1
|
Steinert JR, Amal H. The contribution of an imbalanced redox signalling to neurological and neurodegenerative conditions. Free Radic Biol Med 2023; 194:71-83. [PMID: 36435368 DOI: 10.1016/j.freeradbiomed.2022.11.035] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/17/2022] [Accepted: 11/22/2022] [Indexed: 11/25/2022]
Abstract
Nitric oxide and other redox active molecules such as oxygen free radicals provide essential signalling in diverse neuronal functions, but their excess production and insufficient scavenging induces cytotoxic redox stress which is associated with numerous neurodegenerative and neurological conditions. A further component of redox signalling is mediated by a homeostatic regulation of divalent metal ions, the imbalance of which contributes to neuronal dysfunction. Additional antioxidant molecules such as glutathione and enzymes such as super oxide dismutase are involved in maintaining a physiological redox status within neurons. When cellular processes are perturbed and generation of free radicals overwhelms the antioxidants capacity of the neurons, a resulting redox damage leads to neuronal dysfunction and cell death. Cellular sources for production of redox-active molecules may include NADPH oxidases, mitochondria, cytochrome P450 and nitric oxide (NO)-generating enzymes, such as endothelial, neuronal and inducible NO synthases. Several neurodegenerative and developmental neurological conditions are associated with an imbalanced redox state as a result of neuroinflammatory processes leading to nitrosative and oxidative stress. Ongoing research aims at understanding the causes and consequences of such imbalanced redox homeostasis and its role in neuronal dysfunction.
Collapse
Affiliation(s)
- Joern R Steinert
- Division of Physiology, Pharmacology and Neuroscience, University of Nottingham, School of Life Sciences, Nottingham, NG7 2NR, UK.
| | - Haitham Amal
- Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel.
| |
Collapse
|
2
|
Amanullah S, Saha P, Dey A. Recent developments in the synthesis of bio-inspired iron porphyrins for small molecule activation. Chem Commun (Camb) 2022; 58:5808-5828. [PMID: 35474535 DOI: 10.1039/d2cc00430e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Nature utilizes a diverse set of tetrapyrrole-based macrocycles (referred to as porphyrinoids) for catalyzing various biological processes. Investigation of the differences in electronic structure and reactivity in these reactions have revealed striking differences that lead to diverse reactivity from, apparently, similar looking active sites. Therefore, the role of the different heme cofactors as well as the distal superstructure in the proteins is important to understand. This article summarizes the role of a few synthetic metallo-porphyrinoids towards catalyzing several small molecule activation reactions, such as the ORR, NiRR, CO2RR, etc. The major focus of the article is to enlighten the synthetic routes to the well-decorated active-site mimic in a tailor-made fashion pursuing a retrosynthetic approach, learning from the biosynthesis of the cofactors. Techniques and the role of the second-sphere residues on the reaction rate, selectivity, etc. are incorporated emulating the basic amino acid residues fencing the active sites. These bioinspired mimics play an important role towards understanding the role of the prosthetic groups as well as the basic residues towards any reaction occurring in Nature.
Collapse
Affiliation(s)
- Sk Amanullah
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A Raja SC Mullick Road, Kolkata, WB 700032, India.
| | - Paramita Saha
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A Raja SC Mullick Road, Kolkata, WB 700032, India.
| | - Abhishek Dey
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A Raja SC Mullick Road, Kolkata, WB 700032, India.
| |
Collapse
|
3
|
Lehnert N, Kim E, Dong HT, Harland JB, Hunt AP, Manickas EC, Oakley KM, Pham J, Reed GC, Alfaro VS. The Biologically Relevant Coordination Chemistry of Iron and Nitric Oxide: Electronic Structure and Reactivity. Chem Rev 2021; 121:14682-14905. [PMID: 34902255 DOI: 10.1021/acs.chemrev.1c00253] [Citation(s) in RCA: 101] [Impact Index Per Article: 33.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Nitric oxide (NO) is an important signaling molecule that is involved in a wide range of physiological and pathological events in biology. Metal coordination chemistry, especially with iron, is at the heart of many biological transformations involving NO. A series of heme proteins, nitric oxide synthases (NOS), soluble guanylate cyclase (sGC), and nitrophorins, are responsible for the biosynthesis, sensing, and transport of NO. Alternatively, NO can be generated from nitrite by heme- and copper-containing nitrite reductases (NIRs). The NO-bearing small molecules such as nitrosothiols and dinitrosyl iron complexes (DNICs) can serve as an alternative vehicle for NO storage and transport. Once NO is formed, the rich reaction chemistry of NO leads to a wide variety of biological activities including reduction of NO by heme or non-heme iron-containing NO reductases and protein post-translational modifications by DNICs. Much of our understanding of the reactivity of metal sites in biology with NO and the mechanisms of these transformations has come from the elucidation of the geometric and electronic structures and chemical reactivity of synthetic model systems, in synergy with biochemical and biophysical studies on the relevant proteins themselves. This review focuses on recent advancements from studies on proteins and model complexes that not only have improved our understanding of the biological roles of NO but also have provided foundations for biomedical research and for bio-inspired catalyst design in energy science.
Collapse
Affiliation(s)
- Nicolai Lehnert
- Department of Chemistry and Department of Biophysics, University of Michigan, Ann Arbor, Michigan 48109-1055, United States
| | - Eunsuk Kim
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, United States
| | - Hai T Dong
- Department of Chemistry and Department of Biophysics, University of Michigan, Ann Arbor, Michigan 48109-1055, United States
| | - Jill B Harland
- Department of Chemistry and Department of Biophysics, University of Michigan, Ann Arbor, Michigan 48109-1055, United States
| | - Andrew P Hunt
- Department of Chemistry and Department of Biophysics, University of Michigan, Ann Arbor, Michigan 48109-1055, United States
| | - Elizabeth C Manickas
- Department of Chemistry and Department of Biophysics, University of Michigan, Ann Arbor, Michigan 48109-1055, United States
| | - Kady M Oakley
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, United States
| | - John Pham
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, United States
| | - Garrett C Reed
- Department of Chemistry and Department of Biophysics, University of Michigan, Ann Arbor, Michigan 48109-1055, United States
| | - Victor Sosa Alfaro
- Department of Chemistry and Department of Biophysics, University of Michigan, Ann Arbor, Michigan 48109-1055, United States
| |
Collapse
|
4
|
Amanullah S, Saha P, Nayek A, Ahmed ME, Dey A. Biochemical and artificial pathways for the reduction of carbon dioxide, nitrite and the competing proton reduction: effect of 2nd sphere interactions in catalysis. Chem Soc Rev 2021; 50:3755-3823. [DOI: 10.1039/d0cs01405b] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Reduction of oxides and oxoanions of carbon and nitrogen are of great contemporary importance as they are crucial for a sustainable environment.
Collapse
Affiliation(s)
- Sk Amanullah
- School of Chemical Sciences
- Indian Association for the Cultivation of Science
- Kolkata
- India
| | - Paramita Saha
- School of Chemical Sciences
- Indian Association for the Cultivation of Science
- Kolkata
- India
| | - Abhijit Nayek
- School of Chemical Sciences
- Indian Association for the Cultivation of Science
- Kolkata
- India
| | - Md Estak Ahmed
- School of Chemical Sciences
- Indian Association for the Cultivation of Science
- Kolkata
- India
| | - Abhishek Dey
- School of Chemical Sciences
- Indian Association for the Cultivation of Science
- Kolkata
- India
| |
Collapse
|
5
|
Amanullah S, Dey A. The role of porphyrin peripheral substituents in determining the reactivities of ferrous nitrosyl species. Chem Sci 2020; 11:5909-5921. [PMID: 32832056 PMCID: PMC7407271 DOI: 10.1039/d0sc01625j] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 05/07/2020] [Indexed: 12/02/2022] Open
Abstract
Ferrous nitrosyl {FeNO}7 species is an intermediate common to the catalytic cycles of Cd1NiR and CcNiR, two heme-based nitrite reductases (NiR), and its reactivity varies dramatically in these enzymes.
Ferrous nitrosyl {FeNO}7 species is an intermediate common to the catalytic cycles of Cd1NiR and CcNiR, two heme-based nitrite reductases (NiR), and its reactivity varies dramatically in these enzymes. The former reduces NO2– to NO in the denitrification pathway while the latter reduces NO2– to NH4+ in a dissimilatory nitrite reduction. With very similar electron transfer partners and heme based active sites, the origin of this difference in reactivity has remained unexplained. Differences in the structure of the heme d1 (Cd1NiR), which bears electron-withdrawing groups and has saturated pyrroles, relative to heme c (CcNiR) are often invoked to explain these reactivities. A series of iron porphyrinoids, designed to model the electron-withdrawing peripheral substitution as well as the saturation present in heme d1 in Cd1NiR, and their NO adducts were synthesized and their properties were investigated. The data clearly show that the presence of electron-withdrawing groups (EWGs) and saturated pyrroles together in a synthetic porphyrinoid (FeDEsC) weakens the Fe–NO bond in {FeNO}7 adducts along with decreasing the bond dissociation free energies (BDFENH) of the {FeHNO}8 species. The EWG raises the E° of the {FeNO}7/8 process, making the electron transfer (ET) facile, but decreases the pKa of {FeNO}8 species, making protonation (PT) difficult, while saturation has the opposite effect. The weakening of the Fe–NO bonding biases the {FeNO}7 species of FeDEsC for NO dissociation, as in Cd1NiR, which is otherwise set-up for a proton-coupled electron transfer (PCET) to form an {FeHNO}8 species eventually leading to its further reduction to NH4+.
Collapse
Affiliation(s)
- Sk Amanullah
- School of Chemical Sciences , Indian Association for the Cultivation of Science , 2A & 2B Raja SC Mullick Road , Kolkata , India - 700032 .
| | - Abhishek Dey
- School of Chemical Sciences , Indian Association for the Cultivation of Science , 2A & 2B Raja SC Mullick Road , Kolkata , India - 700032 .
| |
Collapse
|
6
|
Discovery of a Nitric Oxide-Responsive Protein in Arabidopsis thaliana. Molecules 2019; 24:molecules24152691. [PMID: 31344907 PMCID: PMC6696476 DOI: 10.3390/molecules24152691] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2019] [Revised: 07/20/2019] [Accepted: 07/22/2019] [Indexed: 11/17/2022] Open
Abstract
In plants, much like in animals, nitric oxide (NO) has been established as an important gaseous signaling molecule. However, contrary to animal systems, NO-sensitive or NO-responsive proteins that bind NO in the form of a sensor or participating in redox reactions have remained elusive. Here, we applied a search term constructed based on conserved and functionally annotated amino acids at the centers of Heme Nitric Oxide/Oxygen (H-NOX) domains in annotated and experimentally-tested gas-binding proteins from lower and higher eukaryotes, in order to identify candidate NO-binding proteins in Arabidopsis thaliana. The selection of candidate NO-binding proteins identified from the motif search was supported by structural modeling. This approach identified AtLRB3 (At4g01160), a member of the Light Response Bric-a-Brac/Tramtrack/Broad Complex (BTB) family, as a candidate NO-binding protein. AtLRB3 was heterologously expressed and purified, and then tested for NO-response. Spectroscopic data confirmed that AtLRB3 contains a histidine-ligated heme cofactor and importantly, the addition of NO to AtLRB3 yielded absorption characteristics reminiscent of canonical H-NOX proteins. Furthermore, substitution of the heme iron-coordinating histidine at the H-NOX center with a leucine strongly impaired the NO-response. Our finding therefore established AtLRB3 as a NO-interacting protein and future characterizations will focus on resolving the nature of this response.
Collapse
|
7
|
Ghosh S, Deka H, Dangat YB, Saha S, Gogoi K, Vanka K, Mondal B. Reductive nitrosylation of nickel(ii) complex by nitric oxide followed by nitrous oxide release. Dalton Trans 2018; 45:10200-8. [PMID: 27230278 DOI: 10.1039/c6dt00826g] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Ni(ii) complex of ligand ( = bis(2-ethyl-4-methylimidazol-5-yl)methane) in methanol solution reacts with an equivalent amount of NO resulting in a corresponding Ni(i) complex. Adding further NO equivalent affords a Ni(i)-nitrosyl intermediate with the {NiNO}(10) configuration. This nitrosyl intermediate upon subsequent reaction with additional NO results in the release of N2O and formation of a Ni(ii)-nitrito complex. Crystallographic characterization of the nitrito complex revealed a symmetric η(2)-O,O-nitrito bonding to the metal ion. This study demonstrates the reductive nitrosylation of a Ni(ii) center followed by N2O release in the presence of excess NO.
Collapse
Affiliation(s)
- Somnath Ghosh
- Department of Chemsitry, Indian Institute of Technology Guwahati, Assam 781039, India.
| | - Hemanta Deka
- Department of Chemsitry, Indian Institute of Technology Guwahati, Assam 781039, India.
| | - Yuvraj B Dangat
- Academy of Scientific and Innovative Research, National Chemical Laboratory, Pune 411008, Maharashtra, India
| | - Soumen Saha
- Department of Chemsitry, Indian Institute of Technology Guwahati, Assam 781039, India.
| | - Kuldeep Gogoi
- Department of Chemsitry, Indian Institute of Technology Guwahati, Assam 781039, India.
| | - Kumar Vanka
- Academy of Scientific and Innovative Research, National Chemical Laboratory, Pune 411008, Maharashtra, India
| | - Biplab Mondal
- Department of Chemsitry, Indian Institute of Technology Guwahati, Assam 781039, India.
| |
Collapse
|
8
|
Falvo C, Daniault L, Vieille T, Kemlin V, Lambry JC, Meier C, Vos MH, Bonvalet A, Joffre M. Ultrafast Dynamics of Carboxy-Hemoglobin: Two-Dimensional Infrared Spectroscopy Experiments and Simulations. J Phys Chem Lett 2015; 6:2216-2222. [PMID: 26266594 DOI: 10.1021/acs.jpclett.5b00811] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
This Letter presents a comparison between experimental and simulated 2D mid-infrared spectra of carboxy-hemoglobin in the spectral region of the carbon monoxide stretching mode. The simulations rely on a fluctuating potential energy surface that includes both the effect of heme and the protein surroundings computed from molecular dynamics simulations. A very good agreement between theory and experiment is obtained with no adjustable parameters. The simulations show that the effect of the distal histidine through the hydrogen bond is strong and is directly responsible for the slow decay of the frequency-frequency correlation function on a 10 ps time scale. This study confirms that fluctuations in carboxy-hemoglobin are more inhomogeneous than those in the more frequently studied carboxy-myoglobin. The comparison between simulations and experiments brings valuable information on the complex relation between protein structure and spectral diffusion.
Collapse
Affiliation(s)
- Cyril Falvo
- †Institut des Sciences Moléculaires d'Orsay, Univ Paris-Sud, CNRS UMR 8214, 91405 Orsay, France
| | - Louis Daniault
- ‡Laboratoire d'Optique et Biosciences, Ecole Polytechnique, CNRS UMR 7645, INSERM U1182, 91128 Palaiseau, France
| | - Thibault Vieille
- ‡Laboratoire d'Optique et Biosciences, Ecole Polytechnique, CNRS UMR 7645, INSERM U1182, 91128 Palaiseau, France
| | - Vincent Kemlin
- ‡Laboratoire d'Optique et Biosciences, Ecole Polytechnique, CNRS UMR 7645, INSERM U1182, 91128 Palaiseau, France
| | - Jean-Christophe Lambry
- ‡Laboratoire d'Optique et Biosciences, Ecole Polytechnique, CNRS UMR 7645, INSERM U1182, 91128 Palaiseau, France
| | - Christoph Meier
- §Laboratoire Collisions Agrégats et Réactivité, IRSAMC, Université Paul Sabatier, CNRS UMR 5589, 31062 Toulouse, France
| | - Marten H Vos
- ‡Laboratoire d'Optique et Biosciences, Ecole Polytechnique, CNRS UMR 7645, INSERM U1182, 91128 Palaiseau, France
| | - Adeline Bonvalet
- ‡Laboratoire d'Optique et Biosciences, Ecole Polytechnique, CNRS UMR 7645, INSERM U1182, 91128 Palaiseau, France
| | - Manuel Joffre
- ‡Laboratoire d'Optique et Biosciences, Ecole Polytechnique, CNRS UMR 7645, INSERM U1182, 91128 Palaiseau, France
| |
Collapse
|
9
|
Falvo C, Debnath A, Meier C. Vibrational ladder climbing in carboxy-hemoglobin: effects of the protein environment. J Chem Phys 2015; 138:145101. [PMID: 24981547 DOI: 10.1063/1.4799271] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
We present simulations on vibrational ladder climbing in carboxy-hemoglobin. Motivated by recent experiments, we study the influence of different realistic pump probe parameters. To allow for a direct comparison with experimental results, transient absorption spectra obtained by a weak probe pulse following the strong, shaped pump pulse are calculated. The influence of the protein fluctuations is taken into account using a recently developed microscopic model. This model consists of a quantum Hamiltonian describing the CO vibration in carboxy-hemoglobin, together with a fluctuating potential, which is obtained by electronic structure calculation based on a large number of protein configurations. Using realistic pulse parameters, vibrational excitations to very high-lying states are possible, in qualitative agreement with experimental observations.
Collapse
Affiliation(s)
- Cyril Falvo
- Institut des Sciences Moléculaires d'Orsay, UMR CNRS 8214, Univ. Paris Sud, 91405 Orsay Cedex, France
| | - Arunangshu Debnath
- Laboratoire Collisions Agrégats et Réactivité, IRSAMC, UMR CNRS 5589, Université Paul Sabatier, 31062 Toulouse, France
| | - Christoph Meier
- Laboratoire Collisions Agrégats et Réactivité, IRSAMC, UMR CNRS 5589, Université Paul Sabatier, 31062 Toulouse, France
| |
Collapse
|
10
|
Time-resolved infrared spectroscopic studies of ligand dynamics in the active site from cytochrome c oxidase. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2014; 1847:79-85. [PMID: 25117435 DOI: 10.1016/j.bbabio.2014.07.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Accepted: 07/29/2014] [Indexed: 10/24/2022]
Abstract
The catalytic site of heme-copper oxidases encompasses two close-lying ligand binding sites: the heme, where oxygen is bound and reduced and the CuB atom, which acts as ligand entry and release port. Diatomic gaseous ligands with a dipole moment, such as the signaling molecules carbon monoxide (CO) and nitric oxide (NO), carry clear infrared spectroscopic signatures in the different states that allow characterization of the dynamics of ligand transfer within, into and out of the active site using time-resolved infrared spectroscopy. We review the nature and diversity of these processes that have in particular been characterized with CO as ligand and which take place on time scales ranging from femtoseconds to milliseconds. These studies have advanced our understanding of the functional ligand pathways and reactivity in enzymes and more globally represent intriguing model systems for mechanisms of ligand motion in a confined protein environment. This article is part of a Special Issue entitled: Vibrational spectroscopies and bioenergetic systems.
Collapse
|
11
|
Debnath A, Falvo C, Meier C. State-Selective Excitation of the CO Stretch in Carboxyhemoglobin by Mid-IR Laser Pulse Shaping: A Theoretical Investigation. J Phys Chem A 2013; 117:12884-8. [DOI: 10.1021/jp410473u] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
| | - Cyril Falvo
- Institut
des Sciences
Moléculaires d’Orsay, UMR CNRS 8214, Univ Paris-Sud, 91405 Orsay, France
| | - Christoph Meier
- LCAR-IRSAMC, Université Paul Sabatier, 31062 Toulouse, France
| |
Collapse
|
12
|
Park J, Lee T, Lim M. Vibrational relaxation of NO stretching modes in ferrous NO and ferric NO in model heme. Chem Phys 2013. [DOI: 10.1016/j.chemphys.2012.09.030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
13
|
|
14
|
Nitric oxide inactivation mechanisms in the brain: role in bioenergetics and neurodegeneration. Int J Cell Biol 2012; 2012:391914. [PMID: 22719764 PMCID: PMC3376480 DOI: 10.1155/2012/391914] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2012] [Accepted: 04/18/2012] [Indexed: 10/28/2022] Open
Abstract
During the last decades nitric oxide ((•)NO) has emerged as a critical physiological signaling molecule in mammalian tissues, notably in the brain. (•)NO may modify the activity of regulatory proteins via direct reaction with the heme moiety, or indirectly, via S-nitrosylation of thiol groups or nitration of tyrosine residues. However, a conceptual understanding of how (•)NO bioactivity is carried out in biological systems is hampered by the lack of knowledge on its dynamics in vivo. Key questions still lacking concrete and definitive answers include those related with quantitative issues of its concentration dynamics and diffusion, summarized in the how much, how long, and how far trilogy. For instance, a major problem is the lack of knowledge of what constitutes a physiological (•)NO concentration and what constitutes a pathological one and how is (•)NO concentration regulated. The ambient (•)NO concentration reflects the balance between the rate of synthesis and the rate of breakdown. Much has been learnt about the mechanism of (•)NO synthesis, but the inactivation pathways of (•)NO has been almost completely ignored. We have recently addressed these issues in vivo on basis of microelectrode technology that allows a fine-tuned spatial and temporal measurement (•)NO concentration dynamics in the brain.
Collapse
|
15
|
Falvo C, Meier C. A fluctuating quantum model of the CO vibration in carboxyhemoglobin. J Chem Phys 2011; 134:214106. [DOI: 10.1063/1.3592707] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
|
16
|
Scheidt WR, Barabanschikov A, Pavlik JW, Silvernail NJ, Sage JT. Electronic structure and dynamics of nitrosyl porphyrins. Inorg Chem 2010; 49:6240-52. [PMID: 20666384 PMCID: PMC2919577 DOI: 10.1021/ic100261b] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Nitric oxide (NO) is a signaling molecule employed to regulate essential physiological processes. Thus, there is great interest in understanding the interaction of NO with heme, which is found at the active site of many proteins that recognize NO, as well as those involved in its creation and elimination. We summarize what we have learned from investigations of the structure, vibrational properties, and conformational dynamics of NO complexes with ferrous porphyrins, as well as computational investigations in support of these experimental studies. Multitemperature crystallographic data reveal variations in the orientational disorder of the nitrosyl ligand. In some cases, equilibria among NO orientations can be analyzed using the van't Hoff relationship and the free energy and enthalpy of the solid-state transitions evaluated experimentally. Density functional theory (DFT) calculations predict that intrinsic barriers to torsional rotation are smaller than thermal energies at physiological temperatures, and the coincidence of observed NO orientations with minima in molecular mechanics potentials indicates that nonbonded interactions with other chemical groups control the conformational freedom of the bound NO. In favorable cases, reduced disorder at low temperatures exposes subtle structural features including off-axis tilting of the Fe-NO bond and anisotropy of the equatorial Fe-N bonds. We also present the results of nuclear resonance vibrational spectroscopy measurements on oriented single crystals of [Fe(TPP)(NO)] and [Fe(TPP)(1-MeIm)(NO)]. These describe the anisotropic vibrational motion of iron in five- and six-coordinate heme-NO complexes and reveal vibrations of all Fe-ligand bonds as well as low-frequency molecular distortions associated with the doming of the heme upon ligand binding. A quantitative comparison with predicted frequencies, amplitudes, and directions facilitates identification of the vibrational modes but also suggests that commonly used DFT functionals are not fully successful at capturing the trans interaction between the axial NO and imidazole ligands. This supports previous conclusions that heme-NO complexes exhibit an unusual degree of variability with respect to the computational method, and we speculate that this variability hints at a genuine electronic instability that a protein can exploit to tune its reactivity. We anticipate that ongoing characterization of heme-NO complexes will deepen our understanding of their structure, dynamics, and reactivity.
Collapse
Affiliation(s)
- W. Robert Scheidt
- To whom correspondence should be addressed: WRS: , Fax (574) 631-6652; JTS , FAX (617)-373-2943
| | | | | | | | - J. Timothy Sage
- To whom correspondence should be addressed: WRS: , Fax (574) 631-6652; JTS , FAX (617)-373-2943
| |
Collapse
|
17
|
Goodrich LE, Paulat F, Praneeth VKK, Lehnert N. Electronic Structure of Heme-Nitrosyls and Its Significance for Nitric Oxide Reactivity, Sensing, Transport, and Toxicity in Biological Systems. Inorg Chem 2010; 49:6293-316. [DOI: 10.1021/ic902304a] [Citation(s) in RCA: 167] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Lauren E. Goodrich
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109
| | - Florian Paulat
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109
| | - V. K. K. Praneeth
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109
| | - Nicolai Lehnert
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109
| |
Collapse
|
18
|
Wenisch S, Arnhold S. NADPH-diaphorase activity and NO synthase expression in the olfactory epithelium of the bovine. Anat Histol Embryol 2010; 39:201-6. [PMID: 20331592 DOI: 10.1111/j.1439-0264.2010.00996.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
NADPH-diaphorase (NADPH-d) staining of the bovine olfactory epithelium was compared with the immunohistochemical localization of nitric oxide synthase (NOS), soluble guanylyl cyclase, and cGMP (cyclic guanosine 3',5'-monophosphate). Out of the three isoforms, only the inducible NOS (NOS-II) was found at the epithelial surface correlating with the strong labelling for NADPH-d. In contrast, light diaphorase staining associated with deeper epithelial regions did not coincide with any NOS immunoreactivity. As there is overlapping expression of NOS-II, soluble guanylyl cyclase and cGMP at the luminal surface morphologically occupied by dendritic knobs of olfactory receptor neurons and microvillar endings of supporting cells, the nitric oxide (NO)/cGMP pathway is likely to be involved in modulating the odour signals during olfactory transduction.
Collapse
Affiliation(s)
- S Wenisch
- Institute of Veterinary Anatomy, -Histology and -Embryology, Justus-Liebig-University, Giessen, 35392 Giessen, Germany.
| | | |
Collapse
|
19
|
Hayashi T, Lin MT, Ganesan K, Chen Y, Fee JA, Gennis RB, Moënne-Loccoz P. Accommodation of two diatomic molecules in cytochrome bo: insights into NO reductase activity in terminal oxidases. Biochemistry 2009; 48:883-90. [PMID: 19187032 DOI: 10.1021/bi801915r] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Bacterial heme-copper terminal oxidases react quickly with NO to form a heme-nitrosyl complex, which, in some of these enzymes, can further react with a second NO molecule to produce N(2)O. Previously, we characterized the heme a(3)-NO complex formed in cytochrome ba(3) from Thermus thermophilus and the product of its low-temperature illumination. We showed that the photolyzed NO group binds to Cu(B)(I) to form an end-on NO-Cu(B) or a side-on copper-nitrosyl complex, which is likely to represent the binding characteristics of the second NO molecule at the heme-copper active site. Here we present a comparative study with cytochrome bo(3) from Escherichia coli. Both terminal oxidases are shown to catalyze the same two-electron reduction of NO to N(2)O. The EPR and resonance Raman signatures of the heme o(3)-NO complex are comparable to those of the a(3)-NO complex. However, low-temperature FTIR experiments reveal that photolysis of the heme o(3)-NO complex does not produce a Cu(B)-nitrosyl complex, but that instead, the NO remains unbound in the active-site cavity. Additional FTIR photolysis experiments on the heme-nitrosyl complexes of these terminal oxidases, in the presence of CO, demonstrate that an [o(3)-NO.OC-Cu(B)] tertiary complex can form in bo(3) but not in ba(3). We assign these differences to a greater iron-copper distance in the reduced form of bo(3) compared to that of ba(3). Because this difference in metal-metal distance does not appear to affect the NO reductase activity, our results suggest that the coordination of the second NO to Cu(B) is not an essential step of the reaction mechanism.
Collapse
Affiliation(s)
- Takahiro Hayashi
- Department of Science and Engineering, School of Medicine, Oregon Health & Science University, 20,000 NW Walker Road, Beaverton, Oregon 97006-8921, USA
| | | | | | | | | | | | | |
Collapse
|
20
|
Jones TT, Brewer GJ. Critical age-related loss of cofactors of neuron cytochrome C oxidase reversed by estrogen. Exp Neurol 2008; 215:212-9. [PMID: 18930048 DOI: 10.1016/j.expneurol.2008.09.011] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2008] [Revised: 08/22/2008] [Accepted: 09/11/2008] [Indexed: 11/25/2022]
Abstract
The mechanistic basis for the correlation between mitochondrial dysfunction and neurodegenerative disease is unclear, but evidence supports involvement of cytochrome C oxidase (CCO) deficits with age. Neurons isolated from the brains of 24 month and 9 month rats and cultured in common conditions provide a model of intrinsic neuronal aging. In situ CCO activity was decreased in 24 month neurons relative to 9 month neurons. Possible CCO-related deficits include holoenzyme activity, cofactor, and substrate. No difference was found between neurons from 24 month and 9 month rats in mitochondrial counts per neuron, CCO activity in submitochondrial particles, or basal respiration. Immunostaining for cytochrome C in individual mitochondria revealed an age-related deficit of this electron donor. 24 month neurons did not have adequate respiratory capacity to upregulate respiration after a glutamate stimulus, in spite of a two-fold upregulation of respiration seen in 9 month neurons. Respiration in 24 month neurons was inhibited by lower concentrations of potassium cyanide, suggesting a 50% deficit in functional enzyme in 24 month compared to 9 month neurons. In addition to cytochrome C, CCO requires cardiolipin to function. Staining with nonylacridine orange revealed an age-related deficit in cardiolipin. Treatment of 24 month neurons with 17-beta-estradiol restored cardiolipin levels (10 ng/mL) and upregulated respiration under glutamate stress (1 pg/mL). Attempts to induce mitochondrial turnover by neuronal multiplication also rejuvenated CCO activity in 24 month neurons. These data suggest cytochrome C and cardiolipin levels are deficient in 24 month neurons, preventing normal upregulation of respiration needed for oxidative phosphorylation in response to stress. Furthermore, the data suggest this deficit can be corrected with estrogen treatment.
Collapse
Affiliation(s)
- Torrie T Jones
- Department of Medical Microbiology, Immunology, and Cell Biology, Southern Illinois University School of Medicine, 825 Rutledge, Springfield, IL 62702, USA.
| | | |
Collapse
|
21
|
Osipov AN, Borisenko GG, Vladimirov YA. Biological activity of hemoprotein nitrosyl complexes. BIOCHEMISTRY (MOSCOW) 2008; 72:1491-504. [PMID: 18282138 DOI: 10.1134/s0006297907130068] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Chemical and biological functions of hemoprotein nitrosyl complexes as well as their photolysis products are discussed in this review. Chemical properties of nitric oxide are discussed, and major chemical reactions such as interaction with thiols, free radicals, and transition metals are considered. Specific attention is paid to the generation of hemoprotein nitrosyl complexes. The mechanisms of nitric oxide reactions with hemoglobin and cytochrome c and physicochemical properties of their nitrosyl complexes are discussed. A review of photochemical reactions of nitrosyl complexes with various ligands is given. Finally, we observe physiological effects of visible radiation on hemoprotein nitrosyl complexes: smooth muscle relaxation and reactivation of mitochondrial respiration.
Collapse
Affiliation(s)
- A N Osipov
- Russian State Medical University, ul Ostrovityanova 1, 117997 Moscow, Russia.
| | | | | |
Collapse
|
22
|
Lu C, Egawa T, Mukai M, Poole RK, Yeh SR. Hemoglobins from Mycobacterium tuberculosis and Campylobacter jejuni: A Comparative Study with Resonance Raman Spectroscopy. Methods Enzymol 2008; 437:255-86. [DOI: 10.1016/s0076-6879(07)37014-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
23
|
Hayashi T, Lin IJ, Chen Y, Fee JA, Moënne-Loccoz P. Fourier transform infrared characterization of a CuB-nitrosyl complex in cytochrome ba3 from Thermus thermophilus: relevance to NO reductase activity in heme-copper terminal oxidases. J Am Chem Soc 2007; 129:14952-8. [PMID: 17997553 DOI: 10.1021/ja074600a] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The two heme-copper terminal oxidases of Thermus thermophilus have been shown to catalyze the two-electron reduction of nitric oxide (NO) to nitrous oxide (N2O) [Giuffre, A.; Stubauer, G.; Sarti, P.; Brunori, M.; Zumft, W. G.; Buse, G.; Soulimane, T. Proc. Natl. Acad. Sci. U.S.A. 1999, 96, 14718-14723]. While it is well-established that NO binds to the reduced heme a3 to form a low-spin heme {FeNO}7 species, the role CuB plays in the binding of the second NO remains unclear. Here we present low-temperature FTIR photolysis experiments carried out on the NO complex formed by addition of NO to fully reduced cytochrome ba3. Low-temperature UV-vis, EPR, and RR spectroscopies confirm the binding of NO to the heme a3 and the efficiency of the photolysis at 30 K. The nu(NO) modes from the light-induced FTIR difference spectra are isolated from other perturbed vibrations using 15NO and 15N18O. The nu(N-O)a3 is observed at 1622 cm-1, and upon photolysis, it is replaced by a new nu(N-O) at 1589 cm-1 assigned to a CuB-nitrosyl complex. This N-O stretching frequency is more than 100 cm-1 lower than those reported for Cu-NO models with three N-ligands and for CuB+-NO in bovine aa3. Because the UV-vis and RR data do not support a bridging configuration between CuB and heme a3 for the photolyzed NO, we assign the exceptionally low nu(NO) to an O-bound (eta1-O) or a side-on (eta2-NO) CuB-nitrosyl complex. From this study, we propose that, after binding of a first NO molecule to the heme a3 of fully reduced Tt ba3, the formation of an N-bound {CuNO}11 is prevented, and the addition of a second NO produces an O-bond CuB-hyponitrite species bridging CuB and Fea3. In contrast, bovine cytochrome c oxidase is believed to form an N-bound CuB-NO species; the [{FeNO}7{CuNO}11] complex is suggested here to be an inhibitory complex.
Collapse
Affiliation(s)
- Takahiro Hayashi
- Department of Molecular Biology, The Scripps Research Institute, La Jolla, California 92037, USA
| | | | | | | | | |
Collapse
|
24
|
Moënne-Loccoz P. Spectroscopic characterization of heme iron-nitrosyl species and their role in NO reductase mechanisms in diiron proteins. Nat Prod Rep 2007; 24:610-20. [PMID: 17534533 PMCID: PMC3028592 DOI: 10.1039/b604194a] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Nitric oxide (NO) plays an important role in cell signalling and in the mammalian immune response to infection. On its own, NO is a relatively inert radical, and when it is used as a signalling molecule, its concentration remains within the picomolar range. However, at infection sites, the NO concentration can reach the micromolar range, and reactions with other radical species and transition metals lead to a broad toxicity. Under aerobic conditions, microorganisms cope with this nitrosative stress by oxidizing NO to nitrate (NO3−). Microbial hemoglobins play an essential role in this NO-detoxifying process. Under anaerobic conditions, detoxification occurs via a 2-electron reduction of two NO molecules to N2O. In many bacteria and archaea, this NO-reductase reaction is catalyzed by diiron proteins. Despite the importance of this reaction in providing microorganisms with a resistance to the mammalian immune response, its mechanism remains ill-defined. Because NO is an obligatory intermediate of the denitrification pathway, respiratory NO reductases also provide resistance to toxic concentrations of NO. This family of enzymes is the focus of this review. Respiratory NO reductases are integral membrane protein complexes that contain a norB subunit evolutionarily related to subunit I of cytochrome c oxidase (Cc O). NorB anchors one high-spin heme b3 and one non-heme iron known as FeB, i.e ., analogous to CuB in Cc O. A second group of diiron proteins with NO-reductase activity is comprised of the large family of soluble flavoprotein A found in strict and facultative anaerobic bacteria and archaea. These soluble detoxifying NO reductases contain a non-heme diiron cluster with a Fe–Fe distance of 3.4 Å and are only briefly mentioned here as a promising field of research. This article describes possible mechanisms of NO reduction to N2O in denitrifying NO-reductase (NOR) proteins and critically reviews recent experimental results. Relevant theoretical model calculations and spectroscopic studies of the NO-reductase reaction in heme/copper terminal oxidases are also overviewed.
Collapse
Affiliation(s)
- Pierre Moënne-Loccoz
- Department of Environmental and Biomolecular Systems, OGI School of Science and Engineering, Oregon Health and Science University, 20,000 NW Walker Road, Beaverton, Oregon 97006-8921, USA.
| |
Collapse
|
25
|
Pilet E, Nitschke W, Liebl U, Vos MH. Accommodation of NO in the active site of mammalian and bacterial cytochrome c oxidase aa3. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2007; 1767:387-92. [PMID: 17434442 DOI: 10.1016/j.bbabio.2007.03.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2007] [Revised: 02/23/2007] [Accepted: 03/01/2007] [Indexed: 10/23/2022]
Abstract
Following different reports on the stoichiometry and configuration of NO binding to mammalian and bacterial reduced cytochrome c oxidase aa(3) (CcO), we investigated NO binding and dynamics in the active site of beef heart CcO as a function of NO concentration, using ultrafast transient absorption and EPR spectroscopy. We find that in the physiological range only one NO molecule binds to heme a(3), and time-resolved experiments indicate that even transient binding to Cu(B) does not occur. Only at very high (approximately 2 mM) concentrations a second NO is accommodated in the active site, although in a different configuration than previously observed for CcO from Paracoccus denitrificans [E. Pilet, W. Nitschke, F. Rappaport, T. Soulimane, J.-C. Lambry, U. Liebl and M.H. Vos. Biochemistry 43 (2004) 14118-14127], where we proposed that a second NO does bind to Cu(B). In addition, in the bacterial enzyme two NO molecules can bind already at NO concentrations of approximately 1 microM. The unexpected differences highlighted in this study may relate to differences in the physiological relevance of the CcO-NO interactions in both species.
Collapse
Affiliation(s)
- Eric Pilet
- Laboratoire d'Optique et Biosciences, CNRS, Ecole Polytechnique, F-91128 Palaiseau Cedex, France
| | | | | | | |
Collapse
|
26
|
Dai RJ, Ke SC. Detection and determination of the {Fe(NO)(2)} core vibrational features in dinitrosyl-iron complexes from experiment, normal coordinate analysis, and density functional theory: an avenue for probing the nitric oxide oxidation state. J Phys Chem B 2007; 111:2335-46. [PMID: 17295535 DOI: 10.1021/jp066964f] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
As it is now well-established that nitric oxide plays an important role in many physiological processes, there is a renewed interest in dinitrosyl-iron complexes (DNICs). The question concerning the electronic structure of DNICs circles around the formal oxidation states of the iron and nitric oxide of the Fe(NO)2 core. Previous infrared measurements of nu(NO) alone point out inconsistencies in assigning electron configurations and charges on metals, inherent from the measurement of one parameter external to the metal. This work represents the first experimental and theoretical attempt to assign vibrational modes for the {Fe(NO)2}9 core of DNICs. The following complexes are investigated, [PPN][S5Fe(NO)2] (1), [PPN][Se5Fe(NO)2] (2), [PPN][(SPh)2Fe(NO)2] (3), and [PPN][(SePh)2Fe(NO)2] (4). The analysis of isotopically edited Raman data together with normal coordinate calculation permitted assignment of nu(NO) and nu(Fe-NO) stretching and delta(Fe-N-O) bending modes in these complexes. The assignments proposed are the first ever reported for the DNICs; a comparison of nu(NO) and nu(Fe-NO) stretching frequencies in DNICs is now feasible. The Fe(NO)2 core electronic configuration in these complexes is described as {Fe1+(*NO)2}. Results from 1 and 3 have been complemented by density functional theory (DFT) frequency calculations. In addition to providing a reasonably correct account of the observed frequencies, DFT calculations also give a good account of the frequency shifts upon 15NO substitution providing the first link between DFT and Raman spectroscopies for DNICs. Through the use of a combination of NO intraligand and metal-ligand vibrational data for the Fe(NO)2 core, normal coordinate analysis gives a NO stretching force constant, which compared to molecular NO gas, is significantly reduced for all four complexes. The hybrid U-B3LYP/6-311++G(3d,2p) density functional method has been employed to analyze the molecular orbital compositions of predominantly NO orbitals based on the crystal structure of complex 1. The molecular orbital not only revealed the bonding nature of the {Fe(NO)2}9 core but also provided a qualitative correct account of the observed low NO vibrational frequencies. The calculation shows that the NO is involved in a strong donor bonding interaction with the Fe1+. This donor bonding interaction involves the 5sigma molecular orbital of the NO, which is sigma-bonding with respect to the intramolecular NO bond, and removal of electron density from this orbital destabilizes the NO bond. Though it is too ambiguous to extrapolate a nu(Fe-NO)/nu(NO) correlation line for {Fe(NO)2}9 DNICs based only on the data reported here, the feasibility of using a vibrational systematics diagram to extract the electron configurations and charges on metals is demonstrated based on the vibrational data available in the literature for iron-nitrosyl complexes. The data provided here can be used as a model for the determination of effective charges on iron and the bonding of nitric oxides to metals in DNICs.
Collapse
Affiliation(s)
- Ruei Jang Dai
- Physics Department, National Dong Hwa University, Hualien 974-01, Taiwan
| | | |
Collapse
|
27
|
Kim S, Jin G, Lim M. Dynamics of Geminate Recombination of NO with Myoglobin in Aqueous Solution Probed by Femtosecond Mid-IR Spectroscopy. J Phys Chem B 2004. [DOI: 10.1021/jp0489020] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Seongheun Kim
- Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University, Busan 609-735, Korea
| | - Geunyeong Jin
- Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University, Busan 609-735, Korea
| | - Manho Lim
- Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University, Busan 609-735, Korea
| |
Collapse
|
28
|
Mammen PPA, Kanatous SB, Yuhanna IS, Shaul PW, Garry MG, Balaban RS, Garry DJ. Hypoxia-induced left ventricular dysfunction in myoglobin-deficient mice. Am J Physiol Heart Circ Physiol 2003; 285:H2132-41. [PMID: 12881221 DOI: 10.1152/ajpheart.00147.2003] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Myoglobin-deficient mice are viable and have preserved cardiac function due to their ability to mount a complex compensatory response involving increased vascularization and the induction of the hypoxia gene program (hypoxia-inducible factor-1alpha, endothelial PAS, heat shock protein27, etc.). To further define and explore functional roles for myoglobin, we challenged age- and gender-matched wild-type and myoglobin-null mice to chronic hypoxia (10% oxygen for 1 day to 3 wk). We observed a 30% reduction in cardiac systolic function in the myoglobin mutant mice exposed to chronic hypoxia with no changes observed in the wild-type control hearts. The cardiac dysfunction observed in the hypoxic myoglobin-null mice was reversible with reexposure to normoxic conditions and could be prevented with treatment of an inhibitor of nitric oxide (NO) synthases. These results support the conclusion that hypoxia-induced cardiac dysfunction in myoglobin-null mice occurs via a NO-mediated mechanism. Utilizing enzymatic assays for NO synthases and immunohistochemical analyses, we observed a marked induction of inducible NO synthase in the hypoxic myoglobin mutant ventricle compared with the wild-type hypoxic control ventricle. These new data establish that myoglobin is an important cytoplasmic cardiac hemoprotein that functions in regulating NO homeostasis within cardiomyocytes.
Collapse
Affiliation(s)
- Pradeep P A Mammen
- Department of Internal Medicine, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-8573, USA
| | | | | | | | | | | | | |
Collapse
|
29
|
Affiliation(s)
- Shinya Yoshikawa
- Department of Life Science, Himeji Institute of Technology, and CREST, Japan Science and Technology Corporation (JST), Kamigohri Akoh, Hyogo 678-1297, Japan
| |
Collapse
|
30
|
Bartberger MD, Liu W, Ford E, Miranda KM, Switzer C, Fukuto JM, Farmer PJ, Wink DA, Houk KN. The reduction potential of nitric oxide (NO) and its importance to NO biochemistry. Proc Natl Acad Sci U S A 2002; 99:10958-63. [PMID: 12177417 PMCID: PMC123192 DOI: 10.1073/pnas.162095599] [Citation(s) in RCA: 266] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A potential of about -0.8 (+/-0.2) V (at 1 M versus normal hydrogen electrode) for the reduction of nitric oxide (NO) to its one-electron reduced species, nitroxyl anion (3NO-) has been determined by a combination of quantum mechanical calculations, cyclic voltammetry measurements, and chemical reduction experiments. This value is in accord with some, but not the most commonly accepted, previous electrochemical measurements involving NO. Reduction of NO to 1NO- is highly unfavorable, with a predicted reduction potential of about -1.7 (+/-0.2) V at 1 M versus normal hydrogen electrode. These results represent a substantial revision of the derived and widely cited values of +0.39 V and -0.35 V for the NO/3NO- and NO/1NO- couples, respectively, and provide support for previous measurements obtained by electrochemical and photoelectrochemical means. With such highly negative reduction potentials, NO is inert to reduction compared with physiological events that reduce molecular oxygen to superoxide. From these reduction potentials, the pKa of 3NO- has been reevaluated as 11.6 (+/-3.4). Thus, nitroxyl exists almost exclusively in its protonated form, HNO, under physiological conditions. The singlet state of nitroxyl anion, 1NO-, is physiologically inaccessible. The significance of these potentials to physiological and pathophysiological processes involving NO and O2 under reductive conditions is discussed.
Collapse
Affiliation(s)
- Michael D Bartberger
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Affiliation(s)
- Jens K S Møller
- Food Chemistry, Department of Dairy and Food Science, Royal Veterinary and Agricultural University, Rolighedsvej 30, DK-1958 Frederiksberg C., Denmark
| | | |
Collapse
|
32
|
Abstract
Endogenously produced nitric oxide (NO) controls oxygen consumption by inhibiting cytochrome c oxidase, the terminal electron acceptor of the mitochondrial electron transport chain. The oxygen-binding site of the enzyme is an iron/copper (haem a3/CuB) binuclear centre. At high substrate (ferrocytochrome c) concentrations, NO binds reversibly to the reduced iron in competition with oxygen. At low substrate concentrations, NO binds to the oxidized copper. Inhibition at the haem iron site is relieved by dissociation of the NO from the reduced iron. Inhibition at the copper site is relieved by oxidation of the bound NO and subsequent dissociation of nitrite from the enzyme. Therefore, NO can be a substrate, inhibitor or effector of cytochrome oxidase, depending on cellular conditions.
Collapse
Affiliation(s)
- Chris E Cooper
- Dept of Biological Sciences, Central Campus, University of Essex, Wivenhoe Park, CO4 3SQ, Colchester, UK.
| |
Collapse
|
33
|
Sampath V, Zhao XJ, Caughey WS. Anesthetic-like interactions of nitric oxide with albumin and hemeproteins. A mechanism for control of protein function. J Biol Chem 2001; 276:13635-43. [PMID: 11278308 DOI: 10.1074/jbc.m006588200] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Noncovalent bonding interactions of nitric oxide (NO) with human serum albumin (HSA), human hemoglobin A, bovine myoglobin, and bovine cytochrome c oxidase (CcO) have been explored. The anesthetic nitrous oxide (NNO) occupies multiple sites within each protein, but does not bind to heme iron. Infrared (IR) spectra of NNO molecules sequestered within albumin, with NO present, support the binding of NO and NNO to the same sites with comparable affinities. Perturbations of IR spectra of the Cys(34) thiol of HSA indicate NO, NNO, halothane, and chloroform can induce similar changes in protein structure. Experiments evaluating the relative affinities of binding of NO and carbon monoxide (CO) to iron(II) sites of the hemeproteins led to evidence of NO binding to noniron, nonsulfur sites as well. With HbA, IR spectra of cysteine thiols and/or the iron(II) N-O stretching region denote changes in protein structure due to NO, NNO, or CO occupying noniron sites with an order of decreasing affinities of NO > NNO > CO. Loss of NO from some, not all, noniron sites in hemeproteins is very slow (t(1/2) approximately hours). These findings provide examples in which NO and anesthetics alter the structure and properties of protein similarly, and support the hypothesis that some physiological effects of NO (and possibly CO) result from anesthetic-like noncovalent bonding to sites within protein or other tissue components. Such bonding may be involved in mechanisms for control of oxygen transport, mitochondrial respiration, and activation of soluble guanylate cyclase by NO.
Collapse
Affiliation(s)
- V Sampath
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, Colorado 80523, USA
| | | | | |
Collapse
|
34
|
Abstract
An overview of the application of Fourier transform infrared spectroscopy for the analysis of the structure of proteins and protein-ligand recognition is given. The principle of the technique and of the spectra analysis is demonstrated. Spectral signal assignments to vibrational modes of the peptide chromophore, amino acid side chains, cofactors and metal ligands are summarized. Several examples for protein-ligand recognition are discussed. A particular focus is heme proteins and, as an example, studies of cytochrome P450 are reviewed. Fourier transform infrared spectroscopy in combination with the various techniques such as time-resolved and low-temperature methods, site-directed mutagenesis and isotope labeling is a helpful approach to studying protein-ligand recognition.
Collapse
Affiliation(s)
- C Jung
- Max-Delbrück-Center for Molecular Medicine, Berlin, Germany.
| |
Collapse
|
35
|
Tsubaki M, Hori H, Mogi T. Probing molecular structure of dioxygen reduction site of bacterial quinol oxidases through ligand binding to the redox metal centers. J Inorg Biochem 2000; 82:19-25. [PMID: 11132627 DOI: 10.1016/s0162-0134(00)00140-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Cytochromes bo and bd are structurally unrelated terminal ubiquinol oxidases in the aerobic respiratory chain of Escherichia coli. The high-spin heme o-CuB binuclear center serves as the dioxygen reduction site for cytochrome bo, and the heme b595-heme d binuclear center for cytochrome bd. CuB coordinates three histidine ligands and serves as a transient ligand binding site en route to high-spin heme o one-electron donor to the oxy intermediate, and a binding site for bridging ligands like cyanide. In addition, it can protect the dioxygen reduction site through binding of a peroxide ion in the resting state, and connects directly or indirectly Tyr288 and Glu286 to carry out redox-driven proton pumping in the catalytic cycle. Contrary, heme b595 of cytochrome bd participate a similar role to CuB in ligand binding and dioxygen reduction but cannot perform such versatile roles because of its rigid structure.
Collapse
Affiliation(s)
- M Tsubaki
- Department of Life Science, Faculty of Science, Himeji Institute of Technology, Akou-gun, Hyogo, Japan
| | | | | |
Collapse
|
36
|
Ann Walker F, Montfort WR. The nitric oxide-releasing heme proteins from the saliva of the blood-sucking insect Rhodnius prolixus. ADVANCES IN INORGANIC CHEMISTRY 2000. [DOI: 10.1016/s0898-8838(00)51006-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
37
|
Vogel KM, Kozlowski PM, Zgierski MZ, Spiro TG. Determinants of the FeXO (X = C, N, O) Vibrational Frequencies in Heme Adducts from Experiment and Density Functional Theory. J Am Chem Soc 1999. [DOI: 10.1021/ja990042r] [Citation(s) in RCA: 181] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Kathleen M. Vogel
- Contribution from the Department of Chemistry, Princeton University, Princeton, New Jersey 08544, and Steacie Institute for Molecular Science, National Research Council of Canada, Ottawa, Ontario, Canada K1A OR6
| | - Pawel M. Kozlowski
- Contribution from the Department of Chemistry, Princeton University, Princeton, New Jersey 08544, and Steacie Institute for Molecular Science, National Research Council of Canada, Ottawa, Ontario, Canada K1A OR6
| | - Marek Z. Zgierski
- Contribution from the Department of Chemistry, Princeton University, Princeton, New Jersey 08544, and Steacie Institute for Molecular Science, National Research Council of Canada, Ottawa, Ontario, Canada K1A OR6
| | - Thomas G. Spiro
- Contribution from the Department of Chemistry, Princeton University, Princeton, New Jersey 08544, and Steacie Institute for Molecular Science, National Research Council of Canada, Ottawa, Ontario, Canada K1A OR6
| |
Collapse
|
38
|
Abstract
Nitric oxide (NO) and its derivative peroxynitrite (ONOO-) inhibit mitochondrial respiration by distinct mechanisms. Low (nanomolar) concentrations of NO specifically inhibit cytochrome oxidase in competition with oxygen, and this inhibition is fully reversible when NO is removed. Higher concentrations of NO can inhibit the other respiratory chain complexes, probably by nitrosylating or oxidising protein thiols and removing iron from the iron-sulphur centres. Peroxynitrite causes irreversible inhibition of mitochondrial respiration and damage to a variety of mitochondrial components via oxidising reactions. Thus peroxynitrite inhibits or damages mitochondrial complexes I, II, IV and V, aconitase, creatine kinase, the mitochondrial membrane, mitochondrial DNA, superoxide dismutase, and induces mitochondrial swelling, depolarisation, calcium release and permeability transition. The NO inhibition of cytochrome oxidase may be involved in the physiological regulation of respiration rate, as indicated by the finding that isolated cells producing NO can regulate cellular respiration by this means, and the finding that inhibition of NO synthase in vivo causes a stimulation of tissue and whole body oxygen consumption. The recent finding that mitochondria may contain a NO synthase and can produce significant amounts of NO to regulate their own respiration also suggests this regulation may be important for physiological regulation of energy metabolism. However, definitive evidence that NO regulation of mitochondrial respiration occurs in vivo is still missing, and interpretation is complicated by the fact that NO appears to affect tissue respiration by cGMP-dependent mechanisms. The NO inhibition of cytochrome oxidase may also be involved in the cytotoxicity of NO, and may cause increased oxygen radical production by mitochondria, which may in turn lead to the generation of peroxynitrite. Mitochondrial damage by peroxynitrite may mediate the cytotoxicity of NO, and may be involved in a variety of pathologies.
Collapse
Affiliation(s)
- G C Brown
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1QW, UK.
| |
Collapse
|
39
|
Ding XD, Weichsel A, Andersen JF, Shokhireva TK, Balfour C, Pierik AJ, Averill BA, Montfort WR, Walker FA. Nitric Oxide Binding to the Ferri- and Ferroheme States of Nitrophorin 1, a Reversible NO-Binding Heme Protein from the Saliva of the Blood-Sucking Insect, Rhodnius prolixus. J Am Chem Soc 1998. [DOI: 10.1021/ja982979i] [Citation(s) in RCA: 118] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Xiao D. Ding
- Contribution from the Departments of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona 85721, and the E. C. Slater Institute, Faculty of Chemistry, University of Amsterdam, Plantage Muidergracht 12, 1018 TV Amsterdam, The Netherlands
| | - Andrzej Weichsel
- Contribution from the Departments of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona 85721, and the E. C. Slater Institute, Faculty of Chemistry, University of Amsterdam, Plantage Muidergracht 12, 1018 TV Amsterdam, The Netherlands
| | - John F. Andersen
- Contribution from the Departments of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona 85721, and the E. C. Slater Institute, Faculty of Chemistry, University of Amsterdam, Plantage Muidergracht 12, 1018 TV Amsterdam, The Netherlands
| | - Tatjana Kh. Shokhireva
- Contribution from the Departments of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona 85721, and the E. C. Slater Institute, Faculty of Chemistry, University of Amsterdam, Plantage Muidergracht 12, 1018 TV Amsterdam, The Netherlands
| | - Celia Balfour
- Contribution from the Departments of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona 85721, and the E. C. Slater Institute, Faculty of Chemistry, University of Amsterdam, Plantage Muidergracht 12, 1018 TV Amsterdam, The Netherlands
| | - Antonio J. Pierik
- Contribution from the Departments of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona 85721, and the E. C. Slater Institute, Faculty of Chemistry, University of Amsterdam, Plantage Muidergracht 12, 1018 TV Amsterdam, The Netherlands
| | - Bruce A. Averill
- Contribution from the Departments of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona 85721, and the E. C. Slater Institute, Faculty of Chemistry, University of Amsterdam, Plantage Muidergracht 12, 1018 TV Amsterdam, The Netherlands
| | - William R. Montfort
- Contribution from the Departments of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona 85721, and the E. C. Slater Institute, Faculty of Chemistry, University of Amsterdam, Plantage Muidergracht 12, 1018 TV Amsterdam, The Netherlands
| | - F. Ann Walker
- Contribution from the Departments of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona 85721, and the E. C. Slater Institute, Faculty of Chemistry, University of Amsterdam, Plantage Muidergracht 12, 1018 TV Amsterdam, The Netherlands
| |
Collapse
|
40
|
Eiserich JP, Patel RP, O'Donnell VB. Pathophysiology of nitric oxide and related species: free radical reactions and modification of biomolecules. Mol Aspects Med 1998; 19:221-357. [PMID: 10231805 DOI: 10.1016/s0098-2997(99)00002-3] [Citation(s) in RCA: 162] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Since its initial discovery as an endogenously produced bioactive mediator, nitric oxide (.NO) has been found to play a critical role in the cellular function of nearly all organ systems. Furthermore, aberrant production of .NO or reactive nitrogen species (RNS) derived from .NO, has been implicated in a number of pathological conditions, such as acute lung disease, atherosclerosis and septic shock. While .NO itself is fairly non-toxic, secondary RNS are oxidants and nitrating agents that can modify both the structure and function of numerous biomolecules both in vitro, and in vivo. The mechanisms by which RNS mediate toxicity are largely dictated by its unique reactivity. The study of how reactive nitrogen species (RNS) derived from .NO interact with biomolecules such as proteins, carbohydrates and lipids, to modify both their structure and function is an area of active research, which is lending major new insights into the mechanisms underlying their pathophysiological role in human disease. In the context of .NO-dependent pathophysiology, these biochemical reactions will play a major role since they: (i) lead to removal of .NO and decreased efficiency of .NO as an endothelial-derived relaxation factor (e.g. in hypertension, atherosclerosis) and (ii) lead to production of other intermediate species and covalently modified biomolecules that cause injury and cellular dysfunction during inflammation. Although the physical and chemical properties of .NO and .NO-derived RNS are well characterised, extrapolating this fundamental knowledge to a complicated biological environment is a current challenge for researchers in the field of .NO and free radical research. In this review, we describe the impact of .NO and .NO-derived RNS on biological processes primarily from a biochemical standpoint. In this way, it is our intention to outline the most pertinent and relevant reactions of RNS, as they apply to a diverse array of pathophysiological states. Since reactions of RNS in vivo are likely to be vast and complex, our aim in this review is threefold: (i) address the major sources and reactions of .NO-derived RNS in biological systems, (ii) describe current knowledge regarding the functional consequences underlying .NO-dependent covalent modification of specific biomolecules, and (iii) to summarise and critically evaluate the available evidence implicating these reactions in human pathology. To this end, three areas of special interest have been chosen for detailed description, namely, formation and role of S-nitrosothiols, modulation of lipid oxidation/nitration by RNS, and tyrosine nitration mechanisms and consequences.
Collapse
Affiliation(s)
- J P Eiserich
- Department of Anesthesiology, University of Alabama, Birmingham 35233, USA
| | | | | |
Collapse
|
41
|
Torres J, Cooper CE, Wilson MT. A common mechanism for the interaction of nitric oxide with the oxidized binuclear centre and oxygen intermediates of cytochrome c oxidase. J Biol Chem 1998; 273:8756-66. [PMID: 9535853 DOI: 10.1074/jbc.273.15.8756] [Citation(s) in RCA: 90] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The reactions of nitric oxide (NO) with fully oxidized cytochrome c oxidase (O) and the intermediates P and F have been investigated by optical spectroscopy, using both static and kinetic methods. The reaction of NO with O leads to a rapid (approximately 100 s-1) electron ejection from the binuclear center to cytochrome a and CuA. The reaction with the intermediates P and F leads to the depletion of these species in slower reactions, yielding the fully oxidized enzyme. The fastest optical change, however, takes place within the dead time of the stopped-flow apparatus (approximately 1 ms), and corresponds to the formation of the F intermediate (580 nm) upon reaction of NO with a species that we postulate is at the peroxide oxidation level. This species can be formulated as either Fe5+ = O CuB2+ or Fe4+ = O CuB3+, and it is spectrally distinct from the P intermediate (607 nm). All of these reactions have been rationalized through a mechanism in which NO reacts with CuB2+, generating the nitrosonium species CuB1+ NO+, which upon hydration yields nitrous acid and CuB1+. This is followed by redox equilibration of CuB with Fea/CuA or Fea3 (in which Fea and Fea3 are the iron centers of cytochromes a and a3, respectively). In agreement with this hypothesis, our results indicate that nitrite is rapidly formed within the binuclear center following the addition of NO to the three species tested (O, P, and F). This work suggests that nitrosylation at CuB2+ instead of at Fea32+ is a key event in the fast inhibition of cytochrome c oxidase by NO.
Collapse
Affiliation(s)
- J Torres
- Department of Biological Sciences, University of Essex, Wivenhoe Park, CO4 3SQ Colchester, Essex, United Kingdom
| | | | | |
Collapse
|
42
|
Torres J, Cooper CE, Sharpe M, Wilson MT. Reactivity of nitric oxide with cytochrome c oxidase: interactions with the binuclear centre and mechanism of inhibition. J Bioenerg Biomembr 1998; 30:63-9. [PMID: 9623807 DOI: 10.1023/a:1020559528124] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Nitric oxide (NO) has recently been recognized as an important biological mediator that inhibits respiration at cytochrome c oxidase (CcO). This inhibition is reversible and shows competition with oxygen, the Ki being lower at low oxygen concentrations. Although the species that binds NO in turnover has been suggested to contain a partially reduced binuclear center, the exact mechanism of the inhibition is not clear. Recently, rapid (ms) redox reactions of NO with the binuclear center have been reported, e.g., the ejection of an electron to cytochrome a and the depletion of the intermediates P and F. These observations have been rationalized within a scheme in which NO reacts with oxidized CuB leading to the reduction of this metal center and formation of nitrite in a very fast reaction. Electron migration from CuB to other redox sites within the enzyme is proposed to explain the optical transitions observed. The relevance of these reactions to the inhibition of CcO and metabolism of NO are discussed.
Collapse
Affiliation(s)
- J Torres
- Department of Biological Sciences, University of Essex, Colchester, United Kingdom
| | | | | | | |
Collapse
|
43
|
Koivisto A, Matthias A, Bronnikov G, Nedergaard J. Kinetics of the inhibition of mitochondrial respiration by NO. FEBS Lett 1997; 417:75-80. [PMID: 9395078 DOI: 10.1016/s0014-5793(97)01258-1] [Citation(s) in RCA: 101] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The kinetics of the inhibition of mitochondrial respiration by NO was examined in isolated mitochondria (here obtained from rat brown adipose tissue). The Ki of NO for the inhibition was approximately 27 nM; the IC50 of NO increased in proportion to the square of an increase in O2 tension. The Km of O2 for respiration was approximately 16 microM; in the presence of NO, the dependence of respiration on O2 tension had a Hill coefficient of approximately 2. The unusual kinetics is probably related to the ability of cytochrome c oxidase to use 2 NO or 1 O2 as electron acceptor. The interaction between NO and O2 in the control of respiration could be described by the formula VO2(O2, NO) = VO2max x ([O2]2/((16 microM x (1 + [NO]/27 nM))2 + [O2]2)). Thus, the kinetics is such that respiration in the presence of physiological levels of NO is very sensitive to decreasing O2 tension.
Collapse
Affiliation(s)
- A Koivisto
- The Wenner-Gren Institute, The Arrhenius Laboratories F3, Stockholm University, Sweden
| | | | | | | |
Collapse
|
44
|
Giuffrè A, Sarti P, D'Itri E, Buse G, Soulimane T, Brunori M. On the mechanism of inhibition of cytochrome c oxidase by nitric oxide. J Biol Chem 1996; 271:33404-8. [PMID: 8969202 DOI: 10.1074/jbc.271.52.33404] [Citation(s) in RCA: 114] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The mechanism of inhibition of cytochrome (cyt) c oxidase by nitric oxide (NO) has been investigated by stopped flow transient spectroscopy and singular value decomposition analysis. Following the time course of cyt c oxidation at different O2/NO ratios, we observed that the onset of inhibition: (i) is fast and at a high NO concentration is complete during the first turnover; (ii) is sensitive to the O2/NO ratio; and (iii) is independent of incubation time of the oxidized enzyme with NO. Analysis of the reaction kinetics and computer simulations support the conclusion that inhibition occurs via binding of NO to a turnover intermediate with a partially reduced cyt a3-CuB binuclear center. The inhibited enzyme has the optical spectrum typical of NO bound to reduced cyt a3. Reversal of inhibition in the presence of O2 does not involve a direct reaction of O2 with NO while bound at the binuclear center, since recovery of activity occurs at the rate of NO dissociation (k = 0.13 s-1), as determined in the absence of O2 using hemoglobin as a NO scavenger. We propose that removal of NO from the medium is associated with reactivation of the enzyme via a relatively fast thermal dissociation of NO from the reduced cyt a3-CuB center.
Collapse
Affiliation(s)
- A Giuffrè
- Department of Biochemical Sciences and Consiglio Nazionale delle Ricerche Center of Molecular Biology, University of Rome "La Sapienza," 00185 Rome, Italy
| | | | | | | | | | | |
Collapse
|
45
|
McKelvy ML, Britt TR, Davis BL, Gillie JK, Lentz LA, Leugers A, Nyquist RA, Putzig CL. Infrared Spectroscopy. Anal Chem 1996. [DOI: 10.1021/a1960003c] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Marianne L. McKelvy
- Analytical Sciences Laboratory, The Dow Chemical Company, Michigan Division, Midland, Michigan 48667
| | - Thomas R. Britt
- Analytical Sciences Laboratory, The Dow Chemical Company, Michigan Division, Midland, Michigan 48667
| | - Bradley L. Davis
- Analytical Sciences Laboratory, The Dow Chemical Company, Michigan Division, Midland, Michigan 48667
| | - J. Kevin Gillie
- Analytical Sciences Laboratory, The Dow Chemical Company, Michigan Division, Midland, Michigan 48667
| | - L. Alice Lentz
- Analytical Sciences Laboratory, The Dow Chemical Company, Michigan Division, Midland, Michigan 48667
| | - Anne Leugers
- Analytical Sciences Laboratory, The Dow Chemical Company, Michigan Division, Midland, Michigan 48667
| | - Richard A. Nyquist
- Analytical Sciences Laboratory, The Dow Chemical Company, Michigan Division, Midland, Michigan 48667
| | - Curtis L. Putzig
- Analytical Sciences Laboratory, The Dow Chemical Company, Michigan Division, Midland, Michigan 48667
| |
Collapse
|
46
|
Affiliation(s)
- E V Arnold
- Department of Chemistry, University of Wyoming, Laramie, 82071, USA
| | | |
Collapse
|
47
|
Kennedy M, Antholine WE, Li W, Mao Q, Petering DH. Reaction of nitric oxide with iron bleomycin bound to DNA: properties of the nitrosyl adduct and its reaction with O2. Inorganica Chim Acta 1995. [DOI: 10.1016/0020-1693(95)04580-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|