1
|
Alaa M, Al-Shehaby N, Anwar AM, Farid N, Shawky MS, Zamzam M, Zaky I, Elghounimy A, El-Naggar S, Magdeldin S. Comparative Shotgun Proteomics Reveals the Characteristic Protein Signature of Osteosarcoma Subtypes. Cells 2023; 12:2179. [PMID: 37681913 PMCID: PMC10487120 DOI: 10.3390/cells12172179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 08/11/2023] [Accepted: 08/20/2023] [Indexed: 09/09/2023] Open
Abstract
Osteosarcoma is a primary malignant bone tumor affecting adolescents and young adults. This study aimed to identify proteomic signatures that distinguish between different osteosarcoma subtypes, providing insights into their molecular heterogeneity and potential implications for personalized treatment approaches. Using advanced proteomic techniques, we analyzed FFPE tumor samples from a cohort of pediatric osteosarcoma patients representing four various subtypes. Differential expression analysis revealed a significant proteomic signature that discriminated between these subtypes, highlighting distinct molecular profiles associated with different tumor characteristics. In contrast, clinical determinants did not correlate with the proteome signature of pediatric osteosarcoma. The identified proteomics signature encompassed a diverse array of proteins involved in focal adhesion, ECM-receptor interaction, PI3K-Akt signaling pathways, and proteoglycans in cancer, among the top enriched pathways. These findings underscore the importance of considering the molecular heterogeneity of osteosarcoma during diagnosis or even when developing personalized treatment strategies. By identifying subtype-specific proteomics signatures, clinicians may be able to tailor therapy regimens to individual patients, optimizing treatment efficacy and minimizing adverse effects.
Collapse
Affiliation(s)
- Maram Alaa
- Immunology and Microbiology Research Program, Basic Research Unit, Research Department, Children’s Cancer Hospital Egypt 57357, Cairo 11441, Egypt
| | - Nouran Al-Shehaby
- Tumor Biology Research Program, Basic Research Unit, Research Department, Children’s Cancer Hospital Egypt 57357, Cairo 11441, Egypt
| | - Ali Mostafa Anwar
- Proteomics and Metabolomics Research Program, Basic Research Unit, Research Department, Children’s Cancer Hospital Egypt 57357, Cairo 11441, Egypt
| | - Nesma Farid
- Clinical Research Unit, Research Department, Children’s Cancer Hospital Egypt 57357, Cairo 11441, Egypt
| | | | - Manal Zamzam
- Pediatric Oncology Department, Children’s Cancer Hospital Egypt 57357, Cairo 11441, Egypt
- Pediatric Oncology Department, National Cancer Institute, Cairo University, Cairo 12613, Egypt
| | - Iman Zaky
- Radio Diagnosis Department, Children’s Cancer Hospital Egypt 57357, Cairo 11441, Egypt
- Radio Diagnosis Department, National Cancer Institute, Cairo University, Cairo 12613, Egypt
| | - Ahmed Elghounimy
- Musculoskeletal Tumor Surgery Unit, Children’s Cancer Hospital Egypt 57357, Cairo 11441, Egypt
- Department of Orthopedic Surgery, Faculty of Medicine, Cairo University, Cairo 12613, Egypt
- Regenerative Medicine Research Program, Basic Research Unit, Research Department, Children’s Cancer Hospital Egypt 57357, Cairo 11441, Egypt
| | - Shahenda El-Naggar
- Tumor Biology Research Program, Basic Research Unit, Research Department, Children’s Cancer Hospital Egypt 57357, Cairo 11441, Egypt
| | - Sameh Magdeldin
- Proteomics and Metabolomics Research Program, Basic Research Unit, Research Department, Children’s Cancer Hospital Egypt 57357, Cairo 11441, Egypt
- Department of Physiology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt
| |
Collapse
|
2
|
Biglycan Interacts with Type I Insulin-like Receptor (IGF-IR) Signaling Pathway to Regulate Osteosarcoma Cell Growth and Response to Chemotherapy. Cancers (Basel) 2022; 14:cancers14051196. [PMID: 35267503 PMCID: PMC8909324 DOI: 10.3390/cancers14051196] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Revised: 02/21/2022] [Accepted: 02/22/2022] [Indexed: 02/01/2023] Open
Abstract
Simple Summary Osteosarcoma (OS) is an aggressive, primary bone cancer. OS cells produce altered osteoid whose components participate in signaling correlated to the development of this cancer. Biglycan (BGN), a proteoglycan, is correlated to aggressive OS type and resistance to chemotherapy. A constitutive signaling of insulin-like growth factor receptor I (IGF-IR) signaling in sarcoma progression was established. We showed that biglycan binds IGF-IR resulting in prolonged IGF-IR activation, nuclear translocation, and growth response of the poorly-differentiated MG63 cells correlated to increased aggressiveness markers expression and enhanced chemoresistance. This mechanism is not valid in moderately and well-differentiated, biglycan non-expressing U-2OS and Saos-2 OS cells. Abstract Osteosarcoma (OS) is a mesenchymally derived, aggressive bone cancer. OS cells produce an aberrant nonmineralized or partly mineralized extracellular matrix (ECM) whose components participate in signaling pathways connected to specific pathogenic phenotypes of this bone cancer. The expression of biglycan (BGN), a secreted small leucine-rich proteoglycan (SLRP), is correlated to aggressive OS phenotype and resistance to chemotherapy. A constitutive signaling of IGF-IR signaling input in sarcoma progression has been established. Here, we show that biglycan activates the IGF-IR signaling pathway to promote MG63 biglycan-secreting OS cell growth by forming a complex with the receptor. Computational models of IGF-IR and biglycan docking suggest that biglycan binds IGF-IR dimer via its concave surface. Our binding free energy calculations indicate the formation of a stable complex. Biglycan binding results in prolonged IGF-IR activation leading to protracted IGF-IR-dependent cell growth response of the poorly-differentiated MG63 cells. Moreover, biglycan facilitates the internalization (p ≤ 0.01, p ≤ 0.001) and sumoylation-enhanced nuclear translocation of IGF-IR (p ≤ 0.05) and its DNA binding in MG63 cells (p ≤ 0.001). The tyrosine kinase activity of the receptor mediates this mechanism. Furthermore, biglycan downregulates the expression of the tumor-suppressor gene, PTEN (p ≤ 0.01), and increases the expression of endothelial–mesenchymal transition (EMT) and aggressiveness markers vimentin (p ≤ 0.01) and fibronectin (p ≤ 0.01) in MG63 cells. Interestingly, this mechanism is not valid in moderately and well-differentiated, biglycan non-expressing U-2OS and Saos-2 OS cells. Furthermore, biglycan exhibits protective effects against the chemotherapeutic drug, doxorubicin, in MG63 OS cells (p ≤ 0.01). In conclusion, these data indicate a potential direct and adjunct therapeutical role of biglycan in osteosarcoma.
Collapse
|
3
|
Cui J, Dean D, Hornicek FJ, Chen Z, Duan Z. The role of extracelluar matrix in osteosarcoma progression and metastasis. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2020; 39:178. [PMID: 32887645 PMCID: PMC7650219 DOI: 10.1186/s13046-020-01685-w] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Accepted: 08/20/2020] [Indexed: 02/07/2023]
Abstract
Osteosarcoma (OS) is the most common primary bone malignancy and responsible for considerable morbidity and mortality due to its high rates of pulmonary metastasis. Although neoadjuvant chemotherapy has improved 5-year survival rates for patients with localized OS from 20% to over 65%, outcomes for those with metastasis remain dismal. In addition, therapeutic regimens have not significantly improved patient outcomes over the past four decades, and metastases remains a primary cause of death and obstacle in curative therapy. These limitations in care have given rise to numerous works focused on mechanisms and novel targets of OS pathogenesis, including tumor niche factors. OS is notable for its hallmark production of rich extracellular matrix (ECM) of osteoid that goes beyond simple physiological growth support. The aberrant signaling and structural components of the ECM are rich promoters of OS development, and very recent works have shown the specific pathogenic phenotypes induced by these macromolecules. Here we summarize the current developments outlining how the ECM contributes to OS progression and metastasis with supporting mechanisms. We also illustrate the potential of tumorigenic ECM elements as prognostic biomarkers and therapeutic targets in the evolving clinical management of OS.
Collapse
Affiliation(s)
- Juncheng Cui
- Department of Orthopedic Surgery, The First Affiliated Hospital of University of South China, 69 Chuanshan Road, Hengyang, 421001, Hunan, China.,Department of Orthopedic Surgery, Sarcoma Biology Laboratory, David Geffen School of Medicine at UCLA, 615 Charles E. Young Dr. South, Los Angeles, CA, 90095, USA
| | - Dylan Dean
- Department of Orthopedic Surgery, Sarcoma Biology Laboratory, David Geffen School of Medicine at UCLA, 615 Charles E. Young Dr. South, Los Angeles, CA, 90095, USA
| | - Francis J Hornicek
- Department of Orthopedic Surgery, Sarcoma Biology Laboratory, David Geffen School of Medicine at UCLA, 615 Charles E. Young Dr. South, Los Angeles, CA, 90095, USA
| | - Zhiwei Chen
- Department of Orthopedic Surgery, The First Affiliated Hospital of University of South China, 69 Chuanshan Road, Hengyang, 421001, Hunan, China.
| | - Zhenfeng Duan
- Department of Orthopedic Surgery, Sarcoma Biology Laboratory, David Geffen School of Medicine at UCLA, 615 Charles E. Young Dr. South, Los Angeles, CA, 90095, USA.
| |
Collapse
|
4
|
Kiss J, Balla B, Kósa JP, Borsy A, Podani J, Takács I, Lazáry A, Nagy Z, Bácsi K, Kis A, Szlávy E, Szendroi M, Speer G, Orosz L, Lakatos P. Gene expression patterns in the bone tissue of women with fibrous dysplasia. Am J Med Genet A 2010; 152A:2211-20. [PMID: 20683988 DOI: 10.1002/ajmg.a.33559] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Fibrous dysplasia is an isolated skeletal disorder caused by a somatic activating mutation of GNAS gene with abnormal unmineralized matrix overproduction and extensive undifferentiated bone cell accumulation in the fibro-osseous lesions. The aim of our investigation was to identify genes that are differently expressed in fibrous versus non-fibrous human bone and to describe the relationships between these genes using multivariate data analysis. Six bone tissue samples from female patients with fibrous dysplastia (FD) and seven bone tissue samples from women without FD (non-FD) were examined. The expression differences of selected 118 genes were analyzed by the TaqMan probe-based quantitative real-time RT-PCR system. The Mann-Whitney U-test indicated marked differences in the expression of 22 genes between FD and non-FD individuals. Nine genes were upregulated in FD women compared to non-FD ones and 18 genes showed a downregulated pattern. These altered genes code for minor collagen molecules, extracellular matrix digesting enzymes, transcription factors, adhesion molecules, growth factors, pro-inflammatory cytokines, and lipid metabolism-affected substrates. Canonical variates analysis demonstrated that FD and non-FD bone tissues can be distinguished by the multiple expression profile analysis of numerous genes controlled via a G-protein coupled pathway and BMP cascade as well as genes coding for extracellular matrix composing molecules. The remarkable changed gene expression profile observed in the fibrous dysplastic human bone tissue may provide further insight into the pathogenetic process of fibrous degeneration of bone.
Collapse
Affiliation(s)
- János Kiss
- Department of Orthopaedics, Semmelweis University, Budapest, Hungary
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Brackenbury WJ, Djamgoz MBA. Nerve growth factor enhances voltage-gated Na+ channel activity and Transwell migration in Mat-LyLu rat prostate cancer cell line. J Cell Physiol 2007; 210:602-8. [PMID: 17149708 PMCID: PMC4123444 DOI: 10.1002/jcp.20846] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The highly dynamic nature of voltage-gated Na+ channel (VGSC) expression and its controlling mechanism(s) are not well understood. In this study, we investigated the possible involvement of nerve growth factor (NGF) in regulating VGSC activity in the strongly metastatic Mat-LyLu cell model of rat prostate cancer (PCa). NGF increased peak VGSC current density in a time- and dose-dependent manner. NGF also shifted voltage to peak and the half-activation voltage to more positive potentials, and produced currents with faster kinetics of activation; sensitivity to the VGSC blocker tetrodotoxin (TTX) was not affected. The NGF-induced increase in peak VGSC current density was suppressed by both the pan-trk antagonist K252a, and the protein kinase A (PKA) inhibitor KT5720. NGF did not affect the Nav1.7 mRNA level, but the total VGSC alpha-subunit protein level was upregulated. NGF potentiated the cells' migration in Transwell assays, and this was not affected by TTX. We concluded that NGF upregulated functional VGSC expression in Mat-LyLu cells, with PKA as a signaling intermediate, but enhancement of migration by NGF was independent of VGSC activity.
Collapse
Affiliation(s)
| | - Mustafa B. A. Djamgoz
- Correspondence to: Professor M. B. A. Djamgoz, Neuroscience Solutions to Cancer Research Group, Division of Cell and Molecular Biology, Sir Alexander Fleming Building, Imperial College London, South Kensington Campus, London SW7 2AZ, UK, Tel: (0) 207 594 5370, Fax: (0) 207 584 2056,
| |
Collapse
|
6
|
Brackenbury WJ, Djamgoz MBA. Activity-dependent regulation of voltage-gated Na+ channel expression in Mat-LyLu rat prostate cancer cell line. J Physiol 2006; 573:343-56. [PMID: 16543264 PMCID: PMC1779734 DOI: 10.1113/jphysiol.2006.106906] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
We have shown previously that voltage-gated Na(+) channels (VGSCs) are up-regulated in human metastatic disease (prostate, breast and small-cell lung cancers), and that VGSC activity potentiates metastatic cell behaviours. However, the mechanism(s) regulating functional VGSC expression in cancer cells remains unknown. We investigated the possibility of activity-dependent (auto)regulation of VGSC functional expression in the strongly metastatic Mat-LyLu model of rat prostate cancer. Pretreatment with tetrodotoxin (TTX) for 24-72 h subsequently suppressed peak VGSC current density without affecting voltage dependence. The hypothesis was tested that the VGSC auto-regulation occurred via VGSC-mediated Na(+) influx and subsequent activation of protein kinase A (PKA). Indeed, TTX pretreatment reduced the level of phosphorylated PKA, and the PKA inhibitor KT5720 decreased, whilst the adenylate cyclase activator forskolin and the Na(+) ionophore monensin both increased the peak VGSC current density. TTX reduced the mRNA level of Nav1.7, predominant in these cells, and VGSC protein expression at the plasma membrane, although the total VGSC protein level remained unchanged. TTX pretreatment eliminated the VGSC-dependent component of the cells' migration in Transwell assays. We concluded that the VGSC activity in Mat-LyLu rat prostate cancer cells was up-regulated in steady-state via a positive feedback mechanism involving PKA, and this enhanced the cells' migratory potential.
Collapse
Affiliation(s)
- William J Brackenbury
- Neuroscience Solutions to Cancer Research Group, Division of Cell and Molecular Biology, Sir Alexander Fleming Building, Imperial College London, South Kensington Campus, London SW7 2AZ, UK
| | | |
Collapse
|
7
|
Schick BP, Petrushina I, Brodbeck KC, Castronuevo P. Promoter regulatory elements and DNase I-hypersensitive sites involved in serglycin proteoglycan gene expression in human erythroleukemia, CHRF 288-11, and HL-60 cells. J Biol Chem 2001; 276:24726-35. [PMID: 11333275 DOI: 10.1074/jbc.m102958200] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have compared regulation of the serglycin gene in human erythroleukemia (HEL) and CHRF 288-11 cells, which have megakaryocytic characteristics, with promyelocytic HL-60 cells. Deletion constructs were prepared from the region -1123/+42 to -20/+42, and putative regulatory sites were mutated. In all three cell lines, the two major regulatory elements for constitutive expression were the (-80)ets site and the cyclic AMP response element (CRE) half-site at -70. A protein from HEL and CHRF, but not HL60, nuclear extracts bound to the (-80)ets site. Another protein from all three cell lines bound to the (-70)CRE. Phorbol 12-myristate 13-acetate (PMA) and dibutyryl cyclic AMP (dbcAMP) increased expression of the reporter in HEL cells 2.5-3- and 4.5-fold, respectively, from all constructs except those with (-70)CRE mutations. PMA virtually eliminated expression of serglycin mRNA and promoter constructs, but dbcAMP increased expression in HL-60 cells. The effects of PMA and dbcAMP on promoter expression correlated with mRNA expression. The strengths of two DNase I-hypersensitive sites in the 5'-flanking region and the first intron in all three cells correlated with relative endogenous serglycin mRNA expression. An additional DNase I-hypersensitive site in HL60 DNA in the first intron may be related to the high serglycin expression in HL60 relative to HEL or CHRF cells.
Collapse
Affiliation(s)
- B P Schick
- Cardeza Foundation for Hematologic Research, Jefferson Medical College of Thomas Jefferson University, 1015 Walnut Street, Philadelphia, PA 19107, USA.
| | | | | | | |
Collapse
|
8
|
Ungefroren H, Gellersen B, Krull NB, Kalthoff H. Biglycan gene expression in the human leiomyosarcoma cell line SK-UT-1. Basal and protein kinase A-induced transcription involves binding of Sp1-like/Sp3 proteins in the proximal promoter region. J Biol Chem 1998; 273:29230-40. [PMID: 9786935 DOI: 10.1074/jbc.273.44.29230] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
In this study we demonstrate that the gene encoding the small leucine-rich proteoglycan biglycan is expressed in human myometrial tissue and in the human leiomyosarcoma cell line SK-UT-1. Treatment of SK-UT-1 cells with forskolin or 8-bromo-cAMP strongly increased biglycan mRNA and this effect was transcriptional as shown by transient transfection experiments with biglycan promoter-luciferase reporter fusion genes. The cAMP-mediated induction of the transfected biglycan promoter in SK-UT-1 cells was abolished by coexpression of a specific protein kinase A inhibitor, and was mimicked by overexpression of the catalytic subunit (Cbeta) of protein kinase A. By 5' deletion analysis, part of the cAMP response was localized to the segment from residues -78 to -46 of the biglycan promoter. This region conferred strong cAMP responsiveness to a heterologous promoter. Electrophoretic mobility shift and antibody supershift assays identified two specific complexes that contained nuclear proteins antigenically related to the ubiquitous transcription factors Sp1 and Sp3, respectively. The binding site of these proteins was mapped to a CT-rich sequence extending from -59 to -49 in the biglycan promoter. Mutating this sequence eliminated complex formation and markedly reduced basal and cAMP-dependent promoter activity of transfected reporter genes. In vitro binding studies using recombinant Sp1 revealed that the nuclear factor binding to the CT element was not Sp1 but a Sp1-like protein(s). Western blot analysis of SK-UT-1 nuclear proteins confirmed expression of Sp3, Sp1 and nuclear proteins that crossreacted with Sp1 antibody but according to their molecular weight were not Sp1. These results indicate that all cAMP-dependent as well as some basal biglycan transcription in SK-UT-1 cells is mediated through activated protein kinase A and that both functions are conferred at the promoter level through the interaction of Sp1-like/Sp3 factors with the CT element at -59 in the biglycan promoter.
Collapse
Affiliation(s)
- H Ungefroren
- Research Unit Molecular Oncology, Clinic for General Surgery and Thoracic Surgery, Christian-Albrechts University, 24105 Kiel, Germany.
| | | | | | | |
Collapse
|
9
|
Abstract
The proteoglycan superfamily now contains more than 30 full-time molecules that fulfill a variety of biological functions. Proteoglycans act as tissue organizers, influence cell growth and the maturation of specialized tissues, play a role as biological filters and modulate growth-factor activities, regulate collagen fibrillogenesis and skin tensile strength, affect tumor cell growth and invasion, and influence corneal transparency and neurite outgrowth. Additional roles, derived from studies of mutant animals, indicate that certain proteoglycans are essential to life whereas others might be redundant. The review focuses on the most recent genetic and molecular biological studies of the matrix proteoglycans, broadly defined as proteoglycans secreted into the pericellular matrix. Special emphasis is placed on the molecular organization of the protein core, the utilization of protein modules, the gene structure and transcriptional control, and the functional roles of the various proteoglycans. When possible, proteoglycans have been grouped into distinct gene families and subfamilies offering a simplified nomenclature based on their protein core design. The structure-function relationship of some paradigmatic proteoglycans is discussed in depth and novel aspects of their biology are examined.
Collapse
Affiliation(s)
- R V Iozzo
- Department of Pathology, Anatomy and Cell Biology, Jefferson Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania 19107-6799, USA.
| |
Collapse
|