1
|
Kazanietz MG, Cooke M. Protein kinase C signaling "in" and "to" the nucleus: Master kinases in transcriptional regulation. J Biol Chem 2024; 300:105692. [PMID: 38301892 PMCID: PMC10907189 DOI: 10.1016/j.jbc.2024.105692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 01/08/2024] [Accepted: 01/09/2024] [Indexed: 02/03/2024] Open
Abstract
PKC is a multifunctional family of Ser-Thr kinases widely implicated in the regulation of fundamental cellular functions, including proliferation, polarity, motility, and differentiation. Notwithstanding their primary cytoplasmic localization and stringent activation by cell surface receptors, PKC isozymes impel prominent nuclear signaling ultimately impacting gene expression. While transcriptional regulation may be wielded by nuclear PKCs, it most often relies on cytoplasmic phosphorylation events that result in nuclear shuttling of PKC downstream effectors, including transcription factors. As expected from the unique coupling of PKC isozymes to signaling effector pathways, glaring disparities in gene activation/repression are observed upon targeting individual PKC family members. Notably, specific PKCs control the expression and activation of transcription factors implicated in cell cycle/mitogenesis, epithelial-to-mesenchymal transition and immune function. Additionally, PKCs isozymes tightly regulate transcription factors involved in stepwise differentiation of pluripotent stem cells toward specific epithelial, mesenchymal, and hematopoietic cell lineages. Aberrant PKC expression and/or activation in pathological conditions, such as in cancer, leads to profound alterations in gene expression, leading to an extensive rewiring of transcriptional networks associated with mitogenesis, invasiveness, stemness, and tumor microenvironment dysregulation. In this review, we outline the current understanding of PKC signaling "in" and "to" the nucleus, with significant focus on established paradigms of PKC-mediated transcriptional control. Dissecting these complexities would allow the identification of relevant molecular targets implicated in a wide spectrum of diseases.
Collapse
Affiliation(s)
- Marcelo G Kazanietz
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.
| | - Mariana Cooke
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.
| |
Collapse
|
2
|
Parker PJ, Lockwood N, Davis K, Kelly JR, Soliman TN, Pardo AL, Marshall JJT, Redmond JM, Vitale M, Silvia Martini. A cancer-associated, genome protective programme engaging PKCε. Adv Biol Regul 2020; 78:100759. [PMID: 33039823 PMCID: PMC7689578 DOI: 10.1016/j.jbior.2020.100759] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 09/27/2020] [Accepted: 10/02/2020] [Indexed: 12/21/2022]
Abstract
Associated with their roles as targets for tumour promoters, there has been a long-standing interest in how members of the protein kinase C (PKC) family act to modulate cell growth and division. This has generated a great deal of observational data, but has for the most part not afforded clear mechanistic insights into the control mechanisms at play. Here, we review the roles of PKCε in protecting transformed cells from non-disjunction. In this particular cell cycle context, there is a growing understanding of the pathways involved, affording biomarker and interventional insights and opportunities.
Collapse
Affiliation(s)
- Peter J Parker
- Protein Phosphorylation Laboratory, Francis Crick Institute, London, NW1 1AT, UK; School of Cancer and Pharmaceutical Sciences, Guy's Campus, London, SE1 1UL, UK.
| | - Nicola Lockwood
- Protein Phosphorylation Laboratory, Francis Crick Institute, London, NW1 1AT, UK
| | - Khalil Davis
- Protein Phosphorylation Laboratory, Francis Crick Institute, London, NW1 1AT, UK
| | - Joanna R Kelly
- Cancer Research UK, Manchester Institute, Alderley Park, SK10 4TG, UK
| | - Tanya N Soliman
- Barts Cancer Institute, Charterhouse Square, London, EC1M 6BE, UK
| | - Ainara Lopez Pardo
- Protein Phosphorylation Laboratory, Francis Crick Institute, London, NW1 1AT, UK
| | | | | | - Marco Vitale
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Silvia Martini
- Protein Phosphorylation Laboratory, Francis Crick Institute, London, NW1 1AT, UK
| |
Collapse
|
3
|
Black AR, Black JD. Protein kinase C signaling and cell cycle regulation. Front Immunol 2013; 3:423. [PMID: 23335926 PMCID: PMC3547298 DOI: 10.3389/fimmu.2012.00423] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2012] [Accepted: 12/21/2012] [Indexed: 12/20/2022] Open
Abstract
A link between T cell proliferation and the protein kinase C (PKC) family of serine/threonine kinases has been recognized for about 30 years. However, despite the wealth of information on PKC-mediated control of, T cell activation, understanding of the effects of PKCs on the cell cycle machinery in this cell type remains limited. Studies in other systems have revealed important cell cycle-specific effects of PKC signaling that can either positively or negatively impact proliferation. The outcome of PKC activation is highly context-dependent, with the precise cell cycle target(s) and overall effects determined by the specific isozyme involved, the timing of PKC activation, the cell type, and the signaling environment. Although PKCs can regulate all stages of the cell cycle, they appear to predominantly affect G0/G1 and G2. PKCs can modulate multiple cell cycle regulatory molecules, including cyclins, cyclin-dependent kinases (cdks), cdk inhibitors and cdc25 phosphatases; however, evidence points to Cip/Kip cdk inhibitors and D-type cyclins as key mediators of PKC-regulated cell cycle-specific effects. Several PKC isozymes can target Cip/Kip proteins to control G0/G1 → S and/or G2 → M transit, while effects on D-type cyclins regulate entry into and progression through G1. Analysis of PKC signaling in T cells has largely focused on its roles in T cell activation; thus, observed cell cycle effects are mainly positive. A prominent role is emerging for PKCθ, with non-redundant functions of other isozymes also described. Additional evidence points to PKCδ as a negative regulator of the cell cycle in these cells. As in other cell types, context-dependent effects of individual isozymes have been noted in T cells, and Cip/Kip cdk inhibitors and D-type cyclins appear to be major PKC targets. Future studies are anticipated to take advantage of the similarities between these various systems to enhance understanding of PKC-mediated cell cycle regulation in T cells.
Collapse
Affiliation(s)
- Adrian R Black
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center Omaha, NE, USA
| | | |
Collapse
|
4
|
Kim YR, Byun HS, Jeon J, Choi BL, Park KA, Won M, Zhang T, Shin S, Lee H, Oh J, Hur GM. Apoptosis Signal-Regulating Kinase1 is Inducible by Protein Kinase Cδ and Contributes to Phorbol Ester-Mediated G1 Phase Arrest Through Persistent JNK Activation. Cell Biochem Biophys 2011; 61:199-207. [DOI: 10.1007/s12013-011-9189-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
5
|
Cohen EEW, Zhu H, Lingen MW, Martin LE, Kuo WL, Choi EA, Kocherginsky M, Parker JS, Chung CH, Rosner MR. A feed-forward loop involving protein kinase Calpha and microRNAs regulates tumor cell cycle. Cancer Res 2009; 69:65-74. [PMID: 19117988 DOI: 10.1158/0008-5472.can-08-0377] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Protein kinase Calpha (PKCalpha) has been implicated in cancer, but the mechanism is largely unknown. Here, we show that PKCalpha promotes head and neck squamous cell carcinoma (SCCHN) by a feed-forward network leading to cell cycle deregulation. PKCalpha inhibitors decrease proliferation in SCCHN cell lines and xenografted tumors. PKCalpha inhibition or depletion in tumor cells decreases DNA synthesis by suppressing extracellular signal-regulated kinase phosphorylation and cyclin E synthesis. Additionally, PKCalpha down-regulates miR-15a, a microRNA that directly inhibits protein synthesis of cyclin E, as well as other cell cycle regulators. Furthermore, both PKCalpha and cyclin E protein expression are increased in primary tumors, and PKCalpha inversely correlates with miR-15a expression in primary tumors. Finally, PKCalpha is associated with poor prognosis in SCCHN. These results identify PKCalpha as a key regulator of SCCHN tumor cell growth by a mechanism involving activation of mitogen-activated protein kinase, an initiator of the cell cycle, and suppression of miR-15a, an inhibitor of DNA synthesis. Although the specific components may be different, this type of feed-forward loop network, consisting of a stimulus that activates a positive signal and removes a negative brake, is likely to be a general one that enables induction of DNA synthesis by a variety of growth or oncogenic stimuli.
Collapse
Affiliation(s)
- Ezra E W Cohen
- Section of Hematology/Oncology, Department of Medicine, University of Chicago, Chicago, IL 60637, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Cocco L, Faenza I, Fiume R, Maria Billi A, Gilmour RS, Manzoli FA. Phosphoinositide-specific phospholipase C (PI-PLC) β1 and nuclear lipid-dependent signaling. Biochim Biophys Acta Mol Cell Biol Lipids 2006; 1761:509-21. [PMID: 16624616 DOI: 10.1016/j.bbalip.2006.03.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2005] [Revised: 03/02/2006] [Accepted: 03/03/2006] [Indexed: 10/24/2022]
Abstract
Over the last years, evidence has suggested that phosphoinositides, which are involved in the regulation of a large variety of cellular processes both in the cytoplasm and in the plasma membrane, are present also within the nucleus. A number of advances has resulted in the discovery that phosphoinositide-specific phospholipase C signalling in the nucleus is involved in cell growth and differentiation. Remarkably, the nuclear inositide metabolism is regulated independently from that present elsewhere in the cell. Even though nuclear inositol lipids hydrolysis generates second messengers such as diacylglycerol and inositol 1,4,5-trisphosphate, it is becoming increasingly clear that in the nucleus polyphosphoinositides may act by themselves to influence pre-mRNA splicing and chromatin structure. Among phosphoinositide-specific phospholipase C, the beta(1) isoform appears to be one of the key players of the nuclear lipid signaling. This review aims at highlighting the most significant and up-dated findings about phosphoinositide-specific phospholipase C beta(1) in the nucleus.
Collapse
Affiliation(s)
- Lucio Cocco
- Cellular Signalling Laboratory, Department of Human Anatomical Sciences, University of Bologna, Via Irnerio 48, 40126 Bologna, Italy.
| | | | | | | | | | | |
Collapse
|
7
|
Cocco L, Martelli AM, Fiume R, Faenza I, Billi AM, Manzoli FA. Signal transduction within the nucleus: Revisiting phosphoinositide inositide–specific phospholipase Cβ1. ACTA ACUST UNITED AC 2006; 46:2-11. [PMID: 16846636 DOI: 10.1016/j.advenzreg.2006.01.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Lucio Cocco
- Cellular Signaling Laboratory, Department of Anatomical Sciences, University of Bologna, via Irnerio 48, 40126 Bologna, Italy.
| | | | | | | | | | | |
Collapse
|
8
|
Santiago-Walker AE, Fikaris AJ, Kao GD, Brown EJ, Kazanietz MG, Meinkoth JL. Protein kinase C delta stimulates apoptosis by initiating G1 phase cell cycle progression and S phase arrest. J Biol Chem 2005; 280:32107-14. [PMID: 16051606 DOI: 10.1074/jbc.m504432200] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Overexpression of protein kinase C delta (PKCdelta) stimulates apoptosis in a wide variety of cell types through a mechanism that is incompletely understood. PKCdelta-deficient cells are impaired in their response to DNA damage-induced apoptosis, suggesting that PKCdelta is required to mount an appropriate apoptotic response under conditions of stress. The mechanism through which it does so remains elusive. In addition to effects on cell survival, PKCdelta elicits pleiotropic effects on cellular proliferation. We now provide the first evidence that the ability of PKCdelta to stimulate apoptosis is intimately linked to its ability to stimulate G(1) phase cell cycle progression. Using an adenoviral-based expression system to express PKCalpha,-delta, and -epsilon in epithelial cells, we demonstrate that a modest increase in PKCdelta activity selectively stimulates quiescent cells to initiate G(1) phase cell cycle progression. Rather than completing the cell cycle, PKCdelta-infected cells arrest in S phase, an event that triggers caspase-dependent apoptotic cell death. Apoptosis was preceded by the activation of cell cycle checkpoints, culminating in the phosphorylation of Chk-1 and p53. Strikingly, blockade of S phase entry using the phosphatidylinositol 3-kinase inhibitor LY294002 prevented checkpoint activation and apoptosis. In contrast, inhibitors of mitogen-activated protein kinase cascades failed to prevent apoptosis. These findings demonstrate that the biological effects of PKCdelta can be extended to include positive regulation of G(1) phase cell cycle progression. Importantly, they reveal the existence of a novel, cell cycle-dependent mechanism through which PKCdelta stimulates cell death.
Collapse
Affiliation(s)
- Ademi E Santiago-Walker
- Department of Pharmacology, University of Pennsylvania School of Medicine, Philadelphia, 19104-6061, USA
| | | | | | | | | | | |
Collapse
|
9
|
Martínez J, Gutiérrez A, Casas J, Lladó V, López-Bellan A, Besalduch J, Dopazo A, Escribá PV. The repression of E2F-1 is critical for the activity of Minerval against cancer. J Pharmacol Exp Ther 2005; 315:466-74. [PMID: 16027227 DOI: 10.1124/jpet.105.088716] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The recently discovered anticancer drug Minerval (2-hydroxy-9-cis-octadecenoic acid) is a synthetic fatty acid that modifies the structure of the membrane. This restructuring facilitates the recruitment of protein kinase C (PKC) alpha to membranes and is associated with the antineoplastic activity of Minerval in cellular and animal models of cancer. Minerval is a derivative of oleic acid (OA) with an enhanced antiproliferative activity in human cancer cells and animal models of cancer, which is associated with PKCalpha activation and p21(CIP) overexpression. However, the signaling cascades involved in its pharmacological activity remain largely unknown. Here, we showed that this drug induced cell cycle arrest before entry into S phase, human lung adenocarcinoma (A549) cells accumulating in the G0/G1 phase. This cell cycle arrest was associated with a marked decrease in the expression of E2F-1. This transcription factor activates several cell cycle-related genes, and, accordingly, the expression of certain cyclins and cyclin-dependent kinases (cdks) was markedly lower upon exposure to Minerval. The reduced availability of these kinase heterodimers was associated with reduced phosphorylation of the retinoblastoma protein (pRb) observed after drug treatment. Significantly, hypophosphorylated pRb remains bound to E2F-1 and maintains this transcription factor inactive. The modulation of these antiproliferative mechanisms by Minerval explains its anticancer potency, through a new therapeutic strategy that can be used to develop new antitumor drugs. On the other hand, apoptosis did not seem to be involved in its pharmacological mechanism. Interestingly, whereas the changes induced by OA were only modest, they may reflect the beneficial effects of high olive oil intake against cancer.
Collapse
Affiliation(s)
- Jordi Martínez
- Laboratory of Molecular and Cellular Biomedicine, Associate Unit of the Instituto de la Grasa (CSIC), IUNICS, Department of Biology, University of the Balearic Islands, Ctra. de Valldemossa Km 7.5, E-07122 Palma de Mallorca, Spain
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Aeder SE, Martin PM, Soh JW, Hussaini IM. PKC-eta mediates glioblastoma cell proliferation through the Akt and mTOR signaling pathways. Oncogene 2005; 23:9062-9. [PMID: 15489897 DOI: 10.1038/sj.onc.1208093] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
We previously demonstrated that protein kinase C-eta (PKC-eta) mediates a phorbol 12-myristate-13-acetate (PMA)-induced proliferative response in human glioblastoma (GBM) cells. In this report, we show that PMA-stimulated activation of PKC-eta in U-251 GBM cells resulted in activation of both Akt and the mammalian target of rapamycin (mTOR) signaling pathways and an increase in cell proliferation. Expression of a kinase dead PKC-eta (PKC-etaKR) construct reduced the basal and PMA-evoked proliferation of PKC-eta-expressing U-251 GBM cells, as well as abrogated the PMA-induced activation of Akt, mTOR, and the mTOR targets 4E-BP1 and STAT-3. Treatment of cells with the PI-3 kinase inhibitor LY294002 (10 muM) or the mTOR inhibitor rapamycin (10 nM) also reduced PMA-induced proliferation and cell-cycle progression. Expression of a constitutively active PKC-eta (PKC-etaDeltaNPS) construct in a GBM cell line with no endogenous PKC-eta (U-1242) also provided evidence that PKC-eta targets the Akt and mTOR signaling pathways. Moreover, activation of 4E-BP1 and STAT-3 in both PMA-treated U-251 and PKC-etaDeltaNPS-expressing U-1242 GBM cells was inhibited by rapamycin. However, activation of Akt, but not mTOR was inhibited by the PI-3 kinase inhibitor LY294002. This study identifies Akt and mTOR as downstream targets of PKC-eta that are involved in GBM cell proliferation.
Collapse
Affiliation(s)
- Sean E Aeder
- Department of Pathology and Neurology, University of Virginia, Charlottesville, VA 22908, USA.
| | | | | | | |
Collapse
|
11
|
Abstract
Strong evidence has been accumulating over the last 15 years suggesting that phosphoinositides, which are involved in the regulation of a large variety of cellular processes in the cytoplasm and in the plasma membrane, are present within the nucleus. Several advances have resulted in the discovery that nuclear phosphoinositides are involved in cell growth and differentiation. Remarkably, the nuclear inositide metabolism is regulated independently from that present elsewhere in the cell. Although nuclear inositol lipids generate second messengers such as diacylglycerol and inositol 1,4,5-trisphosphate, it is becoming increasingly clear that in the nucleus polyphosphoinositides may act by themselves to influence pre-mRNA splicing and chromatin structure. This review aims at highlighting the most significant and updated findings about inositol lipid metabolism in the nucleus.
Collapse
Affiliation(s)
- Alberto M Martelli
- Cellular Signalling Laboratory, Department of Human Anatomical Sciences, University of Bologna, via Irnerio 48, 40126, Bologna, Italy
| | | | | |
Collapse
|
12
|
Kitamura K, Mizuno K, Etoh A, Akita Y, Miyamoto A, Nakayama KI, Ohno S. The second phase activation of protein kinase C delta at late G1 is required for DNA synthesis in serum-induced cell cycle progression. Genes Cells 2003; 8:311-24. [PMID: 12653960 DOI: 10.1046/j.1365-2443.2003.00635.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND Cell lines that stably over-express protein kinase C (PKC) delta frequently show a decrease in growth rate and saturation density, leading to the hypothesis that PKC delta has a negative effect on cell proliferation. However, the mode of PKC delta activation, the cell cycle stage requiring PKC delta activity, and the exact role of PKC delta at that stage remains unknown. RESULTS Here we show that the treatment of quiescent fibroblasts with serum activates PKC delta at two distinct time points, within 10 min after serum treatment, and for a longer duration between 6 and 10 h. This biphasic activation correlates with the phosphorylation of Thr-505 at the activation loop of PKC delta. Importantly, an inhibitor of PKC delta, rottlerin, suppresses the biphasic activation of PKC delta, and suppression of the second phase of PKC delta activation is sufficient for the suppression of DNA synthesis. Consistent with this, the transient over-expression of PKC delta mutant molecules lacking kinase activity suppresses serum-induced DNA synthesis. These results imply that PKC delta plays a positive role in cell cycle progression. While the over-expression of PKC delta enhances serum-induced DNA synthesis, this was not observed for PKC epsilon. Similar experiments using a series of PKCdelta/ epsilon chimeras showed that the carboxyl-terminal 51 amino acids of PKC delta are responsible for the stimulatory effect. On the other hand, the over-expression of PKC delta suppresses cell entry into M-phase, being consistent with the previous studies based on stable over-expressors. CONCLUSIONS We conclude that PKC delta plays a role in the late-G1 phase through the positive regulation of cell-cycle progression, in addition to negative regulation of the entry into M-phase.
Collapse
Affiliation(s)
- Koichi Kitamura
- Department of Molecular Biology, Yokohama City University School of Medicine, Fuku-ura 3-9, Kanazawa-ku, Yokohama 236-0004, Japan
| | | | | | | | | | | | | |
Collapse
|
13
|
Page K, Li J, Corbit KC, Rumilla KM, Soh JW, Weinstein IB, Albanese C, Pestell RG, Rosner MR, Hershenson MB. Regulation of airway smooth muscle cyclin D1 transcription by protein kinase C-delta. Am J Respir Cell Mol Biol 2002; 27:204-13. [PMID: 12151312 DOI: 10.1165/ajrcmb.27.2.20010016oc] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
The precise mechanism by which protein kinase C-delta (PKCdelta) inhibits cell cycle progression is not known. We investigated the regulation of cyclin D1 transcription by PKCdelta in primary bovine airway smooth muscle cells. Overexpression of the active catalytic subunit of PKCdelta attenuated platelet-derived growth factor (PDGF)-mediated transcription from the cyclin D1 promoter, whereas overexpression of a dominant-negative PKCdelta increased promoter activity. A PKCdelta-specific pseudosubstrate increased cyclin D1 protein abundance. To determine the transcriptional mechanism by which PKCdelta negatively regulates cyclin D1 expression, we transiently transfected cells with cDNAs encoding cyclin D1 promoter 5' deletions and site mutations in the context of a -66 promoter fragment. We found that the -57 to -52 CRE/ATF2 site functions as a basal level and PDGF enhancer, whereas the -39 to -30 nuclear factor-kappaB site functions as a basal level suppressor. Further, PDGF and PKCdelta responsiveness of the cyclin D1 promoter was maintained following 5' deletion to the Ets-containing -22 minimal promoter. Finally, using electrophoretic mobility gel shift and reporter assays, we determined that PKCdelta inhibits CRE/ATF2 binding and transactivation, activates nuclear factor-kappaB binding and transactivation, and attenuates Ets transactivation. These data suggest that PKCdelta attenuates cyclin D1 promoter activity via the regulation of three distinct cis-acting regulatory elements.
Collapse
Affiliation(s)
- Kristen Page
- Department of Pediatrics and the Ben May Institute for Cancer Research, University of Chicago, Chicago, Illinois, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Neuzil J, Weber T, Terman A, Weber C, Brunk UT. Vitamin E analogues as inducers of apoptosis: implications for their potential antineoplastic role. Redox Rep 2002; 6:143-51. [PMID: 11523588 DOI: 10.1179/135100001101536247] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Recent evidence suggests that vitamin E and its analogues, which have been used for many years as antioxidants, may not only protect cells from free radical damage but also induce apoptotic cell death in various cell types. While alpha-tocopherol (alpha-TOH) is mainly known as an anti-apoptotic agent, its redox-silent analogues either have no influence on cell survival (alpha-tocopheryl acetate, alpha-TOA), or induce apoptosis (alpha-tocopheryl succinate, alpha-TOS). Although precise mechanisms of apoptosis induction by alpha-TOS remain to be elucidated, there is evidence that this process involves both the antiproliferative and membrane destabilising activities of the agent. Alpha-TOS has been shown to induce apoptosis in malignant cell lines but not, in general, in normal cells, and to inhibit tumorigenesis in vivo. These features suggest that this semi-synthetic analogue of vitamin E could be a promising antineoplastic agent.
Collapse
Affiliation(s)
- J Neuzil
- Institute for Prevention of Cardiovascular Diseases, Ludwig Maximilians University, Munich, Germany.
| | | | | | | | | |
Collapse
|
15
|
Fima E, Shtutman M, Libros P, Missel A, Shahaf G, Kahana G, Livneh E. PKCeta enhances cell cycle progression, the expression of G1 cyclins and p21 in MCF-7 cells. Oncogene 2001; 20:6794-804. [PMID: 11709714 DOI: 10.1038/sj.onc.1204885] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2001] [Revised: 07/17/2001] [Accepted: 08/01/2001] [Indexed: 11/08/2022]
Abstract
Protein kinase C encodes a family of enzymes implicated in cellular differentiation, growth control and tumor promotion. However, not much is known with respect to the molecular mechanisms that link protein kinase C to cell cycle control. Here we report that the expression of PKCeta in MCF-7 cells, under the control of a tetracycline-responsive inducible promoter, enhanced cell growth and affected the cell cycle at several points. The induced expression of another PKC isoform, PKCdelta, in MCF-7 cells had opposite effects and inhibited their growth. PKCeta expression activated cellular pathways in these cells that resulted in the increased expression of the G1 phase cyclins, cyclin D and cyclin E. Expression of the cyclin-dependent kinase inhibitor p21(WAF1) was also specifically elevated in PKCeta expressing cells, but its overall effects were not inhibitory. Although, the protein levels of the cyclin-dependent kinase inhibitor p27(KIP1) were not altered by the induced expression of PKCeta, the cyclin E associated Cdk2 kinase activity was in correlation with the p27(KIP1) bound to the cyclin E complex and not by p21(WAF1) binding. PKCeta expression enhanced the removal of p27(KIP1) from this complex, and its re-association with the cyclin D/Cdk4 complex. Reduced binding of p27(KIP1) to the cyclin D/Cdk4 complex at early time points of the cell cycle also enhanced the activity of this complex, while at later time points the decrease in bound p21(WAF1) correlated with its increased activity in PKCeta-expressing cells. Thus, PKCeta induces altered expression of several cell cycle functions, which may contribute to its ability to affect cell growth.
Collapse
Affiliation(s)
- E Fima
- Department of Microbiology and Immunology, Faculty of Health Sciences, Ben Gurion University, Beer Sheva 84105, Israel
| | | | | | | | | | | | | |
Collapse
|
16
|
Abstract
Spatial and temporal organization of signal transduction is essential in determining the speed and precision by which signaling events occur. Adaptor proteins are key to organizing signaling enzymes near their select substrates and away from others in order to optimize precision and speed of response. Here, we describe the role of adaptor proteins in determining the specific function of individual protein kinase C (PKC) isozymes. These isozyme-selective proteins were called collectively RACKs (receptors for activated C-kinase). The role of RACKs in PKC-mediated signaling was determined using isozyme-specific inhibitors and activators of the binding of each isozyme to its respective RACK. In addition to anchoring activated PKC isozymes, RACKs anchor other signaling enzymes. RACK1, the anchoring protein for activated betaIIPKC, binds for example, Src tyrosine kinase, integrin, and phosphodiesterase. RACK2, the epsilonPKC-specific RACK, is a coated-vesicle protein and thus is involved in vesicular release and cell-cell communication. Therefore, RACKs are not only adaptors for PKC, but also serve as adaptor proteins for several other signaling enzymes. Because at least some of the proteins that bind to RACKs, including PKC itself, regulate cell growth, modulating their interactions with RACKs may help elucidate signaling pathways leading to carcinogenesis and could result in the identification of novel therapeutic targets.
Collapse
Affiliation(s)
- D Schechtman
- Department of Molecular Pharmacology, Stanford University School of Medicine, Stanford, CA 94305-5174, USA
| | | |
Collapse
|
17
|
Masso-Welch PA, Verstovsek G, Ip MM. Alterations in the expression and localization of protein kinase C isoforms during mammary gland differentiation. Eur J Cell Biol 1999; 78:497-510. [PMID: 10472802 DOI: 10.1016/s0171-9335(99)80076-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Protein kinase C (PKC) is involved in signaling that modulates the proliferation and differentiation of many cell types, including mammary epithelial cells. In addition, changes in PKC expression or activity have been observed during mammary carcinogenesis. In order to examine the involvement of specific PKC isoforms during normal mammary gland development, the expression and localization of PKCs alpha, delta, epsilon and zeta were examined during puberty, pregnancy, lactation, and involution. By immunoblot analysis, expression of PKC alpha, delta, epsilon and zeta proteins was increased in mammary epithelial organoids during the transition from puberty to pregnancy. In mammary gland frozen sections, PKCs alpha, delta, epsilon and zeta were stained in the luminal epithelium and myoepithelium, in varying isoform-and developmental stage-specific locations. PKC alpha was found in a punctate apical localization in the luminal epithelium during pregnancy. During lactation, PKC epsilon was present in the nucleus, and PKC zeta was concentrated in the subapical region of the luminal epithelium. Additionally, marked staining for PKCs alpha, delta, epsilon, and zeta was observed in the myoepithelial cells at the base of ducts and alveoli. This basal ductal and alveolar staining differed in intensity in a developmentally-specific fashion. During most time points (virgin, pregnant, lactating, and early involution), myoepithelial cells of the duct were more intensely stained than those lining the alveoli for PKCs alpha, delta, epsilon and zeta. During late involution (days 9-12), the preferential staining of ducts was lost or reversed, and the myoepithelial cells lining the regressing alveolar structures stained equally (PKCs epsilon and zeta) or more intensely (PKCs alpha and delta), coincident with the thickening of the myoepithelial cells surrounding the regressing alveoli. The increased PKC isoform staining at the base of alveoli during involution suggests that alveolar regression may be influenced by alterations in signaling in the alveolar myoepithelium.
Collapse
Affiliation(s)
- P A Masso-Welch
- Department of Pharmacology and Therapeutics, Grace Cancer Drug Center, Roswell Park Cancer Institute, Buffalo, NY 14263, USA
| | | | | |
Collapse
|
18
|
Akimoto K, Nakaya M, Yamanaka T, Tanaka J, Matsuda S, Weng QP, Avruch J, Ohno S. Atypical protein kinase Clambda binds and regulates p70 S6 kinase. Biochem J 1998; 335 ( Pt 2):417-24. [PMID: 9761742 PMCID: PMC1219797 DOI: 10.1042/bj3350417] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
p70 S6 kinase (p70 S6K) has been implicated in the regulation of cell cycle progression. However, the mechanism of its activation is not fully understood. In the present work, evidence is provided that an atypical protein kinase C (PKC) isotype, PKClambda, is indispensable, but not sufficient, for the activation of p70 S6K. Both the regulatory and kinase domains of PKClambda associate directly with p70 S6K. Overexpression of the kinase domain without kinase activity or the regulatory domain of PKClambda results in the suppression of the serum-induced activation of p70 S6K. In addition, two types of dominant-negative mutants of PKClambda, as well as a kinase-deficient mutant of p70 S6K, suppress serum-induced DNA synthesis and E2F activation. The overexpresion of the active form of PKClambda, however, fails to activate p70 S6K. These results suggest that PKClambda is a mediator in the regulation of p70 S6K activity and plays an important role in cell cycle progression.
Collapse
Affiliation(s)
- K Akimoto
- Department of Molecular Biology, Yokohama City University School of Medicine, 3-9 Fuku-ura, Kanazawa-ku, Yokohama 236, Japan
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Verstovsek G, Byrd A, Frey MR, Petrelli NJ, Black JD. Colonocyte differentiation is associated with increased expression and altered distribution of protein kinase C isozymes. Gastroenterology 1998; 115:75-85. [PMID: 9649461 DOI: 10.1016/s0016-5085(98)70367-1] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
BACKGROUND & AIMS Colon cancer cells express reduced levels of protein kinase C (PKC). This study examines the regulation of PKC isozymes in normal colonic epithelium, as a basis for understanding the significance of alterations in this enzyme system in colon carcinogenesis. METHODS The expression and localization of PKC isozymes in mouse and rat colonocytes at different developmental stages were determined using a combined morphological and biochemical approach. PKC alpha expression was compared in colonic adenocarcinomas and adjacent normal mucosa by immunoblot analysis. RESULTS Mouse and rat colonocytes express PKC alpha, beta II, delta, epsilon, and zeta. Relatively low levels of these isozymes were detected in proliferating cells of the crypt base, predominantly in the cytosolic compartment. Coincident with colonocyte growth arrest/differentiation, PKC isozyme expression markedly increased in both the cytosolic and, more significantly, in the membrane/cytoskeletal fraction. Colonic tumors express reduced levels of PKC alpha, an isozyme that has been implicated in negative control of intestinal cell growth. CONCLUSIONS These findings are supportive of a role for certain PKC isozyme(s) in signaling pathways mediating postmitotic events in colonocytes in situ, and suggest that diminished activity of these pathway(s) may contribute to the alterations in growth control/differentiation associated with colonic neoplasia.
Collapse
Affiliation(s)
- G Verstovsek
- Department of Experimental Therapeutics, Roswell Park Cancer Institute, Buffalo, New York, USA
| | | | | | | | | |
Collapse
|
20
|
Abstract
Protein kinase C (PKC) isoenzymes are involved in diverse cellular functions, including differentiation, growth control, tumor promotion, and cell death. In recent years, evidence has began to emerge suggesting a role for PKC in cell cycle control. A paper published recently, demonstrating a functional link between PKC and cell cycle control in yeast (Marini, N. J., Meldrum, E., Buehrer, B., Hubberstey, A. V., Stone, D. E., Traynor-Kaplan, A. & Reed, S. I. (1996) EMBO J. 15, 3040-3052), strengthens this data. Thus, the existence of cell-cycle-regulated pathways involving PKC in both yeast and mammals indicate that PKC may be a conserved regulator of cell cycle events that links signal transduction pathways and the cell-cycle machinery. In this paper, we will review current data on the cell cycle components that are targets for PKC regulation. PKC enzymes appear to operate as regulators of the cell cycle at two sites, during G1 progression and G2/M transition. In G1, the overall effect of PKC activation is inhibition of the cell cycle at mid to late G1. This cell cycle inhibition correlates with a blockage in the normal phosphorylation of the tumor suppressor retinoblastoma Rb protein, presumably through an indirect mechanism. The reduced activity of the cyclin-dependent kinase, Cdk2, appears to be the major effect of PKC activation in various cell systems. This may also underlie the inhibition of Rb phosphorylation exhibited by PKC activation. Several mechanisms were described in different studies on the regulation of Cdk2 activity by PKC; reduced Cdk-activating kinase activity, diminished expression of the Cdk2 partners cyclins E or A, and the increased expression of the cyclin-dependent inhibitors, p21WAF1 and p27KIP1, which are capable of binding to cyclin/Cdk2 complexes. PKC enzymes were also shown to play a role in G2/M transition. Among the suggested mechanisms is suppression of Cdc2 activity. However, most of the published data strongly implicate PKC in lamin B phosphorylation and nuclear envelope disassembly.
Collapse
Affiliation(s)
- E Livneh
- Department of Immunology and Microbiology, Faculty of Health Sciences, Ben Gurion University, Beer Sheva, Israel.
| | | |
Collapse
|
21
|
Frey MR, Saxon ML, Zhao X, Rollins A, Evans SS, Black JD. Protein kinase C isozyme-mediated cell cycle arrest involves induction of p21(waf1/cip1) and p27(kip1) and hypophosphorylation of the retinoblastoma protein in intestinal epithelial cells. J Biol Chem 1997; 272:9424-35. [PMID: 9083081 DOI: 10.1074/jbc.272.14.9424] [Citation(s) in RCA: 119] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The molecular mechanisms underlying protein kinase C (PKC) isozyme-mediated control of cell growth and cell cycle progression are poorly understood. Our previous analysis of PKC isozyme regulation in the intestinal epithelium in situ revealed that multiple members of the PKC family undergo changes in expression and subcellular distribution precisely as the cells cease proliferating in the mid-crypt region, suggesting that activation of one or more of these molecules is involved in negative regulation of cell growth in this system (Saxon, M. L., Zhao, X., and Black, J. D. (1994) J. Cell Biol. 126, 747-763). In the present study, the role of PKC isozyme(s) in control of intestinal epithelial cell growth and cell cycle progression was examined directly using the IEC-18 immature crypt cell line as a model system. Treatment of IEC-18 cells with PKC agonists resulted in translocation of PKC alpha, delta, and epsilon from the soluble to the particulate subcellular fraction, cell cycle arrest in G1 phase, and delayed transit through S and/or G2/M phases. PKC-mediated cell cycle arrest in G1 was accompanied by accumulation of the hypophosphorylated, growth-suppressive form of the retinoblastoma protein and induction of the cyclin-dependent kinase inhibitors p21(waf1/cip1) and p27(kip1). Reversal of these cell cycle regulatory effects was coincident with activator-induced down-regulation of PKC alpha, delta, and epsilon. Differential down-regulation of individual PKC isozymes revealed that PKC alpha in particular is sufficient to mediate cell cycle arrest by PKC agonists in this system. Taken together, the data implicate PKC alpha in negative regulation of intestinal epithelial cell growth both in vitro and in situ via pathways which involve modulation of Cip/Kip family cyclin-dependent kinase inhibitors and the retinoblastoma growth suppressor protein.
Collapse
Affiliation(s)
- M R Frey
- Departments of Experimental Therapeutics, Roswell Park Cancer Institute, Buffalo, New York 14263, USA
| | | | | | | | | | | |
Collapse
|