1
|
Malki Y, Martinez J, Masurier N. 1,3-Diazepine: A privileged scaffold in medicinal chemistry. Med Res Rev 2021; 41:2247-2315. [PMID: 33645848 DOI: 10.1002/med.21795] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 01/20/2021] [Accepted: 02/17/2021] [Indexed: 12/19/2022]
Abstract
Privileged structures have been widely used as effective templates for drug discovery. While benzo-1,4-diazepine constitutes the first historical example of such a structure, the 1,3 analogue is just as rich in terms of applications in medicinal chemistry. The 1,3-diazepine moiety is present in numerous biological active compounds including natural products, and is used to design compounds displaying a large range of biological activities. It is present in the clinically used anticancer compound pentostatin, in several recent FDA approved β-lactamase inhibitors (e.g., avibactam) and also in coformycin, a natural product known as a ring-expanded purine analogue displaying antiviral and anticancer activities. Several other 1,3-diazepine containing compounds have entered into clinical trials. This heterocyclic structure has been and is still widely used in medicinal chemistry to design enzyme inhibitors, GPCR ligands, and so forth. This review endeavours to highlight the main use of the 1,3-diazepine scaffold and its derivatives, and their applications in medicinal chemistry, drug design, and therapy. We will focus more particularly on the development of enzyme inhibitors incorporating this scaffold, with a strong emphasis on the molecular interactions involved in the inhibition mechanism.
Collapse
Affiliation(s)
- Yohan Malki
- IBMM, Université de Montpellier, CNRS, ENSCM, Montpellier, France
| | - Jean Martinez
- IBMM, Université de Montpellier, CNRS, ENSCM, Montpellier, France
| | - Nicolas Masurier
- IBMM, Université de Montpellier, CNRS, ENSCM, Montpellier, France
| |
Collapse
|
2
|
Kutryb-Zajac B, Mierzejewska P, Slominska EM, Smolenski RT. Therapeutic Perspectives of Adenosine Deaminase Inhibition in Cardiovascular Diseases. Molecules 2020; 25:molecules25204652. [PMID: 33053898 PMCID: PMC7587364 DOI: 10.3390/molecules25204652] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 10/02/2020] [Accepted: 10/07/2020] [Indexed: 02/06/2023] Open
Abstract
Adenosine deaminase (ADA) is an enzyme of purine metabolism that irreversibly converts adenosine to inosine or 2'deoxyadenosine to 2'deoxyinosine. ADA is active both inside the cell and on the cell surface where it was found to interact with membrane proteins, such as CD26 and adenosine receptors, forming ecto-ADA (eADA). In addition to adenosine uptake, the activity of eADA is an essential mechanism that terminates adenosine signaling. This is particularly important in cardiovascular system, where adenosine protects against endothelial dysfunction, vascular inflammation, or thrombosis. Besides enzymatic function, ADA protein mediates cell-to-cell interactions involved in lymphocyte co-stimulation or endothelial activation. Furthermore, alteration in ADA activity was demonstrated in many cardiovascular pathologies such as atherosclerosis, myocardial ischemia-reperfusion injury, hypertension, thrombosis, or diabetes. Modulation of ADA activity could be an important therapeutic target. This work provides a systematic review of ADA activity and anchoring inhibitors as well as summarizes the perspectives of their therapeutic use in cardiovascular pathologies associated with increased activity of ADA.
Collapse
Affiliation(s)
- Barbara Kutryb-Zajac
- Correspondence: (B.K.-Z); (R.T.S.); Tel.: +48-58-349-14-64 (B.K.-Z.); +48-58-349-14-60 (R.T.S.)
| | | | | | - Ryszard T. Smolenski
- Correspondence: (B.K.-Z); (R.T.S.); Tel.: +48-58-349-14-64 (B.K.-Z.); +48-58-349-14-60 (R.T.S.)
| |
Collapse
|
3
|
D'Errico S, Oliviero G, Amato J, Borbone N, Cerullo V, Hemminki A, Piccialli V, Zaccaria S, Mayol L, Piccialli G. Synthesis and biological evaluation of unprecedented ring-expanded nucleosides (RENs) containing the imidazo[4,5-d][1,2,6]oxadiazepine ring system. Chem Commun (Camb) 2012; 48:9310-2. [PMID: 22874871 DOI: 10.1039/c2cc33511e] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
A small collection of ring-expanded nucleosides (RENs), containing the unprecedented bis-alkylated imidazo[4,5-d][1,2,6]oxadiazepine heterocyclic ring system, has been synthesized through a new general approach. Results of preliminary cytotoxicity tests on breast (MCF-7) and lung (A549) cancer cell lines are also reported.
Collapse
Affiliation(s)
- Stefano D'Errico
- Dipartimento di Chimica delle Sostanze Naturali, Università degli Studi di Napoli Federico II, Via D. Montesano 49, 80131, Napoli, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Zhao H, Donnelly AC, Kusuma BR, Brandt GEL, Brown D, Rajewski RA, Vielhauer G, Holzbeierlein J, Cohen MS, Blagg BSJ. Engineering an antibiotic to fight cancer: optimization of the novobiocin scaffold to produce anti-proliferative agents. J Med Chem 2011; 54:3839-53. [PMID: 21553822 DOI: 10.1021/jm200148p] [Citation(s) in RCA: 141] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Development of the DNA gyrase inhibitor, novobiocin, into a selective Hsp90 inhibitor was accomplished through structural modifications to the amide side chain, coumarin ring, and sugar moiety. These species exhibit ∼700-fold improved anti-proliferative activity versus the natural product as evaluated by cellular efficacies against breast, colon, prostate, lung, and other cancer cell lines. Utilization of structure-activity relationships established for three novobiocin synthons produced optimized scaffolds, which manifest midnanomolar activity against a panel of cancer cell lines and serve as lead compounds that manifest their activities through Hsp90 inhibition.
Collapse
Affiliation(s)
- Huiping Zhao
- Department of Medicinal Chemistry, The University of Kansas, Lawrence, KS 66045-7563, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Gillerman I, Fischer B. Investigations into the origin of the molecular recognition of several adenosine deaminase inhibitors. J Med Chem 2010; 54:107-21. [PMID: 21138280 DOI: 10.1021/jm101286g] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Inhibitors of adenosine deaminase (ADA, EC 3.5.4.4) are potential therapeutic agents for the treatment of various health disorders. Several highly potent inhibitors were previously identified, yet they exhibit unacceptable toxicities. We performed a SAR study involving a series of C2 or C8 substituted purine-riboside analogues with a view to discover less potent inhibitors with a lesser toxicity. We found that any substitution at C8 position of nebularine resulted in total loss of activity toward calf intestinal ADA. However, several 2-substituted-adenosine, 8-aza-adenosine, and nebularine analogues exhibited inhibitory activity. Specifically, 2-Cl-purine riboside, 8-aza-2-thiohexyl adenosine, 2-thiohexyl adenosine, and 2-MeS-purine riboside were found to be competitive inhibitors of ADA with K(i) values of 25, 22, 6, and 3 μM, respectively. We concluded that electronic parameters are not major recognition determinants of ADA but rather steric parameters. A C2 substituent which fits ADA hydrophobic pocket and improves H-bonding with the enzyme makes a good inhibitor. In addition, a gg rotamer about C4'-C5' bond is apparently an important recognition determinant.
Collapse
Affiliation(s)
- Irina Gillerman
- Department of Chemistry, Gonda-Goldschmied Medical Research Center, Bar-Ilan University, Ramat-Gan, Israel
| | | |
Collapse
|
6
|
Hosmane RS. Chapter 2: Ring-Expanded (‘Fat‘) Purines and their Nucleoside/Nucleotide Analogues as Broad-Spectrum Therapeutics. PROGRESS IN HETEROCYCLIC CHEMISTRY 2009; 21. [PMCID: PMC7147839 DOI: 10.1016/s0959-6380(09)70029-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
This chapter describes a family of ring-expanded purines, informally referred to as “fat” or f-purines, as well as their nucleoside/nucleotide analogues (RENs/RENTs) that have broad applications in chemistry, biology, and medicine. Although purine itself has never been found in nature, substituted purines, such as adenine and guanine, or their respective nucleoside derivatives, adenosine and guanosine, are the most ubiquitous class of nitrogen heterocycles and play crucial roles in wide variety of functions of living beings As nucleotides (AMP,GMP), they are the building blocks of nucleic acids (RNA/DNA). They serve as energy cofactors (ATP, GTP), as part of coenzymes (NAD/FAD) in oxidation-reduction reactions, as important second messengers in many intracellular signal transduction processes (cAMP/cGMP), or as direct neurotransmitters by binding to purinergic receptors (adenosine receptors). Therefore, it is not surprising that the analogues of purines have found utility both as chemotherapeutics (antiviral, antibiotic, and anticancer agents) and pharmacodynamic entities (the regulation of myocardial oxygen consumption and cardiac blood flow). While they can act as substrates or the inhibitors of the enzymes of purine metabolism to render their chemotherapeutic action, their ability to act as agonists or antagonists of A1/A2A receptors is the basis for the modulation of pharmacodynamic property.
Collapse
|
7
|
Ujjinamatada RK, Phatak P, Burger AM, Hosmane RS. Inhibition of Adenosine Deaminase by Analogues of Adenosine and Inosine, Incorporating a Common Heterocyclic Base, 4(7)-Amino-6(5)H-imidazo[4,5-d]pyridazin-7(4)one. J Med Chem 2008; 51:694-8. [DOI: 10.1021/jm700931t] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Ravi K. Ujjinamatada
- Laboratory for Drug Design and Synthesis, Department of Chemistry and Biochemistry, University of Maryland, Baltimore County, 1000 Hilltop Circle, Baltimore, Maryland 21250, and Marlene and Stewart Greenbaum Cancer Center, Experimental Therapeutics Program, University of Maryland School of Medicine, 655 West Baltimore Street, Baltimore, Maryland 21201
| | - Pornima Phatak
- Laboratory for Drug Design and Synthesis, Department of Chemistry and Biochemistry, University of Maryland, Baltimore County, 1000 Hilltop Circle, Baltimore, Maryland 21250, and Marlene and Stewart Greenbaum Cancer Center, Experimental Therapeutics Program, University of Maryland School of Medicine, 655 West Baltimore Street, Baltimore, Maryland 21201
| | - Angelika M. Burger
- Laboratory for Drug Design and Synthesis, Department of Chemistry and Biochemistry, University of Maryland, Baltimore County, 1000 Hilltop Circle, Baltimore, Maryland 21250, and Marlene and Stewart Greenbaum Cancer Center, Experimental Therapeutics Program, University of Maryland School of Medicine, 655 West Baltimore Street, Baltimore, Maryland 21201
| | - Ramachandra S. Hosmane
- Laboratory for Drug Design and Synthesis, Department of Chemistry and Biochemistry, University of Maryland, Baltimore County, 1000 Hilltop Circle, Baltimore, Maryland 21250, and Marlene and Stewart Greenbaum Cancer Center, Experimental Therapeutics Program, University of Maryland School of Medicine, 655 West Baltimore Street, Baltimore, Maryland 21201
| |
Collapse
|
8
|
Ujjinamatada RK, Bhan A, Hosmane RS. Design of inhibitors against guanase: Synthesis and biochemical evaluation of analogues of azepinomycin. Bioorg Med Chem Lett 2006; 16:5551-4. [PMID: 16920357 DOI: 10.1016/j.bmcl.2006.08.033] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2006] [Revised: 08/04/2006] [Accepted: 08/07/2006] [Indexed: 10/24/2022]
Abstract
As part of a program to design rational, mechanism-based inhibitors of guanase, we report here the synthesis and biochemical screening of two analogues of azepinomycin (1 and 2), a naturally occurring inhibitor of guanase, known to mimic the transition-state of the enzyme-catalyzed reaction. Our biochemical results show that compounds 1 and 2 are competitive inhibitors with K(i) of 2.01+/-0.16 x 10(-5) and 5.36+/-0.14 x 10(-5) M, respectively.
Collapse
Affiliation(s)
- Ravi K Ujjinamatada
- Laboratory for Drug Design and Synthesis, Department of Chemistry and Biochemistry, University of Maryland, Baltimore County, 1000 Hilltop Circle, Baltimore, MD 21250, USA
| | | | | |
Collapse
|
9
|
Reayi A, Hosmane RS. Inhibitors of adenosine deaminase: continued studies of structure-activity relationships in analogues of coformycin. NUCLEOSIDES NUCLEOTIDES & NUCLEIC ACIDS 2004; 23:263-71. [PMID: 15043152 DOI: 10.1081/ncn-120027833] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Synthesis and adenosine deaminase (ADA) inhibitory activity of two analogues of coformycin, containing the imidazo[4,5-e][1,2,4]triazepine ring system, have been reported as part of the structure-activity relationship (SAR) studies to explore the factors responsible for the extremely tight-binding characteristics of coformycins to ADA.
Collapse
Affiliation(s)
- Ayub Reayi
- Laboratory for Drug Design and Synthesis, Department of Chemistry and Biochemistry, University of Maryland, Baltimore County, Baltimore, Maryland 21250, USA
| | | |
Collapse
|
10
|
Imidazole-4-carboxamide derivatives as inhibitors of adenosine deaminase. Expert Opin Ther Pat 2004. [DOI: 10.1517/13543776.14.4.573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
11
|
Reayi A, Hosmane RS. Inhibition of Adenosine Deaminase by Novel 5:7 Fused Heterocycles Containing the Imidazo[4,5-e][1,2,4]triazepine Ring System: A Structure−Activity Relationship Study. J Med Chem 2004; 47:1044-50. [PMID: 14761206 DOI: 10.1021/jm0304257] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
As part of a program to explore structure-activity relationships for the extremely tight binding inhibition characteristics of coformycins to adenosine deaminase, a series of analogues (1a-1h) containing the imidazo[4,5-e][1,2,4]triazepine ring system has been synthesized and screened in vitro against a mammalian adenosine deaminase for inhibitory activity. While compounds 1a and 1b were synthesized in five steps starting from 4-nitroimidazole, others were derived from 1a through simple exchange reactions with the appropriate alcohols. The observed kinetics profiles and K(i) values suggest that the target compounds are competitive inhibitors that bind 6-9 orders of magnitude less tightly to the enzyme. Compounds 1c and 1d were the most active in the series with K(i)'s ranging from 12 to 15 microM.
Collapse
Affiliation(s)
- Ayub Reayi
- Laboratory for Drug Design and Synthesis, Department of Chemistry and Biochemistry, University of Maryland, Baltimore County, 1000 Hilltop Circle, Baltimore, Maryland 21250, USA
| | | |
Collapse
|
12
|
Burnett FN, Hosmane RS. Synthesis of a novel ring-expanded purine analogue containing a 5:8-fused imidazo[4,5-e][1,2,4]triazocine ring system amidst opportunistic rearrangements and ring transformations. Tetrahedron 2002. [DOI: 10.1016/s0040-4020(02)01252-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
13
|
Gill JK, Wang L, Bretner M, Newman R, Kyprianou N, Hosmane RS. Potent in vitro anticancer activities of ring-expanded ("fat") nucleosides containing the imidazo[4,5-e][1,3]diazepine ring system. NUCLEOSIDES, NUCLEOTIDES & NUCLEIC ACIDS 2001; 20:1043-5. [PMID: 11562954 DOI: 10.1081/ncn-100002487] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The ring-expanded ("fat") nucleoside, 4,8-diamino-6-imino-6H-1-beta-D-ribofuranosylimidazo[4,5-e][1,3]diazepine (1) and its 2',3',5'-tri-O-benzoyl derivative (2) exhibited potent broad spectrum anticancer activities in vitro against a wide variety of human tumor cell lines. The tribenzoyl derivative 2 was found to be considerably more active than the parent nucleoside 1. Further studies using human prostate cancer cells PC-3 and DU-145 suggest that the treatment of exponentially growing culture cells with 1 and 2 leads to marked loss of cell viability in a dose-dependent manner.
Collapse
Affiliation(s)
- J K Gill
- Laboratory for Drug Design and Synthesis, Department of Chemistry & Biochemistry, University of Maryland, Baltimore County, 1000 Hilltop Circle, Baltimore, Maryland, USA
| | | | | | | | | | | |
Collapse
|
14
|
Cristalli G, Costanzi S, Lambertucci C, Lupidi G, Vittori S, Volpini R, Camaioni E. Adenosine deaminase: functional implications and different classes of inhibitors. Med Res Rev 2001; 21:105-28. [PMID: 11223861 DOI: 10.1002/1098-1128(200103)21:2<105::aid-med1002>3.0.co;2-u] [Citation(s) in RCA: 227] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Adenosine deaminase (ADA) is an enzyme of the purine metabolism which catalyzes the irreversible deamination of adenosine and deoxyadenosine to inosine and deoxyinosine, respectively. This ubiquitous enzyme has been found in a wide variety of microorganisms, plants, and invertebrates. In addition, it is present in all mammalian cells that play a central role in the differentiation and maturation of the lymphoid system. However, despite a number of studies performed to date, the physiological role played by ADA in the different tissues is not clear. Inherited ADA deficiency causes severe combined immunodeficiency disease (ADA-SCID), in which both B-cell and T-cell development is impaired. ADA-SCID has been the first disorder to be treated by gene therapy, using polyethylene glycol-modified bovine ADA (PEG-ADA). Conversely, there are several diseases in which the level of ADA is above normal. A number of ADA inhibitors have been designed and synthesized, classified as ground-state and transition-state inhibitors. They may be used to mimic the genetic deficiency of the enzyme, in lymphoproliferative disorders or immunosuppressive therapy (i.e., in graft rejection), to potentiate the effect of antileukemic or antiviral nucleosides, and, together with adenosine kinase, to reduce breakdown of adenosine in inflammation, hypertension, and ischemic injury.
Collapse
Affiliation(s)
- G Cristalli
- Dipartimento di Scienze Chimiche, Università di Camerino, Via S. Agostino 1, 62032 Camerino, Italy.
| | | | | | | | | | | | | |
Collapse
|
15
|
Bretner M, Beckett TD, Sood RK, Baldisseri DM, Hosmane RS. Substrate/inhibition studies of bacteriophage T7 RNA polymerase with the 5'-triphosphate derivative of a ring-expanded ('fat') nucleoside possessing potent antiviral and anticancer activities. Bioorg Med Chem 1999; 7:2931-6. [PMID: 10658598 DOI: 10.1016/s0968-0896(99)00235-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
As part of an effort to explore the mechanism of potent, broad spectrum antiviral and anticancer activities of a number of ring-expanded ('fat') nucleosides that we recently reported, a representative 'fat' nucleoside 4,6-diamino-8-imino-8H-1-beta-D-ribofuranosylimidazo[4,5-e][1,3]di azepine (1) was converted to its 5'-triphosphate derivative (2), and biochemically screened for possible inhibition of nucleic acid polymerase activity, employing synthetic DNA templates and the bacteriophage T7 RNA polymerase as a representative polymerase. Our results suggest that 2 is a moderate inhibitor of T7 RNA polymerase, and that the 5'-triphosphate moiety of 2 appears to be essential for inhibition as nucleoside 1 alone failed to inhibit the polymerase reaction.
Collapse
Affiliation(s)
- M Bretner
- Department of Chemistry and Biochemistry, University of Maryland, Baltimore County, Baltimore 21250, USA
| | | | | | | | | |
Collapse
|
16
|
Rajappan V, Hosmane RS. Synthesis and guanase inhibition studies of a novel ring-expanded purine analogue containing a 5:7-fused, planar, aromatic heterocyclic ring system. Bioorg Med Chem Lett 1998; 8:3649-52. [PMID: 9934488 DOI: 10.1016/s0960-894x(98)00672-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The synthesis of a novel planar, potentially aromatic, ring-expanded xanthine analogue (1), containing the 5:7-fused imidazo[4,5-e][1,4]diazepine ring system, along with guanase inhibition studies are reported. The compound was synthesized in six steps, starting from 1-benzyl-5-nitroimidazole-4-carboxylic acid (2), and was biochemically screened against rabbit liver guanase. Compound 1 is a moderate competitive inhibitor of the enzyme with a Ki of 2.27 +/- 0.66 x 10(-4) M.
Collapse
Affiliation(s)
- V Rajappan
- Department of Chemistry & Biochemistry University of Maryland, Baltimore County (UMBC) 21250, USA
| | | |
Collapse
|