, Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, Connecticut 06510, USA
| | | |
Collapse
|
20
|
Kivirikko KI, Pihlajaniemi T. Collagen hydroxylases and the protein disulfide isomerase subunit of prolyl 4-hydroxylases. ADVANCES IN ENZYMOLOGY AND RELATED AREAS OF MOLECULAR BIOLOGY 1998; 72:325-98. [PMID: 9559057 DOI: 10.1002/9780470123188.ch9] [Citation(s) in RCA: 100] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Prolyl 4-hydroxylases catalyze the formation of 4-hydroxyproline in collagens and other proteins with an appropriate collagen-like stretch of amino acid residues. The enzyme requires Fe(II), 2-oxoglutarate, molecular oxygen, and ascorbate. This review concentrates on recent progress toward understanding the detailed mechanism of 4-hydroxylase action, including: (a) occurrence and function of the enzyme in animals; (b) general molecular properties; (c) intracellular sites of hydroxylation; (d) peptide substrates and mechanistic roles of the cosubstrates; (e) insights into the development of antifibrotic drugs; (f) studies of the enzyme's subunits and their catalytic function; and (g) mutations that lead to Ehlers-Danlos Syndrome. An account of the regulation of collagen hydroxylase activities is also provided.
Collapse
Affiliation(s)
- K I Kivirikko
- Collagen Research Unit, Biocenter, University of Oulu, Finland
| | | |
Collapse
|
21
|
Miyaishi O, Kozaki K, Iida K, Isobe K, Hashizume Y, Saga S. Elevated expression of PDI family proteins during differentiation of mouse F9 teratocarcinoma cells. J Cell Biochem 1998; 68:436-45. [PMID: 9493907 DOI: 10.1002/(sici)1097-4644(19980315)68:4<436::aid-jcb4>3.0.co;2-r] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
We investigated the expression of protein disulfide isomerase family proteins (PDI, ERp61, and ERp72) in mouse F9 teratocarcinoma cells during differentiation induced by treatment with retinoic acid and dibutyryl cAMP. Each member of this family was expressed at a constitutive level in undifferentiated F9 cells. During differentiation of F9 cells to parietal or visceral endodermal cells the protein level of all these enzymes increased, although the extent of this increase in both protein and mRNA levels varied among the enzymes. Certain proteins were found to be coimmunoprecipitated with PDI, ERp61, and ERp72 in the presence of a chemical crosslinker. Type IV collagen was significantly coprecipitated with PDI whereas laminin was equally coprecipitated with the three proteins. Furthermore, 210 kDa protein characteristically coprecipitated with ERp72. Thus, the induction of PDI family proteins during the differentiation of F9 cells and their association with different proteins may implicate specific functions of each member of this family despite the common redox activity capable of catalyzing the disulfide bond formation.
Collapse
Affiliation(s)
- O Miyaishi
- Laboratory of Pathology, Department of Basic Gerontology, National Institute for Longevity Sciences, Obu, Japan
| | | | | | | | | | | |
Collapse
|
22
|
Muhlenkamp CR, Gill SS. A glucose-regulated protein, GRP58, is down-regulated in C57B6 mouse liver after diethylhexyl phthalate exposure. Toxicol Appl Pharmacol 1998; 148:101-8. [PMID: 9465269 DOI: 10.1006/taap.1997.8323] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Diethylhexyl phthalate (DEHP) is a widely used plasticizer that induces peroxisome proliferation in rodents. Prolonged exposure to DEHP results in a variety of toxic effects, the most significant of which appears to be an increased incidence of liver cancer and male reproductive toxicity in rodents. Accompanying these toxic effects is the induction of a number of genes within the liver, particularly those genes involved in peroxisomal fatty acid beta-oxidation and members of the cytochrome P450 family, CYP4A. In order to explore which additional genes may be altered by DEHP exposure, mRNA differential display was performed using total liver RNA from male C57B6 mice that were treated with either O or 2% DEHP in their diet for 7 days. In doing so, a number of partial cDNAs representing messages that are potentially differentially expressed have been isolated. One of these cDNAs was found to be similar to the previously cloned gene, GRP58. Analysis by RNase protection assay and North hybridization have shown that the transcript for GRP58 is down-regulated in the liver after DEHP exposure. Analysis of dose-response exposures to DEHP by reverse transcription (RT)-PCR confirm these results and also shows that GRP58 is not altered in kidney or testis. Immunoblot analysis using GRP58-specific antibodies also shows a decrease in GRP58 protein levels in DEHP-treated mice. Moreover, exposure of mice to another peroxisome proliferator, clofibrate, results in a slight down-regulation of GRP58 at the highest dose, 0.5%. Thus, it appears as if DEHP and clofibrate can use different pathways to affect gene expression.
Collapse
Affiliation(s)
- C R Muhlenkamp
- Department of Entomology, University of California, Riverside 92521, USA
| | | |
Collapse
|
23
|
Tachikawa H, Funahashi W, Takeuchi Y, Nakanishi H, Nishihara R, Katoh S, Gao XD, Mizunaga T, Fujimoto D. Overproduction of Mpd2p suppresses the lethality of protein disulfide isomerase depletion in a CXXC sequence dependent manner. Biochem Biophys Res Commun 1997; 239:710-4. [PMID: 9367834 DOI: 10.1006/bbrc.1997.7426] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The third multicopy suppressor gene of the PDI1 deletion from Saccharomyces cerevisiae, MPD2, was isolated and characterized. The MPD2 gene encodes a protein with a putative signal sequence, ER retention signal, and a disulfide isomerase active site like sequence. The amino acid sequence around the active site like sequence is similar to the thioredoxin-like domains of PDI and PDI related proteins, although the similarity is comparatively low. A delta-pdi1 strain over-producing Mpd2p showed slow growth and was sensitive to 1 mM dithiothreitol. Mpd2p can be detected in wild type cells and is a glycoprotein. Although the MPD2 gene was not essential for growth, overexpression of the gene partially restored the maturation defect of carboxypeptidase Y caused by the PDI1 deletion. Mutagenesis analysis revealed that Mpd2p can compensate for the loss of PDI with its CXXC sequence.
Collapse
Affiliation(s)
- H Tachikawa
- Department of Applied Biological Science, Faculty of Agriculture, Tokyo University of Agriculture and Technology, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Dhahbi JM, Mote PL, Tillman JB, Walford RL, Spindler SR. Dietary energy tissue-specifically regulates endoplasmic reticulum chaperone gene expression in the liver of mice. J Nutr 1997; 127:1758-64. [PMID: 9278556 DOI: 10.1093/jn/127.9.1758] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
A number of putative molecular chaperones seem to play essential roles in the correct folding, assembly and glycosylation of membrane and secreted proteins in the endoplasmic reticulum. We have shown that life span-extending dietary energy restriction significantly and specifically reduces GRP78 mRNA and protein by 50-75% in mice. Here, 5-mo-old female C3B10RF1 mice were given free access to food after being fed 50% less dietary energy since weaning. Hepatic GRP78 mRNA increased linearly, reaching the same level after 2 wk as was found in the liver of 20-mo-old mice with free access to food. This increase took place with no change in body weight. The mRNA levels of endoplasmic reticulum, cytosolic and mitochondrial chaperones were determined in young (7-mo-old) and old (21- or 28-mo-old) female C3B10RF1 mice. Each age group was either 50% energy restricted or was fed approximately 10% less energy than consumed by mice given free access to food. In young and old energy-restricted mice, hepatic expression of the endoplasmic reticulum chaperones ERp57 (37%), GRP170 (51%), ERp72 (43%), calreticulin (54%) and calnexin (23%) was significantly and specifically reduced. The GRP78, GRP94, GRP170, ERp57 and calnexin mRNA response to diet occurred reproducibly only in liver, and not in adipose, brain, heart, kidney, lung, muscle or small intestine. The mRNA for GRP75, a mitochondrial chaperone, HSC70, a cytoplasmic chaperone, protein disulfide isomerase, an endoplasmic reticulum chaperone, and C/EBPalpha, a transcription factor, was not regulated. Hepatic C/EBPbeta was 15% higher in old energy-restricted mice. Thus the expression of nearly all endoplasmic reticulum chaperones responded rapidly and specifically to dietary energy in mice.
Collapse
Affiliation(s)
- J M Dhahbi
- Department of Biochemistry, University of California-Riverside, Riverside, CA 92521, USA
| | | | | | | | | |
Collapse
|
25
|
Elliott JG, Oliver JD, High S. The thiol-dependent reductase ERp57 interacts specifically with N-glycosylated integral membrane proteins. J Biol Chem 1997; 272:13849-55. [PMID: 9153243 DOI: 10.1074/jbc.272.21.13849] [Citation(s) in RCA: 95] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The lumen of the endoplasmic reticulum contains a number of distinct molecular chaperones and folding factors, which modulate the folding and assembly of newly synthesized proteins and protein complexes. A subset of these luminal components are specific for glycoproteins, and, like calnexin and calreticulin, the thiol-dependent reductase ERp57 has been shown to interact specifically with soluble secretory proteins bearing N-linked carbohydrate. Calnexin and calreticulin also interact with glycosylated integral membrane proteins, and in this study we have examined the interaction of ERp57 with these substrates. As with soluble proteins, the binding of ERp57 to an integral membrane protein is dependent upon the protein bearing an N-glycan that has undergone glucose trimming. Furthermore, ERp57 binds to newly synthesized glycoproteins in combination with either calnexin or calreticulin. We propose that ERp57 acts in concert with calnexin and calreticulin to modulate glycoprotein folding and enforce the glycoprotein specific quality control mechanism operating in the endoplasmic reticulum.
Collapse
Affiliation(s)
- J G Elliott
- School of Biological Sciences, University of Manchester, 2.205 Stopford Building, Oxford Road, Manchester M13 9PT, United Kingdom
| | | | | |
Collapse
|
26
|
Oliver JD, van der Wal FJ, Bulleid NJ, High S. Interaction of the thiol-dependent reductase ERp57 with nascent glycoproteins. Science 1997; 275:86-8. [PMID: 8974399 DOI: 10.1126/science.275.5296.86] [Citation(s) in RCA: 293] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Calnexin and calreticulin interact specifically with newly synthesized glycoproteins in the endoplasmic reticulum (ER) and function as molecular chaperones. The carbohydrate-specific interactions between ER components and glycoproteins synthesized in isolated canine pancreatic microsomes were analyzed using a cross-linking approach. A carbohydrate-dependent interaction between newly synthesized glycoproteins, the thiol-dependent reductase ERp57, and either calnexin or calreticulin was identified. The interaction between ERp57 and the newly synthesized glycoproteins required trimming of the N-linked oligosaccharide side chain. Thus, it is likely that ERp57 functions as part of the glycoprotein-specific quality control machinery operating in the lumen of the ER.
Collapse
Affiliation(s)
- J D Oliver
- School of Biological Sciences, University of Manchester, 2.205 Stopford Building, Oxford Road, Manchester M13 9PT, UK.
| | | | | | | |
Collapse
|
27
|
Morrison JJ, Charnock-Jones DS, Smith SK. Messenger RNA encoding thiol protein disulphide isomerase in amnion, chorion and placenta in human term and preterm labour. BRITISH JOURNAL OF OBSTETRICS AND GYNAECOLOGY 1996; 103:873-8. [PMID: 8813306 DOI: 10.1111/j.1471-0528.1996.tb09905.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
OBJECTIVE To investigate levels of messenger RNA (mRNA) encoding thiol protein disulphide isomerase, in human amnion, chorion and placenta during pregnancy and in relation to term and preterm labour. DESIGN Amnion, chorion and placenta from 33 women delivered between 24 and 41 weeks of gestation were used in the study. SETTING Reproductive Molecular Research Group, Department of Obstetrics and Gynaecology, University of Cambridge Clinical School, Rosie Maternity Hospital, Cambridge. RESULTS Women who were delivered spontaneously before 30 weeks of gestation had higher levels of mRNA encoding thiol protein disulphide isomerase in placenta and chorion than those who were delivered spontaneously after this time (placenta (P < 0.01, chorion P < 0.01) and compared with those who were delivered by elective caesarean section before 30 weeks of gestation (placenta (P < 0.01, chorion P < 0.05). In the group in whom spontaneous labour occurred, at all gestations studied, there were increased levels of mRNA encoding thiol protein disulphide isomerase in the placenta (P < 0.001) and chorion (P < 0.001) compared with the amnion. CONCLUSION Changes in the steady state level of mRNA encoding thiol protein disulphide isomerase may play a role in the onset of preterm labour before 30 weeks of gestation.
Collapse
Affiliation(s)
- J J Morrison
- Department of Obstetrics and Gynaecology, University of Cambridge Clinical School, Rosie Maternity Hospital
| | | | | |
Collapse
|
28
|
Koivunen P, Helaakoski T, Annunen P, Veijola J, Räisänen S, Pihlajaniemi T, Kivirikko KI. ERp60 does not substitute for protein disulphide isomerase as the beta-subunit of prolyl 4-hydroxylase. Biochem J 1996; 316 ( Pt 2):599-605. [PMID: 8687406 PMCID: PMC1217390 DOI: 10.1042/bj3160599] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Prolyl 4-hydroxylase (EC 1.14.11.2) catalyses the formation of 4-hydroxyproline in collagens. The vertebrate enzymes are alpha 2 beta 2 tetramers while the Caenorhabditis elegans enzyme is an alpha beta dimer. The beta-subunit is identical to protein disulphide isomerase (PDI), a multifunctional endoplasmic reticulum luminal polypeptide. ERp60 is a PDI isoform that was initially misidentified as a phosphatidylinositol-specific phospholipase C. We report here on the cloning and expression of the human and Drosophila ERp60 polypeptides. The overall amino acid sequence identity and similarity between the processed human ERp60 and PDI polypeptides are 29% and 56% respectively, and those between the Drosophila ERp60 and human PDI polypeptides 29% and 55%. The two ERp60 polypeptides were found to be similar to human PDI within almost all their domains, the only exception being the extreme C-terminal region. Nevertheless, when the human or Drosophila ERp60 was expressed in insect cells together with an alpha-subunit of human prolyl 4-hydroxylase, no tetramer was formed and no prolyl 4-hydroxylase activity was generated in the cells. Additional experiments with hybrid polypeptides in which the C-terminal regions had been exchanged between the human ERp60 and PDI polypeptides demonstrated that the differences in the C-terminal region are not the only reason for the lack of prolyl 4-hydroxylase tetramer formation by ERp60.
Collapse
Affiliation(s)
- P Koivunen
- Collagen Research Unit, Biocenter, University of Oulu, Finland
| | | | | | | | | | | | | |
Collapse
|
29
|
Humphreys DP, Weir N, Lawson A, Mountain A, Lund PA. Co-expression of human protein disulphide isomerase (PDI) can increase the yield of an antibody Fab' fragment expressed in Escherichia coli. FEBS Lett 1996; 380:194-7. [PMID: 8603736 DOI: 10.1016/0014-5793(96)00028-2] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Secretion to the periplasm of Escherichia coli enables production of many eukaryotic extracellular proteins in a soluble form. The complex disulphide bond arrangement of such proteins is probably a major factor in determining the low yield of correctly folded product observed in many cases. Here we show that co-expression of human protein disulphide isomerase increased the yield of a monoclonal antibody Fab' fragment in the periplasm of E. coli.
Collapse
Affiliation(s)
- D P Humphreys
- School of Biological Sciences, University of Birmingham, UK
| | | | | | | | | |
Collapse
|
30
|
Donella-Deana A, James P, Staudenmann W, Cesaro L, Marin O, Brunati AM, Ruzzene M, Pinna LA. Isolation from spleen of a 57-kDa protein substrate of the tyrosine kinase Lyn. Identification as a protein related to protein disulfide-isomerase and localisation of the phosphorylation sites. EUROPEAN JOURNAL OF BIOCHEMISTRY 1996; 235:18-25. [PMID: 8631326 DOI: 10.1111/j.1432-1033.1996.00018.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
A 57-kDa protein (p57) has been purified to homogeneity from a microsomal fraction of rat spleen. It is specifically and efficiently phosphorylated by the Src-like tyrosine kinase Lyn purified from the same source with a Km of 0.34 microM. The tyrosine kinases c-Fgr, Fyn, C-terminal Src kinase and p72syk, as well as the Ser/Thr-specific cAMP-dependent protein kinase and protein kinases CK1 and CK2 do not phosphorylate p57. C-terminal Src kinase, which acts to down-regulate the Src-like protein-tyrosine kinases, almost completely prevents the protein phosphorylation catalysed by Lyn. Protein mass fingerprinting with tryptic fragments identified p57 as a protein related to protein disulfide-isomerase which belongs to the superfamily of Cys-Gly-His-Cys-containing sequences. Lyn phosphorylates tyrosine residues Y444, Y453 and Y466 which are located in a highly acidic region of the protein at the C-terminus. Upon phosphorylation, p57 forms a complex with Lyn which can be immunoprecipitated with anti-Lyn IgG. The association which occurs between the phosphorylated substrate and the SH2 domain of the kinase is consistent with the suggested 'processive phosphorylation' model, which implies that a primary phosphorylation site of the substrate binds to the SH2 domain of the enzyme and triggers the phosphorylation at secondary site(s).
Collapse
Affiliation(s)
- A Donella-Deana
- Dipartimento di Chimica Biologica, University of Padova, Italy
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Charnock-Jones DS, Day K, Smith SK. Cloning, expression and genomic organization of human placental protein disulfide isomerase (previously identified as phospholipase C alpha). Int J Biochem Cell Biol 1996; 28:81-9. [PMID: 8624847 DOI: 10.1016/1357-2725(95)00120-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Phosphoinositol-specific Phospholipase C plays an important role in transducing receptor generated signals to the rest of the cell. A cDNA encoding a phospholipase has been described (Bennett et al., 1988, Nature 334, 268-270). However it is probable that this cDNA in fact encodes a protein disulfide isomerase. Since the original work suggested that this enzyme was important in the reproductive tract we sort to clone, sequence, express and characterize the recombinant protein isolated from the placenta. We have cloned and sequenced the cDNA encoding the human homolog of this cDNA from human placenta, although the mRNA was widespread in the female reproductive tract. We have transiently expressed it in both COS cells and also 1BR fibroblasts. Cell lysates were assayed for increased phospholipase activity and protein disulfide activity. We describe the entire cDNA sequence which is highly conserved between species. We have also cloned a portion of the genomic gene and described the intron/exon boundaries. In vitro translation of this cDNA showed that it encoded a protein of 61 kD with a cleavable signal peptide. Transient expression showed the protein produced had no phospholipase activity but did show protein disulfide isomerase activity. The expression work shows that this cDNA indeed encodes a protein disulfide isomerase and not a phospholipase. The nucleotide sequence shows marked conservation of the coding and regulatory regions which may suggest that this enzyme has evolved to perform a highly specialized function.
Collapse
Affiliation(s)
- D S Charnock-Jones
- Department of Obstetrics and Gynaecology University, of Cambridge, Rosie Maternity Hospital, Cambridge, UK
| | | | | |
Collapse
|
32
|
Luz JM, Lennarz WJ. Protein disulfide isomerase: a multifunctional protein of the endoplasmic reticulum. EXS 1996; 77:97-117. [PMID: 8856971 DOI: 10.1007/978-3-0348-9088-5_7] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Protein disulfide isomerase (PDI) is a resident enzyme of the endoplasmic reticulum (ER) that was discovered over three decades ago. Contemporary biochemical and molecular biology techniques have revealed that it is present in all eukaryotic cells studied and retained in the ER via a -KDEL or -HDEL sequence at its C-terminus. However, evidence is accumulating that in certain cell types, PDI can be found in other subcellular compartments, despite possessing an intact retention sequence. A wide range of studies has established that in presence of a redox pair, PDI acts catalytically to both form and reduce disulfide bonds, therefore acting as a disulfide isomerase. Recent studies have focused on the mechanism of the isomerization process and the precise role of the two active site sequences (-CGHC-) in the process. In addition, prokaryotes have been shown to possess a set of proteins that function in a similar fashion, being able to generate disulfide bonds on polypeptides translocated into the periplasmic space. Following the recent discovery that PDI binds peptides, coupled with earlier findings that PDI is a subunit of at least two enzymatic complexes (prolyl 4-hydroxylase and microsomal triglyceride transfer protein), it seems that it may serve functions other than merely that of a disulfide isomerase. In fact, it is now clear that PDI can facilitate protein folding independently of its disulfide isomerase activity. A major challenge for the future is to define mechanistically how it accomplishes isomerization and the relationship between this process and the protein folding steps that culminate in the final, fully mature protein.
Collapse
Affiliation(s)
- J M Luz
- Department of Biochemistry and Cell Biology, State University of New York at Stony Brook 11794-5215, USA
| | | |
Collapse
|
33
|
Hirano N, Shibasaki F, Sakai R, Tanaka T, Nishida J, Yazaki Y, Takenawa T, Hirai H. Molecular cloning of the human glucose-regulated protein ERp57/GRP58, a thiol-dependent reductase. Identification of its secretory form and inducible expression by the oncogenic transformation. EUROPEAN JOURNAL OF BIOCHEMISTRY 1995; 234:336-42. [PMID: 8529662 DOI: 10.1111/j.1432-1033.1995.336_c.x] [Citation(s) in RCA: 106] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Recently it was shown that putative phospholipase C-alpha cDNA does not code for an isotype of the phospholipase C superfamily but for one of the glucose-regulated proteins (GRPs), ERp57/GRP58. We have isolated human ERp57/GRP58 cDNA from human placenta. Sequence analysis showed that ERp57/GRP58 has two Trp-Cys-Gly-His-Cys-Lys motifs completely conserved among the mammals. Bacterially expressed recombinant ERp57/GRP58 protein contained a thiol-dependent reductase activity which was completely abolished when Ser residues were substituted for Cys residues in both of the two motifs. Furthermore, we have identified a soluble form of ERp57/GRP58 by Western blotting and biosynthetic labeling. In v-onc transformants of normal rat kidney cells, the expression level of ERp57/GRP58 was elevated at the protein level. In NIH3T3 cells transformed with v-src, activated c-src (Y527F) or c-src, the expression level of ERp57/GRP58 was upregulated in proportion to their transforming abilities. These results indicate that a soluble form of ERp57/GRP58 exists and that this protein may control both extracellular and intracellular redox activities through its thiol-dependent reductase activity. Moreover, it is likely that ERp57/GRP58 is involved in the oncogenic transformation.
Collapse
Affiliation(s)
- N Hirano
- Third Department of Internal Medicine, Faculty of Medicine, University of Tokyo, Japan
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Tachikawa H, Takeuchi Y, Funahashi W, Miura T, Gao XD, Fujimoto D, Mizunaga T, Onodera K. Isolation and characterization of a yeast gene, MPD1, the overexpression of which suppresses inviability caused by protein disulfide isomerase depletion. FEBS Lett 1995; 369:212-6. [PMID: 7649260 DOI: 10.1016/0014-5793(95)00750-4] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
MPD1, a yeast gene the overexpression of which suppresses the inviability caused by the loss of protein disulfide isomerase (PDI) was isolated and characterized. The MPD1 gene product retained a single disulfide isomerase active site sequence (APWCGHCK), an N-terminal putative signal sequence, and a C-terminal endoplasmic reticulum (ER) retention signal, and was a novel member of the PDI family. The gene product, identified in yeast extract, contained core size carbohydrates. MPD1 was not essential for growth, but overexpression of the gene suppressed the maturation defect of carboxypeptidase Y caused by PDI1 deletion, indicative of the related function to PDI in the yeast ER.
Collapse
Affiliation(s)
- H Tachikawa
- Department of Applied Biological Science, Faculty of Agriculture, Tokyo University of Agriculture and Technology, Japan
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Otsu M, Urade R, Kito M, Omura F, Kikuchi M. A possible role of ER-60 protease in the degradation of misfolded proteins in the endoplasmic reticulum. J Biol Chem 1995; 270:14958-61. [PMID: 7797475 DOI: 10.1074/jbc.270.25.14958] [Citation(s) in RCA: 95] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Wild-type human lysozyme (hLZM) is secreted when expressed in mouse L cells, whereas misfolded mutant hLZMs are retained and eventually degraded in a pre-Golgi compartment (Omura, F., Otsu, M., Yoshimori, T., Tashiro, Y., and Kikuchi, M. (1992) Eur. J. Biochem. 210, 591-599). These misfolded mutant hLZMs are associated with protein disulfide isomerase (Otsu, M., Omura, F., Yoshimori, T., and Kikuchi, M. (1994) J. Biol. Chem. 269, 6874-6877). From the observation that this degradation is sensitive to cysteine protease inhibitors, such as N-acetyl-leucyl-leucyl-norleucinal and N-acetyl-leucyl-leucyl-methioninal, but not to the serine protease inhibitors, 1-chloro-3-tosylamido-7-amino-2-heptanone and (p-amidinophenyl)methanesulfonyl fluoride, it was suggested that some cysteine proteases are likely responsible for the degradation of abnormal proteins in the endoplasmic reticulum (ER). ER-60 protease (ER-60), an ER resident protein with cysteine protease activity (Urade, R., Nasu, M., Moriyama, T., Wada, K., and Kito, M. (1992) J. Biol. Chem. 267, 15152-15159), was found to associate with misfolded hLZMs, but not with the wild-type protein, in mouse L cells. Furthermore, denatured hLZM is degraded by ER-60 in vitro, whereas native hLZM is not. These results suggest that ER-60 could be a component of the proteolytic machinery for the degradation of misfolded mutant hLZMs in the ER.
Collapse
Affiliation(s)
- M Otsu
- Protein Engineering Research Institute, Osaka, Japan
| | | | | | | | | |
Collapse
|
36
|
McKay RR, Zhu L, Shortridge RD. A Drosophila gene that encodes a member of the protein disulfide isomerase/phospholipase C-alpha family. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 1995; 25:647-654. [PMID: 7787847 DOI: 10.1016/0965-1748(95)00001-c] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Screening of a Drosophila genomic DNA library at reduced stringency hybridization conditions using a rat PLC alpha cDNA probe yielded a gene which encodes a member of the protein disulfide isomerase/PLC alpha family. The gene has been localized to band 74C on the left arm of the third chromosome and has been designated dpdi. Northern analysis shows that the dpdi gene encodes a transcript that is 2.3 kb in length and is present throughout development as well as in both heads and bodies of adults. The deduced dpdi protein is 496 amino acids in length and contains two domains exhibiting high similarity to thioredoxin, two regions that are similar to the hormone binding domain of human estrogen receptor, and a sequence of four amino acids (KDEL) at the C-terminus which has been described by others as being responsible for retention of proteins in the endoplasmic reticulum. Overall, dpdi contains a higher similarity to rat protein disulfide isomerase (53% identical) than to rat PLC alpha (30% identical). However, it is unclear whether dpdi functions in vivo as a PDI or as a PLC, or both. Drosophila, with its well characterized genetics and the ability to generate mutants in a gene that has been cloned, provides an excellent system in which to resolve this issue.
Collapse
Affiliation(s)
- R R McKay
- Department of Biological Sciences, University of New York, Buffalo 14260, USA
| | | | | |
Collapse
|
37
|
Drayer AL, van Haastert PJ. Transmembrane signalling in eukaryotes: a comparison between higher and lower eukaryotes. PLANT MOLECULAR BIOLOGY 1994; 26:1239-1270. [PMID: 7858189 DOI: 10.1007/bf00016473] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Affiliation(s)
- A L Drayer
- Department of Biochemistry, University of Groningen, The Netherlands
| | | |
Collapse
|
38
|
Murthy MS, Pande SV. A stress-regulated protein, GRP58, a member of thioredoxin superfamily, is a carnitine palmitoyltransferase isoenzyme. Biochem J 1994; 304 ( Pt 1):31-4. [PMID: 7998951 PMCID: PMC1137447 DOI: 10.1042/bj3040031] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
We recently noted the association of carnitine palmitoyltransferase (CPT) activity with a 54 kDa microsomal protein [Murthy and Pande (1993) Mol. Cell Biochem. 122, 133-138] that, based on amino-acid-sequence identity, seemed to be the protein previously described as a 'glucose-regulated protein-58' (GRP58), phosphoinositide-specific phospholipase C, hormone-induced protein-70, endoplasmic-reticulum protein-61 (ERp61), protein disulphide-isomerase, thiol protease, a protein affected in halothane anaesthesia and one that affects renal-tubular functions and the transcriptional activation of the interferon-alpha inducible genes. To ascertain the catalytic identity of this protein unambiguously, we have expressed the corresponding cDNA transiently and stably in human kidney 293 cells as well as in HeLa cells. In each case we found that expression led to an increase in assayable and immunoreactive 54 kDa CPT activity, whereas the protein disulphide-isomerase activity was not increased. In vitro expression in a cell-free transcription and translation system led to the synthesis of a approximately 57 kDa (precursor) protein that was processed to a approximately 54 kDa (mature) protein when microsomes were present; in both these experiments again a large increase in CPT activity was seen. Thus the present data provide compelling evidence that the 54 kDa protein in question is a CPT isoenzyme. It remains to be seen now how the ability of this protein to interconvert acyl-CoA and acylcarnitine would relate to the diverse functions indicated for this protein in vivo.
Collapse
Affiliation(s)
- M S Murthy
- Laboratory of Intermediary Metabolism, Clinical Research Institute of Montreal, Quebec, Canada
| | | |
Collapse
|
39
|
Bolander FF. Calcium, Calmodulin, and Phospholipids. Mol Endocrinol 1994. [DOI: 10.1016/b978-0-12-111231-8.50014-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|