1
|
Komuro M, Mizugaki H, Nagane M, Morimoto M, Fukuyama T, Ogihara K, Naya Y, Yokomori E, Kaneshima K, Kawakami Y, Kamiie J, Shibata Y, Suzuki M, Shimizu T, Kawashima N, Okamoto M, Ikeda T, Yamashita T. Ganglioside GM3 deficiency enhances mast cell sensitivity. FEBS J 2023; 290:4268-4280. [PMID: 37098812 DOI: 10.1111/febs.16806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 03/30/2023] [Accepted: 04/25/2023] [Indexed: 04/27/2023]
Abstract
Mast cells are a significant source of cytokines and chemokines that play a role in pathological processes. Gangliosides, which are complex lipids with a sugar chain, are present in all eukaryotic cell membranes and comprise lipid rafts. Ganglioside GM3, the first ganglioside in the synthetic pathway, is a common precursor of the specifying derivatives and is well known for its various functions in biosystems. Mast cells contain high levels of gangliosides; however, the involvement of GM3 in mast cell sensitivity is unclear. Therefore, in this study, we elucidated the role of ganglioside GM3 in mast cells and skin inflammation. GM3 synthase (GM3S)-deficient mast cells showed cytosolic granule topological changes and hyperactivation upon IgE-DNP stimulation without affecting proliferation and differentiation. Additionally, inflammatory cytokine levels increased in GM3S-deficient bone marrow-derived mast cells (BMMC). Furthermore, GM3S-KO mice and GM3S-KO BMMC transplantation showed increased skin allergic reactions. Besides mast cell hypersensitivity caused by GM3S deficiency, membrane integrity decreased and GM3 supplementation rescued this loss of membrane integrity. Additionally, GM3S deficiency increased the phosphorylation of p38 mitogen-activated protein kinase. These results suggest that GM3 increases membrane integrity, leading to the suppression of the p38 signalling pathway in BMMC and contributing to skin allergic reaction.
Collapse
Affiliation(s)
- Mariko Komuro
- School of Veterinary Medicine, Azabu University, Sagamihara, Japan
| | - Hinano Mizugaki
- School of Veterinary Medicine, Azabu University, Sagamihara, Japan
| | - Masaki Nagane
- School of Veterinary Medicine, Azabu University, Sagamihara, Japan
- Center for Human and Animal Symbiosis Science, Azabu University, Sagamihara, Japan
| | - Misako Morimoto
- School of Veterinary Medicine, Azabu University, Sagamihara, Japan
| | - Tomoki Fukuyama
- School of Veterinary Medicine, Azabu University, Sagamihara, Japan
| | - Kikumi Ogihara
- School of Life and Environmental Science, Azabu University, Sagamihara, Japan
| | - Yuko Naya
- School of Life and Environmental Science, Azabu University, Sagamihara, Japan
| | - Emi Yokomori
- School of Veterinary Medicine, Azabu University, Sagamihara, Japan
| | - Kimika Kaneshima
- School of Life and Environmental Science, Azabu University, Sagamihara, Japan
| | - Yasushi Kawakami
- School of Life and Environmental Science, Azabu University, Sagamihara, Japan
| | - Junichi Kamiie
- School of Veterinary Medicine, Azabu University, Sagamihara, Japan
| | - Yuki Shibata
- School of Veterinary Medicine, Azabu University, Sagamihara, Japan
| | - Mira Suzuki
- School of Veterinary Medicine, Azabu University, Sagamihara, Japan
| | - Takuto Shimizu
- School of Veterinary Medicine, Azabu University, Sagamihara, Japan
| | - Nagako Kawashima
- Department of Nephrology, Kitasato University School of Medicine, Sagamihara, Japan
| | - Mariko Okamoto
- School of Veterinary Medicine, Azabu University, Sagamihara, Japan
| | - Teruo Ikeda
- School of Veterinary Medicine, Azabu University, Sagamihara, Japan
| | | |
Collapse
|
2
|
Shimizu T, Nagane M, Suzuki M, Yamauchi A, Kato K, Kawashima N, Nemoto Y, Maruo T, Kawakami Y, Yamashita T. Tumor hypoxia regulates ganglioside GM3 synthase, which contributes to oxidative stress resistance in malignant melanoma. Biochim Biophys Acta Gen Subj 2020; 1864:129723. [PMID: 32861756 DOI: 10.1016/j.bbagen.2020.129723] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 08/24/2020] [Accepted: 08/25/2020] [Indexed: 11/16/2022]
Abstract
BACKGROUND Tumor hypoxia drastically changes cancer phenotypes, including angiogenesis, invasion, and cell death. Gangliosides are sialic acid-containing glycosphingolipids that are ubiquitously distributed on plasma membranes and are involved in many biological processes, such as the endoplasmic reticulum stress response and apoptosis. In this study, we investigated the regulation and function of glycosphingolipids, which associate with lipid raft on mammalian plasma membranes under hypoxic condition. METHODS B16F10 melanoma cells were subjected to chemical hypoxia and low pO2 condition, and the effect of hypoxia on expression of GM3 synthase were analyzed. Cellular resistance to oxidative stress was analyzed in GM3S-KO B16F10 cells. RESULTS Hypoxia treatment decreased the expression of ganglioside GM3 synthase (GM3S; ST3GAL5), which synthesizes the common substrate of ganglioside biosynthesis. RNA interference of hypoxia inducible factor 1 subunit alpha (HIF-1α) inhibited hypoxia-induced GM3S suppression. Additionally, GM3S deficiency increased cellular resistance to oxidative stress and radiation therapy via upregulation of ERK. CONCLUSIONS Altered synthesis of glycosphingolipids downstream of HIF-1α signaling increased the resistance of melanoma cells to oxidative stress. Furthermore, GM3 has important role on cellular adaptive response to hypoxia. GENERAL SIGNIFICANCE This study indicates that tumor hypoxia regulates therapy-resistance via modulation of ganglioside synthesis.
Collapse
Affiliation(s)
- Takuto Shimizu
- Laboratory of Biochemistry, School of Veterinary Medicine, Azabu University, Japan
| | - Masaki Nagane
- Laboratory of Biochemistry, School of Veterinary Medicine, Azabu University, Japan
| | - Mira Suzuki
- Laboratory of Biochemistry, School of Veterinary Medicine, Azabu University, Japan
| | - Akinori Yamauchi
- Laboratory of Biochemistry, School of Veterinary Medicine, Azabu University, Japan
| | - Kazuhiro Kato
- Laboratory of Biochemistry, School of Veterinary Medicine, Azabu University, Japan
| | - Nagako Kawashima
- Department of Nephrology, Kitasato University School of Medicine, Japan
| | - Yuki Nemoto
- Teaching Animal Hospital, Azabu University, Japan
| | - Takuya Maruo
- Teaching Animal Hospital, Azabu University, Japan
| | - Yasushi Kawakami
- Department of Life and Environmental Sciences, Azabu University, Japan
| | - Tadashi Yamashita
- Laboratory of Biochemistry, School of Veterinary Medicine, Azabu University, Japan.
| |
Collapse
|
3
|
Zheng C, Huang R, Bavaro T, Terreni M, Sollogoub M, Xu J, Zhang Y. Design, synthesis and biological evaluation of new ganglioside GM3 analogues as potential agents for cancer therapy. Eur J Med Chem 2020; 189:112065. [PMID: 31978783 DOI: 10.1016/j.ejmech.2020.112065] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 01/10/2020] [Accepted: 01/11/2020] [Indexed: 11/30/2022]
Abstract
Ganglioside GM3 is well known as a tumor-associated carbohydrate antigen on several types of tumors. Many studies have demonstrated that GM3 plays roles in cells proliferation, adhesion, motility and differentiation, which is involved in the process of cancer development. In the present study, we developed methods to synthesize GM3 analogues conveniently. By enzymatic hydrolysis and chemical procedures, two novel analogues and two known analogues were synthesized, containing lactose and glucosamine. Then anti-proliferation and anti-migration activities were evaluated by cytotoxicity assays and wound healing tests, and the data demonstrated that these analogues exhibited anticancer activities. Based on our previous studies, the structure-activity relationships were discussed. This study could provide valuable sight to find new antitumor agents for cancer therapy.
Collapse
Affiliation(s)
- Changping Zheng
- Sorbonne Université, CNRS, IPCM, UMR 8232, 4 place Jussieu, 75005, Paris, France
| | - Ruyi Huang
- School of Pharmacy, Fuijan Provincial Key Laboratory of Natural Medicine Pharmacology, Fujian Medical University, Fuzhou, Fujian, 350122, China
| | - Teodora Bavaro
- Drug Sciences Department, University of Pavia, Viale Taramelli 12, 27100, Pavia, Italy
| | - Marco Terreni
- Drug Sciences Department, University of Pavia, Viale Taramelli 12, 27100, Pavia, Italy
| | - Matthieu Sollogoub
- Sorbonne Université, CNRS, IPCM, UMR 8232, 4 place Jussieu, 75005, Paris, France
| | - Jianhua Xu
- School of Pharmacy, Fuijan Provincial Key Laboratory of Natural Medicine Pharmacology, Fujian Medical University, Fuzhou, Fujian, 350122, China.
| | - Yongmin Zhang
- Sorbonne Université, CNRS, IPCM, UMR 8232, 4 place Jussieu, 75005, Paris, France; Institute for Interdisciplinary Research, Jianghan University, Wuhan Economic and Technological Development Zone, Wuhan, 430056, China.
| |
Collapse
|
4
|
Zheng C, Terreni M, Sollogoub M, Zhang Y. Ganglioside GM3 and Its Role in Cancer. Curr Med Chem 2019; 26:2933-2947. [PMID: 29376491 DOI: 10.2174/0929867325666180129100619] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 01/03/2018] [Accepted: 01/25/2018] [Indexed: 11/22/2022]
Abstract
Ganglioside GM3 is strongly related with human tumors, such as lung, brain cancers and melanomas, and more and more evidences have revealed that GM3 possesses powerful effects on cancer development and progression. GM3 is over expressed on several types of cancers, and can be as a tumor-associated carbohydrate antigen, used for immunotherapy of cancers. GM3 can also inhibit tumor cells growth by anti-angiogenesis or motility and so on. Especially, GM3 has effects on the EGFR tyrosine kinase signaling, uPAR-related signaling and glycolipid-enriched microdomains, which are essential for cancer signaling conduction. It is obvious that GM3 will be a promising target for cancer treatment.
Collapse
Affiliation(s)
- Changping Zheng
- Sorbonne Universite, CNRS, Institut Parisien de Chimie Moleculaire (UMR 8232), 4 Place Jussieu, 75005 Paris, France
| | - Marco Terreni
- Drug Sciences Department, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy
| | - Matthieu Sollogoub
- Sorbonne Universite, CNRS, Institut Parisien de Chimie Moleculaire (UMR 8232), 4 Place Jussieu, 75005 Paris, France
| | - Yongmin Zhang
- Sorbonne Universite, CNRS, Institut Parisien de Chimie Moleculaire (UMR 8232), 4 Place Jussieu, 75005 Paris, France.,Institute for Interdisciplinary Research, Jianghan University, Wuhan Economic and Technological Development Zone, 430056 Wuhan, China
| |
Collapse
|
5
|
Chemoenzymatically synthesized ganglioside GM3 analogues with inhibitory effects on tumor cell growth and migration. Eur J Med Chem 2019; 165:107-114. [DOI: 10.1016/j.ejmech.2019.01.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 01/07/2019] [Accepted: 01/08/2019] [Indexed: 11/19/2022]
|
6
|
Glycosphingolipid-Protein Interaction in Signal Transduction. Int J Mol Sci 2016; 17:ijms17101732. [PMID: 27754465 PMCID: PMC5085762 DOI: 10.3390/ijms17101732] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Revised: 10/04/2016] [Accepted: 10/10/2016] [Indexed: 12/31/2022] Open
Abstract
Glycosphingolipids (GSLs) are a class of ceramide-based glycolipids essential for embryo development in mammals. The synthesis of specific GSLs depends on the expression of distinctive sets of GSL synthesizing enzymes that is tightly regulated during development. Several reports have described how cell surface receptors can be kept in a resting state or activate alternative signalling events as a consequence of their interaction with GSLs. Specific GSLs, indeed, interface with specific protein domains that are found in signalling molecules and which act as GSL sensors to modify signalling responses. The regulation exerted by GSLs on signal transduction is orthogonal to the ligand–receptor axis, as it usually does not directly interfere with the ligand binding to receptors. Due to their properties of adjustable production and orthogonal action on receptors, GSLs add a new dimension to the control of the signalling in development. GSLs can, indeed, dynamically influence progenitor cell response to morphogenetic stimuli, resulting in alternative differentiation fates. Here, we review the available literature on GSL–protein interactions and their effects on cell signalling and development.
Collapse
|
7
|
Glycosphingolipid analysis in a naturally occurring ovine model of acute neuronopathic Gaucher disease. Neurobiol Dis 2016; 91:143-54. [DOI: 10.1016/j.nbd.2016.03.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Revised: 01/18/2016] [Accepted: 03/10/2016] [Indexed: 01/06/2023] Open
|
8
|
Abstract
The hypothesis that the Golgi apparatus is capable of sorting proteins and sending them to the plasma membrane through "lipid rafts," membrane lipid domains highly enriched in glycosphingolipids, sphingomyelin, ceramide, and cholesterol, was formulated by van Meer and Simons in 1988 and came to a turning point when it was suggested that lipid rafts could be isolated thanks to their resistance to solubilization by some detergents, namely Triton X-100. An incredible number of papers have described the composition and properties of detergent-resistant membrane fractions. However, the use of this method has also raised the fiercest criticisms. In this chapter, we would like to discuss the most relevant methodological aspects related to the preparation of detergent-resistant membrane fractions, and to discuss the importance of discriminating between what is present on a cell membrane and what we can prepare from cell membranes in a laboratory tube.
Collapse
|
9
|
Vieira DB, Thur K, Sultana S, Priestman D, van der Spoel AC. Verification and refinement of cellular glycosphingolipid profiles using HPLC. Biochem Cell Biol 2015; 93:581-6. [PMID: 26393781 DOI: 10.1139/bcb-2015-0074] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Glycosphingolipids (GSLs) are hybrid molecules consisting of the sphingolipid ceramide linked to a mono- or oligo-saccharide. In comparison to other membrane lipids, the family of GSLs stands out because of the extensive variation in the carbohydrate headgroup. GSLs are cell surface binding partners, in cis with growth factor receptors, and in trans with bacterial toxins and viruses, and are among the host-derived membrane components of viral particles, including those of HIV. In spite of their biological relevance, GSL profiles of commonly used cell lines have been analyzed to different degrees. Here, we directly compare the GSL complements from CHO-K1, COS-7, HeLa, HEK-293, HEPG2, Jurkat, and SH-SY5Y cells using an HPLC-based method requiring modest amounts of material. Compared to previous studies, the HPLC-based analyses provided more detailed information on the complexity of the cellular GSL complement, qualitatively as well as quantitatively. In particular for cells expressing multiple GSLs, we found higher numbers of GSL species, and different levels of abundance. Our study thus extends our knowledge of biologically relevant lipids in widely used cell lines.
Collapse
Affiliation(s)
- Douglas B Vieira
- a Atlantic Research Centre, Departments of Pediatrics and Biochemistry & Molecular Biology, Dalhousie University, Halifax, NS, Canada
| | - Karen Thur
- a Atlantic Research Centre, Departments of Pediatrics and Biochemistry & Molecular Biology, Dalhousie University, Halifax, NS, Canada
| | - Saki Sultana
- a Atlantic Research Centre, Departments of Pediatrics and Biochemistry & Molecular Biology, Dalhousie University, Halifax, NS, Canada
| | - David Priestman
- b Department of Pharmacology, University of Oxford, Oxford, OX1 3QT, UK
| | - Aarnoud C van der Spoel
- a Atlantic Research Centre, Departments of Pediatrics and Biochemistry & Molecular Biology, Dalhousie University, Halifax, NS, Canada
| |
Collapse
|
10
|
Hakomori SI, Handa K. GM3 and cancer. Glycoconj J 2015; 32:1-8. [DOI: 10.1007/s10719-014-9572-4] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Revised: 12/22/2014] [Accepted: 12/23/2014] [Indexed: 01/13/2023]
|
11
|
Garénaux E, Kanagawa M, Tsuchiyama T, Hori K, Kanazawa T, Goshima A, Chiba M, Yasue H, Ikeda A, Yamaguchi Y, Sato C, Kitajima K. Discovery, primary, and crystal structures and capacitation-related properties of a prostate-derived heparin-binding protein WGA16 from boar sperm. J Biol Chem 2015; 290:5484-501. [PMID: 25568322 DOI: 10.1074/jbc.m114.635268] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Mammalian sperm acquire fertility through a functional maturation process called capacitation, where sperm membrane molecules are drastically remodeled. In this study, we found that a wheat germ agglutinin (WGA)-reactive protein on lipid rafts, named WGA16, is removed from the sperm surface on capacitation. WGA16 is a prostate-derived seminal plasma protein that has never been reported and is deposited on the sperm surface in the male reproductive tract. Based on protein and cDNA sequences for purified WGA16, it is a homologue of human zymogen granule protein 16 (ZG16) belonging to the Jacalin-related lectin (JRL) family in crystal and primary structures. A glycan array shows that WGA16 binds heparin through a basic patch containing Lys-53/Lys-73 residues but not the conventional lectin domain of the JRL family. WGA16 is glycosylated, contrary to other ZG16 members, and comparative mass spectrometry clearly shows its unique N-glycosylation profile among seminal plasma proteins. It has exposed GlcNAc and GalNAc residues without additional Gal residues. The GlcNAc/GalNAc residues can work as binding ligands for a sperm surface galactosyltransferase, which actually galactosylates WGA16 in situ in the presence of UDP-Gal. Interestingly, surface removal of WGA16 is experimentally induced by either UDP-Gal or heparin. In the crystal structure, N-glycosylated sites and a potential heparin-binding site face opposite sides. This geography of two functional sites suggest that WGA16 is deposited on the sperm surface through interaction between its N-glycans and the surface galactosyltransferase, whereas its heparin-binding domain may be involved in binding to sulfated glycosaminoglycans in the female tract, enabling removal of WGA16 from the sperm surface.
Collapse
Affiliation(s)
- Estelle Garénaux
- From the Bioscience and Biotechnology Center, Nagoya University, Nagoya 464-8601, Japan
| | - Mayumi Kanagawa
- the RIKEN Structural Glycobiology Team, Saitama 351-0198, Japan
| | - Tomoyuki Tsuchiyama
- From the Bioscience and Biotechnology Center, Nagoya University, Nagoya 464-8601, Japan, the Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan
| | - Kazuki Hori
- From the Bioscience and Biotechnology Center, Nagoya University, Nagoya 464-8601, Japan, the Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan
| | - Takeru Kanazawa
- From the Bioscience and Biotechnology Center, Nagoya University, Nagoya 464-8601, Japan, the Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan
| | - Ami Goshima
- From the Bioscience and Biotechnology Center, Nagoya University, Nagoya 464-8601, Japan, the Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan
| | - Mitsuru Chiba
- the Hirosaki University Graduate School of Health Sciences, Hirosaki 036-8564, Japan, and
| | - Hiroshi Yasue
- the National Institute of Agrobiological Sciences, Tsukuba 305-8602, Japan
| | - Akemi Ikeda
- the RIKEN Structural Glycobiology Team, Saitama 351-0198, Japan
| | | | - Chihiro Sato
- From the Bioscience and Biotechnology Center, Nagoya University, Nagoya 464-8601, Japan, the Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan
| | - Ken Kitajima
- From the Bioscience and Biotechnology Center, Nagoya University, Nagoya 464-8601, Japan, the Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan,
| |
Collapse
|
12
|
Qu H, Liu JM, Wdzieczak-Bakala J, Lu D, He X, Sun W, Sollogoub M, Zhang Y. Synthesis and cytotoxicity assay of four ganglioside GM3 analogues. Eur J Med Chem 2014; 75:247-57. [DOI: 10.1016/j.ejmech.2014.01.054] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2013] [Revised: 01/21/2014] [Accepted: 01/24/2014] [Indexed: 11/25/2022]
|
13
|
c-Src-induced activation of ceramide metabolism impairs membrane microdomains and promotes malignant progression by facilitating the translocation of c-Src to focal adhesions. Biochem J 2014; 458:81-93. [DOI: 10.1042/bj20130527] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
We found that c-Src up-regulation perturbs sphingolipid/cholesterol-enriched membrane microdomains by activating ceramide synthesis, which contributes to malignant progression by promoting the translocation of c-Src from microdomains to focal adhesions/podosomes.
Collapse
|
14
|
Nakayama H, Ogawa H, Takamori K, Iwabuchi K. GSL-Enriched Membrane Microdomains in Innate Immune Responses. Arch Immunol Ther Exp (Warsz) 2013; 61:217-28. [DOI: 10.1007/s00005-013-0221-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2012] [Accepted: 02/13/2013] [Indexed: 12/20/2022]
|
15
|
Yoon SJ, Utkina N, Sadilek M, Yagi H, Kato K, Hakomori SI. Self-recognition of high-mannose type glycans mediating adhesion of embryonal fibroblasts. Glycoconj J 2012; 30:485-96. [PMID: 23007868 DOI: 10.1007/s10719-012-9449-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2012] [Revised: 09/07/2012] [Accepted: 09/10/2012] [Indexed: 11/29/2022]
Abstract
High-mannose type N-linked glycan with 6 mannosyl residues, termed "M6Gn2", displayed clear binding to the same M6Gn2, conjugated with ceramide mimetic (cer-m) and incorporated in liposome, or coated on polystyrene plates. However, the conjugate of M6Gn2-cer-m did not interact with complex-type N-linked glycan with various structures having multiple GlcNAc termini, conjugated with cer-m. The following observations indicate that hamster embryonic fibroblast NIL-2 K cells display homotypic autoadhesion, mediated through the self-recognition capability of high-mannose type glycans expressed on these cells: (i) NIL-2 K cells display clear binding to lectins capable of binding to high-mannose type glycans (e.g., ConA), but not to other lectins capable of binding to other carbohydrates (e.g. GS-II). (ii) NIL-2 K cells adhere strongly to plates coated with M6Gn2-cer-m, but not to plates coated with complex-type N-linked glycans having multiple GlcNAc termini, conjugated with cer-m; (iii) degree of NIL-2 K cell adhesion to plates coated with M6Gn2-cer-m showed a clear dose-dependence on the amount of M6Gn2-cer-m; and (iv) the degree of NIL-2 K adhesion to plates coated with M6Gn2-cer-m was inhibited in a dose-dependent manner by α1,4-L-mannonolactone, the specific inhibitor in high-mannose type glycans addition. These data indicate that adhesion of NIL-2 K is mediated by self-aggregation of high mannose type glycan. Further studies are to be addressed on auto-adhesion of other types of cells based on self interaction of high mannose type glycans.
Collapse
Affiliation(s)
- Seon-Joo Yoon
- Division of Biomembrane Research, Pacific Northwest Research Institute, and Department of Global Health, University of Washington, Seattle, WA 98122, USA
| | | | | | | | | | | |
Collapse
|
16
|
Kasekarn W, Kanazawa T, Hori K, Tsuchiyama T, Lian X, Garénaux E, Kongmanas K, Tanphaichitr N, Yasue H, Sato C, Kitajima K. Pig sperm membrane microdomains contain a highly glycosylated 15-25-kDa wheat germ agglutinin-binding protein. Biochem Biophys Res Commun 2012; 426:356-62. [PMID: 22943851 DOI: 10.1016/j.bbrc.2012.08.090] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2012] [Accepted: 08/19/2012] [Indexed: 11/28/2022]
Abstract
A highly glycosylated protein, which has unique, novel features in localization, structure, and potential function, is found in pig sperm, and named WGA-gp due to its high binding property with wheat germ agglutinin (WGA). WGA-gp is localized mainly in flagella and enriched in membrane microdomains or lipid rafts. It is not detected by ordinary protein staining methods due to a high content of both N- and O-glycans consisting of neutral monosaccharides. Interestingly, WGA-gp may be involved in intracellular Ca(2+) regulation. Treatment of sperm with anti-WGA-gp antibody enhances the amplitude of Ca(2+) oscillation without changing the basal intracellular Ca(2+) concentrations. All these features of WGA-gp, except for different carbohydrate structures occupying most part of the molecules, are similar to those of flagellasialin in sea urchin sperm, which regulates the intracellular Ca(2+) concentration. Presence of carbohydrate-enriched flagellar proteins involved in intracellular Ca(2+) regulation may be a common feature among animal sperm.
Collapse
Affiliation(s)
- Waraporn Kasekarn
- Bioscience and Biotechnology Center, Nagoya University, Nagoya 464-8601, Japan.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Guan F, Schaffer L, Handa K, Hakomori SI. Functional role of gangliotetraosylceramide in epithelial‐to‐mesenchymal transition process induced by hypoxia and by TGF‐β. FASEB J 2010. [DOI: 10.1096/fj.10.162107] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Feng Guan
- Division of Biomembrane ResearchPacific Northwest Research Institute Seattle Washington USA
- Departments of Pathobiology and Global HealthUniversity of Washington Seattle Washington USA
| | - Lana Schaffer
- Division of Biomembrane ResearchPacific Northwest Research Institute Seattle Washington USA
- DNA Array Core FacilityThe Scripps Research Institute La Jolla California USA
| | - Kazuko Handa
- Division of Biomembrane ResearchPacific Northwest Research Institute Seattle Washington USA
- Departments of Pathobiology and Global HealthUniversity of Washington Seattle Washington USA
| | - Sen-itiroh Hakomori
- Division of Biomembrane ResearchPacific Northwest Research Institute Seattle Washington USA
- Departments of Pathobiology and Global HealthUniversity of Washington Seattle Washington USA
| |
Collapse
|
18
|
Guan F, Schaffer L, Handa K, Hakomori SI. Functional role of gangliotetraosylceramide in epithelial-to-mesenchymal transition process induced by hypoxia and by TGF-{beta}. FASEB J 2010; 24:4889-903. [PMID: 20720159 DOI: 10.1096/fj.10-162107] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The epithelial-to-mesenchymal transition (EMT) is a basic cellular process that plays a key role in normal embryonic development and in cancer progression/metastasis. Our previous study indicated that EMT processes of mouse and human epithelial cells induced by TGF-β display clear reduction of gangliotetraosylceramide (Gg4) and ganglioside GM2, suggesting a close association of glycosphingolipids (GSLs) with EMT. In the present study, using normal murine mammary gland (NMuMG) cells, we found that levels of Gg4 and of mRNA for the UDP-Gal:β1-3galactosyltransferase-4 (β3GalT4) gene, responsible for reduction of Gg4, were reduced in EMT induced by hypoxia (∼1% O(2)) or CoCl(2) (hypoxia mimic), similarly to that for TGF-β-induced EMT. An increase in the Gg4 level by its exogenous addition or by transfection of the β3GalT4 gene inhibited the hypoxia-induced or TGF-β-induced EMT process, including changes in epithelial cell morphology, enhanced motility, and associated changes in epithelial vs. mesenchymal molecules. We also found that Gg4 is closely associated with E-cadherin and β-catenin. These results suggest that the β3GalT4 gene, responsible for Gg4 expression, is down-regulated in EMT; and Gg4 has a regulatory function in the EMT process in NMuMG cells, possibly through interaction with epithelial molecules important to maintain epithelial cell membrane organization.
Collapse
Affiliation(s)
- Feng Guan
- Division of Biomembrane Research, Pacific Northwest Research Institute, Seattle, Washington 98122, USA
| | | | | | | |
Collapse
|
19
|
Iijima K, Soga N, Matsubara T, Sato T. Observations of the distribution of GM3 in membrane microdomains by atomic force microscopy. J Colloid Interface Sci 2009; 337:369-74. [DOI: 10.1016/j.jcis.2009.05.032] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2008] [Revised: 05/12/2009] [Accepted: 05/13/2009] [Indexed: 12/01/2022]
|
20
|
Adachi T, Sato C, Kishi Y, Totani K, Murata T, Usui T, Kitajima K. Membrane microdomains from early gastrula embryos of medaka, Oryzias latipes, are a platform of E-cadherin- and carbohydrate-mediated cell-cell interactions during epiboly. Glycoconj J 2008; 26:285-99. [PMID: 18766437 DOI: 10.1007/s10719-008-9184-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2008] [Revised: 08/14/2008] [Accepted: 08/18/2008] [Indexed: 11/24/2022]
Abstract
Formation of membrane microdomain is critical for cell migration (epiboly) during gastrulation of medaka fish [Adachi et al. (Biochem. Biophys. Res. Commun. 358:848-853, 2007)]. In this study, we characterized membrane microdomain from gastrula embryos to understand its roles in epiboly. A cell adhesion molecule (E-cadherin), its associated protein (beta-catenin), transducer proteins (PLCgamma, cSrc), and a cytoskeleton protein (beta-actin) were enriched in the membrane microdomain. Le(X)-containing glycolipids and glycoproteins (Le(X)-gp) were exclusively enriched in the membrane microdomain. Interestingly, the isolated membrane microdomain had the ability to bind to each other in the presence of Ca(2+). This membrane microdomain binding was achieved through the E-cadherin homophilic and the Le(X)-glycan-mediated interactions. E-cadherin and Le(X)-gp were co-localized on the same membrane microdomain, suggesting that these two interactions are operative at the same time. Thus, the membrane microdomain functions as a platform of the E-cadherin- and Le(X)-glycan-mediated cell adhesion and signal transduction.
Collapse
Affiliation(s)
- Tomoko Adachi
- Bioscience and Biotechnology Center, Nagoya University, Nagoya, 464-8601, Japan
| | | | | | | | | | | | | |
Collapse
|
21
|
Rawat SS, Zimmerman C, Johnson BT, Cho E, Lockett SJ, Blumenthal R, Puri A. Restricted lateral mobility of plasma membrane CD4 impairs HIV-1 envelope glycoprotein mediated fusion. Mol Membr Biol 2008; 25:83-94. [PMID: 18097956 DOI: 10.1080/09687680701613713] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
We investigated the effect of receptor mobility on HIV-1 envelope glycoprotein (Env)-triggered fusion using B16 mouse melanoma cells that are engineered to express CD4 and CXCR4 or CCR5. These engineered cells are resistant to fusion mediated CD4-dependent HIV-1 envelope glycoprotein. Receptor mobility was measured by fluorescence recovery after photobleaching (FRAP) using either fluorescently-labeled antibodies or transient expression of GFP-tagged receptors in the cells. No significant differences between B16 and NIH3T3 (fusion-permissive) cells were seen in lateral mobility of CCR5 or lipid probes. By contrast CD4 mobility in B16 cells was about seven-fold reduced compared to its mobility in fusion-permissive NIH3T3 cells. However, a CD4 mutant (RA5) that localizes to non-raft membrane microdomains exhibited a three-fold increased mobility in B16 cells as compared with WT-CD4. Interestingly, the B16 cells expressing the RA5 mutant (but not the wild type CD4) and coreceptors supported HIV-1 Env-mediated fusion. Our data demonstrate that the lateral mobility of CD4 is an important determinant of HIV-1 fusion/entry.
Collapse
Affiliation(s)
- Satinder S Rawat
- CCRNP, NCI-Frederick, National Institutes of Health, Frederick, Maryland 21702-1201, USA
| | | | | | | | | | | | | |
Collapse
|
22
|
Regina Todeschini A, Hakomori SI. Functional role of glycosphingolipids and gangliosides in control of cell adhesion, motility, and growth, through glycosynaptic microdomains. BIOCHIMICA ET BIOPHYSICA ACTA 2008; 1780:421-33. [PMID: 17991443 PMCID: PMC2312458 DOI: 10.1016/j.bbagen.2007.10.008] [Citation(s) in RCA: 336] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2007] [Revised: 09/29/2007] [Accepted: 10/12/2007] [Indexed: 01/11/2023]
Abstract
At cell surface microdomains, glycosyl epitopes, carried either by glycosphingolipids, N- or O-linked oligosaccharides, are recognized by carbohydrate-binding proteins or complementary carbohydrates. In both cases, the carbohydrate epitopes may be clustered with specific signal transducers, tetraspanins, adhesion receptors or growth factor receptors. Through this framework, carbohydrates can mediate cell signaling leading to changes in cellular phenotype. Microdomains involved in carbohydrate-dependent cell adhesion inducing cell activation, motility, and growth are termed "glycosynapse". In this review a historical synopsis of glycosphingolipids-enriched microdomains study leading to the concept of glycosynapse is presented. Examples of glycosynapse as signaling unit controlling the tumor cell phenotype are discussed in three contexts: (i) Cell-to-cell adhesion mediated by glycosphingolipids-to-glycosphingolipids interaction between interfacing glycosynaptic domains, through head-to-head (trans) carbohydrate-to-carbohydrate interaction. (ii) Functional role of GM3 complexed with tetraspanin CD9, and interaction of such complex with integrins, or with fibroblast growth factor receptor, to control tumor cell phenotype and its reversion to normal cell phenotype. (iii) Inhibition of integrin-dependent Met kinase activity by GM2/tetraspanin CD82 complex in glycosynaptic microdomain. Data present here suggest that the organizational status of glycosynapse strongly affects cellular phenotype influencing tumor cell malignancy.
Collapse
Affiliation(s)
- Adriane Regina Todeschini
- Division of Biomembrane Research, Pacific Northwest Research Institute, University of Washington, Seattle, WA, USA.
| | | |
Collapse
|
23
|
Yoshizaki F, Nakayama H, Iwahara C, Takamori K, Ogawa H, Iwabuchi K. Role of glycosphingolipid-enriched microdomains in innate immunity: Microdomain-dependent phagocytic cell functions. Biochim Biophys Acta Gen Subj 2008; 1780:383-92. [DOI: 10.1016/j.bbagen.2007.11.004] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2007] [Revised: 11/10/2007] [Accepted: 11/13/2007] [Indexed: 12/16/2022]
|
24
|
Sandro S, Alessandro P. Membrane lipid domains and membrane lipid domain preparations: are they the same thing? TRENDS GLYCOSCI GLYC 2008. [DOI: 10.4052/tigg.20.315] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
25
|
Iwabuchi K, Prinetti A, Sonnino S, Mauri L, Kobayashi T, Ishii K, Kaga N, Murayama K, Kurihara H, Nakayama H, Yoshizaki F, Takamori K, Ogawa H, Nagaoka I. Involvement of very long fatty acid-containing lactosylceramide in lactosylceramide-mediated superoxide generation and migration in neutrophils. Glycoconj J 2007; 25:357-74. [PMID: 18041581 DOI: 10.1007/s10719-007-9084-6] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2007] [Revised: 10/16/2007] [Accepted: 11/01/2007] [Indexed: 01/12/2023]
Abstract
The neutral glycosphingolipid lactosylceramide (LacCer) forms lipid rafts (membrane microdomains) coupled with the Src family kinase Lyn on the plasma membranes of human neutrophils; ligand binding to LacCer activates Lyn, resulting in neutrophil functions, such as superoxide generation and migration (Iwabuchi and Nagaoka, Lactosylceramide-enriched glycosphingolipid signaling domain mediates superoxide generation from human neutrophils, Blood 100, 1454-1464, 2002 and Sato et al. Induction of human neutrophil chemotaxis by Candida albicans-derived beta-1,6-long glycoside side-chain-branched beta glycan, J. Leukoc. Biol. 84, 204-211, 2006). Neutrophilic differentiated HL-60 cells (D-HL-60 cells) express almost the same amount of LacCer as neutrophils. However, D-HL-60 cells do not have Lyn-associated LacCer-enriched lipid rafts and lack LacCer-mediated superoxide-generating and migrating abilities. Here, we examined the roles of LacCer molecular species of different fatty acid compositions in these processes. Liquid chromatography-mass spectrometry analyses revealed that the very long fatty acid C24:0 and C24:1 chains were the main components of LacCer (31.6% on the total fatty acid content) in the detergent-resistant membrane fraction (DRM) from neutrophil plasma membranes. In contrast, plasma membrane DRM of D-HL-60 cells included over 70% C16:0-LacCer, but only 13.6% C24-LacCer species. D-HL-60 cells loaded with C24:0 or C24:1-LacCer acquired LacCer-mediated migrating and superoxide-generating abilities, and allowed Lyn coimmunoprecipitation by anti-LacCer antibody. Lyn knockdown by siRNA completely abolished the effect of C24:1-LacCer loading on LacCer-mediated migration of D-HL-60 cells. Immunoelectron microscopy revealed that LacCer clusters were closely associated with Lyn molecules in neutrophils and C24:1-LacCer-loaded D-HL-60 cells, but not in D-HL-60 cells or C16:0-LacCer-loaded cells. Taken together, these observations suggest that LacCer species with very long fatty acids are specifically necessary for Lyn-coupled LacCer-enriched lipid raft-mediated neutrophil superoxide generation and migration.
Collapse
Affiliation(s)
- Kazuhisa Iwabuchi
- Institute for Environmental and Gender-specific Medicine, Juntendo University Graduate School of Medicine, 2-1-1 Tomioka, Urayasu-shi, Chiba, 279-0021, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Yamazaki Y, Horibata Y, Nagatsuka Y, Hirabayashi Y, Hashikawa T. Fucoganglioside alpha-fucosyl(alpha-galactosyl)-GM1: a novel member of lipid membrane microdomain components involved in PC12 cell neuritogenesis. Biochem J 2007; 407:31-40. [PMID: 17608628 PMCID: PMC2267403 DOI: 10.1042/bj20070090] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
In order to search for novel components of lipid membrane microdomains involved in neural signalling pathways, mAbs (monoclonal antibodies) were raised against the detergent-insoluble membrane fraction of PC12 (pheochromocytoma) cells. Among the 22 hybrid clones, mAb PR#1 specifically detected a fucoganglioside Fuc(Gal)-GM1 [a-fucosyl(a-galactosyl)-GM1], a ganglioside homologous with GM1a (II3NeuAc,GgOse4Cer), as a novel member of microdomain components with biological functions. In the presence of mAb PR#1 in the culture medium, the outgrowth of neurites was induced in PC12 cells in a dose-dependent manner, with no effects on cell proliferation, suggesting that Fuc(Gal)-GM1 is preferentially involved in PC12 cell neuritogenesis. Effects through Fuc(Gal)-GM1 were different from those through GM1a during differentiation, e.g. under PR#1 treatment on Fuc(Gal)-GM1, round cell bodies with thinner cell processes were induced, whereas treatment with CTB (cholera toxin B subunit), a specific probe for GM1a, produced flattened cell bodies with thicker pro-cesses. Molecular analysis demonstrated that the PR#1-Fuc(Gal)-GM1 pathway was associated with Fyn and Yes of the Src family of kinases, although Src itself was not involved. No association was found with TrkA (tropomyosin receptor kinase A) and ERKs (extracellular-signal-regulated kinases), which are responsible for GM1a-induced differentiation. From these findings, it is suggested that a fucoganglioside Fuc(Gal)-GM1 provides a functional platform distinct from that of GM1a for signal transduction in PC12 cell differentiation.
Collapse
Affiliation(s)
- Yasuhiro Yamazaki
- *Laboratory for Neural Architecture, RIKEN Brain Science Institute, Wako, Saitama 351-0198, Japan
| | - Yasuhiro Horibata
- †Hirabayashi Research Unit, Neural Circuit Research Group, RIKEN Brain Science Institute, Wako, Saitama 351-0198, Japan
| | - Yasuko Nagatsuka
- †Hirabayashi Research Unit, Neural Circuit Research Group, RIKEN Brain Science Institute, Wako, Saitama 351-0198, Japan
| | - Yoshio Hirabayashi
- †Hirabayashi Research Unit, Neural Circuit Research Group, RIKEN Brain Science Institute, Wako, Saitama 351-0198, Japan
| | - Tsutomu Hashikawa
- *Laboratory for Neural Architecture, RIKEN Brain Science Institute, Wako, Saitama 351-0198, Japan
- To whom correspondence should be addressed (email )
| |
Collapse
|
27
|
Haga Y, Hatanaka K, Hakomori SI. Effect of lipid mimetics of GM3 and lyso-GM3 dimer on EGF receptor tyrosine kinase and EGF-induced signal transduction. Biochim Biophys Acta Gen Subj 2007; 1780:393-404. [PMID: 18036568 DOI: 10.1016/j.bbagen.2007.10.018] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2007] [Revised: 10/29/2007] [Accepted: 10/30/2007] [Indexed: 11/17/2022]
Abstract
The tyrosine kinase activity associated with epidermal growth factor receptor (EGFR) has been a target in studies of pharmacological reagents to inhibit growth of cancer cells, which are mostly of epidermal origin. Lyso-GM3 dimer showed stronger inhibitory effect on the tyrosine kinase of EGFR than GM3, with minimal cytotoxicity [Y. Murozuka, et al. Lyso-GM3, its dimer, and multimer: their synthesis, and their effect on epidermal growth factor-induced receptor tyrosine kinase. Glycoconj. J. 24 (2007) 551-563]. Synthesis of lipids with sphingosine requires many steps, and the yield is low. A biocombinatory approach overcame this difficulty; however, products required a C(12) aliphatic chain, rather than the sphingosine head group [Y. Murozuka, et al. Efficient sialylation on azidododecyl lactosides by using B16 melanoma cells. Chemistry & Biodiversity 2 (2005) 1063-1078]. The present study was to clarify the effects of these lipid mimetics of GM3 and lyso-GM3 dimer on EGFR tyrosine kinase activity, and consequent changes of the A431 cell phenotype, as follows. (i) A lipid mimetic of lyso-GM3 dimer showed similar strong inhibitory effect on EGF-induced EGFR tyrosine kinase activity, and similar low cytotoxicity, as the authentic lyso-GM3 dimer. (ii) A lipid mimetic of lyso-GM3 dimer inhibited tyrosine phosphorylation of EGFR or its dimer to a level similar to that of the authentic lyso-GM3 dimer, but more strongly than GM3 or a lipid mimetic of GM3. (iii) Associated with the inhibitory effect of a lipid mimetic of lyso-GM3 dimer on EGF-induced EGFR kinase activity, only Akt kinase activity was significantly inhibited, but kinases associated with other signal transducers were not affected. (iv) The cell cycle of A431 cells, and the effects of GM3 and a lipid mimetic of lyso-GM3 dimer, were studied by flow cytometry, measuring the rate of DNA synthesis with propidium iodide. Fetal bovine serum greatly enhanced S phase and G(2)/M phase. Enhanced G(2)/M phase was selectively inhibited by pre-incubation of A431 cells with a lipid mimetic of lyso-GM3 dimer, whereas GM3 had only a minimal effect.
Collapse
Affiliation(s)
- Yoshimi Haga
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan
| | | | | |
Collapse
|
28
|
Murozuka Y, Watanabe N, Hatanaka K, Hakomori SI. Lyso-GM3, its dimer, and multimer: their synthesis, and their effect on epidermal growth factor-induced receptor tyrosine kinase. Glycoconj J 2007; 24:551-63. [PMID: 17638075 DOI: 10.1007/s10719-007-9051-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2007] [Revised: 05/25/2007] [Accepted: 05/30/2007] [Indexed: 10/23/2022]
Abstract
Glycosphingolipids, particularly gangliosides, are known to modulate growth factor receptor tyrosine kinase. A well-documented example is the inhibitory effect of GM3 on kinase associated with epidermal growth factor receptor (EGFR) in human epidermoid carcinoma A431 cells. Lyso-GM3 was detected as a minor component in A431 cells, and may function as an auxiliary factor in GM3-dependent inhibition of EGFR. We studied the inhibitory effect of chemically synthesized GM3, lyso-GM3, and its derivatives, on EGFR function, based on their interaction in membrane microdomain, with the following major findings: (1) GM3, EGFR, and caveolin coexist, but tetraspanins CD9 and CD82 are essentially absent, within the same low-density membrane fraction, separated by sucrose density gradient ultracentrifugation. (2) Strong interaction between EGFR and GM3 was indicated by increasing binding of EGFR to GM3-coated polystyrene beads, in a GM3 dose-dependent manner. Confocal microscopy results suggested that three components in the microdomain (GM3, EGFR, and caveolin) are closely associated. (3) Lyso-GM3 or lyso-GM3 dimer strongly inhibited EGFR kinase activity, in a dose-dependent manner, while lyso-GM3 trimer and tetramer did not. >50 microM lyso-GM3 was cytolytic, while >50 microM lyso-GM3 dimer was not cytolytic, yet inhibited EGFR kinase strongly. Thus, lyso-GM3 and its dimer exert an auxiliary effect on GM3-induced inhibition of EGFR kinase and cell growth, and lyso-GM3 dimer may be a good candidate for pharmacological inhibitor of epidermal tumor growth.
Collapse
Affiliation(s)
- Yoshimi Murozuka
- Pacific Northwest Research Institute, University of Washington, Seattle, WA 98122, USA
| | | | | | | |
Collapse
|
29
|
van Slambrouck S, Steelant W. Clustering of monosialyl-Gb5 initiates downstream signalling events leading to invasion of MCF-7 breast cancer cells. Biochem J 2007; 401:689-99. [PMID: 16995838 PMCID: PMC1770852 DOI: 10.1042/bj20060944] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Invasion is a complex process controlled by secretion and activation of proteases, alteration of integrin levels and GSL (glycosphingolipid) patterns. Differential organization of GSLs with specific membrane proteins and signal transducers in GEMs (GSL-enriched microdomains), initiates signalling events to modify cellular phenotype. Although the GSL monosialyl-Gb5 has been linked with invasion, its functional role in invasion is poorly described and understood. To investigate this problem, we induced the invasion of human breast cancer cells and subsequently explored the underlying mechanism. In the present study, the invasion of human MCF-7 breast cancer cells is highly dependent on clustering of monosialyl-Gb5, and the subsequent activation of monosialyl-Gb5-associated focal adhesion kinase and cSrc in GEM leading to the downstream activation of extracellular-signal-regulated kinase (ERK). As a result, we observed increased expression levels and activity of matrix metalloproteinases-2 and -9, which correlated with decreased expression of integrins alpha1 and beta1. Together these results suggest that the organization of crucial molecules in GEMs of MCF-7 cells is critical for their invasive properties.
Collapse
Affiliation(s)
- Severine van Slambrouck
- Laboratory of Biochemical and Biomedical Research, Department of Chemistry, New Mexico Tech, 801 Leroy Place, Socorro, NM 87801, U.S.A
| | - Wim F. A. Steelant
- Laboratory of Biochemical and Biomedical Research, Department of Chemistry, New Mexico Tech, 801 Leroy Place, Socorro, NM 87801, U.S.A
- To whom correspondence should be addressed (email )
| |
Collapse
|
30
|
Todeschini AR, Dos Santos JN, Handa K, Hakomori SI. Ganglioside GM2-tetraspanin CD82 complex inhibits met and its cross-talk with integrins, providing a basis for control of cell motility through glycosynapse. J Biol Chem 2007; 282:8123-33. [PMID: 17215249 DOI: 10.1074/jbc.m611407200] [Citation(s) in RCA: 117] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Glycosphingolipids (GSLs) at the cell surface membrane are associated or complexed with signal transducers (Src family kinases and small G-proteins), tetraspanins, growth factor receptors, and integrins. Such organizational framework, defining GSL-modulated or -dependent cell adhesion, motility, and growth, is termed "glycosynapse" (Hakomori, S., and Handa, K. (2002) FEBS Lett. 531, 88-92; Hakomori, S. (2004) Ann. Braz. Acad. Sci. 76, 553-572). We describe here the functional organization of the glycosynaptic microdomain, and the mechanisms for control of cell motility and invasiveness, in normal bladder epithelial HCV29 cells versus highly invasive bladder cancer YTS1 cells, both derived from transitional epithelia. (i) Ganglioside GM2, but not GM3 or globoside, interacted specifically with tetraspanin CD82, and such a complex inhibited hepatocyte growth factor (HGF)-induced activation of Met tyrosine kinase in a dose-dependent manner. (ii) Depletion of GM2 in HCV29 cells by treatment with D-threo-1-phenyl-2-palmitoylamino-3-pyrrolidino-1-propanol (P4), or reduction of CD82 expression by RNA interference, significantly enhanced HGF-induced Met tyrosine kinase and cell motility. (iii) In contrast, YTS1 cells, lacking CD82, displayed HGF-independent activation of Met tyrosine kinase and high cell motility. Transfection of the CD82 gene to YTS1 inhibited HGF dose-dependent Met tyrosine kinase activity and cell motility, due to formation of the GM2-CD82 complex. (iv) Adhesion of YTS1 or YTS1/CD82 cells to laminin-5-coated plates, as compared with noncoated plates, strongly enhanced Met activation, and the degree of activation was further increased in association with GSL depletion by P4. Laminin-5-dependent Met activation was minimal in HCV29 cells. These findings indicate that GSL, particularly GM2, forms a complex with CD82, and that such complex interacts with Met and thereby inhibits HGF-induced Met tyrosine kinase activity, as well as integrin to Met cross-talk.
Collapse
Affiliation(s)
- Adriane Regina Todeschini
- Division of Biomembrane Research, Pacific Northwest Research Institute, and Department of Pathobiology, University of Washington, Seattle, Washington 98122-4302, USA.
| | | | | | | |
Collapse
|
31
|
Gómez del Pulgar T, Benitah SA, Valerón PF, Espina C, Lacal JC. Rho GTPase expression in tumourigenesis: evidence for a significant link. Bioessays 2005; 27:602-13. [PMID: 15892119 DOI: 10.1002/bies.20238] [Citation(s) in RCA: 178] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Rho proteins belong to the small GTPases superfamily. They function as molecular switches that, in response to diverse stimuli, control key signaling and structural aspects of the cell. Although early studies proposed a role for Rho GTPases in cellular transformation, this effect was underestimated due to the fact that no genetic mutations affecting Rho-encoding genes were found in tumors. Recently, it has become evident that Rho GTPases participate in the carcinogenic process by either overexpression of some of the members of the family with oncogenic activity, downmodulation of other members with suggested tumor suppressor activity, or by alteration of upstream modulators or downstream effectors. Thus, alteration of the levels of expression of different members of the family of Rho GTPases has been detected in many types of human tumors leading to a great interest in the cellular effects elicited by these oncoproteins. This essay reviews the current evidence of dysregulation of Rho signaling by overexpression in human tumors.
Collapse
Affiliation(s)
- Teresa Gómez del Pulgar
- Instituto de Investigaciones Biomédicas, Translational Oncology Unit, CSIC-UAM-La Paz, Madrid, Spain
| | | | | | | | | |
Collapse
|
32
|
|
33
|
Miura Y, Kainuma M, Jiang H, Velasco H, Vogt PK, Hakomori S. Reversion of the Jun-induced oncogenic phenotype by enhanced synthesis of sialosyllactosylceramide (GM3 ganglioside). Proc Natl Acad Sci U S A 2004; 101:16204-9. [PMID: 15534203 PMCID: PMC528971 DOI: 10.1073/pnas.0407297101] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
In the mouse fibroblast cell line C3H 10T1/2 and the chicken fibroblast cell line DF1, the ganglioside GM3 is the major glycosphingolipid component of the plasma membrane. Expression of the viral oncoprotein Jun (v-Jun) induces transformed cell clones with greatly reduced levels of GM3 and GM3 synthase (lactosylceramide alpha2,3-sialyltransferase) mRNA in both 10T1/2 and DF1 cell cultures. Compared with nontransformed controls, v-Jun transfectants show enhanced ability of anchorage-independent growth, and their growth rates as adherent cells are increased. When the mouse GM3 synthase gene is transfected with the pcDNA vector into v-Jun-transformed 10T1/2 cells, the levels of GM3 synthase and corresponding mRNA are restored to those of control cells. Reexpression of GM3 correlates with a reduced ability of the cells to form colonies in nutrient agar. Similarly, when the newly cloned chicken GM3 synthase gene is transfected into v-Jun-transformed DF1 with the pcDNA vector, the GM3 synthase level is restored to that of control cells, and the ability of the cells to form agar colonies is reduced. The levels of GM3 in the cell also affect membrane microdomains. The complex of GM3 with tetraspanin CD9 and integrin alpha5beta1 inhibits motility and invasiveness. The amounts of this complex are greatly reduced in transformed cells. Expression of GM3 and consequent reversion of the transformed phenotype results in increased levels of that microdomain complex.
Collapse
Affiliation(s)
- Yutaka Miura
- Pacific Northwest Research Institute, 720 Broadway, Seattle, WA 98122-4302, USA
| | | | | | | | | | | |
Collapse
|
34
|
Hakomori S. Glycosynapses: microdomains controlling carbohydrate-dependent cell adhesion and signaling. AN ACAD BRAS CIENC 2004; 76:553-72. [PMID: 15334254 DOI: 10.1590/s0001-37652004000300010] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The concept of microdomains in plasma membranes was developed over two decades, following observation of polarity of membrane based on clustering of specific membrane components. Microdomains involved in carbohydrate-dependent cell adhesion with concurrent signal transduction that affect cellular phenotype are termed "glycosynapse". Three types of glycosynapse have been distinguished: "type 1" having glycosphingolipid associated with signal transducers (small G-proteins, cSrc, Src family kinases) and proteolipids; "type 2" having O-linked mucin-type glycoprotein associated with Src family kinases; and "type 3" having N-linked integrin receptor complexed with tetraspanin and ganglioside. Different cell types are characterized by presence of specific types of glycosynapse or their combinations, whose adhesion induces signal transduction to either facilitate or inhibit signaling. E.g., signaling through type 3 glycosynapse inhibits cell motility and differentiation. Glycosynapses are distinct from classically-known microdomains termed "caveolae", "caveolar membrane", or more recently "lipid raft", which are not involved in carbohydrate-dependent cell adhesion. Type 1 and type 3 glycosynapses are resistant to cholesterol-binding reagents, whereas structure and function of "caveolar membrane" or "lipid raft" are disrupted by these reagents. Various data indicate a functional role of glycosynapses during differentiation, development, and oncogenic transformation.
Collapse
|
35
|
Toledo MS, Suzuki E, Handa K, Hakomori S. Cell growth regulation through GM3-enriched microdomain (glycosynapse) in human lung embryonal fibroblast WI38 and its oncogenic transformant VA13. J Biol Chem 2004; 279:34655-64. [PMID: 15143068 DOI: 10.1074/jbc.m403857200] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cell growth control mechanisms were studied based on organization of components in glycosphingolipid-enriched microdomain (GEM) in WI38 cells versus their oncogenic transformant VA13 cells. Levels of fibroblast growth factor receptor (FGFR) and cSrc were 4 times and 2-3 times higher, respectively, in VA13 than in WI38 GEM, whereas the level of tetraspanin CD9/CD81 was 3-5 times higher in WI38 than in VA13 GEM. Csk, the physiological inhibitor of cSrc, was present in WI38 but not in VA13 GEM. Functional association of GEM components in control of cell growth in WI38 is indicated by several lines of evidence. (i) Confluent, growth-inhibited WI38 showed a lower degree of FGF-induced MAPK activation than actively growing cells in sparse culture. (ii) The level of inactive cSrc (with Tyr-527 phosphate) was higher in confluent cells than in actively growing cells. Both processes i and ii were inhibited by GM3 since they were enhanced by GM3 depletion with d-threo-1-phenyl-2-palmitoylamino-3-pyrrolidino-1-propanol (P4). (iii) The high level of inactive cSrc associated with growth-inhibited cells was caused by coexisting Csk in WI38 GEM. (iv) Interaction of GM3 with FGFR was demonstrated by binding of GM3 to FGFR in the GEM fraction, as probed with GM3-coated beads, and by confocal microscopy. In contrast to WI38, both cSrc and MAPK in VA13 were strongly activated regardless of FGF stimulation or GM3 depletion by P4. Continuous, constitutive activation of both cSrc and MAPK was due to (i) a much higher level of cSrc and FGFR in VA13 than in WI38 GEM, (ii) their close association/interaction in VA13 GEM as indicated by clear coimmunoprecipitation between cSrc and FGFR, and (iii) the absence of Csk in VA13 GEM, making GEM incapable of inhibiting cSrc activation.
Collapse
Affiliation(s)
- Marcos S Toledo
- Pacific Northwest Research Institute, 720 Broadway, Seattle, WA 98122-4302 , USA
| | | | | | | |
Collapse
|
36
|
Affiliation(s)
- Masaya Ono
- Pacific Northwest Research Institute, 720 Broadway, Seattle, WA 98122-4302, USA and Departments of Pathobiology and Microbiology, University of Washington, Seattle, WA, USA
| | | |
Collapse
|
37
|
Hakomori S, Handa K. Interaction of glycosphingolipids with signal transducers and membrane proteins in glycosphingolipid-enriched microdomains. Methods Enzymol 2003; 363:191-207. [PMID: 14579576 DOI: 10.1016/s0076-6879(03)01052-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Affiliation(s)
- Senitiroh Hakomori
- Division of Biomembrane Research, Pacific Northwest Research Institute, Seattle, Washington 98122, USA
| | | |
Collapse
|
38
|
Hinrichs JWJ, Klappe K, Hummel I, Kok JW. ATP-binding cassette transporters are enriched in non-caveolar detergent-insoluble glycosphingolipid-enriched membrane domains (DIGs) in human multidrug-resistant cancer cells. J Biol Chem 2003; 279:5734-8. [PMID: 14627714 DOI: 10.1074/jbc.m306857200] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In this study we show that P-glycoprotein in multidrug-resistant 2780AD human ovarian carcinoma cells and multidrug resistance-associated protein 1 in multidrug-resistant HT29col human colon carcinoma cells are predominantly located in Lubrol-based detergent-insoluble glycosphingolipid-enriched membrane domains. This localization is independent of caveolae, since 2780AD cells do not express caveolin-1. Although HT29col cells do express caveolin-1, the ATP-binding cassette transporter and caveolin-1 were dissociated on the basis of differential solubility in Triton X-100 and absence of microscopical colocalization. While both the multidrug resistance-associated protein 1 and caveolin-1 are located in Lubrol-based membrane domains, they occupy different regions of these domains.
Collapse
Affiliation(s)
- John W J Hinrichs
- Department of Membrane Cell Biology, Groningen University Institute for Drug Exploration, University of Groningen, A. Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | | | | | | |
Collapse
|
39
|
Abstract
Changes in protein tyrosine phosphorylation are an essential aspect of egg activation after fertilization. Such changes result from the net contributions of both tyrosine kinases and phosphatases (PTP). This study was conducted to determine what role(s) PTP may have in egg activation. We identified four novel PTP in Chaetopterus pergamentaceus oocytes, cpPTPNT6, cpPTPNT7, cpPTPR2B, and cpPTPR2A, that have significant homology to, respectively, human PTPsigma, -rho, -D2 and -BAS. The first two are cytosolic and the latter two are transmembrane. Several PTP inhibitors were tested to see if they would affect Chaetopterus pergamentaceus fertilization. Eggs treated with beta-bromo-4-hydroxyacetophenone (PTP inhibitor 1) exhibited microvillar elongation, which is a sign of cortical changes resulting from activation. Those treated with Na3VO4 underwent full parthenogenetic activation, including polar body formation and pseudocleavage and did so independently of extracellular Ca2+, which is required for the Ca2+ oscillations that initiate development after fertilization. Fluorescence microscopy identified phosphotyrosine-containing proteins in the cortex and around the nucleus of vanadate-activated eggs, whereas in fertilized eggs they were concentrated only in the cortex. Immunoblots of vanadate-activated and fertilized eggs showed tyrosine hyperphosphorylation of approximately 140 kDa protein. These results suggest that PTP most likely maintain the egg in an inactive state by dephosphorylation of proteins independent of the Ca2+ oscillations in the activation process.
Collapse
Affiliation(s)
- Shantá D Hinton
- Department of Biology, Howard University, Washington, DC 20059, USA
| | | | | |
Collapse
|
40
|
Abstract
Neuroectodermic tumors can mostly be characterized by the presence of tumor-associated glycosphingolipid antigens, such as gangliosides, defined by monoclonal antibodies. Recently, cumulative evidence indicates that gangliosides modify the biological effects of several trophic factors, in vitro and in vivo, as well as the mitogenic signaling cascade that these factors generate. The functional roles of gangliosides in tumor progression can be revisited: (i) ganglioside antigens on the cell surface, or shed from the cells, act as immunosuppressors, as typically observed for the suppression of cytotoxic T cells and dendritic cells, (ii) certain gangliosides, such as GD3 or GM2, promote tumor-associated angiogenesis, (iii) gangliosides strongly regulate cell adhesion/motility and thus initiate tumor metastasis, (iv) ganglioside antigens are directly connected with transducer molecules in microdomains to initiate adhesion coupled with signaling, and (v) ganglioside antigens and their catabolites are modulators of signal transduction through interaction with tyrosine kinases associated with growth factor receptors or other protein kinases. Given the potential importance of these sialylated gangliosides and their modulating biological behavior in vivo, further studies on the role of gangliosides are warranted.
Collapse
Affiliation(s)
- S Birklé
- Ecole Nationale Vétérinaire, Nantes, France
| | | | | | | | | |
Collapse
|
41
|
Matuoka S, Akiyama M, Yamada H, Tsuchihashi K, Gasa S. Phase behavior in multilamellar vesicles of DPPC containing ganglioside GM3 with a C18:1 sphingoid base and a 24:0 acyl chain (GM3(18,24)) observed by X-ray diffraction. Chem Phys Lipids 2003; 123:19-29. [PMID: 12637162 DOI: 10.1016/s0009-3084(02)00128-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Structures and phase behavior of multilamellar vesicles of 1,2-dipalmitoyl-L-phosphatidylcholine (DPPC) containing various amount of ganglioside GM3 with a C18:1 sphingoid base and a 24:0 acyl chain (GM3(18,24)) were investigated by small-angle X-ray diffraction. Below 3.5 mol% GM3 content, the phase behavior was similar to that of pure DPPC except for a slight increase of lamellar repeat distance in the L(beta'), the P(beta') and the L(alpha) phases and a decrease of the pretransition temperature. In the range of 4-12 mol% GM3 content, another phase which has larger repeat distances coexisted with the phase observed below 3.5 mol% GM3 content. This has been interpreted that the phase separation into GM3-poor phase (denoted as A-phase) and GM3-rich phase (denoted as B-phase) took place. Above 13 mol% GM3 content, the B-phase became dominant. This phase separation may be related to the formation of GM3-enriched microdomains that had been observed on the cell surfaces which express large amounts of GM3, such as murine B16 melanoma (J. Biol. Chem. 260 (1985) 13328).
Collapse
Affiliation(s)
- Sinzi Matuoka
- Department of Physics, School of Medicine, Sapporo Medical University, S 1 W 17, Chuo-ku, Sapporo, Hokkaido 060-8556, Japan.
| | | | | | | | | |
Collapse
|
42
|
Steelant WF, Kawakami Y, Ito A, Handa K, Bruyneel EA, Mareel M, Hakomori S. Monosialyl-Gb5 organized with cSrc and FAK in GEM of human breast carcinoma MCF-7 cells defines their invasive properties. FEBS Lett 2002; 531:93-8. [PMID: 12401210 DOI: 10.1016/s0014-5793(02)03484-1] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Two human mammary carcinoma cell variants, MCF-7/AZ and MCF-7/6, show the same composition in their glycosphingolipid-enriched microdomain (GEM) with regard to globo-series structures Gb3, Gb4, Gb5, monosialyl-Gb5, GM2, and cSrc and FAK. Both variants are non-invasive into collagen gel layer, and showed similar motility in wound migration assay. Whereas invasiveness and motility of MCF-7/AZ cells were enhanced greatly by treatment with mAb RM1 directed to monosialyl-Gb5, the same RM1 treatment had no effect on MCF-7/6. cSrc and FAK of MCF-7/AZ, but not MCF-7/6, were activated by RM1 treatment. Thus, malignancy of MCF-7 is highly dependent on monosialyl-Gb5, and its activation of cSrc and FAK in GEM.
Collapse
Affiliation(s)
- Wim F Steelant
- Pacific Northwest Research Institute, 720 Broadway, Seattle, WA 98122-4327, USA
| | | | | | | | | | | | | |
Collapse
|
43
|
Kawakami Y, Kawakami K, Steelant WFA, Ono M, Baek RC, Handa K, Withers DA, Hakomori S. Tetraspanin CD9 is a "proteolipid," and its interaction with alpha 3 integrin in microdomain is promoted by GM3 ganglioside, leading to inhibition of laminin-5-dependent cell motility. J Biol Chem 2002; 277:34349-58. [PMID: 12068006 DOI: 10.1074/jbc.m200771200] [Citation(s) in RCA: 98] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
GM3 ganglioside inhibits tetraspanin CD9-facilitated cell motility in various cell lines (Ono, M., Handa, K., Sonnino, S., Withers, D. A., Nagai, H., and Hakomori, S. (2001) Biochemistry 40, 6414-6421). We now report the following: (i) CD9 has the novel feature of being soluble in chloroform/methanol, and classifiable as "proteolipid"; (ii) CD9 and alpha(3) integrin were concentrated together in the low-density glycolipid-enriched microdomain (GEM) of ldlD/CD9 cells, and the alpha(3) expression ratio (value for cells grown under +Gal condition divided by the value for cells grown under -Gal condition) in GEM of ldlD/CD9 cells was higher than that in control ldlD/moc cells, suggesting that CD9 recruits alpha(3) in GEM under +Gal condition, whereby GM3 is present. (iii) Chemical levels of alpha(3) and CD9 in the total extract or membrane fractions from cells grown under +Gal versus -Gal condition were nearly identical, whereas alpha(3) expressed at the cell surface, probed by antibody binding in flow cytometry, was higher under -Gal than +Gal condition. These results suggest that GM3 synthesized under +Gal condition promotes interaction of alpha(3) with CD9, which restricts alpha(3) binding to its antibody. A concept of the alpha(3)/CD9 interaction promoted by GM3 was further supported by (i) co-immunoprecipitation of CD9 and alpha(3) under +Gal but not -Gal condition, (ii) enhanced co-immunoprecipitation of CD9 and alpha(3) when GM3 was added exogenously to cells under -Gal condition, and (iii) the co-localization images of CD9 with alpha(3) and of GM3 with CD9 in fluorescence laser scanning confocal microscopy. Based on the promotion of alpha(3)/CD9 interaction by GM3 and the status of laminin-5 as a true ligand for alpha(3), the laminin-5/alpha(3)-dependent motility of ldlD/CD9 cells was found to be greatly enhanced under -Gal condition, but strongly inhibited under +Gal condition. Such a motility difference under +Gal versus -Gal condition was not observed for ldlD/moc cells. The inhibitory effect observed in ldlD/CD9 cells under +Gal condition was reversed upon addition of anti-alpha(3) antibody and is therefore based on interaction between alpha(3), CD9, and GM3 in GEM.
Collapse
Affiliation(s)
- Yasushi Kawakami
- Division of Biomembrane Research, Pacific Northwest Research Institute, 720 Broadway, Seattle, WA 98122-4327, USA
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Abstract
This study is focused on the functional significance of neutrophil lactosylceramide (LacCer)–enriched microdomains, which are involved in the initiation of a signal transduction pathway leading to superoxide generation. Treatment of neutrophils with anti-LacCer antibody, T5A7 or Huly-m13, induced superoxide generation from the cells, which was blocked by PP1, a Src kinase inhibitor; wortmannin, a phosphatidylinositol-3 kinase inhibitor; SB203580, a p38 mitogen-activated protein kinase (MAPK) inhibitor; and H7, an inhibitor for protein kinase C. When promyelocytic leukemia HL-60 cells were differentiated into neutrophilic lineage by dimethyl sulfoxide (DMSO) treatment, they acquired superoxide-generating activity but did not respond to anti-LacCer antibodies. Density gradient centrifugation revealed that LacCer and Lyn were recovered in detergent-insoluble membrane (DIM) of neutrophils and DMSO-treated HL-60 cells. However, immunoprecipitation experiments indicated that LacCer was associated with Lyn in neutrophils but not in DMSO-treated HL-60 cells. Interestingly, T5A7 induced the phosphorylation of Lyn in neutrophils but not in DMSO-treated HL-60 cells. Moreover, T5A7 induced the phosphorylation of p38 MAPK in neutrophils. T5A7-induced Lyn phosphorylation in neutrophil DIM fraction was significantly enhanced by cholesterol depletion or sequestration with methyl-β-cyclodextrin or nystatin. Collectively, these data suggest that neutrophils are characterized by the presence of cell surface LacCer-enriched glycosphingolipid signaling domain coupled with Lyn and that the ligand binding to LacCer induces the activation of Lyn, which may be suppressibly regulated by cholesterol, leading to superoxide generation through the phosphatidylinositol-3 kinase–, p38 MAPK–, and protein kinase C–dependent signal transduction pathway.
Collapse
|
45
|
Mitsuda T, Furukawa K, Fukumoto S, Miyazaki H, Urano T, Furukawa K. Overexpression of ganglioside GM1 results in the dispersion of platelet-derived growth factor receptor from glycolipid-enriched microdomains and in the suppression of cell growth signals. J Biol Chem 2002; 277:11239-46. [PMID: 11782461 DOI: 10.1074/jbc.m107756200] [Citation(s) in RCA: 108] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
To investigate the molecular mechanisms of gangliosides for the regulation of cell proliferation, Swiss 3T3 cells were transfected with GM2/GD2 synthase and GM1 synthase cDNAs, resulting in the establishment of GM1-expressing (GM1(+)) lines. Compared with the vector control (GM1(-)) cell lines, GM1(+) cells exhibited reduced cell proliferation by stimulation with platelet-derived growth factor (PDGF). In accordance with the reduced cell growth, GM1(+) cells showed earlier decreases in the phosphorylation levels of PDGF receptor and less activation of MAP kinases than GM1(-) cells. To analyze the effects of GM1 expression on the PDGF/PDGF receptor (PDGFR) signals, the glycolipid-enriched microdomain (GEM) was isolated and the following results were obtained. (i) PDGFR predominantly distributed in the non-GEM fraction in GM1(+) cells, while it was present in both GEM and non-GEM fractions in GM1(-) cells. (ii) Activation of PDGFR as detected by anti-phosphotyrosine antibody occurred almost in parallel with existing amounts of PDGFR in each fraction. (iii) GM1 binds with PDGFR in GEM fractions. These findings suggested that GM1 regulates signals via PDGF/PDGFR by controlling the distribution of PDGFR in- and outside of GEM, and also interacting with PDGFR in the GEM fraction as a functional constituent of the microdomain.
Collapse
Affiliation(s)
- Teruhiko Mitsuda
- Department of Biochemistry II, Nagoya University School of Medicine, 65 Tsurumai, Nagoya, 466-0065 Japan
| | | | | | | | | | | |
Collapse
|
46
|
Garofalo T, Lenti L, Longo A, Misasi R, Mattei V, Pontieri GM, Pavan A, Sorice M. Association of GM3 with Zap-70 induced by T cell activation in plasma membrane microdomains: GM3 as a marker of microdomains in human lymphocytes. J Biol Chem 2002; 277:11233-8. [PMID: 11781312 DOI: 10.1074/jbc.m109601200] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Recent evidence demonstrated that T cell activation leads to the redistribution of membrane and intracellular kinase-rich raft microdomains at the site of TCR engagement. In this investigation we demonstrated by high performance thin layer chromatography, gas chromatographic, and mass spectrometric analyses that GM3 is the main ganglioside constituent of these microdomains in human lymphocytes. Then we analyzed GM3 distribution and its interaction with the phosphorylation protein Zap-70. Human T lymphocytes were stimulated with anti-CD3 and anti-CD28. Immunofluorescence microscopy analysis revealed a clustered GM3 distribution over the cell surface and an intracellular localization resembling specific cytoplasmic compartment(s). Scanning confocal microscopy showed that T cell activation induced a significant association between GM3 and Zap-70, as revealed by nearly complete colocalization areas; very few colocalization areas were detected in unstimulated cells. Coimmunoprecipitation experiments revealed that GM3 was immunoprecipitated by anti-Zap-70 only after co-stimulation through CD3 and CD28 as detected by both thin layer chromatography and immunoblotting. Therefore, T cell activation does not promote a redistribution of glycosphingolipid-enriched microdomains but induces Zap-70 translocation in selective membrane domains in which Zap-70 may interact with GM3. These findings suggest that GM3 is a component of a multimolecular signaling complex involved in T cell activation.
Collapse
Affiliation(s)
- Tina Garofalo
- Dipartimento Medicina Sperimentale e Patologia, Università La Sapienza Roma, Italy
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Sato KI, Iwasaki T, Ogawa K, Konishi M, Tokmakov AA, Fukami Y. Low density detergent-insoluble membrane of Xenopus eggs: subcellular microdomain for tyrosine kinase signaling in fertilization. Development 2002; 129:885-96. [PMID: 11861472 DOI: 10.1242/dev.129.4.885] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Protein-tyrosine phosphorylation plays an important role in egg activation signaling at fertilization. We show that in Xenopus, fertilization stimulates a rapid and transient tyrosine phosphorylation of egg proteins, as revealed by immunoblotting with anti-phosphotyrosine antibody. Immunofluorescent microscopic analysis demonstrated that the phosphorylation occurs in cortical area of the egg animal hemisphere. To further characterize subcellular compartment for fertilization-dependent tyrosine kinase signaling, we isolated low density detergent-insoluble membrane (LD-DIM) fraction from Xenopus eggs. The egg LD-DIM was enriched in cholesterol and GM1 ganglioside. It also contained signaling molecules such as Xyk (Xenopus egg Src), Gqα, Ras, integrin β1 and CD9. Fertilization stimulated tyrosine phosphorylation of Xyk and some other LD-DIM proteins. Remarkably, sperm stimulated tyrosine phosphorylation of the LD-DIM proteins in vitro. The sperm-dependent phosphorylation was sensitive to the tyrosine kinase inhibitors PP2 and genistein. We found that pretreatment of eggs with methyl-β-cyclodextrin, a cholesterol-binding substance, led to a decrease in cholesterol, Xyk and sperm-induced tyrosine phosphorylation in LD-DIM. In methyl-β-cyclodextrin-treated eggs, sperm-induced Ca2+ transient and first cell division were also inhibited. These findings suggest that the egg LD-DIM might serve as subcellular microdomain for tyrosine kinase signaling in Xenopus egg fertilization.
Collapse
Affiliation(s)
- Ken-ichi Sato
- Research Center for Environmental Genomics, Kobe University, Nada, Kobe 657-8501 Japan.
| | | | | | | | | | | |
Collapse
|
48
|
Abstract
Physically distinguishable microdomains associated with various functional membrane proteins are one of the major current topics in cell biology. Glycosphingolipids present in such microdomains have been used as "markers;" however, the functional role of glycosyl epitopes in microdomains has received little attention. In this review, I have tried to summarize the evidence that glycosyl epitopes in microdomains mediate cell adhesion and signal transduction events that affect cellular phenotypes. Molecular assemblies that perform such functions are hereby termed "glycosynapse" in analogy to "immunological synapse," the membrane assembly of immunocyte adhesion and signaling. Three types of glycosynapses are so far distinguishable: (i) Glycosphingolipids organized with cytoplasmic signal transducers and proteolipid tetraspanin with or without growth factor receptors; (ii) transmembrane mucin-type glycoproteins with clustered O-linked glycoepitopes for cell adhesion and associated signal transducers at lipid domain; and (iii) N-glycosylated transmembrane adhesion receptors complexed with tetraspanin and gangliosides, as typically seen with the integrin-tetraspanin-ganglioside complex. The possibility is discussed that glycosynapses give rise to a high degree of diversity and complexity of phenotypes.
Collapse
|
49
|
Rojo J, Morales JC, Penadés S. Carbohydrate-Carbohydrate Interactions in Biological and Model Systems. HOST-GUEST CHEMISTRY 2002. [DOI: 10.1007/3-540-45010-6_2] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
50
|
Iwamoto T, Fukumoto S, Kanaoka K, Sakai E, Shibata M, Fukumoto E, Inokuchi Ji J, Takamiya K, Furukawa K, Furukawa K, Kato Y, Mizuno A. Lactosylceramide is essential for the osteoclastogenesis mediated by macrophage-colony-stimulating factor and receptor activator of nuclear factor-kappa B ligand. J Biol Chem 2001; 276:46031-8. [PMID: 11592959 DOI: 10.1074/jbc.m104464200] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Glycosphingolipids and their metabolites play important roles in a variety of biological processes. Several signal molecules are localized in a glycolipid-enriched microdomain on the cell surface, and their signals are regulated by the glycolipid composition. However, the function of glycolipids in osteoclastogenesis has not been clearly understood. We found that D-threo-1-phenyl-2-decanoylamino-3-morpholino-1-propanol (D-PDMP), a glucosylceramide synthase inhibitor, completely inhibits the osteoclast formation induced by macrophage-colony-stimulating factor and receptor activator of nuclear factor-kappa B ligand (RANKL) in a dose-dependent manner. Expression of RANK, the receptor of RANKL, induced by macrophage colony-stimulating factor, was reduced markedly in D-PDMP-treated cells. d-PDMP also inhibited the phosphorylation of the inhibitor of nuclear factor-kappa B and extracellular signal-regulated kinase 1/2 induced by RANKL. In several experiments with the addition of glycolipids to D-PDMP-treated purified bone marrow cells, lactosylceramide (LacCer) strongly affected the differentiation into tartrate-resistant acid phosphatase mononucleated cells, but not positive multinucleated cells. GM3 and GM1 also recovered, but less effectively compared with LacCer. Moreover, exogenous LacCer recovered the reduced expression of RANK and the phosphorylation of inhibitor of NF-kappa B and extracellular signal-regulated kinase 1/2 after stimulation by RANKL at the same level of cells without D-PDMP treatment. Our data suggest that glycosphingolipids, especially LacCer, are necessary for the initiation step of RANKL-induced osteoclastogenesis.
Collapse
Affiliation(s)
- T Iwamoto
- First Department of Oral and Maxillofacial Surgery, Nagasaki University School of Dentistry, Nagasaki 852-8588, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|